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Abstract. This paper proposes a new approach for keyword spotting, which is not based
on HMMs. Unlike previous approaches, the proposed method employs a discriminative
learning procedure, in which the learning phase aims at maximizing the area under the
ROC curve, as this quantity is the most common measure to evaluate keyword spotters.
The keyword spotter we devise is based on mapping the input acoustic representation
of the speech utterance along with the target keyword into a vector space. Building on
techniques used for large margin and kernel methods for predicting whole sequences, our
keyword spotter distills to a classifier in this vector-space, which separates speech utter-
ances in which the keyword is uttered from speech utterances in which the keyword is
not uttered. We describe a simple iterative algorithm for training the keyword spotter
and discuss its formal properties. Experiments on read speech with the TIMIT corpus
show that our method outperforms the conventional context-independent HMM-based
approach. Further experiments using the TIMIT trained model, but tested on both
read (HTIMIT, WSJ) and spontaneous speech (OGI-Stories), show that without fur-
ther training or adaptation to the new corpus our method outperforms the conventional
context-independent HMM-based approach.
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1 Introduction

Keyword (or word) spotting refers to the detection of any occurrence of a given word in a
speech signal. Most previous work on keyword spotting has been based on hidden Markov
models (HMMs). See for example [2, 19, 31, 32] and the references therein. Despite their
popularity, HMM-based approaches have several known drawbacks such as convergence of
the training algorithm (EM) to a local maxima, conditional independence of observations
given the state sequence and the fact that the likelihood is dominated by the observation
probabilities, often leaving the transition probabilities unused. However, the most acute
weakness of HMMs for keyword spotting is that they do not aim at maximizing the detection
rate of the keywords.

In this paper we propose an alternative approach for keyword spotting that builds upon
recent work on discriminative large margin and kernel methods, trying to overcome some of
the inherent problems of the HMM approaches. Our approach solves directly the keyword
spotting problem rather than using a large vocabulary speech recognizer (as in [32]), and does
not estimate a garbage or background model (as in[31]). The advantage of discriminative large
margin and kernel methods stems from the fact that the objective function used during the
learning phase is tightly coupled with the decision task one needs to perform. In addition,
there is both theoretical and empirical evidence that large margin and kernel methods are
likely to outperform generative models for the same task (see for instance [11, 34]). One of
the main goals of this work is to extend the notion of discriminative large margin and kernel
methods to the task of keyword spotting.

Our proposed method is based on recent advances in kernel machines and large margin
classifiers for sequences [30, 33], which in turn build on the pioneering work of Vapnik and
colleagues [11, 34]. The keyword spotter we devise is based on mapping the speech signal
along with the target keyword into a vector-space endowed with an inner-product. Our
learning procedure distills to a classifier in this vector-space which is aimed at separating
the utterances that contain the keyword from those that do not contain it. On this aspect,
our approach is hence related to support vector machine (SVM), which has already been
successfully applied in speech applications [16, 29]. However, the model proposed in this
paper differs significantly from a classical SVM due to the sequential nature of the keyword
spotting problem.

This paper is organized as follows. In Sec. 2 we formally introduce the keyword spotting
problem. We then present the large margin approach for keyword spotting in Sec. 3. Next,
the proposed iterative learning method is described in Sec. 4. In Sec. 5 we describe the
efficient evaluation of our keyword spotter and its complexity. Our method is based on non-
linear phoneme recognition and segmentation functions. The specific feature functions we
use for are presented in Sec. 6. In Sec. 7 we present experimental results. We conclude the
paper in Sec. 8.
Related Work. Most work on keyword spotting has been based on HMMs. In these
approaches, the detection of the keyword is based on an HMM composed of two sub-models,
the keyword model and the background or garbage model, such as the HMM depicted in Fig. 6.
Given a speech sequence, such a model detects the keyword through Viterbi decoding: the
keyword is considered as uttered in the sequence if the best path goes through the keyword
model. This generic framework encompasses the three main classes of HMM-based keyword
spotters, that is whole-word modeling, phonetic-based approaches and large-vocabulary-based
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approaches.
Whole-word modeling is one of the earliest approaches using HMM for keyword spot-

ting [24, 27]. In this context, the keyword model is itself an HMM, trained from recorded
utterances of the keyword. The garbage model is also an HMM, trained from non-keyword
speech data. The training of such a model hence requires several recorded occurrences of
the keyword, in order to estimate reliably the keyword model parameters. Unfortunately, in
most applications, such data are rarely provided for training, which yields the introduction
of phonetic-based word spotters.

In phonetic-based approaches, both the keyword model and the garbage model are built
from phonemes (or triphones) sub-models [4, 20, 26]. Basically, the keyword model is a left-
right HMM, resulting from the concatenation of the sub-models corresponding to the keyword
phoneme sequence. The garbage model is an ergodic HMM, which fully connects all phonetic
sub-models. In this case, sub-model training is performed through embedded training from
a large set of acoustic sequences labeled phonetically, like for speech recognition HMMs [23].
This approach hence does not require training utterances of the keyword, solving the main
limitation of the whole word modeling approach. However, the phonetic-based HMM has
another drawback, due to the use of the same sub-models in the keyword model and in the
garbage model. In fact, the garbage model can intrinsically model any phoneme sequence,
including the keyword itself. This issue is typically addressed by tuning the prior probability
of the keyword, or by using a more refined garbage model, e.g. [4, 20]. Another solution can
also be to avoid the need for garbage modeling through the computation of the likelihood of
the keyword model for any subsequence of the test signal, as proposed in [15].

A further extension of HMM spotter approaches consists of using Large Vocabulary
Continuous Speech Recognition (LVCSR) HMMs. This approach can actually be seen as
a phonetic-based approach in which the garbage model only allows valid words from the lex-
icon, except the targeted keyword. This use of additional linguistic constraints is shown to
improve the spotting performance [5, 28, 32, 35]. Such an approach however raises practical
concerns: one can wonder whether the design of a keyword spotter should require the expen-
sive collection a large amount of labeled data typically needed to train LVCSR systems, as
well as the computational cost implied by large vocabulary decoding [20].

Over the last years, significant effort toward discriminative training of HMMs has been
proposed as an alternative to likelihood maximization [1, 14, 13]. These training approaches
aim at both maximizing the probability of the correct transcription given an acoustic se-
quence, and minimizing the probability of the incorrect transcriptions given an acoustic se-
quence. When applied to keyword spotting, none of these approaches closely tie the training
objective with a final spotting objective, such as maximizing the area under the Receiver
Operating Curve. In our approach, we reach this goal by proposing a discriminative model
focusing on an adequate criterion. In this sense, our work significantly differs from discrim-
inative HMM training for speech recognition, as our learning procedure directly focuses on
the spotting performance. Furthermore, we do not constrain the underlying model to be
probabilistic, which allows a greater freedom in selecting the set of features.
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Figure 1: Example of our notation. The waveform of the spoken utterance “a lone star
shone...” taken from the TIMIT corpus. The keyword k is the word star. The phonetic
transcription p̄ along with its time span s̄ are schematically depicted in the figure.

2 Problem Setting

Any keyword (or word) is naturally composed of a sequence of phonemes. In the keyword
spotting task, we are provided with a speech utterance and a keyword and the goal is to
identify whether the keyword is uttered at least once in the speech utterance and if so predict
its time spans. That is, whether the corresponding sequence of phonemes is articulated in the
given utterance and where. We assume that the utterance is small enough for the keyword to
be articulated only once. If the utterance is longer then that, we apply the keyword spotter
on a sliding window of the appropriate length.

In this section we formally describe the keyword spotting problem. We denote scalars
using lower case Latin letters (e.g. x), and vectors using bold face letters (e.g. x). A
sequence of elements is designated by a bar (x̄) and its length is denoted as |x̄|.

Formally, we represent a speech signal as a sequence of acoustic feature vectors x̄ =
(x1, . . . ,xT ), where xt ∈ X ⊂ Rd for all 1 ≤ t ≤ T . We denote a keyword by k ∈ K,
where K is a lexicon of words. Each keyword k is composed of a sequence of phonemes
p̄k = (p1, . . . , pL), where pl ∈ P for all 1 ≤ l ≤ L and P is the domain of the phoneme
symbols. We denote by P∗ the set of all finite length sequences over P. Let us further define
the alignment between a phoneme sequence and a speech signal. We denote by sl ∈ N the
start time of phoneme pl (in frame units), and by el ∈ N the end time of phoneme pl. We
assume that the start time of phoneme pl+1 is equal to the end time of phoneme pl, that is,
el = sl+1 for all 1 ≤ l ≤ L − 1. The timing sequence (time span) s̄k corresponding to the
phonemes sequence p̄k is a sequence of start-times and an end-time, s̄k = (s1, . . . , sL, eL),
where sl is the start-time of phoneme pl and eL is the end-time of the last phoneme pL. An
example of our notation is given in Fig. 1. Our goal is to learn a keyword spotter, denoted
f , which takes as input the pair (x̄, p̄k) and returns a real value expressing the confidence
that the targeted keyword k is uttered in x̄. That is, f is a function from X ∗×P∗ to the set
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R. The confidence score outputted by f for a given pair (x̄, p̄k) can then be compared to a
threshold b ∈ R to actually determine whether p̄k is uttered in x̄.

The performance of a keyword spotting system is often measured by the Receiver Oper-
ating Characteristics (ROC) curve, that is, a plot of the true positive (spotting a keyword
correctly) rate as a function of the false positive (mis-spotting a keyword) rate (see for ex-
ample [2, 19, 31]). The points on the curve are obtained by sweeping the decision threshold
b from the most positive confidence value outputted by the system to the most negative
one. Hence, the choice of b represents a trade-off between different operational settings,
corresponding to cost functions weighting false positive and false negative errors differently.
Assuming a flat prior over all cost functions, it is appropriate to select the keyword spot-
ting system maximizing the averaged performance over all settings, which corresponds to the
model maximizing the area under the ROC curve (AUC). In the following we propose an
algorithm which directly aims at maximizing the AUC.

3 A Large Margin Approach for Keyword Spotting

In this section we describe a discriminative algorithm for learning a spotting function f from
a training set of examples. Our construction is based on a set of predefined feature functions
{φj}nj=1. Each feature function is of the form φj : X ∗ ×P∗ ×N∗ → R . That is, each feature
function takes as input an acoustic representation of a speech utterance x̄ ∈ X ∗, together
with a phoneme sequence p̄k ∈ P∗ of the keyword k, and a candidate time span s̄k ∈ N∗
into an abstract vector-space, and returns a scalar in R which, intuitively, represents the
confidence in the suggested time span given the keyword phoneme sequence p̄k. For example,
one feature function can sum the number of times phoneme p comes after phoneme p′, while
other feature function may extract properties of each acoustic feature vector xt provided
that phoneme p is pronounced at time t. The description of the concrete form of the feature
functions is differed to Sec. 6.

Our goal is to learn a keyword spotter f , which takes as input a sequence of acoustic
features x̄, a keyword p̄k, and returns a confidence value in R. The form of the function f
we use is

f(x̄, p̄k) = max
s̄

w · φ(x̄, p̄k, s̄) , (1)

where w ∈ Rn is a vector of importance weights (“model parameters”) that should be learned
and φ ∈ Rn is a vector function composed out of the feature functions φj . In other words,
f returns a confidence prediction about the existence of the keyword in the utterance by
maximizing a weighted sum of the scores returned by the feature functions over all possible
time spans. The maximization defined by Eq. (1) is over an exponentially large number
of time spans. Nevertheless, as in HMMs, if the feature functions φ are decomposable,
the maximization in Eq. (1) can be efficiently calculated through dynamic programming as
described in Sec. 5

Recall that we would like to obtain a system that maximizes the AUC on unseen data. In
order to do so, we use two sets of training examples. Denote by X+

k a set of speech utterances
in which the keyword k is uttered. Similarly, denote by X−k a set of speech utterances in
which the keyword k is not uttered. The AUC for keyword k can be written in the form of
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the Wilcoxon-Mann-Whitney statistic [8] as

Ak =
1

|X+
k ||X

−
k |

∑
x̄+∈X+

k

∑
x̄−∈X−k

1{f(x̄+,p̄k)>f(x̄−,p̄k)}, (2)

where | · | refers to the cardinality of a set, and 1{·} refers to the indicator function, that is,
1{π} is 1 whenever the predicate π is true and 0 otherwise. Thus, Ak estimates the probability
that the score assigned to an utterance that contains the keyword k is greater than the score
assigned to an utterance which does not contain it. Hence, the average AUC over the set of
keywords K can be written as

A =
1
|K|

∑
k∈K

Ak =
1
|K|

∑
k∈K

1
|X+
k ||X

−
k |

∑
x̄+∈X+

k

∑
x̄−∈X−k

1{f(x̄+,p̄k)>f(x̄−,p̄k)}. (3)

We now describe a large margin approach for learning the weight vector w, which defines
the keyword spotting function as in Eq. (1), from a training set S of examples. Each example
in the training set S is composed of a keyword phoneme sequence p̄k, an utterance x̄+ ∈ X+

k

in which the keyword k is uttered, an utterance x̄− ∈ X−k in which the keyword k is not
uttered, and a timing sequence s̄k that corresponds to the location of the keyword in x̄+.
Overall we have m examples, that is, S = {(p̄k1 , x̄+

1 , x̄
−
1 , s̄

k1
1 ), . . . , (p̄km , x̄+

m, x̄
−
m, s̄

km
m )}. Hence,

we assume that we have access to the correct start times s̄k of the phonemes sequence p̄k, for
all positive training utterances x̄+ ∈ X+

k (and only for these utterances). This assumption is
actually not restrictive since such a timing sequence can be inferred by any forced-alignment
algorithm [18]. We evaluate the influence of forced-alignment compared to manual-alignment
in Sec. 7.

Similarly to the SVM algorithm for binary classification [9, 34], our approach for choosing
the weight vector w is based on the idea of large-margin separation. Theoretically, our ap-
proach can be described as a two-step procedure: first, we construct the vectors φ(x̄+

i , p̄
ki , s̄ki

i )
and φ(x̄−i , p̄

ki , s̄) in the vector space Rn based on each instance (p̄ki , x̄+
i , x̄

−
i , s̄

ki
i ), and each

possible time span s̄ for the negative sequence x̄−i . Second, we find a vector w ∈ Rn, such
that the projection of vectors onto w ranks the constructed vectors according to their quality.
Ideally, for any keyword ki ∈ Ktrain, for every instance pair (x̄+

i , x̄
−
i ) ∈ X+

ki
× X−ki

, we would
like the following constraint to hold

w · φ(x̄+
i , p̄

ki , s̄ki
i )−max

s̄
w · φ(x̄−i , p̄

ki , s̄) ≥ 1 ∀i . (4)

That is, w should rank the utterance that contains the keyword above any utterance that does
not contain it by at least 1. Moreover, we consider the best possible time span of the keyword
within the utterance that does not contain it. We refer to the difference w ·φ(x̄+

i , p̄
ki , s̄ki

i )−
maxs̄ w ·φ(x̄−i , p̄

ki , s̄) as the margin of w with respect to the best time span of the keyword
k in the utterance that does not contain it. Note that if the prediction of w is incorrect then
the margin is negative. Naturally, if there exists a w satisfying all the constraints Eq. (4),
the margin requirements are also satisfied by multiplying w by a large scalar. The SVM
algorithm solves this problem by selecting the weights w minimizing 1

2‖w‖
2 subject to the

constraints given in Eq. (4), as it can be shown that the solution with the smallest norm is
likely to achieve better generalization [34].
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In practice, it might be the case that the constraints given in Eq. (4) cannot be satisfied.
To overcome this obstacle, we follow the soft SVM approach [9, 34] and define the following
hinge-loss function,

`(w; (p̄k, x̄+, x̄−, s̄k)) =
[
1−w · φ(x̄+, p̄k, s̄k) + max

s̄
w · φ(x̄−, p̄k, s̄)

]
+
, (5)

where [a]+ = max{0, a}. The hinge loss measures the maximal violation for any of the
constraints given in Eq. (4). The soft SVM approach for our problem is to choose the vector
w? which minimizes the following optimization problem

w? = arg min
w

1
2
‖w‖2 + C

m∑
i=1

`(w; (p̄ki , x̄+
i , x̄

−
i , s̄

ki
i )) , (6)

where the parameter C serves as a complexity-accuracy trade-off parameter: a low value of
C favors a simple model, while a large value of C favors a model which solves all training
constraints (see [11]). Solving the optimization problem given in Eq. (6) is expensive since it
involves a maximization for each training example. Most of the solvers for this problem, like
SMO [22], iterate over the whole dataset several times until convergence. In the next section,
we propose a slightly different method, which visits each example only once, and is based
on our previous work [10]. Our method is shown to be competitive with the large margin
approach and it is shown to maximize the AUC over the training examples and over unseen
examples (see Appendix A).

4 An Iterative Algorithm

We now describe a simple iterative algorithm for learning the weight vector w. The algorithm
receives as input a set of training examples S = {(p̄ki , x̄+

i , x̄
−
i , s̄

ki
i )}mi=1 and examines each

of them sequentially. Initially, we set w = 0. At each iteration i, the algorithm updates w
according to the current example (p̄ki , x̄+

i , x̄
−
i , s̄

ki
i ) as we now describe. Denote by wi−1 the

value of the weight vector before the ith iteration. Let s̄′ be the predicted time span for the
negative utterance, x̄−i , according to wi−1,

s̄′ = arg max
s̄

wi−1 · φ(x̄−i , p̄
ki , s̄) . (7)

Let us define the difference between the feature functions of the acoustic sequence in
which the keyword is uttered and the feature functions of the acoustic sequence in which the
keyword is not uttered as ∆φi, that is,

∆φi = φ(x̄+
i , p̄

ki , s̄ki)− φ(x̄−i , p̄
ki , s̄′) . (8)

We set the next weight vector wi to be the minimizer of the following optimization problem,

min
w∈Rn,ξ≥0

1
2
‖w −wi−1‖2 + C ξ (9)

s.t. w ·∆φi ≥ 1−ξ ,

where C serves as a complexity-accuracy trade-off parameter (see [10]) and ξ is a non-negative
slack variable, which indicates the loss of the ith example. Intuitively, we would like to
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Input: training set S = {(p̄ki , x̄+
i , x̄

−
i , s̄

ki)}mi=1; validation set Sval; parameter C
Initialize: w0 = 0
For i = 1, . . . ,m

Predict: s̄′ = arg maxs̄ wi−1 · φ(x̄−i , p̄
ki , s̄)

Set: ∆φi = φ(x̄+
i , p̄

ki , s̄ki)− φ(x̄−i , p̄
ki , s̄′)

If wi−1 ·∆φi < 1

Set: αi = min
{
C ,

1−wi−1 ·∆φi

‖∆φi‖2

}
Update: wi = wi−1 + αi ·∆φi

Output: The weight vector w∗ which achieves best AUC performance on the validation
set Sval.

Figure 2: An iterative algorithm.

minimize the loss of the current example, i.e., the slack variable ξ, while keeping the weight
vector w as close as possible to the previous weight vector wi−1. The constraint makes the
projection of the sequence that contains the keyword onto w higher than the projection of
the sequence that does not contain it onto w by at least 1. It can be shown (see [10]) that
the solution to the above optimization problem is

wi = wi−1 + αi∆φi . (10)

The value of the scalar αi is based on the difference ∆Φi, the previous weight vector wi−1,
and a parameter C. Formally,

αi = min
{
C,

[1−wi−1 ·∆φi]+
‖∆φi‖2

}
. (11)

The optimization problem given in Eq. (9) is based on recent work on online learning
algorithms [10]. Based on this work, it is shown in Appendix A that, under some mild
technical conditions, the cumulative AUC of the iterative procedure, i.e., 1

m

∑m
i=1 1{wi·∆φi>0}

is likely to be high. Moreover, the appendix further shows that given the high cumulative
AUC, there exists at least one weight vector among the vectors {w1, . . . ,wm} which attains
high averaged AUC on unseen examples as well. To find such a weight vector, we simply
calculate the averaged loss attained by each of the weight vectors on a validation set. A
pseudo-code of our algorithm is given in Fig. 2.

In the case the user would like to select a threshold b that would ensure a specific require-
ment in terms of true positive rate or false negative rate, a simple cross-validation procedure
(see [3]) would consist in selecting the confidence value given by our model at the point of
interest over the ROC curve plotted for some validation utterances of the targeted keyword.
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5 Efficiency and Complexity

We now describe the problem of efficient evaluation of the function f given in Eq. (1). the
evaluation of f requires solving the following optimization problem,

f(x̄, p̄k) = max
s̄

w · φ(x̄, p̄k, s̄) .

Similarly, we need to find an efficient way for solving the maximization problem given in
Eq. (7). A direct search for the maximizer is not feasible since the number of possible time
spans, s̄, is exponential in the number of events. Fortunately, as we show below, by imposing
a few mild conditions on the structure of the feature functions both problems can be solved
in polynomial time.

For simplicity, we assume that each feature function, φj , can be decomposed as follows.
Let φ̂j be any function from X ∗×P∗×N3 into the reals, which can be computed in a constant
time. That is, φ̂j receives as input the signal, x̄, the sequence of phonemes, p̄k, and three
time points. Additionally, we use the convention s0 = 0 and s|p̄k|+1 = T + 1. Using the above
notation, we assume that each φj can be decomposed to be

φj(x̄, p̄k, s̄) =
|s̄|−1∑
i=2

φ̂j(x̄, p̄k, si−1, si, si+1) . (12)

The feature functions we describe in the next section can be decomposed as in Eq. (12).
We now describe an efficient algorithm for calculating the best time span assuming that

φj can be decomposed as in Eq. (12). Given phoneme index i ∈ {1, . . . , |p̄k|} and two time
indices t, t′ ∈ {1, . . . , T}, denote by D(i, t, t′) the score for the prefix of the phoneme index
sequence 1, . . . , i, assuming that their actual start times are s1, . . . , si, where si = t′ and
assuming that si+1 = t. This variable can be computed efficiently in a similar fashion to the
forward variables calculated by the Viterbi procedure in HMMs (see for instance [23]). The
pseudo code for computing D(i, t, t′) recursively is shown in Fig. 3. The best time span, s̄?, is
obtained from the algorithm by saving the intermediate values that maximize each expression
in the recursion step. The complexity of the decoding is O(|p̄k| |x̄|4). However, in practice, we
can use the assumption that the maximal length of an event is bounded, t− t′ ≤ Lmax. This
assumption reduces the complexity of the decoding down toO(|p̄k| |x̄| L3

max). For comparison,
the complexity of the decoding in standard Viterbi-based HMM is O(|P + p̄k| |x̄|).

To conclude this section we discuss the global complexity of our proposed method. In
the training phase, our algorithm performs m iterations, one iteration per training example.
At each iteration the algorithm evaluates the keyword spotting function once, updates the
keyword spotting function, if needed, and evaluates the new function on a validation set
of size mval. Each evaluation of the function takes an order of O(|p̄| |x̄| L3

max) operations.
Therefore the total complexity of our method becomes O(m mval |p̄| |x̄| L3

max). In practice,
however, we can evaluate the updated keyword spotting function only for the last 20 iterations
or so, which reduces the global complexity of the algorithm to O(m |p̄| |x̄| L3

max). In all of
our experiments, evaluating the keyword spotting function only for the last 20 iterations was
found empirically to give sufficient results.
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Input: speech signal x̄; sequence of phonemes p̄k ; weight vector w ; maximum phoneme
duration Lmax; minimum phoneme duration Lmin

Initialize: ∀(1 ≤ t ≤ Lmax), D(0, t, 0) = 0
Recursion:

For s = 1, . . . , T

For i = 1, . . . , |p̄k|

For t = s+ iLmin, . . . , s+ iLmax

For t′ = t− Lmax, . . . , t− Lmin

D(i, t, t′) = max
t′−Lmax≤t′′<t′−Lmin

D(i−1, t′, t′′) + w · φ̂(x̄, p̄, t′′, t′, t)

D?
s = max

s+|p̄k|Lmin≤t≤s+|p̄k|Lmax

max
t−Lmax≤t′≤t−Lmin

D(|p̄k|, t, t′)

Termination: D? = max
s
D?

s , s̄? = arg max
s
D?

s

Figure 3: An efficient procedure for evaluating the keyword spotting function.

6 Feature Functions

In this section we present the implementation details of our learning approach for the task
of keyword spotting. Recall that our construction is based on a set of feature functions,
{φj}nj=1, which maps an acoustic-phonetic representation of a speech utterance as well as a
suggested time span of the keyword into a vector-space. In order to make this section more
readable we omit the keyword index k.

We introduce a specific set of base functions, which is highly adequate for the keyword
spotting problem. We utilize seven different feature functions (n = 7). These feature func-
tions are used for defining our keyword spotting function f(x̄, p̄) as in Eq. (1). Note that the
same set of feature functions is also useful in the task of large-margin forced-alignment [18],
and they are given here only for completeness. A detailed analysis of this feature set is given
in [18].

Our first four feature functions aim at capturing transitions between phonemes. These
feature functions are the distance between frames of the acoustic signal at both sides of
phoneme boundaries as suggested by a timing sequence s̄. The distance measure we employ,
denoted by d, is the Euclidean distance between feature vectors. Our underlying assumption is
that if two frames, xt and xt′ , are derived from the same phoneme then the distance d(xt,xt′)
should be smaller than if the two frames are derived from different phonemes. Formally, our
first four feature functions are defined as

φj(x̄, p̄, s̄) =
1
|p̄|

|p̄|−1∑
i=2

d(x−j+si ,xj+si), j ∈ {1, 2, 3, 4} . (13)

If s̄ is the correct time span then distances between frames across the phoneme change points
are likely to be large. In contrast, an incorrect phoneme start time sequence is likely to
compare frames from the same phoneme, often resulting in small distances.
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The fifth feature function we use is built from a frame-wise phoneme classifier described
in [12]. Formally, for each phoneme event p ∈ P and frame x ∈ X , there is a confidence,
denoted gp(x), that the phoneme p is pronounced in the frame x. The resulting feature
function measures the cumulative confidence of the complete speech signal given the phoneme
sequence and their start-times,

φ5(x̄, p̄, s̄) =
1
|p̄|

|p̄|∑
i=1

1
si+1 − si

si+1−1∑
t=si

gpi(xt) . (14)

Our next feature function scores timing sequences based on phoneme durations. Unlike
the previous feature functions, the sixth feature function is oblivious to the speech signal
itself. It merely examines the length of each phoneme, as suggested by s̄, compared to the
typical length required to pronounce this phoneme. Formally,

φ6(x̄, p̄, s̄) =
1
|p̄|

|p̄|∑
i=1

log N (si+1 − si; µ̂pi , σ̂pi) , (15)

where N is a Normal probability density function with mean µ̂p and standard deviation σ̂p.
In our experiments, we estimated µ̂p and σ̂p from the training set (see Sec. 7).

Our last feature function exploits assumptions on the speaking rate of a speaker. In-
tuitively, people usually speak in an almost steady rate and therefore a timing sequence in
which speech rate is changed abruptly is probably incorrect. Formally, let µ̂p be the average
length required to pronounce the pth phoneme. We denote by ri the relative speech rate,
ri = (si+1 − si)/µ̂pi . That is, ri is the ratio between the actual length of phoneme pi as sug-
gested by s̄ to its average length. The relative speech rate presumably changes slowly over
time. In practice the speaking rate ratios often differ from speaker to speaker and within a
given utterance. We measure the local change in the speaking rate as (ri − ri−1)2 and we
define the feature function φ7 as the local change in the speaking rate,

φ7(x̄, p̄, s̄) =
1
|p̄|

|p̄|∑
i=2

(ri − ri−1)2 . (16)

7 Experimental Results

In this section we present experimental results that demonstrate the robustness of our al-
gorithm. We performed experiments on read speech using the TIMIT, HTIMIT and WSJ
corpora and on spontaneous speech using the OGI Stories corpus. In all the experiments,
the baseline discriminative system and HMM system were trained on the clean read-speech
TIMIT corpus. We divided the training portion of TIMIT (excluding the SA1 and SA2 ut-
terances) into two disjoint parts containing 500, and 3196 utterances. The first part of the
training set was used for learning the functions gp (Eq. (14)), which define the feature function
φ5. These functions were learned by the algorithm described in [12] using the MFCC+∆+∆∆
acoustic features and a Gaussian kernel with parameter σ = 6.24. Although the training of
these functions is based on a single parameter σ, the functions are composed of a set of
support patterns, which typically include thousands of training examples (in our case there
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Figure 4: ROC curves of the discriminative algorithm and the HMM approach, trained on
the TIMIT training set and tested on 80 keywords from TIMIT test set. The AUC of the
ROC curves is 0.995 and 0.941 for the discriminative algorithm and the HMM algorithm,
respectively.

were 104, 600 support patterns). Using the functions gp as a frame-based phoneme classifier
resulted in classification accuracy of 55% per frame on the TIMIT test set.

The second set of 3196 utterances formed the training set for the keyword spotter. From
this set we picked 200 random keywords for training and 200 different keywords for validation.
The keywords were chosen to have a minimum length of at least 6 phonemes. For each of
the keywords we chose one positive utterance in which the keyword was pronounced and one
negative utterance in which the keyword was not pronounced. The same utterance could be
a positive utterance for one keyword and a negative utterance for a different keyword, but in
any case the utterances used for the training were not used for validation. The discriminative
algorithm was very robust to the set of training and validation keyword set and picking a
different set led to similar performance results. We ran the iterative discriminative algorithm
with value of the parameter C = 1.

Since our method is context-independent, we compared it to context-independent HMM
approach. We trained a context-independent HMM phoneme recognizer from the entire
TIMIT training portion, where 3600 utterances were used as a training set and 96 utterances
were used as a validation set. In our setting each phoneme was represented by a simple left-
to-right HMM of 5 emitting states with 40 diagonal Gaussians. These models were enrolled
as follows: first the HMMs were initialized using K-means, and then enrolled independently
using EM and the segmentation provided by TIMIT. The second step, often called embedded
training, re-enrolls all the models by relaxing the segmentation constraints using a forced-
alignment. Minimum values of the variances for each Gaussian were set to 20% of the global
variance of the data. All HMM experiments were done using the Torch package [7]. All
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Figure 5: ROC curves of the discriminative algorithm and the HMM approach, trained on
the TIMIT training set and tested on 80 keywords from WSJ test set. The AUC of the
ROC curves is 0.942 and 0.88 for the discriminative algorithm and the HMM algorithm,
respectively.

hyper-parameters including number of states, number of Gaussians per state, variance flooring
factor, were tuned using the validation set. The number of parameters in the HMM model
can be calculated as follows. There are 5 states per phone, 40 Gaussians per states, 39 phones,
the data is 39 dimensional. There are (40 + 2 × 40 × 39) × 5 × 39 parameters for emission
and (8× 39) + (39× 39) parameters for transitions. Overall there are 618, 033 parameters in
the HMM system. The resulting HMM was a context-independent state-of-the-art phoneme
recognizer with accuracy of 64% on the TIMIT test set.

Keyword detection was performed with a new HMM composed of two sub HMM models,
the keyword model and the garbage model, as depicted in Fig. 6. The keyword model was
an HMM which estimated the likelihood of an acoustic sequence given that the sequence
represented the keyword phoneme sequence. The garbage model was an HMM composed
of phoneme HMMs fully connected to each others, which estimated the likelihood of any
acoustic sequence. The overall HMM fully connected the keyword model and the garbage
model. The detection of a keyword given a test utterance was performed through a best
path search, were an external parameter of the prior keyword probability was added to the
keyword sub HMM model. The best path found by Viterbi decoding on the overall HMM
either passed through the keyword model (in which case the keyword was said to be uttered)
or not (in which case the keyword was not in the acoustic sequence). Swiping the prior
keyword probability parameters set the trade-off between the true positive rate and the false
positive rate.

The test set was composed of 80 randomly chosen keywords, distinct from the keywords
of the training and validation sets (the list of keyword for this experiment as well as for all
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Figure 6: HMM topology for keyword spotting.

other experiments is given in Appendix B). The keywords were selected from the TIMIT
dictionary to have a minimal length of 4 phonemes. For each keyword, we randomly picked
at most 20 utterances in which the keyword was uttered and at most 20 utterances in which
it was not uttered. Note that the number of test utterances in which the keyword was uttered
was not always 20, since some keywords were uttered less than 20 times in the whole TIMIT
test set. Both the discriminative algorithm and the HMM based algorithm were evaluated
against the test data. The results are reported as averaged ROC curves in Fig. 4. The AUC of
the ROC curves is 0.995 and 0.941 for the discriminative algorithm and the HMM algorithm,
respectively. In order to check whether the advantage over the averaged AUC could be due to
a few keyword, we ran the Wilcoxon test. At the 95% confidence level, the test rejected this
hypothesis, showing that our model indeed brings a consistent improvement on the keyword
set.

In order to make sure that the our learning procedure can be applied in absence of manual
alignment data, we trained a model on phoneme time spans extracted from forced aligned
data. We used the algorithm presented in [18] for forced alignment, where it was trained on
50 utterances of TIMIT training portion which was not used for training or validation the
keyword spotting algorithm. The AUC of the discriminative algorithm trained with forced
aligned data was 0.996, almost identical to the AUC of the algorithm trained on manual
aligned data. The results are given in Table 1.

In the next experiments we examine the robustness of the proposed algorithm to different
environments. We used the model trained on TIMIT but we tested it on different corpora
without any further training or adaptation. For the discriminative model, we used the man-
ually aligned trained system, since there was no significant difference between the manually
aligned and the forced aligned systems. First we checked the discriminative model on the
HTIMIT corpus [25]. The HTIMIT corpus was generated by playing the TIMIT speech
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Table 1: Comparison of training the discriminative model with the TIMIT manual phoneme
alignment and with automatic forced-alignment. The AUC of the discriminative model on
the TIMIT test set is compared to the HMM.

Discriminative Algo. HMM
Training alignment test set AUC test set AUC
TIMIT manual alignment 0.995 0.941
TIMIT forced alignment 0.996 0.941

through a loudspeaker into a different set of phone handsets. The TIMIT trained systems
were tested on a set of 80 keywords which were not used in the training set. For each keyword,
we randomly picked at most 20 utterances in which the keyword was uttered and at most 20
utterances in which it was not uttered from the CB1 portion of the HTIMIT corpus. The
AUC of the ROC curves was 0.949 and 0.922 for the discriminative algorithm and the HMM
algorithm, respectively. With more than 99% confidence, the Wilcoxon test rejected the hy-
pothesis that the difference between the two models was due to only a few keywords. Hence,
these experiments on HTIMIT show that the introduction of channel variations degrades the
performance of both models, but does not change the relative advantage of our approach over
the HMM.

Next, we compared the performance of the proposed discriminative algorithm and of
the HMM on the Wall Street Journal (WSJ) corpus [21]. This corpus corresponds to read
articles of the Wall Street Journal, and hence presents a different linguistic context compared
to TIMIT. Both the discriminative model and the HMM were trained on the TIMIT corpus
as described above and tested on a different set of 80 keywords from the WSJ corpus. For
each keyword, we randomly picked at most 20 utterances in which the keyword was uttered
and at most 20 utterances in which it was not uttered from the si tr s portion of the WSJ
corpus. The ROC curves are given in Fig. 5. The AUC of the ROC curves is 0.942 and 0.88
for the discriminative algorithm and the HMM algorithm, respectively. With more than 99%
confidence, the Wilcoxon test rejected the hypothesis that the difference between the two
models was due to only a few keywords.

Last, we compared the performance of the algorithms on OGI Stories corpus1. In this
corpus, spontaneous speech was recorded by asking American speakers to talk freely about
a topic of their choice. Again, both systems were trained on the TIMIT corpus as described
above and tested on a different set of 60 keywords. For each keyword, we randomly picked
at most 20 utterances in which the keyword was uttered and at most 20 utterances in which
it was not uttered. The results of these experiments on spontaneous speech are consistent
with the results obtained on read speech. Indeed, the discriminative approach outperforms
the HMM, with an AUC of 0.769 compared to 0.722 for the HMM. As in previous cases, the
Wilcoxon test rejected the hypothesis that the difference between the two models was due to
only a few keywords, at the 95% confidence level.

A summary of the results of all experiments is given in Table 2. A closer look on them
1http://cslu.cse.ogi.edu/corpora/stories/
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Table 2: The AUC of the discriminative model compared to the HMM in the experiments.

Discriminative Algo. HMM
Corpus AUC AUC
TIMIT 0.996 0.941
HTIMIT 0.949 0.922
WSJ 0.942 0.87
OGI Stories 0.769 0.722

shows that the discriminative algorithm systematically outperforms the HMM in terms of
AUC. This indeed validates our hypothesis that it is a good strategy to maximize the AUC.
Moreover, the discriminative algorithm outperforms the HMM for all point of the ROC curve,
meaning that it has better true positive rate for every given false negative rate.

8 Summary

Keyword spotting is a speech related task with more and more practical interest from an
application point of view. Current state-of-the-art approaches are based on classical genera-
tive HMM based systems. In this work, we introduced a discriminative approach to keyword
spotting, directly optimizing an objective function related to the area under the ROC curve,
i.e., the most common measure for keyword spotter evaluation. Furthermore, the proposed
approach is based on a large-margin formulation of the problem (hence expecting a good
generalization performance) and an iterative training algorithm (hence expecting to scale
reasonably well to large databases). Compared to conventional context-independent HMM
approach, the proposed model has shown to yield a statistically significant improvement
on the TIMIT corpus. Furthermore, the very same model trained on the TIMIT corpus was
tested on different corpora to assess its performance in various conditions. Namely, the model
has been assessed on HTIMIT, which introduces various channel variations, on WSJ, which
introduces different types of sentences from a linguistic perspective, and on OGI Stories,
which corresponds to the recording of spontaneous speech. In all cases, the discriminative
algorithm was shown to yield a statistically better performance than the HMM alternative.

We would like to note that this work is part of a general line of research on large margin and
kernel method for discriminative continuous speech recognition. [12] described and analyzed
an hierarchical approach for frame-based phoneme classification. Building on that work, we
proposed an large-margin based discriminative algorithm for forced-alignment [18], and an
algorithm for whole sequence phoneme recognition [17]. The discriminative keyword spotting
presented in this paper is in turn based on those works and it is the first to address word-
level recognition. We are currently investigating an extension of this work to large-margin
discriminative large vocabulary continuous speech recognition. We are also looking for a
method to encompass contextual information into our models. Last but not least, we are
working on reducing the heavy computational load required by kernel-based algorithms, with
the objective to reach the efficiency of HMM-based solutions.
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A Theoretical Analysis

In this appendix, we show that the iterative algorithm given in Sec. 4 maximizes the cumu-
lative AUC, defined as

Ã =
1
m

m∑
i=1

1{wi·φ(x̄+
i ,p̄

ki ,s̄ki )≥wi·φ(x̄−,p̄ki ,s̄′i)}
. (17)

Our first theorem shows that the area above the curve, i.e. 1− Ã, is smaller than the average
loss of the solution of the SVM problem defined in Eq. (6). That is, the cumulative AUC,
generating by the iterative algorithm is going to be large, given that the loss of the SVM
solution (or any other solution) is small, and that the number of examples, m, is sufficiently
large.

Theorem 1. Let S = {(p̄ki , x̄+
i , x̄

−
i , s̄

ki
i )}mi=1 be a set of training examples and assume that

for all k, x̄ and s̄ we have that ‖φ(x̄, p̄k, s̄)‖ ≤ 1. Let w? be the optimum of the SVM problem
given in Eq. (6). Let w1, . . . ,wm be the sequence of weight vectors obtained by the algorithm
in Fig. 2 given the training set S. Then,

1− Ã ≤ 1
m
‖w?‖2 +

2C
m

m∑
i=1

`(w?; (p̄ki , x̄+
i , x̄

−
i , s̄

ki)). (18)

where C > 1 and Ã is the cumulative AUC.

Proof The proof of the theorem relies on Lemma 1 and Theorem 4 in [10]. Lemma 1 in [10]
implies that,

m∑
i=1

αi
(
2`i − αi‖∆φi‖2 − 2`?i

)
≤ ‖w?‖2. (19)

Now if the algorithm makes a prediction mistake, i.e., predicts that an utterance that does
not contain the keyword has a greater confidence than another utterance that does contain
it, then `i ≥ 1. Using the assumption that ‖φ(x̄, p̄k, s̄)‖ ≤ 1 and the definition of αi given in
Eq. (11), when substituting [1−wi−1 ·∆φi]+ for `i in its denominator, we conclude that if
a prediction mistake occurs then it holds that

αi`i ≥ min
{

`i
∆φi

, C

}
≥ min {1, C} = 1. (20)

Summing over all the prediction mistakes made on the entire training set S and taking into
account that αi`i is always non-negative. it holds that

m∑
i=1

αi`i ≥
m∑
i=1

1{wi·φ(x̄+
i ,p̄

ki ,s̄ki )≤wi·φ(x̄−,p̄ki ,s̄′i)}
. (21)
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Again using the definition of αi, we know that αi`?i ≤ C`?i and that αi‖∆φi‖2 ≤ `i. Plugging
these two inequalities and Eq. (21) into Eq. (19) we get

m∑
i=1

1{wi·φ(x̄+
i ,p̄

ki ,s̄ki )≤wi·φ(x̄−,p̄ki ,s̄′i)}
≤ ‖w?‖2 + 2C

m∑
i=1

`?i . (22)

The theorem follows by replacing the sum over prediction mistakes to a sum over prediction
hits and plugging-in the definition of the cumulative AUC given in Eq. (17).

The next theorem states that the output of our algorithm is likely to have good general-
ization, i.e. the expected value of the AUC resulted from decoding on unseen test set is likely
to be large.

Theorem 2. Under the same conditions of Thm. 1. Assume that the training set S and the
validation set Sval are both sampled i.i.d. from a distribution Q. Denote by mval the size of
the validation set. With probability of at least 1− δ we have

1− Â = EQ
[
1{f(x̄+

i ,p̄
ki )≤f(x̄−,p̄ki )}

]
= PrQ

[
f(x̄+

i , p̄
ki) ≤ f(x̄−, p̄ki)

]
≤

1
m

m∑
i=1

`(w?; (p̄ki , x̄+
i , x̄

−
i , s̄

ki)) +
‖w?‖2

m
+

√
2 ln(2/δ)√

m
+

√
2 ln(2m/δ)
√
mval

, (23)

where Â is the mean AUC defined as Â = EQ
[
1{f(x̄+

i ,p̄
ki )>f(x̄−,p̄ki )}

]
.

Proof Denote the risk of keyword spotter f by

risk(f) = E
[
1{f(x̄+

i ,p̄
ki )≤f(x̄−,p̄ki )}

]
= Pr

[
f(x̄+

i , p̄
ki) ≤ f(x̄−, p̄ki)

]
Proposition 1 in [6] implies that with probability of at least 1− δ1 the following bound holds,

1
m

m∑
i=1

risk(fi) ≤
1
m

m∑
i=1

1{fi(x̄
+
i ,p̄

ki )≤fi(x̄−,p̄ki )} +

√
2 ln(1/δ1)√

m
.

Combining this fact with Thm. 1 we obtain that,

1
m

m∑
i=1

risk(fi) ≤
2C
m

m∑
i=1

`?i +
‖w?‖2

m
+

√
2 ln (1/δ1)√

m
. (24)

The left-hand side of the above inequality upper bounds risk(f?), where f? =
arg minfi

risk(fi). Therefore, among the finite set of keyword spotting functions, F =
{f1, . . . , fm}, there exists at least one keyword spotting function (for instance the function
f?) whose true risk is bounded above by the right hand side of Eq. (24). Recall that the
output of our algorithm is the keyword spotter f ∈ F , which minimizes the average cost over
the validation set Sval. Applying Hoeffding inequality together with the union bound over F
we conclude that with probability of at least 1− δ2,

risk(f) ≤ risk(f?) +

√
2 ln (m/δ2)

mval
,
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where mval = |Sval|. We have therefore shown that with probability of at least 1− δ1− δ2 the
following inequality holds,

risk(f) ≤ 1
m

m∑
i=1

`?i +
‖w?‖2

m
+

√
2 ln(1/δ1)√

m
+

√
2 ln(m/δ2)
√
mval

.

Setting δ1 = δ2 = δ/2 concludes our proof.

B Lists of Keywords

We give here the list of keywords used in the experiments described in Sec. 7.
The keywords used in the TIMIT experiments were: absolute, admitted, aligning, anxi-

ety, apartments, apparently, argued, bedrooms, brand, camera, characters, cleaning, climates,
controlled, creeping, crossings, crushed, decaying, demands, depicts, dominant, dressy, drunk,
efficient, episode, everything, excellent, experience, family, firing, followed, forgiveness, free-
dom, fulfillment, functional, grazing, henceforth, ignored, illnesses, imitate, increasing, in-
evitable, introduced, January, materials, millionaires, mutineer, needed, obvious, package,
paramagnetic, patiently, pleasant, possessed, pressure, radiation, recriminations, redecorat-
ing, rejected, secularist, shampooed, solid, spilled, spreader, story, strained, streamlined,
street, stripped, stupid, superb, surface, swimming, sympathetically, unenthusiastic, unlined,
urethane, usual, walking, weekday.

The keywords used in the HTIMIT experiments were: ambitious, appetite, avoided,
bricks, building, causes, chroniclers, clinches, coeducational, colossal, concern, controlled,
convincing, coyote, derived, desires, determination, disregarding, dwarf, effective, enrich, ex-
ample, examples, excluded, executive, experiment, feverishly, firing, glossy, handle, happily,
healthier, leaflet, lousiness, manure, misery, Nathan, northeast, notoriety, nutrients, obvi-
ously, overcame, penetrated, persuasively, petting, portion, precaution, prepare, prepared,
privately, properties, propriety, reduced, referred, sandwich, sculptor, showering, sitting,
sixty, sketched, skills, spirits, storm, strength, strip, surely, synagogue, technical, tomblike,
traffic, tuna-fish, tycoons, university, vaguely, vanquished, virtues, waking, wedded, working,
wounds.

The keywords used in WSJ experiment were: ability, administrative, analysis, answer,
answer, business, business, children, children, clothes, company, confirmation, design, dif-
ferent, economy, economy, environment, environment, environment, equipment, evening,
evening, experience, family, family, history, hospitalization, hospitalization, important, in-
formation, ingredients, interior, language, language, lesson, literature, literature, marketing,
medicine, medicine, murder, murder, natural, necessary, newspaper, organizations, people,
physical, physical, popular, popular, predispositions, preparation, private, procedure, pro-
cess, progress, progress, psychological, public, public, questions, questions, reasons, regular,
regular, research, research, responsibility, responsibility, scientists, sexual, simple, single,
standards, strong, students, treatment, vegetable, violence.

The keywords used in OGI Stories experiment were: army, articles, available, baseball,
boxing, bus, California, climbed, closed, competitive, contained, contributions, cost, course,
crazy, creating, cutting, developed, directions, double, entertaining, experiencing, fee, fifty,
forward, from, futures, Georgia, heading, innovation, institutional, interior, kick, kindness,
land, listen, luck, Maine, main, much, never, nightly, nineteenth, operators, public, rancho,
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recession, recommendations, Robert, room, such, teach, technology, Texas, though, turning,
understood, ways, western, yesterday.
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[15] J. Junkawitsch, G. Ruske, and H. Höge. Efficient methods for detecting keywords in
continuous speech. In Proc. of European Conference on Speech Communication and
Technology, pages 259–262, 1997.

[16] J. Keshet, D. Chazan, and B.-Z. Bobrovsky. Plosive spotting with margin classifiers. In
Proceedings of the Seventh European Conference on Speech Communication and Tech-
nology, pages 1637–1640, 2001.

[17] J. Keshet, S. Shalev-Shwartz, S. Bengio, Y. Singer, and D. Chazan. Discriminative
kernel-based phoneme sequence recognition. In Interspeech, 2006.

[18] J. Keshet, S. Shalev-Shwartz, Y. Singer, and D. Chazan. A large margin algorithm for
speech-to-phoneme and music-to-score alignment. IEEE Trans. on Audio, Speech and
Language Processing, 15(8):2373–2382, 2007.

[19] H. Ketabdar, J. Vepa, S. Bengio, and H. Bourlard. Posterior based keyword spotting
with a priori thresholds. In Prof. of Interspeech, 2006.

[20] A.S. Manos and V.W. Zue. A segment-based wordspotter using phonetic filler models.
In Proc. of International Conference on Audio, Speech and Signal Processing, pages
899–902, 1997.

[21] D.B. Paul and J.M. Baker. The design for the Wall Street Journal-based CSR corpus.
In Proc. of the International Conference on Spoken Language Processing, 1992.

[22] J. C. Platt. Fast training of Support Vector Machines using sequential minimal optimiza-
tion. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods -
Support Vector Learning. MIT Press, 1998.

[23] L. Rabiner and B.H. Juang. Fundamentals of Speech Recognition. Prentice Hall, 1993.

[24] M.G. Rahim, C.H. Lee, and B.H. Juang. Discriminative utterance verification for con-
nected digits recognition. IEEE Transactions on Speech and Audio Processing, pages
266–277, 1997.

[25] D.A. Reynolds. HTIMIT and LLHDB: speech corpora for the study of handset trans-
ducer effects. In Proc. of International Conference on Audio, Speech and Signal Process-
ing, pages 1535–1538, 1997.

[26] J. R. Rohlicek, P. Jeanrenaud, K. Ng H. Gish, B. Musicus, and M. Siu. Phonetic training
and language modeling for word spotting. In Proc. of International Conference on Audio,
Speech and Signal Processing, pages 459–462, 1993.

[27] J. R. Rohlicek, William Russell, S. Roukod, and H. Gish. Continuous hidden markov
model for speaker independent word spotting. In Proc. of International Conference on
Audio, Speech and Signal Processing, pages 627–430, 1989.



IDIAP–RR 08-31 21

[28] R.C. Rose and D.B. Paul. A hidden markow model based keyword recognition system.
In Proc. of International Conference on Audio, Speech and Signal Processing, pages
129–132, 1990.

[29] J. Salomon, S. King, and M. Osborne. Framewise phone classification using support
vector machines. In Proceedings of the Seventh International Conference on Spoken
Language Processing, pages 2645–2648, 2002.

[30] S. Shalev-Shwartz, J. Keshet, and Y. Singer. Learning to align polyphonic music. In
Proceedings of the 5th International Conference on Music Information Retrieval, 2004.

[31] M.-C. Silaghi and H. Bourlard. Iterative posterior-based keyword spotting without filler
models. In Proc. of the IEEE Automatic Speech Recognition and Understanding Work-
shop, pages 213–216, Keystone, USA, 1999.

[32] I. Szoke, P. Schwarz, P. Matejka, L. Burget, M. Fapso, M. Karafiat, and J. Cernocky.
Comparison of keyword spotting approaches for informal continuous speech. In Proc. of
Joint Workshop on Multimodal Interaction and Related Machine Learning Algorithms,
2005.

[33] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks. In Advances in
Neural Information Processing Systems 17, 2003.

[34] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[35] M. Weintraub. LVCSR log-likelihood ratio scoring for keyword spotting. In Proc. of
International Conference on Audio, Speech and Signal Processing, pages 129–132, 1995.


