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Abstract—When combined with cepstral normalisation tech-
niques, the features normally used in Automatic Speech Recog-
nition are based on Signal to Noise Ratio (SNR). We show
that calculating SNR from the outset, rather than relying on
cepstral normalisation to produce it, gives features with a number
of practical and mathematical advantages over power-spectral
based ones. In a detailed analysis, we derive Maximum Likelihood
and Maximum a-Posteriori estimates for SNR based features,
and show that they can outperform more conventional ones,
especially when subsequently combined with cepstral variance
normalisation. We further show anecdotal evidence that SNR
based features lend themselves well to noise estimates based on
low-energy envelope tracking.

I. INTRODUCTION

An important problem encountered in speech signal pro-
cessing is that of how to normalise a signal for the effects
of noise. In speech enhancement the task is to remove noise
from a signal to reproduce the uncorrupted signal such that it
is perceived by a listener to be less noisy. In Automatic Speech
Recognition (ASR), the task is to reduce the effect of noise
on recognition accuracy. In this paper, we will concentrate on
the latter (ASR) problem.

Two categories of noise are generally considered: Additive
noise is that which represents a distinct signal other than the
one of interest. Convolutional noise is that which alters the
spectral shape, and can be associated with either the signal of
interest, or both the signal and the additive noise.

Cepstral Mean Normalisation (CMN) is a well established
technique that compensates for convolutional noise. It is based
on the persuasive observation that a linear channel distortion
becomes a constant offset in the cepstral domain. CMN also
affords some robustness to additive noise. Cepstral Variance
Normalisation (CVN) has been observed to provide further
noise robustness [1], and the combination of CMN and CVN
is now quite ubiquitous in ASR.

Orthogonal to the cepstral normalisation approach, many
common practical solutions for additive noise compensation
are based on the assumption of a simple additive Gaussian
model for both speech and noise in the spectral domain. In
ASR, the spectral subtraction approach of Boll [2] is well
established, and often used as a means to derive a Wiener
filter. In speech enhancement, much work is based on the
technique of Ephraim and Malah [3]. Both these techniques
have influenced the design of the ETSI standard ASR front-
end [4].

Techniques that rely on noise subtraction are dependent
upon some means of measuring the background noise in a

signal. Often, it is sufficient to simply average the first few
frames of an utterance, however this is not robust to changing
noise levels. Ris and Dupont [5] present a survey of methods
to measure noise, favouring the low-energy envelope tracking
approach of Martin [6]. Lathoud et al. [7] present a statistical
spectral model that yields both noise and speech estimates.

Cepstral and spectral techniques are often combined. This
is a natural approach as, theoretically, the two approaches
are designed to tackle different types of noise. For instance,
histogram normalisation, a logical progression of CMN/CVN
to higher order moments, has been successfully combined with
spectral compensation techniques by Segura et al. [8]. Lathoud
et al [7], who describe their technique as “Unsupervised” spec-
tral subtraction (USS), also report good results in combination
with cepstral normalisation.

In this paper, we analyse the relationship between spec-
tral and cepstral normalisation. We first present a simplistic
analysis, then a more detailed Bayesian analysis, showing that
knowledge of the presence of cepstral compensation should
influence the chosen approach to spectral compensation. The-
oretical results are evaluated leading to a conclusion that
SNR based features represent a theoretically rigorous but
computationally simple approach to ASR, and could easily
be incorporated into more advanced techniques.

II. SIMPLISTIC APPROACH TO NOISE

A. Cepstral Mean Normalisation

In a simplistic, but informative, view of an ASR front-end,
an acoustic signal is Fourier transformed to give a vector of
spectral coefficients (s1, s2, . . . , sF )T. After a linear transform
implementing a non-linear frequency warp, the cepstrum is
calculated. The cepstrum involves a logarithm followed by
another linear transform. In the presence of only convolu-
tional noise, (c1, c2, . . . , cF )T, which is multiplicative in the
frequency domain, the logarithm becomes

log(cfsf ) = log(cf ) + log(sf ), (1)

where log(cf ) is constant over time, but log(sf ) varies. Hence,
subtraction of the cepstral mean results in removal of the
constant convolutional noise term. When the filter-bank is
considered, the above holds if the cf are assumed constant
within a given filter-bank bin.

In the presence of only additive noise, the noise is assumed
to remain additive after the Fourier transform. In this sense,
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the logarithm operation becomes

log(sf + nf ) = log(nf ) + log
(

1 +
sf
nf

)
, (2)

where (n1, n2, . . . , nF )T is the noise spectrum. The right hand
side of (2) is evident from the Taylor series of log(x + y),
and emphasises that CMN would remove the constant term
log(nf ).

B. Properties of SNR features

It appears from the above analysis that, if we use CMN, the
features that are presented to the ASR decoder are actually (a
linear transform of) the logarithm of one plus the signal to
noise ratio (SNR). This will happen even if the additive noise
is simply the minimal background noise usually associated
with clean recordings. It follows that we could try to calculate
the SNR from the outset rather than calculate a spectral power
measure and rely on CMN to produce the SNR. A-priori, such
an approach has at least two appealing properties:

1) The flooring of the logarithm happens naturally. SNR
values cannot fall below zero, so the argument of the
logarithm is naturally floored at unity.

2) SNR is inherently independent of gain associated with
microphones and pre-amplifiers.

We will show that SNR is also mathematically appealing.
The approach is analogous to that of Lathoud et al. [7]. The

only difference is that Lathoud et al. explicitly floor the SNR
using (in our present notation)

max
(

1,
sf
nf

)
. (3)

III. A MORE RIGOROUS ANALYSIS

In contrast to the previous section, which was left deliber-
ately simplistic, we now present a more rigorous derivation of
a SNR based feature. We begin by defining a Gaussian model
of speech in noise, and proceed by showing that power spectral
subtraction can be seen as a particular maximum-likelihood
(ML) solution. We then derive ML and MAP estimators for
the SNR.

A. Gaussian model

Let us assume that a DFT operation produces a vector, x,
with complex components, x1, x2, . . . , xF , where the real and
imaginary parts of each xf are i.i.d. normally distributed with
zero mean and variance υf . That is,

f (xf | υf ) =
1
πυf

exp

(
−|xf |

2

υf

)
. (4)

In the case where we distinguish two coloured noise signals,
a background noise, n, and a signal of interest, s, typically
speech, denote the noise variance as ν and the speech variance
as ς . In general, the background noise can be observed in
isolation and modelled as

f (nf | νf ) =
1
πνf

exp

(
−|nf |

2

νf

)
. (5)

The speech, however, cannot normally be observed in iso-
lation. It is always added to noise. When both speech and
additive noise are present the variances add, meaning that the
total signal, tf = sf + nf , can be modelled as

f (tf | ςf , νf ) =
1

π(ςf + νf )
exp

(
− |tf |2

ςf + νf

)
. (6)

The above model is the basis of the Wiener filter and of the
widely used Ephraim-Malah speech enhancement technique
[3]. The goal is usually formulated as requiring an estimate of
sf ; this proceeds via estimation of ςf .

We assume that an estimate, ν̂, of ν is available via solution
of (5) during, for instance, non-speech segments of the signal.

Consider using (6) as a basis for estimation of the speech
variance, ς . We drop the f subscript for simplicity. Bayes’
theorem gives

f (ς | t, ν̂) ∝ f (t | ς, ν̂) f (ς) . (7)

If we assume a flat prior f (ς) ∝ 1, substituting (6) into (7),
differentiating with respect to ς and equating to zero gives the
well known maximum likelihood estimate,

ς̂ = max
(
|t|2 − ν̂, 0

)
. (8)

This is known to provide a “reasonable” estimate of the
speech variance, but always requires regularisation. In ASR,
the ML estimate is known as power spectral subtraction. It is
regularised by means of an over-subtraction factor, α, and a
flooring factor, β:

ς̂ = max
(
|t|2 − αν̂, βν̂

)
. (9)

B. ML SNR estimate

The purpose of the above derivation is to show that a
commonly used speech feature can be seen in a Bayesian
sense as an estimate of the variance ς . We now follow the
same procedure, but aim from the outset to estimate SNR.
Define

ξf =
ςf
νf
, (10)

where ξf is exactly the a-priori SNR of McAulay and Malpass
[9], popularised by Ephraim and Malah [3]. The f subscript
indicates that the SNR is frequency dependent. Substituting
ςf = ξfνf into (6),

f (tf | ξf , νf ) =
1

πνf (1 + ξf )
exp

(
− |tf |2

νf (1 + ξf )

)
. (11)

The subscript is dropped again hereafter for simplicity.
This time, the posterior is in terms of ξ,

f (ξ | t, ν̂) ∝ f (t | ξ, ν̂) f (ξ) . (12)

Assuming a flat prior, substituting (11) into (12), differentiat-
ing and equating to zero,

ξ̂ = max

(
|t|2

ν̂
− 1, 0

)
. (13)



It is shown in section IV that this result requires no further
normalisation to work well. Further, notice that

log(1 + ξ̂) = log

(
max

[
1,
|t|2

ν̂

])
, (14)

which is the same form as (3). However, no ad-hoc spectral
model is necessary.

We note that in the Decision Directed estimator of [3], the
ML estimate of ξ of (13) is regularised using an estimate based
on the previous spectral magnitude estimate. This is further
explored by Cohen [10], and is used in a modified form in
[4], [11]. Whilst these approaches are beyond the scope of the
present study, our approach does not preclude using them.

C. Marginalisation over noise variance

Thus far we have assumed that an estimate, ν̂, of the
noise variance is available. The form of (11), however, with
multiplicative instead of additive terms in the denominators,
allows marginalisation over the noise variance.

If we have N frames (spectral vectors) of noise, {n}N =
{n1,n2, . . . ,nN}, that are observed in isolation, we can write

f (νf | {n}N ) =
∏N
i=1 f (ni,f | νf ) f (νf )∫∞

0
dν′

∏N
i=1 f

(
ni,f | ν′f

)
f
(
ν′f

) , (15)

where the products are over the likelihood terms, not the
priors. Again, hereafter we drop subscripts for simplicity. The
likelihood terms are exactly the form of equation (5), and
we arbitrarily choose a non-informative prior f (ν) ∝ ν−1.
Equation (15) then reduces to the inverse gamma distribution

f (ν | {n}N ) =
BA

Γ(A)
ν−A−1 exp

(
−B
ν

)
(16)

where

A = N, B =
N∑
i=1

|ni,f |2 . (17)

The MAP solution, ν̂, of ν would be

ν̂ =
B

A+ 1
, (18)

however, we can use the distribution to marginalise over ν.
Equation (12) becomes

f (ξ | t) ∝ f (ξ)
∫ ∞

0

dν f (t | ξ, ν) f (ν | {n}N ) . (19)

Substituting (11) and (16) into (19), the forms are conjugate
and the integral is just the normalising term from the inverse
gamma distribution.

f (ξ | t) ∝ f (ξ)×

BA

Γ(A)
Γ(A+ 1)
ξ + 1

(
|t|2 + (ξ + 1)B

ξ + 1

)−(A+1)

.

(20)

D. Marginal ML estimate

If we assume a flat prior, f (ξ) ∝ 1, as before, differentiating
(20) and equating to zero gives

ξ̂ = max

(
A |t|2

B
− 1, 0

)
(21)

Curiously, equation (21) is basically the same as equation (13).

E. MAP estimate

Instead of using a flat (improper) prior for the speech
variance, it is possible to use a proper prior representing real
information. The prior distribution should allow (encourage,
even) the SNR to be zero, but should discourage large values;
greater than a few tens of decibels. Here we use the gamma
distribution

f (ξ | α, β) =
1

βαΓ(α)
ξα−1 exp

(
− ξ
β

)
. (22)

Substituting this into (20), differentiating and equating to zero
yields a cubic in ξ

a3ξ
3 + a2ξ

2 + a1ξ + a0 = 0, (23)

with

a3 = −1,

a2 = −β + (α− 1)β − |t|2 /B − 2,

a1 = −β + βA |t|2 /B + (α− 1)β |t|2 /B
+ 2(α− 1)β − |t|2 /B − 1,

a0 = (α− 1)β + (α− 1)β |t|2 /B,

(24)

The cubic is readily solved using the cubic equation [12], and
always has at least one real root. The root can, however, be
negative, so the resulting ξ̂ should be floored at zero.

To set the hyper-parameters, we find that simply constrain-
ing the expectation of the gamma distribution to be the average
ML SNR of the current frame works satisfactorily,

E (ξf ) = αβf (25)

βf =
1
α
E (ξf ) =

1
α

 1
F

F∑
f=1

|tf |2

ν̂f
− 1

 , (26)

and, empirically, α = 0.01.
For illustration, figure 1 shows a histogram of SNR (actually

|t|2 /ν̂) at 1000 Hz for the clean part of the aurora 2 training
data. Also shown is a gamma distribution with α = 0.01 and
β set such that the expectation is 48dB, the approximate SNR
of the clean aurora 2 data. The plot is in the log domain.
Notice that the gamma distribution is basically flat (caused by
α being close to 0), but falls rapidly for high values, i.e., it is
largely uninformative but discourages high SNR.

We choose a gamma prior in this study for simplicity. Other
authors (a recent example is [13]) have made persuasive cases
for the speech prior being closer to a generalised gamma
distribution. In ASR, the speech prior is often represented by
a large Gaussian mixture [14].
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Fig. 1. Histogram of clean data at 1000 Hz and gamma distribution with α =
0.01 and αβ = 48dB. The gamma distribution is largely flat (uninformative),
but imposes an upper limit. log(SNR) would normally be floored at 0.

IV. EXPERIMENTS

To allow comparison with [7] we present experimental
results on aurora 2. The aurora 2 task [15] is a well known
evaluation for noise compensation techniques. It is a simple
digit recognition task with real noise artificially added in 5dB
increments such that performance without noise compensation
ranges from almost perfect to almost random. Both clean
(uncorrupted) and multi-condition (additive noise corrupted)
training sets are provided, along with three test sets:

A Data corrupted with the same noise used in the
(multi-condition) training.

B As test set A, but using different noise.
C A subset of the noises above, but additionally with

a convolutional filter.
Aurora 2 does not distinguish evaluation and test data, so
results may be biased towards this dataset and should be
considered optimistic.

We used a simple “MFCC” front-end with a 256 point
DFT every 10ms. The noise reduction techniques were applied
in the power-spectral domain (129 bins), after which a filter
bank of 23 mel-spaced triangular bins was applied. The
usual logarithm and truncated DCT then produced 13 cepstral
coefficients (including C0) plus first and second order delta
coefficients. Where CMN and CVN were applied, the means
and variances were calculated separately for the whole of each
utterance.

The noise values were obtained using the low-energy enve-
lope tracking method described in [5], but with a simplified
correction factor from [16]: The 20 lowest energy samples in
a sliding 100 frame (1 second) window were averaged, and
multiplied by a correction factor, C. See section V-B for a
discussion of this factor.

Complete results are shown in Figure 2. Each graph rep-
resents a full aurora evaluation with both multi-condition and
clean training. The SNR of clean testing data was measured
to be around 48dB, and is off the axis, but the result is shown
as the first number in parentheses in the legend. The second

number in the legend is the usual aurora figure of merit: the
average of the scores from 0dB to 20dB.

Each graph in the left column represents use of CMN,
whereas the right column represents use of CVN (implying
CMN also). The four rows are, respectively, the value passed
to the filter-bank being

1) The usual non-SNR (power spectral) features.
2) As 1, but with spectral subtraction.

ς̂ = max
(
|t|2 − αν̂, βν̂

)
, (27)

with α = 1 and β = 0.1, found with a coarse grid
search.

3) One plus the maximum likelihood estimate of SNR from
the marginal distribution

ξ̂ + 1 = max

(
A |t|2

B
− 1, 0

)
+ 1, (28)

= max

(
A |t|2

B
, 1

)
. (29)

4) One plus the MAP estimate of the SNR with a gamma
prior,

ξ̂ + 1, (30)

where ξ̂ is the solution of the cubic in (23) and (24).
We stress that these results are not state of the art for this

database; the purpose is to compare techniques.

V. DISCUSSION

A. Performance

The most significant result of these experiments is that the
CVN results for the SNR features agree with, even exceed,
those in [7]. This is despite the fact that no involved spectral
model is used to distinguish the speech and noise. It seems
that simply being able to track the background noise level with
the low-energy envelope is enough.

The use of the simple gamma prior has a small benefit, but
at the cost of an extra parameter and finding the solution to a
cubic equation. Whilst this is not computationally onerous, it is
doubtful whether it is worthwhile given the good performance
of the much simpler ML solution. However, the spirit of the
approach is important; it shows a principled way to incorporate
prior information.

Spectral subtraction gives an improvement over the baseline,
but does not respond to CVN. This is at odds with the results in
[8], but in agreement with our own anecdotal evidence. This is
a curious result since there is not a large theoretical difference
between SNR features and spectral subtraction. The practical
difference between the two is that SNR features normalise
before the filter-bank, whereas CMN works after it. If we
denote the filter-bank weights for a single bin by w1, w2, . . .,
the SNR features presented to the decoder are of the form

log (1 + w1ξ1 + w2ξ2 + · · · ) , (31)
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Fig. 2. Results. The left column is for CMN, right for CMN+CVN. The four rows top to bottom are respectively: No noise compensation, Spectral Subtraction,
ML SNR and MAP SNR with gamma prior. See the text for details of the database.



whereas the spectral subtraction features are closer to the form

log
(

1 +
w1s1 + w2s2 + · · ·
w1n1 + w2n2 + · · ·

)
. (32)

Given that log(a + b) ≈ log max(a, b), we hypothesise that
a large noise component anywhere in the band spanned by
the given bin could dominate the latter expression. This in
turn offers some explanation for the improved performance of
SNR features. It remains a subject for further investigation.

B. Noise tracker correction factor

The low-energy envelope tracker normally requires correc-
tion as its estimate is biased too small. In [16], Lathoud et al.
suggest that a multiplicative correction factor

C =
1

(1.5γ)2
, (33)

works well, where γ is the fraction of samples assumed to be
noise. In our case, γ = 0.2 so C = 11.1. In fact, we found
that, whilst this correction factor was necessary for the spectral
subtraction approach, a value of C = 1 was better for SNR
features (the results in Figure 2 are for these values).

It is tempting to conclude that SNR features do not need
a correction factor. However, it is more likely that the noise
tracker with C = 1 was producing noise estimates about 11
times too small, so the SNR estimates were 11 times too large.
Writing the situation as

log(1 + 11ξ) = log(11) + log
(

1
11

+ ξ

)
, (34)

it is clear that this corresponds to using a smaller floor in the
logarithm. This floor is also very close to the one empirically
found to work well as the parameter β in spectral subtraction.

The low-energy envelope is a noise floor rather than a noise
estimate; it is intuitively reasonable that this floor is also the
level below which speech and noise cannot be distinguished.
We hypothesise that the optimal value of C in low-energy
envelope tracking is the same as the optimal floor for SNR.
Thus, when using SNR based features, these values cancel out
giving a parameter-free feature. Proof that C = 1 is optimal
for SNR features, however, will require a careful mathematical
and experimental analysis.

VI. CONCLUSIONS

SNR features for ASR have several practical and mathemat-
ical advantages over the more usual spectral power features.
The naive SNR estimate is actually the optimal estimate under
a fairly rigorous Bayesian analysis, and the framework leaves
room for further incorporation of prior information, as is
common recently in ASR. SNR features perform well in noisy
conditions, and outperform other features when combined with
CVN. Prior information incorporated via a gamma prior dis-
tribution improves results still further, although the difference
may not merit the extra complexity. In practice a different
prior form, or one trained on real data ought to work better.

We have some evidence that the optimal correction factor
used in low-energy envelope tracking cancels exactly the

flooring used in the logarithm for SNR features, making SNR
features almost parameter-free when noise is estimated in this
manner.
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