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Abstract. In this paper we present a study of automatic speech recognition systems us-
ing context-dependent phonemes and graphemes as sub-word units based on the conventional
HMM/GMM system as well as tandem system. Experimental studies conducted on three different
continuous speech recognition tasks show that systems using only context-dependent graphemes
can yield competitive performance on small to medium vocabulary tasks when compared to a
context-dependent phoneme-based automatic speech recognition system. In particular, we demon-
strate the utility of tandem features that use an MLP trained to estimate phoneme posterior prob-
abilities in improving grapheme based recognition system performance by incorporating phonemic
knowledge into the system without having to explicitly define a phonetically transcribed lexicon.
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1 Introduction

State-of-the art automatic speech recognition (ASR) systems represent words as a sequence of sub-word
units, typically phonemes which have a strong correlation with the acoustic observations. In recent
studies, attention has been drawn toward speech recognition systems using grapheme as sub-word
units [14, 7, 8, 10]. The main advantages of using grapheme as sub-word units are (1) the definition
of lexicon is easy (orthographic transcription), and (2) the pronunciation models are relatively noise
free. The main drawback of using graphemes as sub-word units is that a single grapheme can map
onto many different phonemes, i.e. there is often a weak correspondence between graphemes and
phonemes, particularly in the English language.

Schukat-Talamazzaini et al. were one of the first to present results in speech recognition based
on graphemes [14]. They used “polygraph” sub-word units for word modelling, which is essentially
letters-in-context similar to polyphones (phonemic units allowing preceding and following context of
arbitrary length). Experimental studies conducted on continuous speech recognition task and isolated
word recognition showed that good results (better than context-independent phone) can be obtained
using “polygraph” as sub-word units.

In a recent study, the approach of mapping orthographic transcription to a phonetic one has been
investigated in the context of speech recognition [7]. In this approach, the orthographic transcription
of the words are used to map them onto acoustic hidden Markov model (HMM) state models using
phonetically motivated decision tree questions. For instance, a grapheme is assigned to a phonetic
question if the grapheme maps to the phoneme. Recognition studies performed on Dutch, German
and English yielded performances comparable to phoneme-based ASR system for languages Dutch
and German and, fairly poor performance for English language.

Killer et al. have investigated a context dependent grapheme based speech recognition, where
the context is modelled through a decision tree based clustering procedure [8]. Experimental stud-
ies conducted on English, German and Spanish languages yielded competitive results compared to
phoneme-based system for German and Spanish languages, but fairly poor performance for the En-
glish language.

In [10, 9], we proposed a phoneme-grapheme based system that jointly models the both phoneme
and grapheme sub-word units during training. During decoding, recognition is done either using
one or both sub-word units. This system was investigated in the framework of hybrid hidden Markov
model/artificial neural network (HMM/ANN) system and improvements were obtained over a context-
independent phoneme based system using both sub-word units in recognition on two different tasks
isolated word recognition task [10] and recognition of numbers task [9].

In this paper, we present a study of context-dependent phonemes and graphemes as sub-word for
English ASR systems. On three tasks of increasingly complexity: OGI Numbers95 (NU95) [4], DARPA
resource management (RM) [13] and continuous telephone speech (CTS) [2] and using different features
(standard PLP cepstral feature and tandem feature), we analyse the use of grapheme as sub-word units
for English ASR by comparing it with the standard phoneme based system. Our studies show that
on tasks of smaller complexity such as NU95 the grapheme based ASR system can perform as good
as the phoneme based ASR system. At the same time, on tasks of increased complexity such as RM
and CTS the performance difference between the two systems, phoneme based system and grapheme
based system, becomes more pronounced with the phoneme based system being the better one. Our
studies also show that on these tasks of increased complexity the difference between the two systems
is greatly reduced when using tandem features.

2 Background

Lexical representations play a critical role in ASR. In all but the most constrained tasks, it is necessary
to represent words by a sequence of sub-word units (the so called ‘beads-on-a-string’ paradigm), in
order to give a compact representation of the lexicon that still provides good correspondence between
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the words and acoustical observations. Most commonly, sub-word units take the form of phonemes,
as they are limited in number (of the order of 45 for English) and show good correspondence with
the acoustic observations. One disadvantage of the use of phonemes is that mapping from words to
phonemes is generally a knowledge driven process, which is difficult to automate with a high level
of fidelity, thus making it an expensive process in terms of development time and effort. Automatic
means for deriving pronunciations in text-to-speech synthesis exist in order to enable such systems to
handle out-of-vocabulary text, but generally such mechanisms are not employed in ASR. Interestingly
enough, if we examine two of the most commonly used techniques in letter-to-sound mapping and
in ASR lexicon representations, we see that context-dependency plays a critical role. In this section,
we describe the use of context dependent sub-word units in letter-to-sound mapping and acoustic
modelling for ASR, drawing attention to the similarities between the two. We also briefly describe
the tandem acoustic features, which feature significantly in our studies.

2.1 Letter-to-sound mapping using decision trees

In text-to-speech synthesis it is often necessary to produce pronunciations for words that lie outside the
pronunciation dictionary of the system. Such systems employ letter-to-sound mapping techniques to
automatically generate pronunciations. A commonly used approach to this problem is to use decision
trees [1]. The decision tree approach is carried out by first aligning grapheme and phoneme symbols
from a pronunciation dictionary that is to be used for training1. For each grapheme occurrence the
graphemes surrounding it (a context window of N to the left and right) are recorded as well as
the phoneme which has been aligned to the grapheme. The decision tree is trained from this data
by pooling all of the instances of a particular grapheme together then successively splitting the data
according to the grapheme context that gives rise to the largest decrease in leaf node impurity (entropy
times number of sample points). By building a decision tree in this manner a set of rules is derived
that use a grapheme’s context to determine its pronunciation.

2.2 Context dependent modelling of sub-word units

Word pronunciations can differ greatly from their lexical form, in particular due to the effects of
coarticulation, making it common practice to explicitly model each sub-word unit according to the
context in which it occurs. Due to the limitations of data coverage and decoding complexity, a single
phone context to the left and right (the ‘triphone’) is generally used. Even then, a large quantity of
data is required in order to independently learn the statistics of each context dependent unit, hence, a
parameter sharing scheme is needed. The most commonly employed parameter sharing scheme is the
decision tree-tying approach [12], which pools all of the data for a particular sub-word unit into a single
root node and performs tree growth by selecting questions at each split that maximise the increase in
likelihood of the acoustic models over the training data. The decision tree approach not only achieves
more robust modelling of seen contexts, but also enables the synthesis of unseen contexts.

The questions used to split the data may be singleton (each question relates to only a single sub-
word unit), knowledge based (eg. phonemic: “is the left phone context a VOWEL”) or data driven
[3]. In general, the knowledge based approach is used as it gives both good data utilisation and gen-
eralisation, in particular for unseen contexts, but clearly, for grapheme based systems, only singleton
and data driven can be used. Killer et. al. [8] explored different approaches to question set derivation
for context-dependent grapheme based speech recognition and demonstrated that, in fact, the single-
ton questions sets gave best results, though with the disadvantage of more inefficient data utilisation
compared to data-driven approaches. It should also be noted that context dependent modelling of
grapheme-based sub-word units displays strong similarities with the letter-to-sound mapping described
in the previous section, since we are learning a mapping from the graphemic representation to the
acoustic feature space, which is much more strongly correlated with the phonemic representation.

1Extra steps need to be taken to deal with words which have fewer/more phonemes than graphemes.
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2.3 Tandem acoustic features

Tandem systems have been shown to yield state-of-the-art performance [5]. A tandem system combines
the discriminative feature of an ANN with Gaussian mixture modelling by using the processed posterior
probabilities generated by the MLP as the input feature for the HMM/GMM-based system. It has
been demonstrated that tandem features exhibit greater robustness to unwanted variabilities [16, 6].
This is due to the ability of the ANN to project the standard acoustic feature on dimensions carrying
information most pertinent to the speech recognition task.

A tandem based system can also be viewed as a cascade of classifiers, thus, permitting the integra-
tion of decisions made in an earlier classification stage into later stages. Tandem acoustic features are
of interest in this study as they present a means of introducing phonetic knowledge into a grapheme
based system through the use of an MLP trained on phonemic targets without the need for explicit
specification of a phonemic pronunciation dictionary (though phonemic targets are still required for
the training of the MLP, we can assume that these can be obtained from a corpus where phonetic
transcriptions are available, rather than the target training corpus).

3 Empirical studies

3.1 Experimental setup

Our studies were conducted on three well known speech corpora that comprise tasks of varying com-
plexity with regard to training data, lexicon and language model. The major features of each corpora
are listed in Table 1, highlighting their respective.

Acoustic models were trained for the three corpora using the hidden Markov model toolkit (HTK)
from both PLP and tandem-features [15] . In each case, the acoustic models were trained through:
8 iterations of re-estimation on context-independent models, 2 iterations of re-estimation on context-
dependent models followed by model tying, 7 iterations of re-estimation on tied context-dependent
models and finally increment of mixtures from 1 to 8 in multiples of two with 3 iterations of re-
estimation at each increment step. In these studies we investigated singleton, knowledge-based and
data driven question sets for state tying. We used a fixed log-likelihood threshold to control decision
tree growth, thus models were allowed to achieve differing levels of complexity based on the sub-word
units, features, and question sets used. In comparing two systems, this enabled us to consider how
the choice of sub-word units, features, and question sets influenced model complexity and ultimately
ASR performance.

PLP feature extraction comprised 13th order PLP cepstral coefficients and their deltas and delta-
deltas. The features were computed every 10ms over a window of 30 ms. For the tandem-features,
an MLP was trained on the PLP features with output units corresponding to context-independent
phonemes. The phoneme targets for MLP training were derived from a forced alignment of the
training data using the PLP based acoustic models. We extracted the tandem-features using the
MLP’s phoneme log-posterior estimates followed by Karhunen-Loeve transformation. In the grapheme
dictionary, the numbers and abbreviated words were replaced by their graphemic representation eg.
45 ⇒ FOURTY FIVE.

3.2 OGI numbers95

The OGI numbers95 (NU95) database comprises a limited vocabulary task that employs a word-loop
language model, for which we used the definition of the training set, validation set, and test set is
similar to the one defined in [11]. For the purposes of investigating different lexical representations,
this is a very simple task. In comparing the ASR systems produced from context dependent phoneme
and grapheme models shown in Table 2 we can see that the complexity of the acoustic models is

2Meaning that the same words appear in train and test data.
3This is provided with the preamble of the DARPA Resource Management word-pair grammar.
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Table 1: Summary of the three corpora used in our studies. CI: context independent, CD: content
dependent

Name Component Description Statistic

OGI Numbers95 Audio data Quantity of data
Train: 90 mins
Test: 30 mins

Lexicon Closed2

Words: 31
Phoneme (CI/CD): 24/81
Graphemes (CI/CD): 19/85

Acoustic model Word internal, context dependent
Language model Wordloop

DARPA RM Audio data Quantity of data
Train: 3.8 hrs
Test: 1.1 hrs

Lexicon Closed
Words: 991
Phonemes (CI/CD): 42/2269
Graphemes (CI/CD): 29/1912

Acoustic model Word internal, context dependent
Language model Wordpair

CTS Audio data Quantity of data
Train: 32 hrs
Test: 1.3 hrs

Lexicon Open
Words: 1000
Phonemes (CI/CD): 47/20k
Graphemes (CI/CD): 36/9k

Acoustic model Cross-word, context dependent
Language model Bigram

quite similar with the grapheme system having slightly more models/states than its phoneme based
counterpart. This is reflected in the overall performance of the grapheme system, which has slightly
lower error rates than the phoneme system. The tandem based systems had the same performance on
this task, this being significantly better than that obtained from PLP features. While these results
suggest that phoneme and grapheme system can achieve equivalent performance, it is clear that this
is because both the context dependent grapheme and phoneme acoustic models have an almost one-
is-to-one mapping to their corresponding lexical entry.

Table 2: ASR results on OGI Numbers95 task
Unit Feature Quest Log. Phy. Log. Phys. WER

Models Models States States (in %)

Phoneme PLP Phonemic 81 74 241 191 6.3
Tandem Phonemic 81 74 241 193 4.4

Grapheme PLP Singleton 85 79 256 198 5.9
Tandem Singleton 85 78 256 196 4.4
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3.3 DARPA resource management

We next performed ASR evaluations on the DARPA resource management (RM) corpus. This corpus
is also of relatively low complexity compared to state-of-the-art evaluation tasks, but is still quite a
step up from the OGI numbers task. In particular, the lexicon is greatly increased from 31 to almost
1000, thus context dependent models may no longer have a unique mapping to a single word. The
lexicon is still closed, thus it is not necessary for the acoustic models to generalise to words not seen
in training, nor is it necessary to synthesise unseen contexts.

The results from the experiments on the RM corpus are shown in Table 3. We extended analysis
on the RM corpus in order to better compare the systems by building systems using both singleton
and data driven questions sets (according to [3]). We only report the results for singleton questions
sets here as the data driven approach was not found to provide any more useful insight for this study.

Table 3: ASR results on DARPA resource management task
Unit Feature Quest Log. Phy. Log. Phys. WER

Models Models States States (in %)

Phoneme PLP Singleton 2269 1501 6729 1477 5.7
Tandem Singleton 2269 1628 6729 2013 5.7

Grapheme PLP Singleton 1912 1298 5727 1369 7.3
Tandem Singleton 1912 1360 5727 1985 6.3

Merged PLP Singleton 4181 2799 12456 2846 5.5
Tandem Singleton 4181 2988 12456 3998 5.1

A number of observations can be made from these results. In particular we can note that for both
PLP and tandem systems the number of physical states in the grapheme and phoneme systems is
roughly equivalent, despite there being fewer actual (logical) states for the grapheme system. This
demonstrating that the decision tree growth for grapheme based models needs to be deeper (more
questions) in order to disambiguate the one-to-many mapping associated with graphemes.

In comparing the PLP and tandem feature based systems we see that tandem features provide a
significant improvement for the grapheme based system, although for this task it still remains to some
degree behind that of the phoneme based system. We also observe that tandem based features lead to
a greater number of states, mostly likely due to there being less unwanted variability in the tandem
features. This is particularly important for the grapheme system where co-articulatory effects further
complicate the task of learning the feature space relationship with the context dependent grapheme
models.

In a last test we also merged phoneme and grapheme acoustic models and lexica (without retrain-
ing), thus enabling a mixture of grapheme and phoneme based models to be used during recognition.
We see that this gives a slight improvement over both phoneme and grapheme systems, suggesting that
the grapheme models, while giving overall inferior performance to the phoneme system, still manage
to achieve some degree of complementarity. I.e. grapheme modelling is not just an inferior alternative
to phoneme modelling. Further analysis performed using the merged models and dictionaries on the
development set of DARPA RM task showed that grapheme models were more preferred for function
words which short in terms of length (number of graphemes).

3.4 Conversational telephone speech

The final evaluation carried out as part of this study was with the conversational telephone speech
(CTS) corpus. This corpus is significantly more complex than those previously described in that
although the lexicon is of similar size to that used in RM, it is now open (meaning that words may
appear in testing that do not appear during training). Furthermore, the acoustic conditions are
significantly more challenging as the audio is taken from a telephone channel. In training the context-
dependent models on the CTS corpus, we made one change to the training procedure, which was to
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allow for cross-word context dependency. Due to the increased complexity of the task we have only
conducted limited investigations on the CTS task, namely the male part of the corpus. The results
are detailed in Table 4.

Table 4: Preliminary ASR results on male part of the CTS task
Unit Feature Quest Log. Phy. Log. Phys. WER

Models Models States States (in %)

Phoneme PLP Phonemic 20810 5601 62430 1325 45.7
Tandem Phonemic 20640 7370 61920 1786 45.3

Grapheme PLP Singleton 9309 4435 27927 2602 53.0
Tandem Singleton 9278 4125 27834 2885 50.3

One of the first points that stands out from these results is the discrepancy between the number
of logical models and physical states in the phoneme and grapheme systems. The phoneme system
has twice the number of logical models (by virtue of the fact that there are more graphemes than
phonemes), but conversely half as many physical states. This is partly due to the fact that the
singleton question set will naturally lead to deeper decision trees, but can also be attributed to the
greater complexity required in modelling context-dependent grapheme models. This is consistent
with the findings in Black et. al. [1], who demonstrated that using an early stopping criterion to
prevent over-fitting of decision tree learning of letter-to-sound mappings was actually detrimental to
performance.

Further observations from these results may also be noted. First of all, once again the tandem
features appear to provide some improvement in both phoneme and grapheme systems, particularly in
the grapheme case. Unfortunately though, the grapheme tandem system still lags significantly behind
the phoneme system. This can be attributed to a number of factors. The use of cross-word context
dependent models made the grapheme based system significantly disadvantaged in that cross-word
contexts are likely to be counter-productive for letter-to-sound mapping. In addition the open nature
of the vocabulary demands that the grapheme based system be able to generalise to unseen words and
contexts, which is likely to be considerably more challenging than for the phoneme system. While these
issues could be addressed to some extent by (for example) the use of special symbols to disambiguate
word internal and cross-word contexts the problem of generalisation may not be easily solved (and at
the least may require significantly more training data than for the phoneme based system).

4 Conclusions

In this paper we have studied the use of context-dependent phonemes and graphemes as sub-word
units for automatic speech recognition. ASR studies conducted on different tasks show that by using
context-dependent graphemes as sub-word units, performance similar to the state-of-the-art context-
dependent phoneme based ASR system can be achieved on constrained tasks. Analysis demonstrates
that the contextual modelling of grapheme units gives behaviour similar to phonemes and is achieved
in a similar fashion to that observed in letter-to-sound mapping techniques.

In OGI Numbers95 studies we obtained better performance using graphemes when the acoustic
models were trained with PLP features and similar performance when trained with tandem features. In
the DARPA RM task studies we observed a marked difference between ASR systems using phoneme
and grapheme when trained with PLP features. However, this difference is reduced when using
tandem features. An explanation for this can be that the tandem system is able to incorporate
phonetic knowledge while still having no requirement for an explicit phonetic lexicon. In the much
more complex CTS task we also observed improvements thanks to tandem features, though not to the
same extent to that observed on the simpler tasks. These observations are summarised in Table 5

In both OGI Numbers95 task and DARPA RM task the words that are present in the dictionary
are present in both training data and test data. In other words, there were no unseen contexts unlike
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Table 5: Summary of findings from our studies. ≈ means comparable, ↑/↓ means somewhat
greater/reduced, ⇑/⇓ means significantly greater/reduced

Lexicon Cross-word System Phoneme-Grapheme Performance Tandem
Modelling Complexity Correspondence (grapheme) vs PLP

small (closed) no ≈ ≈ ≈ ↑

medium (closed) no ↑ ↓ ↓ ↑

medium (open) yes ⇑ ⇓ ⇓ ↑

in the CTS task. It is likely that this played a large role in the significantly reduced performance of the
grapheme based CTS system compared with the phoneme based system. Further research will need
to look at how to overcome this either through improved parameter sharing approaches or by drawing
upon non-acoustical data such as existing pronunciation lexica (which may not provide full coverage
of the acoustic training data). It may also be interesting to look a wider sub-word unit context in the
framework of either WFST based decoding or lattice rescoring.

We also carried out an experiment on the RM corpus in which we merged grapheme and phoneme
models and lexica and showed improved performance over either system alone. This suggests that
the grapheme based models are complimentary to the phoneme models. In order further validate this
hypothesis on a more challenging task such as the CTS, is clear that there are a number of hurdles
that would first need to be overcome. Firstly, the use of cross-word models would require that we
merge models in a less naive fashion as the current approach does not support cross-word contexts
between phoneme and grapheme systems.
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