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ABSTRACT 

 

In this paper, we propose a new approach for the automatic 

audio-based temporal alignment with confidence estimation 

of audio-visual data, recorded by different cameras, 

camcorders or mobile phones during social events. All 

recorded data is temporally aligned based on ASR-related 

features with a common master track, recorded by a 

reference camera, and the corresponding confidence of 

alignment is estimated. The core of the algorithm is based on 

perceptual time-frequency analysis with a precision of 10 

ms. The results show correct alignment in 99% of cases for a 

real life dataset and surpass the performance of cross 

correlation while keeping lower system requirements. 

 

Index Terms — time-frequency analysis, time 

synchronisation, pattern matching, reliability estimation 

 

1. INTRODUCTION 

 

The TA2 project (Together Anywhere, Together Anytime) is 

concerned with investigation of how multimedia devices can 

be introduced into a family scenario to break down 

technology and distance barriers. In this sense, we are 

interested in the use of consumer level multimedia devices in 

novel application scenarios. 

One generic scenario is the use of multiple capture 

devices in a single room. The present investigation concerns 

the possibility of using multiple consumer level video 

cameras to reconstruct the narrative of the recorded event 

and to align different sources. In a professional scenario, one 

might expect to be able to use multiple capture devices, and 

for them all to be synchronised via a common clock or 

similar [1]. Consumer level devices, however, do not 

normally provide such capabilities. Further, if the devices 

are hand-held, we cannot rely in any predictable sense on the 

video signal. This leaves us with the audio signal [2], [3] 

from which to infer synchronisation information. 

In this study, we were provided with a single reference 

signal from a fixed camera that recorded the whole scene. 

We were also provided with several auxiliary signals from 

hand-held cameras that recorded parts of the scene. If we 

could show that the auxiliary signals could be aligned with 

the reference signal reliably, then the project could profit 

from using audio-based temporal alignment. If it were too 

error-prone or computationally onerous, then other solutions 

would have to be sought. 

 

2. EXPERIMENTAL DATASET 

 

All results presented in this paper were achieved on a real 

life dataset of 100 recordings: 

 

Source 
Length 

range 
Audio spec. Video spec. 

Canon camera 

XL-G1 SD/HD 

(master track) 

51 min 

PCM 

32000Hz 

Stereo 

1024Kbps 

DVSD 

720x576 

25.00fps 

28799Kbps 

Smartphone 

Nokia N95 

(17 clips) 

12-130 s 

AAC 

48000Hz 

Mono 

768Kbps 

MPEG4 

640x480 

28.60fps 

2700Kbps 

Canon camera 

FS100 mini 

(28 clips) 

4-133 s 

Dolby AC3 

48000Hz 

Stereo 

256Kbps 

MPEG2 

720x576 

25.00fps 

9600Kbps 

Sony camera 

DCR-PC3e 

(15 clips) 

16-695 s 

PCM 

48000Hz 

stereo 

1536Kbps 

DVSD 

720x576 

25.00fps 

28800Kbps 

Sanyo camera 

Xacti HD mini 

(39 clips) 

1-250 s 

AAC 

48000Hz 

Stereo 

1536Kbps 

H.264 

1280x720 

29.97fps 

5975Kbps 

 

The master track content consists of a high school 

rehearsal with multiple events/replays one after the other. 

All corresponding audio tracks were extracted and converted 

to 16 kHz mono PCM files with VirtualDub software [4]. 

Experiments were conducted on a closed set (i.e. we did 

not consider a rejection mechanism for test segments that 

did not correspond to the master track). Nevertheless 

according to our previous studies on a rejection mechanism 

[5], the proposed approach can be successfully extended to 

an open set. 
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3. TEMPORAL ALIGNMENT 

 

Consider a simple high school concert event. The duration 

of the corresponding master track can easily be of the order 

of a small number of hours. This in turn corresponds to a 

large quantity of raw audio data (stereo at 48 kHz). It is 

normal in such situations to decrease the search space, 

retaining only useful information for temporal alignment. 

Accordingly, we assume from the outset that raw PCM audio 

data is both too voluminous and too noisy to produce good 

audio alignment. We suppose that good results might be 

obtained by lower resolution features such as frame energy 

and cepstra. Certainly, a resolution approaching video frame 

rate is sufficient for the purposes of our application. 

Given that our broader application is expected to include 

Automatic Speech Recognition (ASR), the pre-processing 

takes the form of a standard feature extraction chain used in 

ASR. In our work we use Mel Frequency Cepstral 

Coefficients (MFCC) [6] with a 10 ms frame rate. MFCC is 

a perceptually motivated spectrum representation that is 

widely used not only in speech recognition but also for 

music modelling [7]. Such pre-processing includes energy-

like features (actually the zero’th cepstral coefficient) along 

with cepstra representing the general spectral shape. 

We assume that test samples are relatively short, thus we 

can ignore the clock skew problem between test and 

reference (i.e., there is almost zero skew due to 

unsynchronised clocking of different devices). Presumably 

in some cases for long recordings the two could become 

misaligned, in which case additional techniques such as 

dynamic time warping [8] should be taken into account 

during the matching process. We consider two operating 

modes, one the well-known cross correlation and the other 

template matching based on ASR-related features. 

 

3.1. Cross correlation 

 

Cross correlation is a measure of similarity of two 

waveforms as a function of a time-lag applied to one of 

them. It can be used to search a long duration signal for a 

shorter. If hi and g are the raw test and reference signals 

respectively, and h
*
 is the complex conjugate of h, then ti, 

the relative position in ms of the i’th test clip, is given by: 
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where fs is the sampling frequency. 

Regardless of the simplicity of implementation, standard 

cross correlation cannot be implied by our scenario as it is 

computationally onerous (several days per clip on an Intel 

Core 2 CPU 6700 2.66GHz), nevertheless this can be 

resolved by the convolution theorem and fast Fourier 

transform, also known as fast cross correlation: 
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In the above formulation, the parameters are as before, 

except F denotes the fast Fourier transform. An asterisk 

again indicates the complex conjugate. The processing time 

for fast cross correlation takes only 70 seconds per clip, 

though it requires much more RAM (3 GB versus 100 MB). 

 

3.2. Template matching 

 

Audio is down-sampled (if necessary) to 16 kHz and pre-

emphasised to flatten the spectral shape. A 256 point 

Discrete Fourier Transform (DFT) is performed in steps of 

10 ms and squared to give the power spectrum. The resulting 

129 unique bins are then decimated using a filter-bank of 23 

overlapping triangular filters equally spaced on the mel-

scale. The mel-scale corresponds roughly to the response of 

the human ear. A logarithm and DFT then yield the mel-

cepstrum, which is truncated, retaining the lower 13 

dimensions. This truncation retains spectral shape and 

discards excitation frequency. Next, Cepstral Mean 

Normalisation (CMN) is performed by subtracting from 

each cepstral vector the mean of the vectors of the preceding 

(approximately) half second. This has the effect of removing 

convolutional channel effects. Finally, the 13 normalised 

cepstral coefficients are then augmented by first and second 

order derivatives, corresponding to their velocity and 

acceleration. This gives k=39 dimensional vectors.  

Template matching based on the above features is 

performed by searching for a best distance in n-dimensional 

Euclidean space between the test time-quefrency matrix 

(corresponding to a test clip) and the master time-quefrency 

matrix in steps of 10 ms. If Vi is the i’th test matrix (1 ≤ i ≤ 

S, where S is the number of test clips), M is the master 

matrix and Mp
(i)

 is the sub-matrix of the master matrix, 

shifted from the beginning by 10p ms, then ti, the relative 

position in ms of the i’th test matrix, is given by: 
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In the above equation, vi,q is the k-dimensional vector of 

the i’th test matrix, which corresponds to a frame q 

represented by k pre-processed coefficients. Ni is the number 

of frames inside the matrix Vi. mp is the k-dimensional vector 

of the master matrix shifted from the beginning by 10p ms 

and corresponding to a frame p represented by k pre-

processed coefficients. αp+q and βi,q are normalisation 

coefficients for corresponding frames p+q and q of the 

matrices M and Vi: 
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The elements αp+q and βi,q are upper thresholded at 1 to 

decrease the impact of quiet frames. (In standard mode they 

are fixed at 1.) 

The dimension n of the search space is equal to the 

length of the master track in steps of 10 ms. 

 

3.3. Experimental results 

 

To avoid possible inaccuracy associated with manual 

annotation (the ear is insensitive to delays below 160 ms) 

and limited speed of sound (each 10 m distance from the 

object results in 1 frame lag) the performance was calculated 

as the number of correctly (within ±5 frames) aligned clips 

divided by the total number of test clips. 

In figure 1 we illustrate how the dimensionality of the 

feature vector influences total performance.  

 

 
Figure 1. Performance versus number of coefficients. 

 

It is clearly visible that the performance improves with 

increasing cepstral analysis order. However, it is 

dramatically lower when the energy is considered (dash dot 

and long dash dot lines). We hypothesise this is due to the 

increased variance of the search distance space. Delta 

features do not have any influence (and thus were excluded 

from the figure), we hypothesise due to the fact that deltas 

can be easily reconstructed from cepstra over time. Further, 

they are used in ASR as a continuity constraint, which is not 

necessary in this application. Normalisation (via the 

elements αp+q and βi,q) allows to surpass the performance of 

cross correlation and results in 99% versus 96% for cross 

correlation, we believe due to the reduced variance of the 

normalised search distance space. 

Nevertheless, there is also a strong dependency on the 

length of test recordings. In figure 2 we illustrate how the 

length of the test segments impacts on the total performance. 

The performance grows and, for recordings longer than 15 s, 

100% performance is achievable on the described dataset for 

the proposed approach versus 98% for cross correlation. For 

recordings shorter than 5 s the difference between the 

performance of the proposed approach and the performance 

of cross correlation varies up to 12%. We suppose that 

alignment of very short recordings is not robust due the real 

world variability of the data (noise, reverberation, non-

stationarity of cameras, inter-microphone variability, inter-

codec variability, etc).  

It is worth mentioning that the variance of the search 

space is directly proportional to the length of the test 

recordings. This is why, on long recordings, we observe 

quite good results even for standard cepstra. 

 

 
Figure 2. Performance versus test segment length. 

 

Processing time (on an Intel Core 2 CPU 6700 2.66GHz) 

for the proposed algorithm without multi-core optimisation 

was 14 seconds for automatic temporal alignment of a 12 

second test recording over the 51 min master track using 5 

cepstra, and 33 seconds for the same segments using 12 

cepstra. It is directly proportional to the length of the test 

segment, to the length of the master track and to the feature 

vector dimensionality. Thus we can conclude that 

computational efficiency of proposed approach is even 

better than fast cross correlation and memory requirement is 

about 15% of the size of reference signal (15 MB versus 3 

GB for fast cross-correlation). 



4. CONFIDENCE ESTIMATION 

 

The confidence of the above techniques can be estimated as 

a measure of relative variance of the search space via 

standard deviation. For template matching based on ASR-

related features, the standard deviation can be replaced by 

the maximum distance. Thus the confidence estimation is 

performed by searching for a confidence corresponding to a 

best distance in n-dimensional Euclidean space between test 

time-quefrency matrix (corresponding to a test clip) and 

master time-quefrency matrix with 10 ms step: 

i
i

p
p

i

p

i

p
p

i

p

i
Ndd

dd

C
20

)(max)(4

)(min)(

)()(

)()(









 
In the above equation, Ci is the confidence measure of 

matching the i’th test matrix and E is expectation. Ni is the 

number of frames inside test matrix. 

In figure 3 we illustrate how the length of the test 

segment influences the confidence measure. It is worth 

mentioning that the use of maximum distance instead of 

standard deviation provides almost the same result, 

nevertheless requires only 1 pass instead of 2, and thus gives 

us a speed optimisation of about 2 times. 

 

 
Figure 3. Confidence versus test segment length. 

 

It is clearly visible that the confidence increases with 

increasing the length of test segments. Additional 

investigations [5] have proved good robustness of proposed 

confidence measure and results in 100% of confidence 

performance for any data with confidence higher than 50%. 

5. CONCLUSION 

 

We have shown that multiple AV signals can be aligned to 

an acceptable accuracy using audio features typical of ASR 

applications and corresponding confidence can be reliably 

estimated. Surprisingly, we found that the energy of the 

signal is not good for alignment, but that good alignment can 

be inferred from a small number of normalised cepstra. We 

have shown that results can be improved using a feature 

vector normalisation and surpass the performance of fast 

cross correlation, while requiring less resources. 
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