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Abstract. We propose an alternative means of training a multilayer perceptron for the task of

speech activity detection based on a criterion to minimise the error in the estimation of mean and

variance statistics for speech cepstrum based features using the Kullback-Leibler divergence. We

present our baseline and proposed speech activity detection approaches for multi-channel meeting

room recordings and demonstrate the effectiveness of the new criterion by comparing the two

approaches when used to carry out cepstrum mean and variance normalisation of features used in

our meeting ASR system.
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1 Introduction

In automatic speech recognition, it is common practice to carry out the normalisation of features in
order to remove unwanted sources of variance such as noise, channel distortion and speaker variabilities.
A simple, but effective approach is cepstral mean and variance normalisation (CMVN) in which the
statistics of cepstrum based speech features are normalised to have zero mean and unit variance. Such
normalisation has been shown to be effective in removing convolutional channel distortion, which
becomes additive in the cepstral domain [1, 2]. In order to ensure a reliable estimate of mean and
variance statistics, silence frames are ignored in the computation, hence in practice, the success of this
approach is intrinsically linked with effective speech activity detection (SAD).

An application environment in which robust speech activity detection continues to be a challenging
task is in the domain of individual headset microphone recordings (IHM) of meetings to which a
significant amount of research effort has been devoted [3, 4, 5]. Drawing on a variety of approaches, this
work has demonstrated that the segmentation of IHM meeting room recordings using traditional SAD
approaches is generally insufficient and extra care is particularly needed to deal with the presence of
cross-talk. While demonstrating improvements over simple SAD schemes, this work has still exhibited
substantial performance gaps of 8% to 10% relative WER in comparison to ASR carried out on the
reference segmentation, motivating further investigation of this problem.

In our work on the segmentation of IHM recordings we have demonstrated that a direct relationship
exists between frame level accuracy of the statistical classifier used in speech activity detection (in
this case a multilayer perceptron) and the word accuracy of a first-pass automatic speech recognition
(ASR) system [6]. We hypothesised that a possible explanation for this relationship was the improved
accuracy of estimation of the CMVN statistics as the frame level accuracy of the classifier increases,
thus providing a better match between the acoustic models and normalised features. In order to
more directly exploit this relationship, we propose in this paper a new criterion to train the statistical
classifier for SAD based on the Kullback-Leibler divergence between normal distributions, with the
aim of directly minimising errors in the estimation of the CMVN statistics, and demonstrate the
effectiveness of our approach for ASR experiments on IHM meeting room recordings.

The paper is organised as follows: in section 2 we briefly cover background material, including
cepstral feature mean and variance normalisation and speech activity detection for IHM meeting
room recordings. Section 3 describes in more detail the baseline and proposed approaches for the
optimisation of the SAD classifier, followed in section 4 by the presentation of results and discussion
from our preliminary experiments. Section 5 rounds up the paper with concluding remarks and ongoing
work.

2 Background

2.1 Cepstral mean and variance normalisation

Cepstrum based features can be made invariant to linear, stationary channel distortions by the sub-
traction of the mean [1]. This is possible since such distortions are convolutional in the time domain,
which become additive in the cepstrum feature space as this is simply a linear transformation of the
log-spectrum. Moreover, additional improvement may be obtained by also normalising the variance
of the features and only calculating the mean and variance normalisation statistics during periods of
speech activity [2]. Such feature normalisation is commonly referred to as cepstral mean and vari-
ance normalisation (CMVN). Given the speech/silence segmentation of a recording of T observation
vectors X

T
1 = {x(1),x(2), . . . ,x(T )}, the estimation and application of cepstral mean and variance



IDIAP–RR 07-13 3

normalisation is carried out according to equations 1 – 3.

µk =

∑T
t=1 I

x(t)=speech · xk(t)
∑T

t=1 I
x(t)=speech

(1)

σk =

∑T
t=1 I

x(t)=speech · (µk − xk(t))2
∑T

t=1 I
x(t)=speech

(2)

x̂k(t) =
xk(t) − µk

(σk)0.5
(3)

where I
x(t) = speech is an indicator function that is equal to 1 when x(t) is speech and 0 otherwise.

µk and σk are the estimated observation vector mean and variance statistics respectively, where the
superscript indicates the kth component of the observation vector x(t), and x̂k(s) is the normalised
feature vector component.

In training the acoustic models of an ASR system, the cepstral mean and variance statistics are
typically collected per speaker using a given speech/silence segmentation (either manually transcribed
or, better yet, derived from a forced alignment of the reference transcriptions). However, during
recognition the segmentation is unknown and instead must be calculated automatically using SAD.
Clearly, a good estimation of the CMVN statistics requires effective speech activity detection, otherwise
a mismatch between the acoustic models and features will be introduced.

2.2 Speech activity detection in meetings

In our previous work, we have developed a speech activity detection approach for IHM meeting
room recordings using a multilayer perceptron (MLP) trained to estimate the posterior probability of
speech/silence for a given feature vector input [6]. A relatively sophisticated approach is called for
as the speech activity detection task on this data is non-trivial due to there often being a high-level
of ‘noise’ on each participant’s microphone, due mostly to either cross-talk from adjacent speakers or
non-speech sounds (such as breath and laughter). In the absence of effective speech activity detection,
a much higher word error rate (WER) is observed on subsequent ASR.

Training of the MLP is carried out using speech/silence targets based off a forced alignment of the
reference transcripts from several meeting data corpora (see [6] for details). MLP training proceeds
using error back propagation of the relative-entropy between target and estimated class posterior
probabilities (see Section 3.1 for further details). During inference, the recordings are segmented into
speech/non-speech portions using a Viterbi search in which scaled likelihoods are generated from the
MLP classifier class posterior estimates and class prior probabilities:

p(x(t)|Cj) =
P (Cj |x(t))

P (Cj)
(4)

where x(t) is the feature vector input to the MLP1 and Cj , j ∈ {sp, sil} represents the speech and
silence classes, respectively. Segment minimum duration is imposed via the number of states in the
left-right speech/silence model HMM topology. Segment minimum duration, log-insertion penalty, and
class priors can all be tuned on development data to optimise the system performance with respect to
frame-level speech/silence classification error rate or ASR word error rate.

3 Optimisation of the SAD classifier

Error back-propagation training of a multilayer perceptron is carried out through the updating of
model parameters via gradient descent by finding expressions for the derivative of the error criterion

1Strictly speaking, the input feature vector is X
t+W
t−W

= {x(t−W ), . . . ,x(t), . . . ,x(t+W )} since, in practice, we take
a window of 2W + 1 concatenated feature vectors centred on time t. We use the notation in equation 4 throughout this
article for simplicity.
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with respect to the connection weights [7]. By using the chain rule, this may be obtained from the
product of the partial derivative of the criterion function with respect to the unit activations with the
partial derivative of the unit activations with respect to the weights. In this section we briefly describe
the criterion used in the baseline system and then describe our proposed criterion and it’s application
to error back-propagation training of an MLP.

3.1 Baseline criterion

In the baseline SAD system used in our previous experiments, the MLP was trained to perform
speech/silence classification of the inputs. The criterion used in such a training scenario is commonly
the Kullback-Leibler divergence (or relative-entropy) between the target posterior distribution, ri(t) =
P (Ci|x(t))2, and that estimated by the MLP, φi(t) = P̂ (Ci|x(t)).

Qb =

T
∑

t=1

M
∑

i=1

ri(t) log
ri(t)

φi(t)
(5)

∂Qb

∂φi(t)
= −

ri(t)

φi(t)
(6)

where M is the number of classes and Ci, i ∈ [1,M ] are the classes associated with the MLP outputs.

3.2 Proposed criterion

We have observed in our previous work that the WER obtained from an automatically derived seg-
mentation of meeting room data was very strongly correlated with the frame level error rate of the
MLP based speech activity detection classifier [6]. We ascribed this behaviour as being partially due
to the error in estimation of CMVN statistics (with respect to a ‘ground truth’ estimate made using
a forced alignment of the reference transcription of test data). To test this hypothesis we first pro-
pose a measure of the accuracy of estimation of the CMVN statistics based on the Kullback-Leibler
divergence between two normal distributions with diagonal covariance as shown in equation 7, where
we have the reference N (·;µr, σr) and estimated CMVN statistics N (·;µφ, σφ), respectively:

Qc = −
N

2
+

1

2

N
∑

k=1

[

log σk
φ − log σk

r

+
σk

r

σk
φ

+
(µk

φ − µk
r )2

σk
φ

]

(7)

where N is the dimension of the multivariate normal distributions.

Using results from our initial work on the NIST rich transcription 2006 evaluation (further details
of the AMI RT06s system can be found in [8]), we first used the criterion in equation 7 to measure
the distance between the CMVN statistics estimated from the forced alignment reference, REFfa, and
those estimated using automatic systems at various system operating points. The results are shown
in Figure 1, with a clear trend between the proposed distance metric for the CMVN estimate and the
ASR performance being evident. We now describe our algorithm for the direct minimisation of the
proposed CMVN criterion in equation 7 by error back-propagation training of an MLP.

Using equations 1 and 2 as a basis and ignoring, for the moment, the minimum duration imposed
by the HMM topology (as described in section 2.2), we can make a maximum likelihood estimate of the
CMVN statistics using the output of the MLP, where there are two MLP outputs φ(t) = P (Csp|x(t))

2A one hot target is used in which the true class is given a probability of one and the remaining classes are set to
zero.
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Figure 1: Frame error rate (FER) versus average KL-divergence between CMVN statistics, where
test segments are compared against the segments generated from forced alignment of the recording
transcripts, REFfa. Results are shown for two systems detailed in [6] as well as the manually derived
segmentation, REFm

and φ̄(t) = P (Csil|x(t)) = 1 − φ(t):

µk
φ =

∑T
s=1 φ(s)xk(s)
∑T

s=1 φ(s)
(8)

σk
φ =

∑T
s=1 φ(s)(xk(s))2

∑T
s=1 φ(s)

− µ2
φ (9)

Hence, we can relate the MLP outputs to the new training criterion by the substitution of equations
8 and 9 into equation 7. To minimise Qc by gradient descent, we take the partial derivative of equation
7 with respect to the MLP output φ(t) to give:

∂Qc

∂φ(t)
=

1

2

N
∑

k=1

[

∂σk
φ

∂φ(t)

[

(σk
φ)−1

− (σk
φ)−2

(

σk
r + (µk

φ − µk
r )2

)

]

+ 2
∂µk

φ

∂φ(t)
(µk

φ − µk
r )(σk

φ)−1

]

(10)

Then it follows that we need to find
∂µk

φ

∂φ(t) and
∂σk

φ

∂φ(t) . From equation 8 we have:

∂µk
φ

∂φ(t)
=

xk(t) − µk
φ

∑T
s=1 φ(s)

(11)

Similarly from equation 9 we have:

∂σk
φ

∂φ(t)
=

∑T
s=1 φ(s)((xk(t))2 − (xk(s))2)

(

∑T
s=1 φ(s)

)2 − 2
∂µk

φ

∂φ(t)
µφ (12)
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Using the chain-rule, it is trivial to find:

∂Qc

∂φ̄(t)
= −

∂Qc

∂φ(t)
(13)

Substituting equations 11 and 12 into equations 10 and 13 gives the gradient of the new error
criterion Qc with respect to the MLP outputs φ(t) and φ̄(t), enabling us to perform gradient descent
training of the MLP parameters directly from the target CMVN statistics.

3.3 Practical considerations

In theory, we now have all that we need to update the MLP parameters according to the new training
criterion, but there still remain a number of practical issues. First of all, it is immediately apparent
from equations 11 and 12 that the criterion depends upon the entire input sequence. Thus, in order to
perform back-propagation for a single observation x(t) we must compute MLP outputs φ(t) and φ̄(t)
for all t = [1, T i] for the given sequence i (in our case a single channel from an IHM meeting recording),
making a stochastic training regime prohibitively expensive. Unfortunately, a batch training scheme
is also unattractive for large training sets, since the parameter update step size will need to be
prohibitively small [9]. In this initial investigation we train the baseline MLP using a conventional
stochastic approach, while we are obliged to train for our proposed criterion using a mini-batch
approach (weights are updated after each individual meeting recording). We hope to address this
inherent disadvantage in future work.

4 Experiments

4.1 System setup and training

The MLPs are each trained from eight minutes of acoustic data from a set of 150 meetings as described
in [6]. Each MLP has an input context of nine frames with twenty five hidden units. We use fewer
parameters than in our previously reported work in order to reduce training time. This resulted in
only a small decrease in classification accuracy of the MLP. The training targets for the baseline MLP
are derived from a forced alignment of the reference transcripts, while the training targets for the
proposed criterion are the CMVN statistics derived from the aforementioned forced alignments. The
ASR system with which we conduct our experiments is described in [8] where the acoustic models
have been trained using the same CMVN feature normalisation as used in the proposed MLP training.
Our experiments are conducted on the NIST rich transcription 2006 Spring evaluation meeting room
data3.

4.2 Results and discussion

During training we keep track of the frame accuracy and KL-divergence between CMVN statistics (Qc)
estimated by the MLPs and the respective references. This enables us to compare the two criteria in
terms of their convergence properties as shown in Figure 2. We note a number of properties of this
graph. First of all the convergence of the proposed system is much slower. As already mentioned, this
is due to the need to select a more conservative step size in order to allow for the mini-batch training
to converge to a reasonable solution. WE have found that larger step sizes resulted in convergence
to poor local minima. Secondly, we note that the systems converge to quite different solutions, with
the baseline system converging to a lower FER rate than the proposed approach and conversely the
proposed approach converging to a lower Qc. This is as we’d hoped since, it was our intention that
the proposed approach would lead to a better, more robust estimator of CMVN statistics by no longer
being constrained to match the hard definition of speech/silence classes as defined by the reference

3see http://www.nist.gov/speech/tests/rt/rt2006/spring/
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segmentation. We also take note that the best Qc achieved by the baseline system does not coincide
with the best FER, in fact, it occurs early in the training after only seven iterations. As a final remark,
we also point out that the final Qc achieved in Figure 2 is still much greater than those presented
in Figure 1 due to there currently being no minimum duration constrain in our formulation of the
maximum-likelihood estimate of the CMVN statistics.
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Figure 2: Frame error rate (FER) and CMVN distance (Qc) between automatic systems and reference
(REFfa)). The first Y-axis shows FER and the second Y-axis shows Qc

The two MLPs were also evaluated using the first pass of the AMI RT06seval ASR system using
CMVN statistics calculated from the baseline and proposed MLPs according to equations 8 and 9. A
manual segmentation of the test data was used in order to isolate the effect of the CMVN estimation
from the speech segmentation problem. The results of these experiments are shown in Table 1 along
with those for the ‘reference’ CMVN statistics. We see from this table that a small, but appreciable
improvement is obtained using the proposed approach.

System FER Qc Sub Del Ins WER

REFfa 0 0 26.1 9.0 4.3 39.4

baseline 3.3 0.75 26.6 8.6 5.0 40.2

proposed 9.8 0.63 26.0 9.5 4.3 39.9

Table 1: ASR and frame-level performance using CMVN statistics calculated using MLPs trained
using baseline and proposed criteria and the reference (REFfa) CMVN statistics.

5 Conclusions and future work

In this paper we have described a novel optimisation criterion for training an MLP based on the
Kullback-Leibler divergence between a set of target and estimated cepstral feature mean and variance
statistics. We provided details of gradient descent training of the MLP according to the new criterion
via back-propagation. Although this work is quite preliminary, we have demonstrated that the new
training scheme does indeed converge to a better solution than our baseline system in terms of the
proposed criterion and we have demonstrated the implications of this in large vocabulary speech
recognition experiments on meeting room data.

In future work we wish to address some short comings of the current approach. Firstly, the mini-
batch training scheme should be replaced by a computationally efficient stochastic scheme as is used in
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the baseline system, which should lead to faster convergence to a better solution. We would also like to
incorporate duration constraints into the optimisation process. There are several ways of addressing
this that are currently under investigation. We also plan to apply this approach to meeting room data
with significantly different recording conditions to the training data, where we hope our proposed
approach will exhibit better generalisation than the baseline.
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