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Abstract
This paper proposes a discriminative approach to template-based
keyword detection. We introduce a method to learn the distance
used to compare acoustic frames, a crucial element for template
matching approaches. The proposed algorithm estimates the dis-
tance from data, with the objective to produce a detector maxi-
mizing the Area Under the receiver operating Curve (AUC), i.e.
the standard evaluation measure for the keyword detection prob-
lem. The experiments performed over a large corpus, Speech-
DatII, suggest that our model is effective compared to an HMM
system, e.g. the proposed approach reaches 93.8% of averaged
AUC compared to 87.9% for the HMM.
Index Terms: spoken keyword detection, template matching,
discriminative learning, distance learning

1. Introduction
A reliable detection of spoken keywords is required in several
application domains. For instance, voice-enabled devices should
detect utterances of keywords corresponding to system com-
mands. Other applications include dialog systems, voice mail
categorization or spoken document retrieval.

To address the problem of detecting keywords, two alterna-
tive strategies are generally adopted: approaches based on Hid-
den Markov Models (HMMs) [1, 2, 3] or approaches based on
Template Matching (TM) [4]. Each strategy has its own advan-
tages and drawbacks. In the case of HMMs, the main advantage
lies in the use of a phonetic approach, allowing HMMs to bene-
fit from large amount of annotated speech to build robust acous-
tic models. On the other hand, HMMs are known for poorly
modeling long temporal dependencies, which can only be cir-
cumvented with refined features or adaptation techniques [5, 6].
In the case of TM, the main advantage is precisely the use of
long temporal context: all the frames of the keyword template,
as well as the information about their relative position, are used
during the Dynamic Time Warping (DTW) procedure. This pro-
vides an implicit modeling of co-articulation effects or speaker
dependencies [7]. On the other hand, most TM approaches fail
to take advantage of large amount of training data.

This main limitation of TM-based approaches certainly ex-
plains the empirical advantage of HMM-based keyword spot-
ters. However, recently, several researchers have worked on
template-based approaches for ASR that could benefit from
available training data. For instance, in [8], the authors propose
to perform template based ASR, relying on data-driven features.
Another example can be found in [9], where the authors pro-
pose to rely on training data to infer the distance metric used for
frame comparison in their template-based approach. In fact, in
both cases, the goal is to replace the Euclidean comparison be-
tween acoustic feature vectors with a more reliable inter-frame

distance. This work builds upon this recent line of research and
introduces an approach for learning the inter-frame distance of a
TM keyword detector.

For that purpose, we introduce the Siamese Keyword Iden-
tifier (SKI), a neural network model for inter-frame distance
learning. This model adopts a discriminative approach and its
parameters are learned to maximize the most common measure
used to evaluate keyword detectors: the area under the true-
positive versus false-positive curve. The parameterization of
SKI is based on Siamese networks, a type of neural network
which has shown to be effective for distance learning in the con-
text of computer vision [10]. These choices yield a model that
can be efficiently trained over large datasets through stochastic
gradient descent [11], and which is effective compared to alter-
native approaches. In fact, SKI has shown to yield an averaged
AUC of 93.8% when evaluated on 30 detection tasks over the
SpeechDatII corpus [12]. This should be compared to 87.9%
and 59.6% for the HMM and the TM baseline respectively.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our discriminative approach to TM keyword
detection. Section 3 presents the experiments performed to as-
sess our model, and compares it to alternative solutions. Finally,
Section 4 draws some conclusions and delineates some possible
future work.

2. Discriminative Distance Learning for
Keyword Detection

This section is divided into three parts. First, we present the
generic framework of TM-based keyword detection. Second, we
present the most common keyword detector evaluation method-
ology, and derive a discriminative objective function from it.
Finally, we introduce the proposed model, SKI, along with its
training algorithm.

2.1. Template-Based Keyword Detection

In the problem of keyword detection, we are given a candidate
acoustic sequence xc = (xc

1, . . . , x
c
T ) and a keyword k, and

we should determine whether k is present among the words ut-
tered in xc. To achieve such a goal, a template-based keyword
detector is given a template xt = (xt

1, . . . , x
t
T ′), i.e. an acous-

tic sequence in which k and only k is uttered. The detection
is performed according to the distance D(xc, xt) between the
sequence xc and the template xt: the keyword is considered as
detected whenever D(xc, xt) is below a predefined threshold
b. The global sequence distance D(·, ·) is defined from a lo-
cal frame distance d(·, ·), relying on a Dynamic Time Warping
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(DTW) procedure [13],

D(xc, xt) = min
a

1

|a|
X

(i,j)∈a

d(xc
i , x

t
j)

where a is an alignment between xc and xt, i.e. a is a list of
index pairs, in which each pair (i, j) aligns a frame xc

i of xc

with a frame xt
j of xt. In other words, a encodes the hypoth-

esized begin and end points of k in xc, as well as the local
speaking rate variations between sequence xc and xt. |a| repre-
sents the hypothesized length of k in xc and the corresponding
normalization factor prevents biasing towards short alignments.
In most cases, the local distance d(·, ·) is computed as the Eu-
clidean distance between acoustic features [7]. In the following,
we propose a discriminative learning approach to identify a bet-
ter distance measure from data.

2.2. Discriminative Learning for Keyword Detection

The assessment of a keyword detector is generally based on two
quantities, the False Positive Rate (FPR) and the True Positive
Rate (TPR). The FPR measures the percentage of utterances
without the keyword which have been misclassified, while the
TPR measures the percentage of utterances containing the key-
word which have been correctly classified. Given a TM keyword
detector, the practitioner should express a trade-off between
achieving a high TPR and achieving a low FPR, and selects the
detection threshold b accordingly. When such a trade-off is not
expressed, the performance of a keyword detector is evaluated
with the true positive versus false positive curve, which is ob-
tained by varying the threshold b from the smallest value (no
detection) to the largest value (no rejection). In this case, the
performance of the system is generally summarized by the Area
Under the Curve (AUC). This quantity can be expressed as the
Wilcoxon-Mann-Whitney statistic [14],

AUCk =
1

|Rk||Rk|

X
x+ ∈ Rk

x− ∈ Rk

I{D(xt, x+) < D(xt, x−)},

where xt is the reference template for keyword k, Rk refers to
the set of the sequences containing the keyword k, Rk refers to
the set of the sequences without the keyword, I{·} denotes the
indicator function and |·| denotes the cardinality of a set. AUCk

hence estimates the probability that the distance D(xt, x+) as-
signed to an utterance x+ containing the keyword is smaller than
the distance D(xt, x−) assigned to an utterance x− without the
keyword.

As recently proposed in our work on discriminative learn-
ing for phoneme-based keyword spotters [15], a loss function
suitable for the maximization of AUCk can be defined as,

Lk =
1

|Rk||Rk|

X
x+ ∈ Rk

x− ∈ Rk

lk(x+, x−),

where lk(x+, x−) = max(0, 1 − D(xt, x−) + D(xt, x+)).
One can remark that, Lk > 1 − AUCk, which implies that the
minimization of the Lk yields the maximization of AUCk.

2.3. A Siamese Network for Inter-Frame Distance Learning

The proposed model, Siamese Keyword Identifier (SKI), is based
on Siamese Neural Networks, a type of neural network intro-

duced to learn distances between images [10]. This approach
reformulates the distance learning problem as the problem of
identifying a mapping from the input space into an output space,
in which the distance would satisfy some desired properties.
Adapted to our task, this approach applies the same neural net-
work fw to the frames of both the candidate sequence xc, and
the template sequence xt, and then computes the L1 distances
between the obtained outputs. In other words, the distance be-
tween two frames xc

i , x
t
j is computed as

dw(xc
i , x

t
j) = |fw(xc

i )− fw(xt
i)|1,

where fw is a Multi-Layered Perceptron (MLP) with one hid-
den layer and parameters w, and | · |1 refers to the L1 norm1.
Equipped with this inter-frame distance, we can then rewrite the
inter-sequence distance as, ∀ (xc, xt),

Dw(xc, xt) = min
a

1

|a|
X

(i,j)∈a

dw(xc
i , x

t
j),

yielding to the architecture depicted on Figure 1. This type of
architecture is referred to as siamese as one could note that the
same MLP is duplicated to be applied to the frames of both the
candidate and template sequences.

Given this parameterization, our objective is now to select
the parameters w such that Dw minimizes the loss Lk. As
a function of w, Lk is a composition of differentiable func-
tions with min and max. Therefore, it belongs to the class of
the generalized differentiable functions and can be minimized
through stochastic gradient descent [16]. This yields an ef-
ficient training procedure, which examines the training pairs
(x+, x−) ∈ Rk × Rk one at a time, as shown in Algorithm 1.
The random weight initialization procedure used in this algo-
rithm is described in [11]. The learning rate λ, and the number
of iterations n are learning hyper-parameters. The other hyper-
parameters of the model are the number of hidden units in fw,
and the output dimension of fw. In our experiments (see Sec-
tion 3), all hyper-parameters have been selected through valida-
tion.

Initialize w randomly
Repeat n times

sample (x+, x−) ∈ Rk ×Rk,

compute gradient of loss for current sample, ∂lk(x+x−)
∂w

,
update w → w − λ ∂lk(x+x−)

∂w

Algorithm 1: Training Procedure

3. Experiments and Results
This section presents the experiments performed to validate our
approach. Our experiments are based on the English version of
the SpeechDatII corpus [12]. This corpus consists of recorded
telephone speech uttered by British speakers. We focus on the
task of spotting keywords corresponding to system commands.
This task consists of 30 keywords of various length (e.g. add,
call, directory, operator, send, etc). Two types of utterances
have been used: the sentences labeled as word spotting phrases
with embedded keyword that generally contain one or more key-
words, and the sentences labeled as phonetically rich sentences,
that generally contain no keywords. This setup yields a to-

1The choice of the L1 norm is mainly motivated to ease optimization,
refer to [10] for further details.
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Figure 1: Architecture of the Model.

tal set of 10, 544 sequences, which was split into three sub-
set. The training set (4, 758 sequences) was used to learn the
model parameters w, the validation set (1, 000 sequences) was
used to select the model hyper-parameters (see Section 2) and
the test set (4, 786 sequences) was used solely for the purpose
of evaluation. The split was performed such that each speaker
appears only in one of the sets. The test set provided highly
unbalanced detection problems, with a percentage of utterances
containing the keyword ranging between 1.5% (dial) and 3.5%
(list). All speech sequences were represented using classical
Mel Frequency Cepstral Coefficients (MFCCs), with first and
second derivatives (∆ and ∆∆). Furthermore, Cepstral Mean
Subtraction (CMS) was applied to reduce channel variation ef-
fects between utterances. We also ran a Gaussian Mixture Model
(GMM)-based speech/silence detector in order to shorten long
silences at the beginning and end of the utterances [17].

The templates used for our experiments were extracted from
the training utterances. For each of the 30 keywords, we ran-
domly selected 10 utterances containing the keyword, and ex-
tracted a template from each using the forced alignment data
from an HMM/GMM. A detection experiment, including model
training and testing, was then performed for each template, and
the results were averaged over the template set of each keyword.
This prevents biasing the results toward a specific template.

For the sake of comparison, all experiments performed with
our model were also conducted relying on a baseline template
system and an HMM system. The baseline template system is
similar to our model, except that inter-frame comparisons are
performed according to the Euclidean distance between MFCC
features. This baseline2 was evaluated with the same templates
as those used for the evaluation of our model. The HMM system
is composed of 3 emitting states per phoneme, with 50 Gaus-
sians per state. Parameters of the HMM were learned through
embedded training over 10, 000 utterances of SpeechDatII, none
of those belonging to our test data. Keyword spotting with this
HMM is performed through decoding in a model composed of
two sub-models, i.e. the keyword sub-model (a left-right HMM
connecting the keyword phonemes) and the garbage sub-model
(an ergodic HMM connecting all phonemes). With this ap-
proach, the keyword is detected whenever the Viterbi best path
goes through the keyword sub-model and the trade-off between
TPR and FPR is tuned by varying the transition probability lead-
ing to the keyword sub-model.

Table 1 reports the average of AUCk over the 30-keyword

2For a more complete evaluation, we are currently planning further
comparisons with other template-based approaches, such as [8, 9].

Table 1: Averaged Area under Curve for the 30 Keywords
AUC (%)

baseline TM 59.6
HMM 87.9
SKI 93.8

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

tr
ue

 p
os

iti
ve

 r
at

e

false positive rate

TM
HMM
SKI

Figure 2: True Positive vs False Positive Curve (averaged over
the 30 keyword set)

set. This table shows that both the HMM and SKI yield good
results, compared to the baseline TM. In fact, the baseline TM
performs only slightly better than random performance (50%
AUC). Compared to the HMM, SKI yields a higher averaged
AUC. To verify whether this advantage on the average could be
due only to a few keywords, we ran the Wilcoxon test [18] to
compare the score of our model with both the TM and the HMM
approaches. In both cases, the test rejected this hypothesis at the
95% confidence level, indicating a consistent advantage for SKI.
Rather than looking only at the AUC, the practitioner might also
be interested at a specific point on the Receiver Operating Curve,
depending on his/her system requirements in terms of TPR and
FPR. Figure 2 reports the whole curve for the 3 competing mod-
els. This plot shows that SKI is actually advantageous over both
the TM baseline and the HMM at all operating points.

Analyzing further the results, we report the performance of
the HMM and SKI as a function of the keyword length. For that
purpose, we grouped the keywords into 3 bins of 10 keywords,
according to their average duration in the corpus, and we report
the average AUC for each group, see Table 2. For both models,
long keywords are better detected than short ones. This seems
intuitive as the short words can be easily confused with other



Table 2: Averaged Area under Curve as a Function of the Key-
word Length

Avg. Len. HMM AUC SKI
(ms) (%) (%)

short kw.(a) 230 → 390 82.5 90.5
medium kw.(b) 391 → 510 85.1 93.9

long kw.(c) 511 → 750 95.0 97.0

(a)add, delete, dial, end, file, next, play, read, send, stop.
(b)call, cancel, change, forward, help, list, record, repeat, reply, save.
(c)continue, directory, english, language, menu, operator, previous, pro-
gram, redial, terminate.

acoustic units, such as part of long words [19]. However, the
SKI model seems to be less affected by keyword length com-
pared to the HMM, e.g. the observed drop in performance when
comparing short and long keywords is less important for SKI (-
6.5%) than for the HMM (-12.5%). In fact, the advantage of SKI
is more important for short rather than long keywords, which
seems to indicate that template-long context helps to detect the
confusing short keywords.

Overall, these results are promising, indicating that
template-based approaches can yield competitive keyword de-
tection performance when the inter-frame distance is learned
discriminatively.

4. Conclusions

In this paper, we have proposed to improve template-based key-
word detection through inter-frame distance learning. The pro-
posed model learns the inter-frame distance from data, with
the objective to optimize the area under the true-positive ver-
sus false-positive curve of the final detector. An effective online
learning strategy has been adopted, allowing the proposed model
to be trained over large corpora. We compared our approach
over both an HMM-based approach and a simpler template-
based approach. Our experiments detecting 30 keywords over
the SpeechDatII corpus highlighted the advantage of the pro-
posed model, which yields 93.8% averaged AUC as compared
to 59.6% for the baseline template-based approach and 87.9%
for the HMM. An explanation for this positive outcome cer-
tainly lies in the combined advantage of our approach: like the
HMM, the proposed model can benefit from large amount of
training data, and, like any template-based approach, our model
can also model long temporal dependencies, through the use of
a template-long context.

This work opens several possible future directions of re-
search. One of the most promising would be to learn a single
model from many templates of different keywords, instead of
learning a model per keyword. Such a model could then be ap-
plied to detect a new keyword for which only a single template
would be given at test time, yielding a model allowing the re-
trieval of spoken documents from spoken queries.
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