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Abstract.

In this paper, we address an adaptive beamforming application based on the capture of far-field
speech data from a single speaker in a real meeting room. After the position of a speaker is esti-
mated by a speaker tracking system, we construct a subband-domain beamformer in generalized

sidelobe canceller (GSC) configuration. In contrast to conventional practice, we then optimize
the active weight vectors of the GSC so as to obtain an output signal with maximum negentropy

(MN). This implies the beamformer output should be as non-Gaussian as possible. For calculating
negentropy, we consider the Γ and the generalized Gaussian (GG) pdfs. After MN beamform-
ing, Zelinski post-filtering is performed to further enhance the speech by removing residual noise.
Our beamforming algorithm can suppress noise and reverberation without the signal cancellation
problems encountered in the conventional adaptive beamforming algorithms. We demonstrate this
fact through experiments on acoustic simulations. Moreover, we demonstrate the effectiveness of
our proposed technique through a series of far-field automatic speech recognition experiments on
the Multi-Channel Wall Street Journal Audio Visual Corpus (MC-WSJ-AV), a corpus of data
captured with real far-field sensors, in a realistic acoustic environment, and spoken by real speak-
ers. On the MC-WSJ-AV evaluation data, the delay-and-sum beamformer with post-filtering
achieved a word error rate (WER) of 16.5%. MN beamforming with the Γ pdf achieved a 15.8%
WER, which was further reduced to 13.2% with the GG pdf, whereas the simple delay-and-sum
beamformer provided a WER of 17.8%.
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1 Introduction

There has been great and growing interest in microphone array processing for hands-free speech recog-
nition [1, 2, 3]. Such techniques have the potential to relieve users from the necessity of donning close
talking microphones (CTMs) before dictating or otherwise interacting with automatic speech recogni-
tion (ASR) systems. Adaptive beamforming is a promising technique for far-field speech recognition.
A conventional beamformer in generalized sidelobe canceller (GSC) configuration is structured such
that the direct signal from a desired direction is undistorted [4, §6.7.3]. Subject to this distortionless
constraint, the total output power of the beamformer is minimized through the adjustment of an
active weight vector, which effectively places a null on any source of interference, but can also lead to
undesirable signal cancellation [5]. To avoid the latter, the adaptation of the active weight vector is
typically halted whenever the desired source is active.

In this work, we consider negentropy as a criterion for estimating the active weight vectors in
a GSC. Negentropy indicates how far a probability density function (pdf) of a particular signal is
from Gaussian. In other words, it represents the degree of super-Gaussianity of a distribution [6].
The pdf of speech is in fact super-Gaussian [2, 7, 8], but it becomes closer to Gaussian when the
speech is corrupted by noise or reverberation. Hence, in adjusting the active weight vector of the
GSC to provide a signal with the highest possible negentropy, we hope to remove or suppress noise
and reverberation. As we will demonstrate, the maximum negentropy (MN) beamformer can achieve
this goal without the signal cancellation problem encountered in conventional adaptive beamforming
algorithms. For calculating negentropy, we consider the Γ and the generalized Gaussian (GG) pdfs,
and investigate the suitability of each for this task. After MN beamforming, Zelinski post-filtering is
performed to further enhance the speech by removing residual noise [9].

We demonstrate the effectiveness of our proposed technique through a series of far-field automatic
speech recognition experiments on the Multi-Channel Wall Street Journal Audio Visual Corpus (MC-
WSJ-AV) collected by the European Union integrated project Augmented Multi-party Interaction
(AMI) [1].

The balance of this work is organized as follows. We describe the super-Gaussian pdfs which are
used for calculating the negentropy in Section 2. In particular, Section 2 shows that the distribution of
clean speech is not Gaussian but super-Gaussian and the pdf of noise corrupted speech becomes closer
to Gaussian. Section 3 reviews the definition of entropy and negentropy. In Section 4, we discuss our
maximum negentropy beamforming criterion and then derive the objective functions for estimating
the active weight vectors. Section 5 illustrates the speech distribution modeled with the GG pdf.
In Section 6, we demonstrate that the proposed beamforming algorithm has no signal cancellation
problem through acoustic simulations. In Section 7, we describe the results of far-field automatic
speech recognition experiments. Finally, in Section 8, we present our conclusions and plans for future
work.

2 Modeling Subband Samples of Speech with Super-Gaussian

Probability Density Functions

Here we present theoretical arguments and empirical evidence that subband samples of speech, like
nearly all other information bearing signals, are not Gaussian-distributed [6]. Hence, we are led to
consider the use of super-Gaussian pdfs to model the subband samples of speech, as well as to calculate
the negentropy of outputs of a GSC.

The entire field of independent component analysis (ICA) is founded on the assumption that all
signals of real interest are not Gaussian-distributed. A concise and very readable argument for the
validity of this assumption is given by Hyvärinen and Oja [6]. Briefly, their reasoning is grounded on
two points:

1. The central limit theorem states that the pdf of the sum of independent random variables (r.v.s)
will approach Gaussian in the limit as more and more components are added, regardless of the pdfs
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Figure 1: Plot of the likelihood of the super-Gaussian and Gaussian pdfs.

of the individual components. This implies that the sum of several r.v.s will be closer to Gaussian
than any of the individual components. Thus, if the original independent components comprising
the sum are sought, one must look for components with pdfs that are the least Gaussian.

2. As discussed in Section 3, entropy is the basic measure of information in information theory [10].
It is well known that a Gaussian r.v. has the highest entropy of all r.v.s with a given variance [10,
Thm. 7.4.1], which also holds for complex Gaussian r.v.s [11, Thm. 2]. Hence, a Gaussian r.v. is, in
some sense, the least predictable of all r.v.s., which is why the Gaussian pdf is most often associated
with noise. Interesting signals contain structure that makes them more predictable than Gaussian
r.v.s. Hence, if an interesting signal is sought, one must once more look for a signal that is not
Gaussian.

The fact that the pdf of speech is super-Gaussian has often been reported in the literature [2, 7, 8].
Noise, on the other hand, is typically Gaussian-distributed. In fact, the pdf of the sum of super-
Gaussian variables gets closer to Gaussian. Thus, a mixture signal which consists of many interference
signals can be expected to be Gaussian-distributed. Based on these facts, we might remove interference
signals and extract a target signal by making the pdf of the beamformer’s output as super-Gaussian
as possible.

A plot of the likelihood of the Gaussian and four super-Gaussian univariate pdfs considered is
provided in Fig. 1, where the likelihood of the generalized Gaussian (GG) pdf is calculated with the
shape parameter p = 0.1. From the figure, it is clear that the Laplace, K0, Γ, and GG with p = 0.1
densities exhibit the “spikey” and “heavy-tailed” characteristics that are typical of super-Gaussian
pdfs. This implies that they have a sharp concentration of probability mass at the mean, relatively
little probability mass as compared with the Gaussian at intermediate values of the argument, and a
relatively large amount of probability mass in the tail; i.e., far from the mean.

Fig. 2 shows the histogram of the real parts of subband components at fs = 800 Hz. To generate
these histograms, we used 43.9 minutes of clean speech recorded with the CTM in the development
set of the Speech Separation Challenge, Part 2 (SSC2) [1]. Fig. 2 also presents the likelihoods of the
pdfs. In Fig. 2, the parameters of the GG pdf are estimated from training data. It is clear from Fig. 2
that the distribution of clean speech is not Gaussian but super-Gaussian. Fig. 2 also suggests that
the GG pdf can be suitable for modeling speech.

Fig. 3 shows the histogram of magnitude in the subband domain. We can see from Fig. 3 that the
GG pdf can model the distribution of magnitude in the subband domain very well.
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Figure 2: Histogram of real parts of subband
components and the likelihood of pdfs.
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Figure 3: Histogram of magnitude in the sub-
band domain and the likelihood of pdfs.

Fig. 4 shows histograms of real parts of subband components calculated from clean speech and
noise corrupted speech. It is clear from this figure that the pdf of the noise corrupted speech has less
probability mass around the center spike, and less probability mass in the tail than the clean speech,
but more probability mass in intermediate regions. This indicates that the pdf of the noise-corrupted
signal, which is in fact the sum of the speech and noise signals, is closer to Gaussian than that of clean
speech. Fig. 5 shows histograms of clean speech and reverberated speech in the subband domain. In
order to produce reverberated speech, a clean speech signal was convolved with an impulse response
measured in a room; see Lincoln et al. [1] for the configuration of the room. We can observe from
Fig. 5 that the pdf of reverberated speech is also closer to Gaussian than the original clean speech.

We also present a histogram of magnitude of noise corrupted speech in Fig. 6 and that of rever-
berated speech in Fig. 7, respectively. We can again see from Fig. 6 and Fig. 7 that the pdfs of
corrupted speech have the less probability mass around the mean and less probability mass in the tail,
but once more probability mass in intermediate regions. Interestingly, Fig. 7 shows that the peak of
the histogram of the speech is shifted from zero to the right by the reverberation effect.

These facts would indeed support the hypothesis that seeking an enhanced speech signal that is
maximally non-Gaussian is an effective way to suppress the distorting effects of noise and reverberation.

2.1 Super-Gaussian pdf derived from the Meijer G-function

Brehm and Stammler stated in [12] that it was useful to assume that the Laplace, K0, and Γ pdfs
belonged to the class of the spherically-invariant random processes (SIRPs) for two principal reasons.
Firstly, this implies that multivariate pdfs of all orders can be readily derived from the univariate
pdf using the theory of Meijer G-function based solely on the knowledge of the covariance matrix of
the random vectors. Secondly, such variates can be extended to the case of complex r.v.s, which is
essential for our current development.

We used the Γ pdf here since it achieved a higher likelihood than the other two named pdfs, namely,
Laplace, and K0 [2]. For the Γ pdf, the complex univariate pdf cannot be expressed in closed form
in terms of elementary or even special functions. As explained in [2], however, it is possible to derive
Taylor series expansions that enable the required variates to be calculated to arbitrary accuracy.

The differential entropy for the Γ pdf cannot be expressed in closed form, either. We must,
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Figure 4: Histograms of clean speech and noise
corrupted speech in the subband domain.
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Figure 5: Histograms of clean speech and re-
verberated speech in the subband domain.

therefore, replace the exact differential entropy with the empirical differential entropy

H(Y ) = −E {log pY (Y )} ≈ −
1

T

T−1
∑

t=0

log pY (Yt). (1)

2.2 Generalized Gaussian pdf

Due to its definition as a contour integral, finding maximum likelihood estimates for the parameters of
a Meijer G-function must necessarily devolve to a grid search over the parameter space [12]. Instead,
it might be better to use a simple super-Gaussian pdf whose parameters can easily be adjusted so as
to match the subband samples. The generalized Gaussian (GG) pdf is well-known and finds frequent
application in the blind source separation (BSS) and ICA fields. Moreover, it subsumes the Gaussian
and Laplace pdfs as special cases. The GG pdf with zero mean for a real-valued r.v. y can be expressed
as

pGG(y) =
1

2Γ(1 + 1/p)A(p, σ̂)
exp

[

−

∣

∣

∣

∣

y

A(p, σ̂)

∣

∣

∣

∣

p]

, (2)

where

A(p, σ̂) = σ̂

[

Γ(1/p)

Γ(3/p)

]1/2

. (3)

In (3), Γ(.) is the gamma function and p is the shape parameter, which controls how fast the tail
of the pdf decays. Note that the GG with p = 1 corresponds to the Laplace pdf, and that setting
p = 2 yields the Gaussian pdf, whereas in the case of p → +∞ the GG pdf converges to a uniform
distribution1.

Fig 8 shows the likelihood of the GG pdf with the same scaling factor σ̂2 = 1 and different shape
parameters p = 0.5, 1, 2, 4. From the figure, it is clear that a smaller shape parameter yields a pdf
with a spikier peak and heavier tail.

1Equation (2) is defined over the interval (-∞, +∞). Precisely speaking, the double-sided pdf (2) should be modified
in order to model magnitude whose value is always positive. It is easily done by multiplying both sides of (2) by a
factor of two and redefining the interval as [0, +∞). However, such modifications are not necessary in our algorithm
because the double factor for the normalization is constant in the log-likelihood domain and has no effect on the gradient
algorithm.



6 IDIAP–RR 08-07

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

 

 

noise corrupted speech
clean speech

Figure 6: Histograms of magnitude of clean
speech and noise corrupted speech in the sub-
band domain.
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Figure 7: Histograms of magnitude of clean
speech and reverberated speech in the subband
domain.

The differential entropy of the GG pdf for the real-valued r.v. y is obtained with the help of
Mathematica [13] as

HGG(y) = −

∫ +∞

−∞

pgg(ξ) log pgg(ξ)dξ

=
1

p
+ log [2Γ(1 + 1/p)A(p, σ̂)] (4)

The shape parameter p is trained with the method described in Section 2.3.

2.3 Methods for Estimating Scale and Shape Parameters

Among several methods for estimating the shape parameter p of the GG pdf [14][15], the moment
and maximum likelihood (ML) methods are arguably the most straightforward. In this work, we use
the moment method in order to initialize the parameters of the GG pdf and then update them with
the ML estimate [15]. The shape parameters are estimated from training samples offline and are held
fixed during the adaptation of the active weight vector. The shape parameters for each subband are
estimated independently, as the optimal pdf is frequency-dependent.

For a set {Yt} of training data consisting of complex subband samples of speech, the log-likelihood
function under the GG pdf can be expressed as

l(σ̂, p; y) = −N log {2Γ(1 + 1/p)A(p, σ̂)}

−
1

A(p, σ̂)p

N−1
∑

n=0

|yn|
p,

(5)

where N is the number of training samples. The parameters σ̂ and p can be obtained by solving the
following equations:

∂l(σ̂, p; y)

∂σ̂
= −

N

σ̂
+

p

σ̂p+1

[

Γ(1/p)

Γ(3/p)

]− p

2
N−1
∑

n=0

|yn|
p = 0, (6)
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Figure 8: Plot of the likelihood of the generalized Gaussian (GG) pdfs.

∂l(σ̂, p; y)

∂p
=Na(p) −

N−1
∑

n=0

(

|yn|

A(p)

)p

×

[

log

{

|yn|

A(p)

}

+ b(p)

]

= 0,

(7)

where

a(p) = (p−2/2)[2Ψ(1 + 1/p) + Ψ(1/p) − 3Ψ(3/p)],

b(p) = (p−1/2)[Ψ(1/p) − 3Ψ(3/p)],

and Ψ(.) is the digamma function. By solving (6) with respect to σ̂, we have

σ̂ =

[

Γ(3/p)

Γ(1/p)

]1/2
(

p

N

N−1
∑

n=0

|yn|
p

)1/p

. (8)

3 Negentropy and Kurtosis

The entropy for a continuous complex-valued r.v. Y , which is often called the differential entropy, is
defined as

H(Y ) , −

∫

pY (v) log pY (v)dv = −E {log pY (v)} , (9)

where pY (.) is the pdf of Y . The entropy of a r.v. indicates how much information the observation
of the variable provides. Accordingly the large entropy indicates that the variables are really random
and contain unstructured information. As mentioned previously, a Gaussian variable has the largest
entropy among all r.v.s of equal variance [6].

There are two popular criteria of nongaussianity, namely, negentropy and kurtosis, both of which
are frequently used in the field of ICA.

Negentropy J for a complex-valued r.v. Y is defined as

J(Y ) = H(Ygauss) − H(Y ) (10)

where Ygauss is a Gaussian variable which has the same variance σ2
Y as Y . The negentropy of Ygauss

can be expressed as
H(Ygauss) = log

∣

∣σ2
Y

∣

∣+ n (1 + log 2π) (11)
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Figure 9: Schematic of a generalized sidelobe canceling (GSC) beamformer for an active source.

where n is the dimension Y . In Section 2, we calculate H(Y ) in (10) with a number of super-Gaussian
pdfs. Note that negentropy is non-negative, and it is zero if and only if Y has a Gaussian distribution.

The excess kurtosis or simply kurtosis of a r.v. Y with zero mean, defined as

kurt(Y ) , E{Y 4} − 3(E{Y 2})2,

is another well-known measure of how non-Gaussian Y is [6]. The Gaussian pdf has zero kurtosis,
pdfs with positive kurtosis are super-Gaussian, those with negative kurtosis are sub-Gaussian. Of the
three super-Gaussian pdfs in Fig. 1, the Γ pdf has the highest kurtosis, followed by the K0, then by
the Laplace pdf. This fact manifests itself in Fig. 1, where it is clear that as the kurtosis increases,
the pdf becomes more and more spikey and heavy-tailed. Observe that the kurtosis of the GG pdf
can be controlled by adjusting the shape parameter p. The detail is explained in Section 5.

Kurtosis can be calculated by simply averaging samples

kurt(Y ) =
1

N

N−1
∑

i=0

Y 4
i − 3

(

1

N

N−1
∑

i=0

Y 2
i

)2

. (12)

This kurtosis criterion does not require any pdf assumption. Due to its simplicity, it is widely used
as a measure of nongaussianity. However, the value of kurtosis might be greatly influenced by a
few samples with a low observation probability. Hyvärinen and Oja [6] noted that negentropy was
generally more robust in the presence of outliers than kurtosis. Hence, we adopt negentropy as our
measure of choice, although we will also measure and report kurtosis values.

4 Beamforming and Post-Filtering

Consider a subband beamformer in the GSC configuration [4, §6.7.3] with a post-filter, as shown in
Fig. 9. The output of a beamformer for a given subband can be expressed as

Y = (wq − Bwa)
H

X, (13)

where wq is the quiescent weight vector for a source, B is the blocking matrix, wa is the active weight
vector, and X is the input subband snapshot vector.

In keeping with the GSC formalism, wq is chosen to give unity gain in the desired look direction [4,
§6.7.3]; i.e., to satisfy a distortionless constraint. The blocking matrix B is chosen to be orthogonal
to wq, such that BH wq = 0.

This orthogonality implies that the distortionless constraint will be satisfied for any choice of wa.
While the active weight vector wa is typically chosen to maximize the signal-to-noise ratio (SNR),
here we will develop an optimization procedure to find that wa which maximizes the negentropy J(Y )
described in Section 3.

In order to calculate the negentropy, the variance of the output Y is needed. Substituting (13)
into the definition σ2

Y = E {Y Y ∗} of variance, we find

σ2
Y = E

{

(wq − Bwa)
H

XXH (wq − Bwa)
}

= (wq − Bwa)
H

ΣX (wq − Bwa) , (14)
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where ΣX is the covariance matrix of X.
Maximizing the negentropy criterion yields a weight vector wa capable of canceling interferences

including incoherent noise that leaks through the sidelobes without the signal cancellation problems
encountered in conventional beamforming.

Zelinski post-filtering is performed on the output of the beamformer. The transfer function of the
Zelinski post-filter can be expressed as

wz =

2
M(M−1)

∣

∣

∣

∑M−1
k=1

∑M
l=k+1 φ̂kl

∣

∣

∣

1
M

∑M
k=1 φ̂kk

(15)

where φ̂kk is the auto-spectral density of the time-aligned input at microphone k and φ̂kl is the cross-
spectral density (CSD) at microphone k and l. The estimation of a desired signal can be improved by
averaging the CSDs [9]. The final output of the beamformer and post-filter combination is

Yf = wzY = wz (wq − Bwa)
H

X. (16)

For the experiments described in Section 7, subband analysis and synthesis were performed with
a uniform DFT filter bank based on the modulation of a single prototype impulse response [16],
which was designed to minimize each aliasing term individually. Beamforming in the subband domain
has the considerable advantage that the active sensor weights can be optimized for each subband
independently, which provides a tremendous computational saving with respect to a time-domain
filter-and-sum beamformer with filters of the same length on the output of each sensor.

In conventional beamforming, a regularization term is often applied that penalizes large active
weights, and thereby improves robustness by inhibiting the formation of excessively large sidelobes [4,
§6.10]. Such a regularization term can be applied in the present instance by defining the modified
optimization criterion

J (Y ;α) = J(Y ) + α‖wa‖
2 (17)

for some real α > 0.

4.1 Estimation of Active Weights under the Γ pdf

Here we describe necessary formulae for estimating the active weight vectors in the case that the Γ
pdf assumption is used.

Substituting (1) and (11) into (10), we can express the negentropy as

J(Y ) = log
∣

∣σ2
Y

∣

∣+ n (1 + log 2π) +
1

T

T−1
∑

t=0

log pY (Yt). (18)

We maximize the objective function which is the sum of the negentropy and the regularization term.
In the absence of a closed-form solution for the wa maximizing the negentropy (18), we must use a
numerical optimization algorithm. Such an optimization algorithm typically requires gradient infor-
mation.

By substituting (18) into (17) and taking the partial derivative on both sides, we obtain the
gradient function,

∂J (Y ;α)

∂wa
∗

=
∂J(Y ;α)

∂wa
∗

+ αwa

=
1

|σ2
Y |

∂|σ2
Y |

∂wa
∗

+
1

T

T−1
∑

t=0

1

pY (Yt)

∂pY (Yt)

∂wa
∗

+ αwa

(19)

where

∂|σ2
Y |

∂wa
∗

= E
{

−BHXY ∗
}

. (20)
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Equations (19) and (20) are sufficient to implement a numerical optimization algorithm based, for
example, on the method of conjugate gradients [17, §1.6], whereby the negentropy J(Y ) can be max-
imized.

4.2 Estimation of Active Weights under the Generalized Gaussian pdf

4.2.1 Parameter optimization 1

Unlike the pdfs that can be expressed as Meijer G-functions, the GG pdf cannot be readily extended
from the univariate to the multi-variate. Hence, we use the magnitude of beamformer’s output as the
r.v. for calculating the entropy. By substituting (4) and (11) into (10), we have the negentropy

J(Y ) = log
∣

∣σ2
Y

∣

∣+ n (1 + log 2π) − HGG(|Y |). (21)

In order to apply the gradient algorithm, we derive the gradient information again. By substitut-
ing (21) into (17) and taking the partial derivative on both sides, where the shape parameter is fixed,
we can obtain the objective function

∂J (Y ;α)

∂wa
∗

=
1

σ2
Y

∂σ2
Y

∂wa
∗
−

∂HGG(|Y |)

∂wa
∗

+ αwa (22)

where

∂HGG(|Y |)

∂wa
∗

=
1

σ̂|Y |

∂σ̂|Y |

∂wa
∗
. (23)

Taking the derivative on both sides of (8), we find

∂σ̂|Y |

∂wa
∗

=
p

T

[

Γ(3/p)

Γ(1/p)

]
1
2

×

[

p

T

T−1
∑

t=0

|Yt|
p

]

1
p
−1

×

[

T−1
∑

t=0

|Yt|
p−1 ∂|Yt|

∂wa
∗

]

, (24)

where the gradient of the magnitude is

∂|Yt|

∂wa
∗

= −
1

2|Yt|
BHXY ∗

t . (25)

We can implement a numerical optimization algorithm from equations (22) to (25).

4.2.2 Parameter optimization 2

One might think that the entropy of the GG pdf for the complex valued r.v. could be approximated
by assuming that real and imaginary parts are independent. With such an assumption, we can express
the differential entropy of the GG pdf as

H(Y ) ≈ Hr(Yr) + Hi(Yi) (26)

where Yr is the real part of Y and Yi is its imaginary part. Notice that the shape parameters for the
real and imaginary parts must be trained individually.

Then, upon substituting (11) and (26) into (10) and adding the regularization term, we obtain the
objective function

J (Y ;α) = log
∣

∣σ2
Y

∣

∣+ n (1 + log 2π)

− Hr(Yr) − Hi(Yi) + α‖wa‖
2.

(27)
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Figure 10: The parameters of the GG pdf for each frequency bin; (a) scaling parameter σ̂|Y | and (b)
shape parameter p, where the sampling frequency is 16 kHz.

In order to employ the gradient algorithm, we take the partial derivative of (27)

∂J (Y ;α)

∂wa
∗

=
1

|σ2
Y |

∂|σ2
Y |

∂wa
∗
−

∂Hr(Yr)

∂wa
∗

−
∂Hi(Yi)

∂wa
∗

+ αwa, (28)

where

∂|Yr,t|

∂wa
∗

= −
1

2
BHX · sign(Yr,t) (29)

and

∂|Yi,t|

∂wa
∗

= j
1

2
BHX · sign(Yi,t). (30)

Equations (28) through (30) are sufficient for implementing the gradient algorithm.

5 Speech Modeling with the GG pdf

Subbands of speech can be precisely modeled by estimating the parameters of the GG pdf from training
samples. The trained parameters give us an intuitive insight into the speech pdf. Fig. 10 shows the
scaling parameter σ̂|Y | and the shape parameter p for each frequency bin. The training samples used
for estimating the GG pdf here were taken from clean speech data in the SSC development set [1].

It is clear from Fig. 10 that the scaling parameter σ̂|Y | becomes smaller at higher frequency. We
can consider that the scaling parameter σ̂|Y | can be associated with the variance. Therefore Fig. 10
implies that the magnitude at lower frequency varies more than that at higher frequency. Notice that
σ̂|Y | doesn’t indicate the variance exactly in the case that the ML method is used for estimating it.
We can see from Fig. 10 that the GG pdfs trained with actual speech data are super-Gaussian p < 2
for all subbands. Moreover, the subband samples of speech are more super-Gaussian than the Laplace
pdf given that p < 1 for all frequency bins.
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Figure 11: Kurtosis for each frequency bin, where the sampling frequency is 16 kHz.

As mentioned previously, the kurtosis is a measure of the super-Gaussianity of a pdf. Therefore it
might be interesting to see the kurtosis of the GG pdf. The kurtosis of a GG pdf can be expressed as

kurt(Ygg) = σ̂4

{

Γ(1/p)Γ(5/p)

Γ(3/p)2
− 3

}

. (31)

A derivation of (31) is provided in the Appendix. Fig. 11 shows kurtosis values for all frequency bins.
In Fig. 11, a solid line indicates the kurtosis of the GG pdf calculated with Eq. (31) and a broken line
presents the empirical kurtosis computed with Eq. (12). It is clear from Fig. 11 that the GG pdf can
also model the kurtosis of speech, which would make the negentropy criterion more robust for outliers
than the empirical kurtosis. It is also clear from Fig. 11 that kurtosis becomes smaller at higher
frequency, which indicates that the pdf of lower frequency components are more super-Gaussian than
those of higher frequency ones.

6 Simulation

Conventional adaptive beamforming algorithms determine the optimum weight vector that minimizes
the beamformer’s output:

wHΣXw, (32)

subject to the distortionless constraint for the desired look direction

wHd = 1, (33)

where d is the beam-steering vector. The well-known solution is called the minimum variance dis-
tortionless response (MVDR) beamformer [18]. The weight vector of the MVDR beamformer can be
expressed as

wMVDR =
Σ−1

X
d

dHΣ−1
X

d
. (34)

A small value is typically added to the diagonal of ΣX in order to ensure that the matrix is invertible.
The conventional beamformers as well as the MVDR beamfomer would attempt to null out any
interfering signal. However, it leads to the signal cancellation problem [5] in the case that there is
an interference signal which is correlated with a desired signal. In realistic environments, interference
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signals are highly correlated with a target signal since the target signal is reflected from hard surfaces
such as walls and tables. Therefore, the adaptation of the weight vector is usually halted whenever
the desired source is active. Although many techniques have been proposed to avoid the signal
cancellation, one of the most successful beamforming algorithms is perhaps the robust beamformer
with the GSC configuration proposed by Hoshuyama et al. [19]. In the lower branch, their algorithm
adaptively estimates a blocking matrix which cancels the signal correlated with the output from the
upper branch. Accordingly, the reflections of a desired signal can be eliminated from the lower branch
by the adaptive blocking matrix (ABM). The coefficient of the ABM has upper and lower limits
in order to specify the maximum allowable target-direction error. Then, the active weight vectors
are estimated so as to minimize the output of the beamformer. Since the ABM can remove the
reflections from the lower branch, the signal cancellation problem is alleviated. However, the ABM
cancels not only the reflections but also interference signals in the case that the output of the upper
branch contains the interference components. Then their algorithm is not able to suppress the leaked
interference signals. In reality, the interference signals often come in the upper branch because of the
steering error and spatial aliasing. Therefore it could be considered that Hoshuyama’s algorithm has a
trade-off problem between the avoidance of the signal cancellation and suppression of the interference
signals. Such a trade-off problem can be solved by simply halting the adaptation of the ABM and only
update the active weight vectors in the case of a high SNR [20]. However, such a switching algorithm
based on the SNR requires complicated rules which are generally determined empirically.

Conventional robust beamforming algorithms fundamentally have tackled how to remove reflections
that are highly correlated with the target signal in order to circumvent the signal cancellation problem.

In contrast to such conventional beamformers, the MN beamforming algorithm attempts not only
to eliminate interference signals but also strengthen those reflections from the desired source, assuming
the sound source is statistically independent of the other sources. Of course, any reflected signal would
be delayed with respect to the direct path signal. Such a delay would, however, manifest itself as a
phase shift in the subband domain, and could thus be removed through a suitable choice of wa. Hence,
the MN beamformer offers the possibility of steering both nulls and sidelobes; the former towards the
undesired signal and its reflections, the latter towards reflections of the desired signal.

In order to verify that the MN beamforming algorithm forms sidelobes directed towards the re-
flection of a desired signal, we conducted experiments with a simulated acoustic environment. As
shown in Fig. 12, we considered a simple configuration with a sound source, a reflective surface, and a
linear array of eight microphones positioned with 10 cm intersensor spacing. Actual speech data were
used as a source in this simulation, which was based on the image method [21]. Fig. 13 shows beam
patterns at fs = 800 Hz and fs = 1500 Hz obtained with delay-and-sum (D&S) beamformer and the
MN beamforming algorithm with the GG pdf of the magnitude.

Given that a beam pattern shows the sensitivity of an array to plane waves, but the beam patterns
in Fig. 13 were made with a near-field source and reflection, we also ran a second set of simulations
in which the source and reflection were assumed to produce plane waves. The results of this second
simulation are shown in Fig. 14. Once more, it is apparent that the MN beamformer emphasizes the
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Figure 13: Beam patterns produced by the delay-and-sum beamformer and the MN beamforming
algorithm using a spherical wave assumption for (a) fs = 800 Hz and (b) fs = 1500 Hz.
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Figure 14: Beam patterns produced by the delay-and-sum beamformer and the MN beamforming
algorithm using a plane wave assumption for (a) fs = 800 Hz and (b) fs = 1500 Hz.

reflection from the desired source.

From the statistical point of view, the difference between the conventional and MN beamformers
is that the MN beamforming algorithm takes account into the high-order statistics (HOS). On the
other hand, the conventional beamformers are based only on the consideration of the covariance, the
second-order statistics (SOS). Therefore the simulation results suggest that the measure of the HOS
could be associated with how much a target signal is enhanced with its reflections.

7 Experiments

We performed far-field automatic speech recognition (ASR) experiments on the Multi-Channel Wall
Street Journal Audio Visual Corpus (MC-WSJ-AV) from the Augmented Multi-party Interaction
(AMI); see Lincoln et al. [1] for a description of the data collection apparatus. In the single speaker
stationary scenario of the MC-WSJ-AV, a speaker was asked to sit or stand in front of a presentation
screen and read sentences from different positions. The far-field speech data was recorded with two
circular, eight-channel microphone arrays in a reverberant room. In addition to reverberation, some
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recordings include significant amounts of background noise. The sampling rate of the recordings was
16 kHz. As the data was recorded with real speakers in a realistic acoustic environment and not
artificially convolved with measured room impulse responses, the positions of the speakers’ heads as
well as the speaking volume vary even though the speakers are largely stationary. Indeed, it is exactly
this behavior of real speakers that makes working with data from corpora such as MC-WSJ-AV so
much more challenging than working with data that was played through a loud speaker into a room,
not to mention data that was artificially convolved.

Our test data set for the experiments contains recordings of 10 speakers where each speaker reads
approximately 40 sentences taken from the 5,000 word vocabulary Wall Street Journal (WSJ) task.
It gives a total of 352 utterances which correspond to 39.2 minutes of speech. There are a total of
11,598 word tokens in the reference transcriptions. The test data do not include training data.

As shown in [2] the directivity of the circular array at low frequencies is poor; this stems from the
fact that for low frequencies, the wavelength is much longer than the aperture of the array. At high
frequencies, the beam pattern is characterized by very large sidelobes; this is due to the fact that at
high frequencies, the spacing between the elements of the array exceeds a half wavelength, thereby
causing spatial aliasing [4, §2.5].

Prior to beamforming, we first estimated the speaker’s position with the Orion source tracking
system [22]. Based on the average speaker position estimated for each utterance, utterance-dependent
active weight vectors wa were estimated for a source. The active weight vectors for each subband
were initialized to zero for estimation. Iterations of the conjugate gradients algorithm were run on
the entire utterance until convergence was achieved.

Zelinski post-filtering [9] was performed after beamforming. The feature extraction of our ASR
system was based on cepstral features estimated with a warped minimum variance distortionless re-
sponse [23] (MVDR) spectral envelope of model order 30. Due to the properties of the warped MVDR,
neither the Mel-filterbank nor any other filterbank was needed. The warped MVDR provides an in-
creased resolution in low–frequency regions relative to the conventional Mel-filterbank. The MVDR
also models spectral peaks more accurately than spectral valleys, which leads to improved robustness
in the presence of noise. Front-end analysis involved extracting 20 cepstral coefficients per frame of
speech and performing global cepstral mean subtraction (CMS) with variance normalization. The
final features were obtained by concatenating 15 consecutive frames of cepstral features together, then
performing a linear discriminant analysis (LDA) to obtain a feature of length 42. The LDA transfor-
mation was followed by a second global CMS, then a global semi-tied covariance (STC) transform [24].

The far-field ASR experiments reported here were conducted with a word trace decoder imple-
mented along the lines suggested by Saon et al. [25]. The decoder is capable of generating word
lattices, which can then be optimized with weighted finite-state transducer (WFST) operations as
in [26]; i.e., the raw lattice from the decoder is projected onto the output side to discard all arc in-
formation save for the word identities, and then compacted through epsilon removal, determinization,
and minimization [27].

We used 30 hours of American WSJ and the 12 hours of Cambridge WSJ data in order to train
a triphone acoustic model. The latter was necessary in order to provide coverage of the British
accents for the speakers in the SSC development set [1]. Acoustic models estimated with two different
HMM training schemes were used for the various decoding passes: conventional maximum likelihood
(ML) HMM training [28, §12], and speaker-adapted training under a ML criterion (ML-SAT) [29]. Our
baseline system was fully continuous with 1,743 codebooks and a total of 67,860 Gaussian components.
The parameters of the GG pdf were trained with 43.9 minutes of speech data recorded with the CTM
in the SSC development set. The training data set for the GG pdf contains recordings of 5 speakers.

We performed four decoding passes on the waveforms obtained with each of the beamforming
algorithms described in prior sections. Each pass of decoding used a different acoustic model or speaker
adaptation scheme. For all passes save the first unadapted pass, speaker adaptation parameters were
estimated using the word lattices generated during the prior pass, as in [30]. A description of the four
decoding passes follows:
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Table 1: Word error rates for each beamforming algorithm after every decoding pass.

Beamforming Pass (%WER)
Algorithm 1 2 3 4
D&S BF 80.1 39.9 21.5 17.8

D&S BF with PF 79.0 38.1 20.2 16.5
MMSE BF 78.6 35.4 18.8 14.8

MN BF with Gamma pdf 75.6 34.9 19.8 15.8
MN BF with GG pdf (1) 75.1 32.7 16.5 13.2
MN BF with GG pdf (2) 79.0 37.2 20.0 16.7

SDM 87.0 57.1 32.8 28.0
CTM 52.9 21.5 9.8 6.7

1. Decode with the unadapted, conventional ML acoustic model and bigram language model (LM).

2. Estimate vocal tract length normalization (VTLN) [31] parameters and constrained maximum
likelihood linear regression parameters (CMLLR) [32] for each speaker, then redecode with the
conventional ML acoustic model and bigram LM.

3. Estimate VTLN, CMLLR, and maximum likelihood linear regression (MLLR) [33] parameters for
each speaker, then redecode with the conventional model and bigram LM.

4. Estimate VTLN, CMLLR, MLLR parameters for each speaker, then redecode with the ML-SAT
model and bigram LM.

Table 1 shows the word error rates (WERs) for every beamforming algorithm. As references,
WERs in recognition experiments on speech data recorded with the single distant microphone (SDM)
and CTM are described in Table 1. It is clear from Table 1 that every MN beamforming algorithm can
provide better recognition performance than the simple delay-and-sum beamformer (D&S BF) which
can be improved by Zelinski post-filtering (D&S BF with PF). It is also clear from Table 1 that MN
beamforming with the GG pdf assumption which uses the magnitude in calculating the negentropy
(MN BF with GG pdf (1)) achieves the best recognition performance. This is because the GG pdf can
model the magnitude of the subband of speech best by training the shape parameter at each subband
frequency bin. The recognition performance, however, did not improve for MN beamforming with the
GG pdf when the real and imaginary parts of the subband components were assumed to be inpendent
(MN BF with GG pdf (2)). We found it better to treat the subband components as spherically-
invariant random processes (SIRPs) as in [2, 12] and are led to conclude that the real and imaginary
parts are dependent as mentioned in [8]. Table 1 suggests that the Γ pdf assumption (MN BF with Γ
pdf) can lead to better noise suppression performance to some extent. The reduction over the D&S
BF with PF case, however, is limited because the Γ pdf cannot model the subband components of
speech as precisely as the GG pdf which takes the magnitude as the r.v. We also performed recognition
experiments on speech enhanced by the MVDR beamformer with Zelinski post-filtering which is also
known as the minimum mean-squared-error beamformer (MMSE BF) [18, §3]. One can see from
Table. 1 that the MVDR beamformer with post-filtering (MMSE BF) provides better recognition
performance than D&S BF with PF. Notice MVDR beamforming algorithms require speech activity
detection in order to avoid the signal cancellation. For the adaptation of the MVDR beamformer, we
used the first 0.1 and last 0.1 seconds in each utterance data which contain only background noise.
Again, in contrast to conventional beamforming methods, our algorithm doesn’t need to detect the
start and end points of target speech since the proposed method can suppress noise and reverberation
without the signal cancellation problem.

We also examine the effect of the regularization expressed in (17). Table 2 shows the WERs
against the regularization parameter α, where we used the MN beamforming algorithm with the GG
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Table 2: Word error rates against the regularization parameter α.

α Pass (%WER)
1 2 3 4

α = 0.0 72.7 31.9 16.4 13.7
α = 10−3 73.9 32.2 16.6 13.6
α = 10−2 75.1 32.7 16.5 13.2
α = 10−1 76.2 32.5 17.5 13.5

pdf of the magnitude r.v.. We can see from Table 2 that the regularization parameter α = 10−2

provides the best result although its impact on the recognition performance is not significant. The
regularization parameter α could be interpreted as an indicator of the sufficiency of the input data in
estimating the active weight vector. Thus, the requirement of a small α may imply that the input data
are not reliable enough to completely determine the active weight vector due to the steering error.

8 Conclusions and Future Work

In this work, we have proposed a novel beamforming algorithm based on maximizing negentropy.
Our first investigations into the MN beamforming algorithm were based on acoustic simulations.
These simulations were sufficient to demonstrate the MN beamforming algorithm could strengthen
the desired signal by constructively adding reflections of the same. Moreover, the proposed method
does not exhibit the signal cancellation problems typically seen in conventional adaptive beamformers.
We also evaluated the Γ and GG pdfs in calculating the negentropy through a set of far-field automatic
speech recognition experiments with data captured in realistic acoustic environments and spoken by
real speakers. In these experiments, the MN beamforming algorithm with the GG pdf assumption
proved to provide the best ASR performance.

We plan to develop an on–line version of the beamforming algorithm presented here. This on–line
algorithm will be capable of adjusting the active weight vectors wa,i with each new snapshot in order
to track changes of speaker position and movements of the speaker’s head during an utterance.
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A The r-th moment and kurtosis of the GG pdf

In this section, we derive two useful statistics of the GG pdf, the r-th moment and kurtosis.
The rth moment of the GG pdf can be expressed as

E {yr} =
1

2Γ(1 + 1/p)A(p, σ̂)

∫ ∞

−∞

yr exp

[

−
|y|

p

A(p, σ̂)

]

dy. (35)

Since the GG pdf is an even function about the mean, we can rewrite (35) as

E {yr} =
1

Γ(1 + 1/p)A(p, σ̂)

∫ ∞

0

yr exp

[

−
yp

Ap(p, σ̂)

]

dy. (36)

Upon defining

v =
yp

Ap(p, σ̂)
,
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from which it follows
dv

dy
=

pyp−1

Ap(p, σ̂)
,

then (36) can be solved as

E {yr} =
Ar(p, σ̂)

pΓ(1 + 1/p)

∫ ∞

0

v
r+1

p
−1 e−v dv

=
Ar(p, σ̂)

pΓ(1 + 1/p)
Γ

(

r + 1

p

)

. (37)

By substituting the 2nd and 4th moments obtained from Equation (37), the kurtosis of the GG
pdf kurt (Ygg) can now be expressed as

A(p, σ̂)4

pΓ(1 + 1/p)
Γ (5/p) − 3

{

A(p, σ̂)2

pΓ(1 + 1/p)
Γ (3/p)

}2

. (38)

Since the Γ function satisfies pΓ(1 + 1/p) = Γ(1/p), equation (38) can be simplified as

kurt (Ygg) = σ̂4

{

Γ(1/p)Γ(5/p)

Γ(3/p)2
− 3

}

. (39)
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