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Abstract
One major research challenge in the domain of the analysis of
meeting room data is the automatic transcription of what is spo-
ken during meetings, a task which has gained considerable atten-
tion within the ASR research community through the NIST rich
transcription evaluations conducted over the last three years. One
of the major difficulties in carrying out automatic speech recog-
nition (ASR) on this data is dealing with the challenging record-
ing environment, which has instigated the development of novel
audio pre-processing approaches. In this paper we present a sys-
tem for the automatic segmentation of multiple-channel individ-
ual headset microphone (IHM) meeting recordings for automatic
speech recognition. The system relies on an MLP classifier trained
from several meeting room corpora to identify speech/non-speech
segments of the recordings. We give a detailed analysis of the
segmentation performance for a number of system configurations,
with our best system achieving ASR performance on automatically
generated segments within 1.3% (3.7% relative) of a manual seg-
mentation of the data.
Index Terms: speech segmentation, speech activity detection, au-
tomatic speech recognition, meeting recordings.

1. Introduction
The segmentation of recordings is an important preprocessing step
for automatic speech recognition (ASR) in that it provides a means
to divide the signal into manageable portions for the decoder, pro-
vides a basis for the reliable application of channel normalisation
schemes such as cepstral mean and variance normalisation (CMN,
CVN), and also contributes to reduce the errors by restricting pro-
cessing to only those portions of the recording that should be tran-
scribed. In the domain of multi-channel meeting recordings from
independent headset microphones (IHM) this is a particularly im-
portant task, since on average each channel will only have speech
activity inversely proportional to the number of meeting partic-
ipants. Moreover, during non-speech segments there is often a
high-level of ‘noise’ on each participant’s microphone, due mostly
to either cross-talk from adjacent speakers or non-speech sounds
(such as breath and laughter), which leads to a much higher word
error rate (WER) than that produced using a segmentation which
removes all irrelevant portions of the recording.

The sustained interest in automatic transcription of meeting
recordings has seen a considerable amount of research devoted to
the automatic segmentation of IHM recordings [1, 2, 3]. Drawing
on a variety of approaches, this work has demonstrated that seg-

mentation of these recordings using traditional voice activity de-
tection (VAD) approaches is generally insufficient and extra care is
particularly needed to deal with the presence of cross-talk. While
demonstrating improvements over simple VAD schemes, this work
has still exhibited substantial performance gaps of 8% to 10% rel-
ative WER in comparison to ASR carried out on the reference seg-
mentation, motivating further investigation of this problem.

In this paper we present the speech segmentation system for
multi-channel meeting recordings which was developed as part of
the AMI meeting transcription system [4]. This system was used
in the AMI consortium’s submission to the the NIST rich tran-
scription 2006 Spring meeting recognition evaluation1. The focus
of this work has been not only to minimise the impact of automatic
segmentation on WER, but to thoroughly investigate our approach
in order to better appreciate the relationship between segmenta-
tion and ASR performance. Towards this end we have conducted
a number of experiments that explore this in detail.

The remainder of the paper is organised as follows. In Sec-
tion 2 we give a brief overview of the meeting room resources
used in this work. Section 3 describes our proposed segmentation
system, including feature extraction, training of the speech/non-
speech classifier and the segmentation of speech data. Section 4
describes experiments that were conducted on the NIST rich tran-
scription spring 2005 meeting room task (RT05s), including a de-
tailed discussion of the results. Finally, in Section 5 we give some
concluding remarks and future directions of this work.

2. Meeting room resources
2.1. Training resources

Training data for the ASR models and speech segmentation sys-
tem is sourced from a number of corpora; namely, the ICSI [5],
NIST [6], ISL [7] and AMI [8] corpora which have been collected
over a number of years within the framework of different projects.
These corpora total approximately 112 hours of speech over 150
meetings. For the training of the segmentation only 8 minutes of
each meeting was used with a proportion of speech to non-speech
frames of approximately 1:5.5.

2.2. Evaluation resources

Over the last three years (2004-06) NIST has conducted rich tran-
scription evaluations focused on the meeting room domain. The

1see http://www.nist.gov/speech/tests/rt/rt2006/spring/
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Augmented Multi-party interaction (AMI) consortium submitted a
system for the RT05s evaluation [4], which comprises 25k words
(120 minutes of meeting data which is 600 minutes across all chan-
nels) from six sites including those in the training sets as well data
recorded at Virginia Tech [9]. In this paper we use experiments
conducted on the RT05s meeting room evaluation data with the
2005 AMI meeting recogniser’s first pass models and the Juicer
large vocabulary speech decoder [10]. Due to the present limi-
tations of our WFST decoder, a pruned language model was used.
Further details of the AMI meeting transcription system and Juicer
decoder may be found in the referenced papers.

3. Proposed system
In our formulation of the speech segmentation problem, we con-
sider that speech segmentation output should closely replicate the
conditions under which the ASR models were trained. In order
to achieve this it is possible to use the ASR models themselves
to determine the speech/non-speech segments of the training data,
then use this as the basis for training the speech activity detection
classifier. We note that this approach is similar in spirit to that in
[11], except that where their work uses the actual ASR acoustic
models in the speech activity detection, we prefer to train a sep-
arate classifier for this task, enabling us to incorporate additional
auxiliary features not used during acoustic model training to deal
specifically with cross-talk.

3.1. Features

The features used in the ASR system, 12 MF-PLP features and
c0, plus their first and second derivatives, and an additional energy
feature (giving 42 dimension vector) were used as the baseline for
our speech segmentation classifier [12]. In addition, we wished to
experiment with an additional set of auxiliary features to aid in the
detection of cross-talk. Cross-talk is notoriously difficult to dis-
criminate from the actual target speech using information derived
from a single channel alone, hence, we introduce a cross-meeting
normalised energy feature which incorporates the energy of allN

IHM channels as follows:

E
norm
i (n) =

Ei(n)
PN

k=1
Ek(n)

(1)

whereEi(n) is the signal energy for channeli at framen. Thus,
it can be seen thatEnorm

i (n) measures the energy on the current
channel relative to the energy across all channels, independently
of the actual recording level since it is bounded between zero and
one.

We use three additional features, signal kurtosis, mean cross-
correlation and maximum normalised cross-correlation, which
have been previously demonstrated to be useful for cross-talk de-
tection [3]. Further details of these features can be found in the
referenced article. With the addition of these auxiliary features
and their first and second derivatives, an input feature vector of
dimension 54 is generated.

3.2. Classifier training

The segmentation system is built around a multi-layer perceptron
(MLP), with hyperbolic tangent hidden activation function and
softmax output activation function, trained on speech/non-speech
target classes. Based on a number of preliminary experiments, an

input layer of 31 consecutive input frames and 50 hidden units was
found to give a good balance of accuracy and complexity.

Training targets are generated by performing a forced align-
ment of the training data using the ASR models and reference
segments. All labels from the forced alignment excepting the
‘sil’ model are labelled as the speech target class and the ‘sil’
model label and inter-segment parts of the meeting recording are
labelled as the non-speech target class. Thus, using the ASR mod-
els and reference segments, we have designated the training data as
speech/non-speech in a manner which is consistent with the ASR
acoustic models.

Training of the MLP proceeds by taking the meetings and
splitting these into training and validation sets with a ratio of 9:1.
The features from the training set are normalised to have zero mean
and unit variance and the transformation which generates this nor-
malisation is retained for application to the validation data and
later to the test data. Training of the MLP parameters is carried
out using standard error back propagation of the Kullback-Leibler
divergence criterion with early stopping being determined by the
validation set.

3.3. Cross-talk suppression

During testing, the MF-PLP features are calculated in two ways.
One set of features us calculated using the original IHM meet-
ing recording and the second set is calculated on IHM recordings
which have been preprocessed by a cross-talk suppression algo-
rithm. This cross-talk suppression is based upon a modified ver-
sion of the adaptive-LMS echo cancellation [13]. Modifications
were carried out to enable the use of multiple reference chan-
nels and also to account for the difference in recording conditions
between the meeting and telephone channels for which the algo-
rithms was originally developed. The auxiliary features were only
calculated on the original recordings (before signal cross-talk sup-
pression is carried out) since they are explicitly intended to aid in
the detection of cross-talk.

3.4. Segmentation

Segmentation of test data is carried out using Viterbi search in
which scaled likelihoods are generated from the MLP classifier
class posterior estimates and class prior probabilities:

p(x(n)|Cj) =
P (Cj |x(n))

P (Cj)
(2)

where x(n) is the vector of concatenated speech features and
Cj , j ∈ {sp, sil} represents the speech and non-speech classes,
respectively. Segment minimum duration is imposed via the num-
ber of states in the speech/non-speech HMM topologies. Segment
minimum duration,M , log insertion penalty,I, and class priors
can all be tuned on development data to optimise the system for
performance at the frame level or WER. In our system we use a
fixed M = 50 (which equates to a minimum duration of 0.5 sec)
andI = −15, though in practice the system does not appear to
be overly sensitive to these settings. Lastly, smoothing of the seg-
ments is carried out by adding a 100 ms collar to the output of
the Viterbi search, with merging of any segments with less than
200 ms gap.



4. Experiments
4.1. Experimental setup

Automatic segmentation is evaluated by comparing reference and
automatic segments at the frame level and also by comparing sub-
sequent ASR performance using the reference and automatically
generated segments. A set of reference segments for the RT05s
evaluation are provided by NIST, which have been manually tran-
scribed and, as such, do not necessarily correlate well with what
would be obtained via automatic means. To test this we performed
forced alignment of the evaluation data using the reference tran-
scripts and generated a segmentation of the data based upon the
forced-alignment. In comparing these segments at the frame level
we observe that 4% of frames are in discrepancy, however, the
WER obtained using the original reference segments and the seg-
ments derived from forced alignment are 35.5% and 35.2%, re-
spectively. We postulate that this improvement comes from the
calculation of CMN and CVN statistics that are more consistent
the training of our ASR system and demonstrates that there is the
(albeit slim) potential for automatic segmentation to exceed that of
manual transcribers. In the following frame level comparisons we
use the forced-alignment segments as the reference segmentation.

Segmentation systems were evaluated using two MLP clas-
sifiers; one trained from MF-PLP features alone and a second
that also incorporates the auxiliary features (+AUX). We note that
the second MLP comprises approximately 23% more parameters,
though, we shall endeavour to show that the differences between
these systems is largely derived from the features rather than the
number of parameters. Thus, we obtain a total of four distinct sys-
tems by generating MF-PLP features calculated with (+CT) and
without the cross-talk suppression previously described:

System A MF-PLP

System B MF-PLP+CT

System C MF-PLP+AUX

System D MF-PLP+CT+AUX

4.2. Results

In the first set of tests we calculated the percentage of frames
falsely recognised as speech (FA) and falsely recognised as silence
(FR) relative to the total number of frames for each of the four sys-
tems against the reference segmentation for different speech/non-
speech class prior probabilities. The results of these tests are
shown in Figure 1.

We next ran our recogniser on segments generated by systems
B and D for different speech/non-speech class prior probabilities.
The results of these tests are shown in Table 1 and Figure 2.

4.3. Analysis

The direct optimisation of the segmentation system using the ASR
output would be desirable, but is practically infeasible except for
the tuning of a few hyper-parameters. Hence, in our system the
bulk of parameters are optimised using a frame level criterion.
The relationship between frame level accuracy and WER is still
of primary importance, since, if we can demonstrate a direct re-
lationship between the two, then we can postulate that optimisa-
tion at the frame level will lead to better performance with respect
to WER. This favours the MLP classification approach which we
have adopted, since, the training criterion attempts to minimise
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Figure 1: Frame level performance of auto-segmentation systems
against reference segments generated from forced alignment.

System P (Csp) FA FR Sub Del Ins WER
REFm — — — 23.1 8.9 3.5 35.5
REFfa — 0 0 22.2 10.2 2.9 35.2

B 0.40 1.0 2.1 20.7 15.0 3.1 38.8
0.25 1.2 1.3 21.8 12.2 3.8 37.8
0.15 2.3 0.8 22.4 10.6 5.7 38.7

D 0.40 0.7 1.7 21.0 13.6 3.1 37.7
0.25 1.0 1.1 21.5 11.7 3.6 36.8
0.15 1.5 0.7 22.3 10.5 4.4 37.2

Table 1: ASR and frame-level performance for different
speech/non-speech segmentations. REFm and REFfa refer to
manual and forced alignment segmentations, respectively.

frame classification error rate. In the following discussion we ex-
plore this relationship and attempt to show that this is indeed the
case for the approach we have presented.

Several points are immediately apparent from an examination
of Figure 1. First of all we note that the cross-talk suppression has
a significant impact on reducing the false acceptance rate when us-
ing MF-PLP features alone (Systems A and B), whereas with the
addition of the auxiliary features the cross-talk suppression has
almost no impact (Systems C and D). This observation supports
our hypothesis that the addition of auxiliary features and not the
increase in number of parameters is the main factor in distinguish-
ing the two MLPs that were trained. It is also clear that the use
of auxiliary features has a greater impact on performance than the
cross-talk suppression.

We also note that the minimum frame error rate occurs at the
equal error rate of each of the systems, suggesting that this should
be the optimal operating point - from a frame error perspective -
which may be chosen using development data. Next, looking at
Table 1 and Figure 2 we see that there is indeed a linear relation-
ship between frame error rate and word error rate and that false
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Figure 2: Word error rate (WER) versus frame error rate (FER=
FA + FR) for automatically generated segments.

acceptance and false rejection errors have equal impact on WER,
though, these errors manifest differently in the form of insertion
and deletion errors, respectively, which may be of some impor-
tance depending on how the ASR output is used.

Lastly, we highlight that the best WER performance was
achieved using System D withP (Csp) = 0.25. This system
achieves a WER degradation or 1.3% (3.7% relative) and 1.7%
(4.8% relative) against the manual and forced-alignment reference
segments, respectively.

5. Conclusions
We have presented a system for the automatic segmentation of
IHM multiple channel meeting recordings. The system is based
upon an MLP classifier, with the best results obtained using tradi-
tional ASR features combined with auxiliary features to aid in the
detection of cross-talk. Evaluating this system using state-of-the-
art ASR we achieved a 1.3% (3.7%) degradation in WER in com-
parison to a manually derived segmentation of the RT05s meet-
ing room evaluation data. We have also presented detailed results
and discussion which provide useful insight into the segmentation
performance with respect to a reference segmentation at both the
frame level and WER from an ASR system.

In future work we will continue to develop our system along
several lines. Firstly, further investigation of appropriate auxiliary
features is called for, along with further refinements to our training
regime. We also intend to investigate the joint decoding of all IHM
channels for a meeting simultaneously as proposed in [3]. Such an
approach is well suited to our segmentation paradigm as posterior
probabilities from individual channels may be simply combined to
give joint-state probabilities.
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