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Abstract. Tracking speakers in multiparty conversations constitutes a fundamental task for automatic meet-
ing analysis. In this paper, we present a probabilistic approach to jointly track the location and speaking
activity of multiple speakers in a multisensor meeting room, equipped with a small microphone array and
multiple uncalibrated cameras. Our framework is based on a mixed-state dynamic graphical model defined
on a multiperson state-space, which includes the explicit definition of a proximity-based interaction model.
The model integrates audio-visual (AV) data through a novel observation model. Audio observations are de-
rived from a source localization algorithm. Visual observations are based on models of the shape and spatial
structure of human heads. Approximate inference in our model, needed given its complexity, is performed
with a Markov Chain Monte Carlo particle filter (MCMC-PF), which results in high sampling efficiency.
We present results -based on an objective evaluation procedure- that show that our framework (1) is capable
of locating and tracking the position and speaking activity of multiple meeting participants engaged in real
conversations with good accuracy; (2) can deal with cases of visual clutter and partial occlusion; and (3)
significantly outperforms a traditional sampling-based approach.
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1 Introduction

The automatic analysis of meetings recorded in multi-sensor rooms is an emerging research field in various
domains, including audio and speech processing, computer vision, human-computer interaction, and informa-
tion retrieval [23, 46, 32, 41, 8, 30, 47, 10]. Analyzing meetings poses a diversity of technical challenges,
and opens doors to a number of relevant applications, including automatic structuring and indexing of meeting
collections, and facilitation of remote meetings.

In the context of meetings, localizing and tracking people and their speaking activity play fundamental roles
in two areas. The first one is media processing: speaker location is useful to select or steer a camera as part of a
visualization or production model, to enhance the audio stream via microphone-array beamforming for speech
recognition, to provide accumulated information for person identification, and to recognize location-based
events (e.g. a presentation). The second one is human interaction analysis: social psychology has highlighted
the role of non-verbal behavior (e.g. gaze and facial expressions) in interactions, and the correlation between
speaker turn patterns and aspects of the behavior of a group [31]. Extracting cues to identify such multimodal
behaviors requires reliable speaker tracking.

Although the tracking task in meetings is facilitated by the constraints of the physical space and the expected
type of human activities, the multimodal multispeaker tracking problem poses various challenges. These in-
clude algorithms for AV data fusion, that make use of the modalities’ complementarity, and for tractable joint
multiperson models (which represent each individual state, while accounting for the constraints introduced
by their interaction). In meetings, interaction in its simplest form relates to proximity in the visual modality
(occlusion being the fundamental case), and to overlapping speech in the audio modality (commonly found in
spontaneous conversations [38]). Approaches addressing some of these issues have begun to appear [5, 6].

In this paper, we address the problem as one of approximate inference in a dynamical graphical model, using
particle filtering (PF) techniques [18, 11], building on recent advances in the field [21]. For a state-space model,
a PF recursively approximates the filtering distribution of states given observations, using a dynamical model,
an observation model, and sampling techniques, by predicting candidate configurations and measuring their
likelihood. Our model uses a mixed-state, multi-object state-space, which in addition to being mathematically
rigorous, allows for the integration of a pairwise person occlusion model, through the addition of a Markov
Random Field (MRF) prior in the multi-object dynamic model. To address the problems of traditional PFs
in handling high-dimensional spaces (defined by the joint multi-object configurations), we combine Markov
Chain Monte Carlo (MCMC) techniques with the PF framework, allowing for efficient sampling [28, 21]. Our
work integrates data captured by a small microphone array and multiple cameras with mostly non-overlapping
fields-of-view through the definition of a novel observation model of AV features. Based on an objective
evaluation of the quality of estimated head location and speaking activity, and using small-group discussion
data, we show that our framework is capable of jointly tracking the location and speaking activity of multiple
meeting participants with good accuracy, dealing with realistic conditions, and outperforming a traditional PF
model.

The paper is organized as follows. Section 2 discusses related work. Section 3 summarizes our framework.
Section 4 describes the multi-person dynamical model. Section 5 presents the multi-person AV observation
model. Section 6 describes the sampling technique. Section 7 discusses the case of varying numbers of peo-
ple. Section 8 describes and discusses experiments and results. Finally, section 9 provides some concluding
remarks.

2 Related work

Localizing and tracking speakers in enclosed spaces using AV information has increasingly attracted attention
in signal processing and computer vision [36, 17, 7, 34, 13, 43, 48, 1, 3, 6, 5], given the complementary
characteristics of each modality. Broadly speaking, the differences among existing works arise from the overall
goal (tracking single vs. multiple speakers), the specific detection/tracking framework, and the AV sensor
configuration. Much work has concentrated on the single-speaker case, assuming either single-person scenes
[7, 34, 1], or multiperson scenes where only the location of the current speaker needs to be tracked [36, 17, 13,
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43, 48, 3]. Many of these works used simple sensor configurations (e.g. one camera and a microphone pair) [7,
34, 43, 3]. Among the existing techniques, probabilistic generative models based on exact [34] or approximate
inference methods (both variational [3] and sampling-based [43, 48]) appear to be the most promising, given
their principled formulation and demonstrated performance.

None of the above works can handle the problem addressed here: continuously inferring, from audio and
video data, the location and speaking status for several people in a realistic conversational setting. In fact,
although audio-based multispeaker tracking and vision-based multiobject tracking have been studied for a few
years as separate problems in signal processing [42, 37, 45, 25] and computer vision [19, 35], respectively,
the AV multispeaker tracking problem has been studied only relatively recently, making use of more complex
sensor configurations [8, 20, 39, 6, 5]. While single cameras are useful for remote conferencing applications,
multiperson conversational settings like meetings often call for the use of multiple cameras and microphones
to cover an entire workspace (table, whiteboards, etc.) [8, 6, 5]. More specifically, the work in [8] described
a system based on a device that integrates a small circular microphone array and several calibrated cameras,
whose views are composed into a panorama, The system, in which each person is tracked independently,
consists of three modules: AV auto-initialization, (using either a standard acoustic source localization algorithm
or visual cues), visual tracking using a Hidden Markov Model (HMM), and tracking verification. The work in
[20] described a non-probabilistic multispeaker detection algorithm using an omnidirectional camera (which
has limitations of resolution) and a microphone array, calibrated with respect to each other. At each video frame,
the method extracts skin-color blobs by traditional techniques, and then detects a sound source using standard
beamforming on the small set of directions indicated by the skin-blob locations. The work in [39] described an
AV multispeaker system, based on a stereo camera and a linear microphone array, consisting of three separate
modules: stereo-based, visual tracking of 3-D head location and pose for each person independently, estimation
of the audio signal’s direction of arrival with the microphone array, and estimation of audio-visual synchronous
activity. Two hypothesis tests are used to make independent decisions about the speaking activity and visual
focus of the speakers, based on simple statistical models defined on the observations derived from each module.

To the best of our knowledge, the closest works to ours are [5, 6], both based on PF techniques. The
work in [5] used two calibrated cameras and four linear sub-microphone arrays on a wall, and was based
on the model proposed in [19], defining a multi-person state-space in which the number of people can vary
over time. An full-body multi-person observation model was defined by two terms: one for video, derived
from a pixelwise background substraction model, and one for audio, derived from a set of short-time Fourier
transforms computed on each microphone’s signal. The PF relied on importance sampling (IS), and is thus
likely to rapidly become inefficient as the number of objects increases. The work in [6] used the same calibrated
sensor setup as [8], and tracked multiple speakers with a set of independent PFs, one for each person. Each PF
uses a mixture proposal distribution, in which the mixture components are derived from the output of single-cue
trackers (based on audio, color, or shape information). This proposal increases robustness in case of tracking
failure in single modalities.

As we describe in the remainder of the paper, our work substantially differs from previous work in AV
multispeaker tracking with respect to multi-object dynamic and AV observation modeling, and to the sampling
mechanism. Building on the model in [21], our model has two advantages over [5, 6]. First, unlike [5, 6], we
use a multi-person dynamical model that explicitly incorporates a pairwise person interaction prior term. This
model is especially useful to handle person occlusion. Second, unlike [5], we use efficient MCMC sampling,
that allows to track several objects in a tractable manner (effectively close to the case of independent PFs),
while preserving the rigorous joint state-space formulation. Finally, we objectively evaluate the performance
of our algorithm, in more detail than that of [5, 6].

3 Model formulation

We use a generative approach to model the tracking problem [18, 11]. Given a Markov state-space model,
with hidden states Xt representing the joint multi-object configuration (e.g. position, scale, etc.), and AV
observations Yt, the filtering distribution p(Xt|Y1:t) of Xt given the observations Y1:t = (Y1, ...,Yt) up to
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time-step t can be recursively computed using Bayes’ rule by

p(Xt|Y1:t) ∝ p(Yt|Xt) · (1)
∫

Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1,

where p(Xt|Xt−1) is the dynamical model of the temporal evolution of the multi-object state-space, and
p(Yt|Xt) denotes the observation likelihood, which measures how well the observations fit the multi-object
predictions.

PFs approximate Eq. 1 for non-linear, non-Gaussian problems [11]. From the various available formula-
tions, we follow the one described in [18]. The basic PF represents the filtering distribution using a weighted
set of samples {(X(n)

t , w
(n)
t ), n = 1, ..., N}, where X

(n)
t and w(n)

t denote the n-th sample and its associated
weight at each time-step, and updates this representation as new data arrive. With this representation, Eq. 1 can
be approximated by a mixture model,

p(Xt|Y1:t) ≈ Z−1p(Yt|Xt)
∑

n

w
(n)
t−1p(Xt|X

(n)
t−1), (2)

using IS (Z is a normalization constant). Given the particle set at the previous time-step, {(X(n)
t−1, w

(n)
t−1)}, a set

of new configurations at the current time-step are drawn from a proposal distribution q(Xt) =
∑

r w
(r)
t−1p(Xt|X

(r)
t−1).

The weights are then computed as w(n)
t ∝ p(Yt|X

(n)
t ).

A state at time-step t is defined by Xt = (Xi,t), i ∈ It, where It is the set of object identifiers in the con-
figuration,mt = |It| denotes the number of objects, and | · | indicates set cardinality. Each object has a unique
identifier, given by the position occupied by their configuration in the state vector. In what follows, we assume
It to be fixed (the case when It varies over time is discussed in Section 7). A mixed state-space is defined for
single-object configurations Xi,t, where both the geometric transformations of a person’s model template in
the image plane and the speaking activity are tracked. In the specific implementation described in this work,
a person is represented by the elliptical silhouette of the head in the image plane (Fig. 1(left)). Furthermore,
a single-object state Xi,t = (xi,t, ki,t) is composed of a 3-D continuous vector xi,t = (ui,t, vi,t, si,t), defined
over a subspace of affine transformations comprising 2-D translation and scaling, and a discrete binary variable
ki,t, which models each participant’s speaking status (0: silent, 1: speaking).

The generative model in Eq. 1 and its approximation in Eq. 2 require the specification of the dynamical
and observation models. Additionally, the dimension of the multi-object state-space grows linearly with the
number of objects, so that even for a small group discussion (4-5 participants) and the compact single-object
state-space described above, the dimension of the joint state-space is prohibitively high for IS, which calls for
a more efficient sampling scheme. These issues are discussed in the following sections.

4 Multi-object dynamical model

The dynamical model includes two factors: one that describes interaction-free, single-object dynamics, and
another one that explicitly models interactions (e.g. occlusion), constraining the dynamics of each object based
on the state of the others, via a pairwise MRF prior [26, 21]. The field is defined on an undirected graph,
where the graph vertices are the objects, and the links are defined between object pairs at each time-step. The
dynamical model is expressed as

p(Xt|Xt−1) ∝

(

∏

i∈It

p(Xi,t|Xi,t−1)

)





∏

(i,j)∈C

φ(Xi,t,Xj,t)



 , (3)

where p(Xi,t|Xi,t−1) denotes the dynamics of the i-th object, and the prior is a product of pairwise poten-
tials, denoted by φ(Xi,t,Xj,t) over the set of cliques C (i.e., pairs of connected nodes) in the graph. The
approximation in Eq. 2 is now given by
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p(Xt|Y1:t) ≈ Z−1p(Yt|Xt)





∏

(i,j)∈C

φ(Xi,t,Xj,t)





(

∑

n

w
(n)
t−1

∏

i∈It

p(Xi,t|X
(n)
i,t−1)

)

, (4)

where the interaction term can be moved out of the sum over all particles, as it does not depend on past
information [21]. Furthermore, assuming that the motion and the speaking activity are independent, each
single-object dynamical model is factorized as

p(Xi,t|Xi,t−1) = p(xi,t|xi,t−1)p(ki,t|ki,t−1),

where the continuous distribution p(xi,t|xi,t−1) is classically modeled as a second-order auto-regressive model
[18], and p(ki,t|ki,t−1) =

[

β00 β01

β10 β11

]

is a 2×2 transition probability matrix (TPM) with parameters {β00, β01, β10, β11}
(β01 = 1 − β00 and β10 = 1 − β11).

The interaction model we adopt takes into account visual information, and penalizes large visual overlaps
between objects [21], which reduces the possibility of associating two configurations to one single object when
people occlude each other momentarily. Let the spatial supports of xi,t and xj,t, i.e., the application of the
continuous transformation to the object template on the image plane, be denoted by Si,t and Sj,t, respectively.
The overlap measures are the well-known precision (ν) and recall (ρ) measures from information retrieval [2].
Assuming that Si,t is the reference, the measures are given by

ν(Si,t,Sj,t) =
|Si,t ∩ Sj,t|

|Sj,t|
, ρ(Si,t,Sj,t) =

|Si,t ∩ Sj,t|

|Si,t|
. (5)

As ν(Si,t,Sj,t) = ρ(Sj,t,Si,t), the (symmetric) pairwise potentials in the MRF can be defined as

φ(Xi,t,Xj,t) ∝ exp (−λφ(ν(Si,t,Sj,t) + ρ(Si,t,Sj,t)) , (6)

where λφ is a model parameter. Precision and recall take their maximum value (unity) when the spatial
support of two objects perfectly match, which corresponds to the minimum value of φ(·, ·), effectively penal-
izing such object overlap. In contrast, both precision and recall reach their minimum (zero) when the objects
have no overlap, which corresponds to the maximum value of φ(Xi,t,Xj,t) ∝ 1.

5 Audio-visual observation model

Observation models are derived from audio and video. Both shape and spatial structure of human heads are
used as visual cues, so the three types of observations are defined as Yt = (Ya

t ,Y
sh
t ,Y

st
t ), where the su-

perindices stand for audio, shape, and spatial structure, respectively. As other works [35], we further assume
that observations are extracted for each object, and that the different observations are conditionally independent
given the single-object states, producing the following factorized representation,

p(Yt|Xt) =
∏

i∈It

p(Ya
i,t|Xi,t)p(Y

sh
i,t |Xi,t)p(Y

st
i,t|Xi,t). (7)

All terms in Eq. 7 are defined in the following subsections.

5.1 Audio observations

Audio observations are derived from the microphone array signals to produce 2-D location estimates in the cor-
responding image plane. The audio observation likelihood is then defined using such estimates. The procedure
consists of three steps: audio source localization, speech/non speech classification, and mapping of speaker
location estimates onto the image plane [14]. Each of these steps are described in the following subsections.
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5.1.1 Source localization

A simple single source localization technique based on Time Delay of Arrival (TDOA) is used to generate
candidate 3-D speaker locations. In particular, we use the Steered Response Power - Phase Transform (SRP-
PHAT) measure [9], due to its low computational requirements and suitability for reverberant environments.

We define a vector of theoretical time-delays associated with a 3-D locationZ ∈ R
3 as τ

Z , (τ1,Z , . . . , τψ,Z , . . . τNψ,Z),
whereNψ is the number of pairs and τψ,Z is the delay (in samples) between the microphones in pair ψ, defined

as τψ,Z = fs
cs

(

||Z −Mψ
1 || − ||Z −Mψ

2 ||
)

, where Mψ
1 ,M

ψ
2 ∈ R

3 are the locations of the microphones in

pair ψ, || · || is the Euclidean norm, fs the sampling frequency, and cs the speed of sound. Note that for a given
time-delay τ0 and pair ψ, there exists a hyperboloid of locations Z satisfying τψ,Z = τ0.

From two signals s
ψ
1 (t) and s

ψ
2 (t) of a given microphone pair ψ, the frequency-domain GCC-PHAT [22] is

defined as

GψPHAT (f) ,
S
ψ
1 (f) ·

[

S
ψ
2 (f)

]∗

∣

∣

∣S
ψ
1 (f) ·

[

S
ψ
2 (f)

]∗∣
∣

∣

, (8)

where S
ψ
1 (f) and S

ψ
2 (f) are Fourier transforms of the two signals and [·]∗ denotes the complex conjugate. Typ-

ically the two Fourier transforms are estimated on Hamming-windowed segments of 20-30 ms. By performing
an Inverse Fourier Transform, and summing the time-domain GCC-PHAT RψPHAT (τ) across pairs, we obtain
the SRP-PHAT measure,

PSRP−PHAT (Z) ,

Nψ
∑

ψ=1

RψPHAT (τψ,Z). (9)

From this, the source location is estimated as

Ẑ = arg max
Z∈R3

[PSRP−PHAT (Z)]. (10)

From geometrical considerations, at least three microphone pairs (Nψ ≥ 3) are required to obtain a unique
peak.

The maximization is implemented through exhaustive search over a fixed grid of points, H ⊂ R
3 such that

∀Z ∈ R
3 , ∃ZH ∈ H such that Γ(Z,ZH) ≤ γ0, where Γ(Z1, Z2) is the distance in time-delay space,

Γ(Z1, Z2) ,

√

√

√

√

1

Nψ

Nψ
∑

ψ=1

(τψ,Z1 − τψ,Z2)
2
, (11)

and γ0 is the desired precision in samples. Since we typically upsample RψPHAT (τ) with a factor αup,
the desired precision is set accordingly to γ0 = 1/αup. The grid H is built by picking points heuristically on
a few concentric spheres centered on the microphone array. The spheres’ radii were also determined by γ0.
Conceptually this approach relates to [16]. Note that in practice, the estimated range is imprecise, and only
azimuth and elevation are significant. Finally, for each time frame, our implementation approximates Eq. 10
by

Ẑ ≈ argmax
Z∈H

[PSRP−PHAT (Z)]. (12)

5.1.2 Speech/non-speech classification

In the second step, a speech/non-speech classification algorithm based on short-term clustering of the local-
ization results is used to filter out noisy speaker location estimates. Conventional single-channel speech/non-
speech segmentation approaches are based upon energy, SNR estimation [9] or more complex estimators such
as zero-crossing rate [29]. While relatively robust, techniques based on energy thresholding often miss low-
energy beginnings of words and short speaker turns. Furthermore, they can provide a significant amount of
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erroneous audio estimates to the observation model. Unlike traditional approaches, we pose the problem of
speech/non-speech classification in the framework of localization, making decisions purely based on the loca-
tion information. We first run single source localization on each time frame, then classify each frame as speech
or non-speech, relying on short-term clustering of location estimates. Our motivation for short-term clustering
is that noisy location estimates feature high variations over time, while location estimates are consistent during
speech periods. The algorithm has three steps: (1) build short-term clusters of frames whose location estimates
are close to each other; (2) retain only significant clusters by applying a duration constraint; and (3) label those
frames belonging to any significant cluster as speech, others as non-speech.

In step 1, two frames t1 and t2 belong to the same cluster if d(Ẑt1 , Ẑt2) < d0 and |t2 − t1| ≤ T0, where d0

and T0 are thresholds in space and time respectively. d(Ẑt1 , Ẑt2) is a distance defined according to the setup.
With a single, planar microphone array it is reasonable to use the difference in azimuth between Ẑt1 and Ẑt2 .
T0 should be close to the length of a phoneme.

For step 2, we find the longest segment of contiguous frames within each cluster. If that segment lasts
more than a threshold TS , the cluster is kept as “significant”, otherwise it is dropped. Simpler criteria such
as minimum cluster duration or the minimum number of frames within the cluster did not prove adequate.
Additionally, to eliminate diffuse or minor far-field noise sources (e.g. PC), we also discard clusters whose
mean square SRP-PHAT value is below a threshold TSRP−PHAT .

In step 3, frames belonging to any significant cluster are labeled as speech, others as non-speech. In the
usual case where the audio frame rate is higher than the video frame rate, we downsample the audio by grouping
audio 3-D estimates between consecutive video frames. For example, with audio frame rate 62.5 fps and video
frame rate 25 fps, there can be zero (non-speech), one, two or three (speech) audio 3-D estimates {Ẑt} per
video frame.

5.1.3 AV calibration

Mapping the 3-D audio location estimates onto the camera image planes requires a form of sensor calibration.
As discussed in Section 2, most previous works have either assumed simplified configurations [43, 3] or re-
sorted to rigorous camera calibration procedures [48, 5, 6]. Note that, in general, cameras and microphones
might not necessarily remain in the same location for long term, so practical calibration procedures are needed
to cope with sensor changes. Unlike such previous approaches, we use a nearest-neighbor approach to project
3-D audio estimates on the corresponding 2-D image planes, exploting the fact that, although audio localiza-
tion estimates are usually noisy, and visual calibration is affected by geometric distortion, their joint occurrence
tends to be more consistent [14]. The procedure requires an off-line rough AV calibration procedure between
the sensors, without requiring precise geometric calibration of audio and video. The procedure uses training
data collected by having a person talking while performing activities in the meeting room in typical locations
(walking, sitting, moving while seated, standing at the whiteboard and projector screen areas). The correspon-
dences between 3-D and 2-D+camera-index points are obtained from the audio estimates, as described earlier
in this subsection, and from the output of a single-person PF visual tracker, respectively. For non-overlapping
fields-of-view (FOVs), the set of correspondences obtained for the training set defines a mapping between dis-
crete sets Γ : R

3 → R
2 × {0, .., NCAM−1}, where NCAM is the number of cameras, such that 3-D positions

are mapped into vectors containing image position (ut, vt) and camera index camt, Γ(Zt) = (ut, vt, camt).
Note that when several image views are concatenated into a single image (as we do in Section 8), the camera
index simply results in an fixed 2-D translation term added to (ut, vt). Finally, the mapping for unseen data is
computed via nearest neighbor search.

5.1.4 Observation model

The audio observation likelihood is finally defined on the image domain, relating the Euclidean distance be-
tween the 2-D audio location estimates and the candidate particles. Let xai,t = (uai,t, v

a
i,t) denote the audio

estimate closest to the translation components xi,t = (ui,t, vi,t) of the i-th object. We define a distribution for



8 IDIAP–RR 05-27

each value of the speaking status variable,

p(Ya
i,t|xi,t, ki,t = 1) ∝

{

Ka
1 , ||xi,t − xai,t|| ≤ Ra,

Ka
2 , otherwise,

(13)

p(Ya
i,t|xi,t, ki,t = 0) ∝

{

Ka
1 , ||xi,t − xai,t|| ≥ Ra,

Ka
2 , otherwise,

(14)

where Ra defines a radius around the translation components of Xi,t, and Ka
1 > Ka

2 are constant terms
introduced to refect the desired situation: the likelihood of a person actively speaking must be large when there
exists a nearby audio estimate, and small if such condition does not hold (e.g., K

a
1

Ka
2

= 10). In case no audio
location estimates exist, uai,t and vai,t are set to an arbitrarily large number.

5.2 Shape observations

Assuming that shapes are embedded in clutter, edge-based observations are computed, based on a classic model,
along L normal lines to a hypothesized contour [18]. This results in a vector of candidate positions for each
line l, {zli,c, l ∈ {1, ..., L}, c ∈ {1, ..., Cl}}, relative to zli,0, the point lying on the contour. With some typical
assumptions, the shape-based likelihood for each object is given by

p(Ysh
i,t |Xi,t) ∝

L
∏

l=1

max

(

Ksh, exp(−
‖zli,ĉ − zli,0‖

2

2(σsh)2
)

)

, (15)

where zli,ĉ is the nearest edge detected on the lth line, σsh is a standard deviation parameter, and Ksh is a
constant that limits the influence of cases when no edges are detected.

5.3 Spatial structure observations

We propose an observation model of spatial structure of human heads, based on a parametric representation
of the overlap between skin-blobs and head configurations. The model is based on the fact that the presence
of skin pixels in a typical head blob is usually limited to specific regions inside and outside a head elliptical
configuration. Skin pixels are mainly distributed in the central and lower regions of a head, but also outside the
head ellipse, e.g. on the neck region. Additionally, the blobs corresponding to a head often appear connected
to other skin-color blobs due to body postures of people in conversations (e.g. resting the head on a hand).

Skin-color blobs are extracted at each frame according to a standard procedure. A 20-component Gaussian
Mixture Model (GMM) of skin color in RGB space was estimated from a training set of people participating
in real meetings in the room, including Caucasian, Indian, and Latin-American individuals, and collected
over several days [30]. Skin pixels were classified based on thresholding of the skin likelihood, followed
by morphological postprocessing to extract blobs (Fig. 1).

Given a set of skin-color blobs and a single-object configuration Xi,t, and assuming that the candidate
configuration is the reference, the recall between the spatial support Si,t and each blob is computed. Let SBi,t
denote the spatial support of the blob with the largest recall. A head template is further decomposed into three
non-overlapping parts with spatial support S li,t, l ∈ {1, 2, 3}, Si,t = ∪lSli,t (Fig. 1). With this representation,
precision and recall are computed for each of the head parts (ν(S li,t,S

B
i,t) and ρ(S li,t,S

B
i,t)), and for the whole

head, (ν(Si,t,SBi,t) and ρ(Si,t,SBi,t)). Although the proposed features are obviously not as discriminant as the
ones used in dedicated face processing algorithms [44], they are reasonable in realistic conditions, including
out of plane rotation, and partial occlusion. The features define an eight-component observation space Y

st
i,t,

that is modeled by a mixture model composed of GMM with diagonal covariance matrices, and a uniform
distribution U(·) used to limit the effect of very low likelihood values,

p(Yst
i,t|Xi,t) ∝ ω0U(Yst

i,t) +

Nst
∑

l=1

ωlN (Yst
i,t, µl,Σl), (16)

where {ω0, ωl, µl,Σl} are model parameters. When no blobs are detected, the likelihood is set to a constant
value.
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Figure 1: Spatial structure observations. Given a configuration (in yellow), and a skin blob (in gray), part-based preci-
sion/recall features are computed from the spatial support of configuration parts and blob (see text).

6 MCMC sampling

Inference with a traditional particle filter (based on IS) on the high-dimensional space defined by several objects
being tracked is computationally infeasible, given that the number of particles required for a given performance
grows roughly exponentially with the dimensionality of the space [28, 11]. In order to efficiently place samples
as close as possible to regions of high likelihood, we build on recent work and propose to approximate Eq.
4 with MCMC techniques [28], using a Metropolis-Hastings (MH) sampler at each time-step [21]. MCMC
methods produce a sequence of samples from a Markov chain whose stationary distribution corresponds to the
target distribution (the filtering distribution in the tracking case), after running the sampler long enough, and
discarding the initial part of the run, called burn-in period [28]. The MH algorithm consists of two iterative
steps. First, given a current configuration X, a new sample X

∗ is drawn from a proposal distribution q(X∗|X).
Then, the proposed sample is accepted as the new configuration in the Markov chain with probability (also
called acceptance ratio),

α = min

(

1,
p(X∗)q(X|X∗)

p(X)q(X∗|X)

)

, (17)

where p(X) denotes the target distribution (in our case p(X) = p(Xt|Y1:t)). If the move is not accepted,
the chain remains in the same configuration. The sample set obtained by the MH sampler is a fair sample from
the true filtering distribution, and so all particle weights are equal to 1

N [28].
In the tracking case, we run a MH sampler at each time-step. However, for computational tractability, a

proposal distribution that simplifies the evaluation of the acceptance ratio is needed, as Eq. 17 involves the
evaluation of Eq. 4 (a sum over all particles). We define a mixture model over all objects, where one object is
chosen at each step in the chain to attempt a move,

q(X∗
t |Xt) =

∑

i

q(i)q(X∗
t |Xt, i), (18)

where q(i) is the prior over object indices, and q(X∗
t |Xt, i) are the mixture components. To construct a

candidate configuration X
∗
t from the current configurationXt, an object index i∗ is first chosen with probability

q(i = i∗). A move will be attempted on i∗, while the rest of the multi-object configuration is left unchanged.
The mixture components are defined so that

q(X∗
t |Xt, i) =











1
N

∑

n p(X
∗
t |X

(n)
t−1) i = i∗,

1
N

∑

n p(X
∗
t |X

(n)
t−1) i 6= i∗,X∗

t = Xt,
0 i 6= i∗,X∗

t 6= Xt,

(19)

which implies that given i∗, the new configuration for object i∗ is sampled from p(X∗
i∗,t|X

(n∗)
i∗,t−1), using

a randomly chosen particle n∗ from the previous time, while keeping all the other object configurations fixed.
Using the Dirac delta function, the specific expression fulfilling Eq. 19 is

q(X∗
t |Xt, i) =

1

N

∑

n

p(X∗
i,t|X

(n)
i,t−1) ·

∏

l∈It−{i}

p(Xl,t|X
(n)
l,t−1)δ(X

∗
l,t −Xl,t).
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This distribution fulfills the desired property of cancelling all the factors that involve summations over particles
in the acceptance ratio. It is not difficult to show that the acceptance probability is simplified to

α = min

(

1,
p(Yt|X∗

t )
∏

(i∗,j)∈Ci∗
φ(X∗

i∗,t,X
∗
j,t)

p(Yt|Xt)
∏

(i∗,j)∈Ci∗
φ(Xi∗,t,Xj,t)

)

, (20)

where Ci∗ denotes the set of pairwise cliques that involve object i∗. For the factorized form for the multi-
object likelihood (Eq. 7), the expression can be further simplified to

α = min

(

1,
p(Yt|X

∗
i∗,t)

∏

(i∗,j)∈Ci∗
φ(X∗

i∗,t,X
∗
j,t)

p(Yt|Xi∗,t)
∏

(i∗,j)∈Ci∗
φ(Xi∗,t,Xj,t)

)

, (21)

which only involves the evaluation of single-object AV likelihood terms. The MH sampler improves the
predictions of multi-object configurations by accepting, at each step, single-object candidates closer to a region
of high likelihood, without discarding good candidates already accepted for other objects. Note that other
formulations combining MCMC iterations with PF techniques exist in the statistics literature [4, 27, 15, 12],
but they all differ from the algorithm presented here.

Finally, the mean estimate is approximated by the marginal mean estimates for each object, X̂t = (X̂i,t), i ∈

It. Each X̂i,t is computed as usual in mixed-state models, first computing the maximum a posteriori (MAP)
estimate for the discrete variable ki,t, and then the weighted mean of the continuous component xi,t given the
MAP discrete estimate [18],

k̂i,t = argmax
m

∑

n∈Ji,m

w
(n)
t ; x̂i,t =

∑

n∈J
i,k̂i,t

w
(n)
t x

(n)
i,t

∑

n∈J
i,k̂i,t

w
(n)
t

, (22)

where Ji,m = {n|k
(n)
i,t = m}. The full MCMC-PF algorithm is summarized in Fig. 2.

___________________________________________________________________________________________________

Generate N samples {X(n)
t , w

(n)
t } from {X(n)

t−1, w
(n)
t−1}.

• Initialize the MH sampler, by sampling X from the purely predictive distribution
P

n
w

(n)
t−1p(Xt|X

(n)
t−1). This

implies randomly choosing a particle n∗ from {X(n)
t−1, w

(n)
t−1}, and then sampling from p(Xt|X

(n∗)
t−1 ).

• MH sampling. Draw B + N samples, where B and N denote the number of particles in the burn-in and fair
sample sets, respectively. For each sample,

– SampleX
∗ from q(X∗|X) (Eq. 18).

– Compute acceptance ratio α (Eq. 21).

– AcceptX
∗ (X← X

∗) with probability α.

– AddX to the set {X(n)
t , w

(n)
t }, with w

(n)
t = 1/N .

• Compute mean estimate X̂t.

___________________________________________________________________________________________________
Figure 2: MCMC-PF algorithm.

7 Varying number of people

Although the MCMC-PF could formally integrate birth-death processes as part of the filtering recursion (e.g.,
via reversible-jump MCMC [28]), this would require a multi-person observation model that allowed for the
comparison between configurations containing varying number of people [19, 5]. The factorized observation
model in Eq. 7 is not suitable for such a case. For this reason, we opted for a simple process in which, at
each time frame, the set of people of the scene It is first established, and then the MCMC-PF is applied on
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the detected It. It has been argued that, unless a clear ambiguity in the number of scene objects exists, the
detection-then-tracking mechanism can be more efficient than the case in which particles with varying number
of objects coexist in the same time-step, as particles corresponding to the “wrong” number of objects are
effectively wasted [35].

New objects are handled as follows. All skin-color blobs inside a set of birth-likely scene regions, and
not overlapping with existing objects, are probed as candidates. Given a standard ellipse template, and a new
object ID i∗ (chosen as the next available object ID in a list), a number of single-object samples {X

(r)
i∗,t}

is constructed by drawing samples {x
(r)
i∗,t} from a Gaussian distribution (with mean translation equal to the

blob centroid, mean scaling set to unity, and diagonal covariance matrix set to explore a relatively short space
around the mean), while setting {k

(r)
i∗,t} to zero. The set of samples is ranked based on their visual likelihood,

p(Ysh
i∗,t|Xi∗,t)p(Y

st
i∗,t|Xi∗,t), and the presence of a new object is decided by thresholding the likelihood of the

best configuration. The best configuration is used in the prior in the MCMC-PF for the new object. Needless
to say, more robust people detectors could be integrated in our approach [44]. Object disappearance is declared
whenever a configuration leaves the image limits, or when a configuration has too low visual likelihood. Finally,
continuing people are handled as in the case of fixed number of objects.

8 Experiments and Results

8.1 Data collection

Data are recorded in a 8.2m×3.6m×2.4m meeting room containing a 4.8m×1.2m rectangular meeting table,
and equipped with fully synchronized video and audio capture devices. The video equipment includes three
identical uncalibrated CCTV cameras [33]. Two cameras on opposite walls record frontal views of participants,
including the table and workspace area, and have non-overlapping fields-of-view (FOVs). A third wide-view
camera looks over the top of the participants towards the white-board and projector screen. The audio equip-
ment consists of an eight-element circular equi-spaced microphone array centered on the table, with diameter
20cm, and composed of high quality miniature electret microphones. Video was captured at 25 fps (288×360
pixels), while audio was recorded at 16kHz, with features estimated at 62.5 fps. Training data to estimate the
GMM parameters for skin-color models and spatial structure features, and for the AV calibration procedure
were additionally recorded in the meeting room. In Section 8.4, we present results on two two-camera se-
quences, (meeting1 and meeting2, 1715 and 1200 video frames, respectively), and one three-camera sequence
(meeting3, 1200 video frames). The sequences are composed by concatenating the different views into one
larger merged image. The first two sequences have non-overlapping FOVs, while in the third there is some
overlap.

Microphone
Array

Rack
Equipment

WhiteboardProjector Screen

Meeting Table

Camera

Participant

Figure 3: Meeting recording configuration.
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8.2 Parameter setting

For the audio source localization algorithm, we used αup = 20. The thresholds in the speech/non-speech
classification algorithm were set to d0 = 5o, T0 = 200 ms, TS = 100 ms, and TSRP−PHAT = 0.03. The
first two thresholds were intuitively chosen, based on experiments conducted on a separate test data set [14],
and on the typical phoneme length, respectively. The third threshold was chosen on a single, separate test
case [14]. Regarding the video observations, the GMM parameters for skin-color pixels and spatial structure
features were estimated by standard Expectation Maximization (EM). Model selection was automatically done
using the minimum description length principle. All other parameters were set by hand to sensible values,
and kept fixed for all experiments. Regarding the dynamical model for the single-object continuous dynamics
p(xi,t|xi,t−1), we use an augmented continuous state, x̃i,t = (xi,t,xi,t−1), and express the dynamics as
x̃i,t = Ax̃i,t−1 + B(ωt, 0)T , with A =

[

2 −1
1 0

]

, B =
[

1 0
0 0

]

, and ωt is a white noise process with standard
deviations for translation and scaling equal to 4 and 10−4, respectively. The TPM parameters for speaking
activity were set to β00 = β11 = 0.8, β01 = β10 = 0.2. For the interaction model, λφ = 3. In the audio
observation model, Ra = 50 pixels, and Ka

1 = 1 = 10Ka
2 . For the shape-based observations, the number of

measurement lines L = 16, each with length a = 20 pixels, σsh = 5, and Ksh = exp(− (a/2)2

2(σsh)2 ) = e−2.
A scaling procedure was applied as the various likelihood terms have a different dynamic range. Finally, we
assume a uniform prior for the proposal q(i) in the MH sampler.

8.3 Performance evaluation measures

We evaluate both the tracking quality and the ability to infer speaking status. For the first criterion, a semi-
automatic head bounding-box ground truth (GT) is generated for each person at each video frame, using a
color-based single-person tracker [35]. We then compute precision and recall between the GT and our tracker
estimates (represented by bounding boxes) for each person at each frame, and define four person-based mea-
sures:

1. Track state (TS). A frame-level binary variable, which is unity if both precision and recall are greater
than a threshold TTS , and zero otherwise. In the experiments, TTS = 0.

2. Track F-measure (FT ). The precision/recall combination (FT = 2νρ
ν+ρ ) is computed for those frames with

TS = 1.
3. Success rate (SR). A sequence-level variable, defined as unity if TS = 1 for the entire sequence, and

zero otherwise.
4. Tracking rate (TR). A sequence-level variable, defined as the ratio between the number of frames where

TS = 1 and the number of frames in the sequence.
Jointly, FT , SR, and TR provide an indication of the quality and stability of the tracker, including eventual

recovery from failures. Note that SR is a much stricter measure than TR. All results are computed over
multiple runs of the particle filter, to account for its stochastic nature. SR and TR are then reported as averages.
Finally, an overall average, over the number of people, is also reported.

Regarding speaking activity, a binary GT of speaker turns was manually generated for each person. Preci-
sion and recall are then computed between the GT and the tracker estimate for each person at each video frame,
defining:

5. Speaking status F-measure (FS). For each person, a measure computed as in FT .
FS is also reported as averages over multiple runs and people, as with the other measures.

8.4 Results and discussion

We first evaluated the specific abilities of our framework to estimate location and speaking activity, conducting
experiments under two controlled conditions: (1) the number of tracked people was known and kept fixed for
the duration of the sequence, and (2) the tracker was hand-initialized in the first frame. The source localization
algorithm was originally evaluated in [14]. Details of such evaluation are not included here for space reasons,
but in summary, the objective evaluation of the short-term clustering algorithm confirmed its superiority over
energy-based methods for the speech detection task, as further developed in [24]. Results of the algorithm
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handling varying numbers of objects are discussed at the end of this section. The mean configuration is dis-
played, at each time-step for each person, as an ellipse of distinct color. Inferred speaking activity is shown as a
double ellipse with contrasting tones. The number of particles in all cases was B +N = 500, with 30% of the
particles being discarded in the burn-in period of the MH sampler. All the results were obtained using 20 runs
of the MCMC-PF. People are given an object identifier (O1,O2,...) with respect to the position they first occupy
in the video, from left to right. The results are best appreciated by watching the videos acccompanying this
submission at www.idiap.ch/∼ gatica/publications/pub05/av− tracking− multiperson.html.

8.4.1 Meeting1

The results on the meeting1 sequence are shown in Fig. 4 and Table 1. In this sequence, recorded with no
visual background clutter, four seated speakers are engaged in a conversation and talk at a relaxed pace, taking
turns with little overlap, which occurs for instance when people laugh. The last row in Table 1 (SGT ) indicates
the proportion of time during which each person spoke in the sequence, as labeled in the speaking activity GT.

Regarding visual tracking, the four objects were tracked with good quality and stably throughout the se-
quence for all runs (see SR, TR, and FT rows in Table 1, and video meeting1_mcmc_500.avi in the website).
The algorithm can handle partial visual self-occlusion (e.g. person O3 touches his chin and rests his head on his
right hand in Fig. 4(a), (e), and (g)), and variations of head pose (from frontal to side views), which confirms
the advantages of combining visual cues.

With respect to speaking activity, our source localization method, combined with the AV calibration proce-
dure, has shown to be able to estimate location reasonably well, and detect speaker turns with good accuracy
and low latency, when people talk at the meeting table [14]. The audio activity inferred by the MCMC-PF
preserves these properties for those segments where only one speaker takes the turn, while smoothing out very
short speaker turns with the dynamical model (see FS row in Table 1). Although we use a single-source local-
ization algorithm, the MCMC-PF can sometimes infer simultaneous speaking activity for multiple participants
(see Fig. 4(d)). In general, however, a “dominant speaker” effect is observed in overlapping speech segments.

To study the efficiency of the MCMC-PF, we compare it with a traditional joint multi-object PF, which uses
IS instead of MCMC, while all other aspects and parameters of the filter remain fixed. Results are also com-
puted using 20 runs, and are shown in Table 1, Fig. 4, and video meeting1_pf_500.avi. Clearly, our approach
outperforms the traditional PF in both ability to track and estimation of the speaking status. With the classic PF,
a loss of track occurred for all of the objects (see SR) at some point in the sequence (especially poor for O2,
who was tracked successfully only in 60% of the runs). The tracker also has high visual jitter. Furthermore,
the inference of speaking activity is degraded considerably. The performance loss is explained by the way in
which the multi-object state-space is explored in a traditional joint PF. Many particles are effectively wasted:
a bad candidate configuration for one object will produce a low multi-object likelihood value, even though the
candidates for all other objects are good. Additionally, relatively bad geometric configurations combined with
correct speaking activity values might be common, given the joint audio-visual observation model. A combina-
tion of these factors with e.g. motion changes might eventually drift one or more objects away from the correct
configuration and result in tracking loss (Fig. 4(j-l)). A standard proportion test indicates that the difference
in performance between MCMC-PF and PF for Oavg is statistically significant with confidence greater than
99.99% for both SR and TR. As a final remark, the number of particles that is required with the traditional PF
to perform as well as the MCMC-PF is prohibitively high.

8.4.2 Meeting2

The results on the meeting2 sequence are shown in Fig. 5, Table 2, and in the video meeting2_mcmc_500.avi.
This sequence depicts four seated speakers in a more animated conversation (see SGT row in Table 2), with
many turns and cases of overlapped speech. There are also two sources of visual clutter: the textured back-
ground, and a fifth walking person (not tracked) who enters and leaves the scene creating visual distraction
by approaching the speakers. Our algorithm performs quite satisfactorily with respect to quality of tracking
and speaker activity detection. Although the tracker gets momentarily distracted by the walking person or the
background, it recovers in almost all cases, as shown by the SR, TR, and FT rows in Table 2. The com-
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Figure 4: Multi-speaker tracking results, meeting1. Both location and speaking status (double ellipse if a person speaks)
are inferred for each participant. (a-h): MCMC-PF, images correspond to frames 10, 370, 420, 526, 760, 1120, 1420, and
1690, respectively. (i-l): Traditional PF: images correspond to frames 760, 905, 908, and 910, respectively. Tracking is lost
for O1 for the rest of the sequence.



IDIAP–RR 05-27 15

method measure O1 O2 O3 O4 Oavg

SR 1.00 1.00 1.00 1.00 1.00
MCMC-PF TR 1.00 1.00 1.00 1.00 1.00

FT 0.89 0.87 0.85 0.92 0.88
FS 0.71 0.75 0.77 0.75 0.75
SR 0.80 0.60 0.85 0.90 0.79

PF TR 0.95 0.79 0.94 0.98 0.92
FT 0.87 0.86 0.83 0.87 0.86
FS 0.60 0.62 0.55 0.61 0.59

SGT 0.19 0.19 0.10 0.16 0.16

Table 1: Tracking results for meeting1, for our approach and a traditional multi-object PF. Results are shown for individual
people, and averaged over all people.

bination of visual cues renders the tracker more robust: On one hand, the spatial structure observations help
in cases of uncertainty with respect to edge information (e.g. textured background), On the other hand, the
shape observations refine the spatial structure model, which consistently drives the tracker to skin-blob areas,
but sometimes without much accuracy. A limitation of the likelihood model can be seen for O3, for whom we
can observe a combined effect of edge-related clutter, and head spatial structure (i.e., less hair) that might not
have been represented accurately in the training data (Fig. 5(e) and (h)), also evident when playing the video).
Regarding speaking activity, our approach can correctly infer some cases of simultaneous speech (Fig. 5 (d)
and (g)). Finally, our approach is again significantly more effective than a traditional joint multi-person PF,
which in this case shows an even more severe performance degradation (see Fig. 5(i-n), Table 2 and video
meeting2_pf_500.avi). For the same reasons discussed for meeting1, and challenged by the distractions
introduced by the walking person, the traditional PF is unable to track all of the objects consistently, and the
quality of the estimation of speaking activity is considerably degraded. SR can be as low as 35-40%, FS as
low as 38%, and with the exception of FT , all other figures are considerably lower than the ones obtained for
meeting1. The standard proportion test shows a statistically significant difference in performance between our
approach and a traditional PF forOavg with confidence greater than 99.99% , for both SR and TR. Overall, the
results on this sequence suggest that the MCMC-PF is more robust to realistic conditions than the traditional
approach.

method measure O1 O2 O3 O4 Oavg

SR 0.95 0.95 1.00 1.00 0.98
MCMC-PF TR 0.99 0.97 1.00 1.00 0.99

FT 0.88 0.88 0.87 0.86 0.87
FS 0.72 0.72 0.71 0.79 0.74
SR 0.60 0.40 0.35 0.75 0.52

PF TR 0.68 0.45 0.50 0.79 0.61
FT 0.86 0.85 0.81 0.85 0.84
FS 0.55 0.38 0.42 0.65 0.50

SGT 0.26 0.24 0.19 0.35 0.26

Table 2: Tracking results for meeting2, for our approach and a traditional multi-object PF.

Fig. 6 presents the results regarding speaking activity detection for each person as a function of video
frame number. In the first place, we display the results obtained with audio-source localization mapped onto
the image plane, assuming that the location of the meeting participants is known in the ground-truth, i.e.,
dividing the image into four regions, assigning regions to people, and associating speaking activity estimates
to individuals based on the region the estimates fall in (A). We also present the results for our approach (AV),
where the results correspond to the median of the inferred speaking activity estimated over 20 runs of the
MCMC-PF. We finally display the manually labeled GT. Two cases are displayed, for different values of the
parameters of the symmetric TPM: β00 = 0.8, β01 = 0.2 (Fig. 6(a-d)), and β00 = 0.95, β01 = 0.05 (Fig. 6(e-
h)). We first observe that the source localization algorithm detects speak/non-speak changes with low delay,
and classifies most of the correct location estimates as speech frames [14]. Furthermore, given the lack of
a temporal smoothness constraint, long speaker turns are often broken into smaller turns. We also observe
that short spurious turns due to noise are sometimes detected and incorrectly assigned to speakers. In turn,
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Figure 5: Multi-speaker tracking results, meeting2. (a-h): MCMC-PF, images correspond to frames 50, 200, 360, 546,
575, 630, 860, and 909, respectively. (i-n): Traditional PF: images correspond to frames 150, 170, 190, 195, 200, and 210,
respectively. Tracking is lost for O2 and O4 for the rest of the sequence.
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Figure 6: Speaker activity inference results, meeting2. In each figure, results are shown, as a function of frame number,
for audio+av mapping, with manually labeled location (A), the MCMC-PF approach (AV), and for the manually labeled
ground truth (GT). Figures (a-d) correspond to O1-O4 , respectively, for TPM values {0.8, 0.2}. Figures (e-h) are the
corresponding results for TPM values {0.95, 0.05}

the MCMC-PF introduces a temporal dynamical process that serves as a smoothing filter. Short turns are often
eliminated, which also tends to merge broken turns into longer units. The degree of smoothness clearly depends
on the TPM parameters and their relation to the parameters in the switching audio observation likelihood (Eqs.
13-14). As expected, the filtering is higher in Fig. 6(e-h) compared to 6(a-d). However, the larger the smoothing
effect, the longer the delay to detect beginnings and ending of speaker turns, thus defining a filtering tradeoff.

8.4.3 Effect of the MRF prior

The influence of the MRF prior cannot be appreciated in the previous two cases. To analyze the effect of
this term, we conducted experiments with a five-person tracker on two excerpts of meeting2, where the walk-
ing silent person (O5) is significantly occluded by two seated participants several times. The first excerpt
(meeting2-oc1) is 140 frames long (frames 550-690). The second one (meeting2-oc2) is 170 frames long
(frames 830-1000). Performance is computed over 20 runs of the MCMC-PF, without and with the MRF prior.

Results for meeting2-oc1 are shown in Table 3, Fig.7, and videos meeting2_o1_mcmc_500_no_int.avi
(without MRF) and meeting2_o1_mcmc_500_int.avi (with MRF). Without the MRF prior, tracking is of
high quality for objects O2-O4 (SR = 1, TR = 1, and FT ≥ 0.87). The results for O1 and O5 are shown in
Table 3. For O1, tracking was lost once in 20 runs, locking onto O5. More importantly, for O5, tracking was
lost in 25% of the cases, locking sometimes onto O1, or drifting away. In contrast, the use of the MRF prior
produced high quality tracking for the five objects (SR = 1, TR = 1 , FT ≥ 0.87 for O2-O4, see Table 3 for
O1 and O5).

For meeting2-oc2, the results obtained with and without the use of the MRF prior are shown in Table
3. The occlusion affects objects O3 and O5, which got lost or confused with each other. On one hand, an
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Figure 7: Five-object tracker, effects of the MRF model. (a-c): meeting2-oc1, frames 560, 585, and 594, without MRF
prior. (d-f): same frames, with MRF prior.

improvement was obtained for O5 with the use of the interaction term (O5 was correctly tracked in the 20
runs). On the other hand, handling the occlusion for O3 represented the main challenge, given that his spatial
structure model, as described previously, was not so accurate. Although not perfect, the performance for O3
was of good quality, and equivalent with or without the use of the MRF prior (SR = 0.9, TR = 0.92 in
both cases). The performance for the other three objects (O1,O2, and O4) is of high quality in both cases
(SR = TR = 1, FT ≥ 0.87). An example of the performance with the MRF prior can be seen in video
meeting2_o2_mcmc_500_int.avi.

Overall, the results indicate that the interaction term model is effective, but its impact depends on the model
of each object being accurate. One could expect that the occlusion model’s advantage would diminish in case
the involved objects did not fit the learned visual models well.

measure meet2-oc1 meet2-oc2
O1wo O5wo O1w O5w O3wo O5wo O3w O5w

SR 0.95 0.75 1.00 1.00 0.90 0.95 0.90 1.00
TR 0.96 0.89 1.00 1.00 0.92 0.96 0.92 1.00
FT 0.87 0.74 0.88 0.74 0.77 0.72 0.76 0.74

Table 3: Results for sequences with person occlusion. Performance was affected for O1 and O5 in meeting2-oc1, and for
O3 and O5 in meeting2-oc2. wo / w indicates without / with MRF prior.

8.4.4 Meeting3

Results for this sequence are shown in Table 4, Fig. 8, and video meeting3_mcmc_500.avi. In this case, a
person (O3) makes a presentation and uses the whiteboard, while the others remain seated and mostly silent (see
SGT row in Table 4). Due to the FOV overlap, one person (O2) appears in two views. We only track this person
in the frontal view. Our algorithm correctly tracks the location of the four people across the sequence, although
tracking is more challenging for O3 (the presenter) due to his size and distance from the array. As one would
expect, the audio localization algorithm detects a speaker at the table better than at a whiteboard/presentation,
given their shorter distance to the microphone array. Due to this fact, when O2 makes noise (in frames 200-
225), or when the presenter and a seated person speak simultaneously (e.g., O1 in frames 660-700, Fig. 8(c)),
the tracker infers speaking activity only for the person at the table. Additionally, when people clearly face
away from the array, the audio estimates degrade, and so does the inference of the speaking status. Overall,
the speaking activity of the presenter is inferred with reasonable quality, although some of his turns are missed
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(e.g. around frame 1130, Fig. 8(e)). The activity of O1 and O4 is estimated with good quality, comparable
to the obtained with the previous sequences. The comparatively low FS-value for O2 is explained by the
fact that he spoke briefly only once, and made noise that was identified as speaking activity. In comparison,
as can be seen from Table 4 and video meeting3_pf_500.avi, a traditional joint PF shows again a much
degraded performance. On one hand, such approach is not able to track all of the objects through the entire
sequence in many occasions. The SR is especially bad for O2 who, although seated, had a relatively sudden
change of dynamics, and for O3, the presenter. On the other hand, the quality of speaking activity inference
is much worse, the situation being aggravated by the sparseness of speaker turns for three of the participants.
Once again, the standard proportion test indicates a statistically significant performance difference between our
method and the traditional PF for Oavg with confidence greater than 99.99% , for both SR and TR.

method measure O1 O2 O3 O4 Oavg

SR 1.00 1.00 1.00 1.00 1.00
MCMC-PF TR 1.00 1.00 1.00 1.00 1.00

Fl 0.88 0.88 0.87 0.90 0.88
Fs 0.81 0.57 0.57 0.79 0.69
SR 0.95 0.15 0.45 0.95 0.62

PF TR 0.95 0.27 0.87 0.96 0.76
Fl 0.87 0.83 0.84 0.90 0.86
Fs 0.38 0.05 0.15 0.05 0.16

SGT 0.07 0.02 0.57 0.03 0.17

Table 4: Tracking results for meeting3 for our approach and a traditional multi-object PF.

8.4.5 Auto-initialization

A first example is shown in Figure 9(a-c) and meeting1_mcmc_500_autoinit.avi. The tracker is initialized
at frame 0 with I0 = ∅ (zero objects). The birth-likely area for this example is the entire scene, roughly above
the chest of the seated participants. At frame 1, O1, O2, and O4 are automatically initialized, while O3 is
initialized once he moves his hand away from his face at frame 24. From this frame on, the performance is
equivalent to the one obtained with manually initialized objects. A second example is shown in Figure 9(d-
f) and video meeting2_mcmc_500_autoinit.avi. In this case, the tracker is initialized at frame 800 with
I800 = ∅. At frame 801, the algorithm detects O1-O4 and initializes them correctly. O5 is detected at frame
825.

An objective evaluation was conducted on meeting1 and meeting2 to test the sole effect of automatic ini-
tialization. We consider for evaluation only those frames after which the objects have been automatically
initialized, which occurs around frame 25 for meeting1, and around frame 1 for meeting2. To be able to pro-
vide a fair comparison with the results obtained for meeting2 in Table 2 (i.e. keeping equivalent conditions),
we set mmax

t = 4, allowing a maximum of four objects along the sequence. This implies that only the four first
detected objects are tracked, while the fifth person is excluded from this process, as in the experiments reported
in Table 2. The results are shown in Table 5. For meeting1, we observe, once the objects are automatically
initialized, the performance essentially remains the same as the case of manual initialization (Table 1). For
meeting2, we observe that, comparing with Table 2, the performance decreased for O2 (SR decreased from
0.95 to 0.85, all other figures remain approximately the same), and improved slightly for O1 (SR increased
from 0.95 to 1.00). The performance for O3-O4 remained the same. Considering all objects, the performance
degradation is marginal (compare the Oavg columns in Tables 2 and 5). Overall, these results suggest that the
algorithm is adequate for our application, although as stated in Section 7, it could be improved by the use of
a specialized face detector algorithm [44]. Finally, a more thorough evaluation of the algorithm for varying
number of people would require the adaptation of our evaluation protocol to handle multi-object configuration
and identification issues. Designing good evaluation procedures for such cases constitutes a research topic on
its own [40].

9 Conclusion and future work
In this paper, we presented a probabilistic framework for the joint tracking of multiple people and their speaking
activity in a multi-sensor meeting environment. Our framework integrates a novel AV observation model, a
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Figure 8: Multi-speaker tracking results, meeting3. Figures (a-e) correspond to frames 50, 490, 690, 945, and 1130,
respectively. The presenter is speaking in all the displayed frames, excepting (b).
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Figure 9: Auto-initialization. The initial configuration contains no objects. meeting1: (a-c) frames 0, 1, and 24. meeting2:
(d-f) correspond to frames 800, 801, and 825.

method measure O1 O2 O3 O4 Oavg

SR 1.00 1.00 1.00 1.00 1.00
meeting1 TR 1.00 1.00 1.00 1.00 1.00

Fl 0.89 0.87 0.84 0.92 0.88
Fs 0.72 0.74 0.78 0.75 0.75

SR 1.00 0.85 1.00 1.00 0.96
meeting2 TR 1.00 0.98 1.00 1.00 0.99

Fl 0.89 0.85 0.88 0.86 0.87
Fs 0.72 0.73 0.71 0.80 0.74

Table 5: Tracking results for meeting1 and meeting2 for the MCMC-PF with auto-initialization.

principled mechanism to represent simple, proximity-based interactions (occlusion), and an efficient sampling
strategy that overcomes some of the problems faced by traditional PFs in high-dimensional state-spaces. In
principle, the sensor calibration algorithm we defined sets few constraints on the sensors’ location, so cameras
and microphones could potentially be placed in various configurations. We have shown that our framework can
localize and track multiple people and their speaking status with good accuracy, tolerating visual clutter, and
outperforming a traditional PF. Several issues remain open for improvement. First, more refined interaction
models could be proposed, making use of the speaking status variable in the MRF prior, and introducing an
occlusion variable in the state-space, which could explicitly define a set of switching occlusion modes. Second,
although our model can reflect simultaneous speaking activity from multiple people, it is based on a limiting
single-audio-source assumption. We are currently developing truly multi-speaker detection techniques [25]
and plan to integrate them in our framework in the future. Third, the auto-initialization mechanism could
be enhanced by using audio-based localization and/or face detection, whose integration in the MCMC-PF is
conceptually direct. Finally, the evaluation on more dynamic data, including more complex cases of object
birth/death, are also part of future work.
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