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Abstract

The sentence segmentation task is a classification task that aims at inserting
sentence boundaries in a sequence of words. One of the applications of sen-
tence segmentation is to detect the sentence boundaries in the sequence of
words that is output by an automatic speech recognition system (ASR). The
purpose of correctly finding the sentence boundaries in ASR transcriptions is
to make it possible to use further processing tasks, such as automatic summa-
rization, machine translation, and information extraction.

Being a classification task, sentence segmentation requires training data. To
reduce the labor-intensive labeling task, available labeled data can be used to
train the classifier. The high variability of speech among the various speech
styles makes it inefficient to use the classifier from one speech style (des-
ignated as out-of-domain) to detect sentence boundaries on another speech
style (in-domain) and thus, makes it necessary for one classifier to be adapted
before it is used on another speech style.

In this work, we first justify the need for adapting data among the broadcast
news, conversational telephone and meeting speech styles. We then propose
methods to adapt sentence segmentation models trained on conversational
telephone speech to meeting conversations style. Our results show that using
the model adapted from the telephone conversations, instead of the model
trained only on meetings conversation style, significantly improves the per-
formance of the sentence segmentation. Moreover, this improvement holds
independently from the amount of in-domain data used.

In addition, we also study the differences between speech styles, with statis-
tical measures and by examining the performances of various subsets of fea-
tures. Focusing on broadcast news and meeting speech style, we show that
on the meeting speech style, lexical features are more correlated with the sen-
tence boundaries than the prosodic features, whereas it is the contrary on the
broadcast news. Furthermore, we observe that prosodic features are more in-
dependent from the speech style than lexical features.

Keywords: sentence segmentation from speech, model adaptation, meta-data
extraction, boosting, prosodic and lexical features.





Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 Introduction 1

2 Sentence Segmentation 5

2.1 Sentence Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Formalization as a Classification Problem . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Definition of a Sentence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Speech Recognition Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Acoustic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 From Acoustic Vectors to a Sequence of Words: General Approach . . . . . 8
2.2.3 STT vs. Reference Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Related Work on Automatic Sentence Segmentation . . . . . . . . . . . . . . . . . . 11
2.3.1 Acoustic vs. Linguistic Segmentation . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.4 Utility of Sentence Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Adaptation 13

3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Definition and Usage of Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 The Choice of the Out-of-Domain and the In-Domain . . . . . . . . . . . . . 15
3.2.2 Formalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Related Work on Model Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.1 Brief Presentation of MLE and MAP . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Boosting Algorithm 21

4.1 Key Concepts and History of Boosting . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 From Continuous Predictions to Classification . . . . . . . . . . . . . . . . . . . . . 23

iii



4.3 More on Weak Learners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4 Changing the Loss Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Adaptation Methods 25

5.1 Data Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 Interpolation using Logistic Regression . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.3 Using Out-of-domain Model Prediction as an Extra Feature . . . . . . . . . . . . . . 26
5.4 Boosting Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5 Discussion of the Presented Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Data and Metrics 31

6.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1.1 Meetings (MRDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
6.1.2 Telephone Conversations (SWBD) . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.3 Broadcast News (TDT4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1.4 Accuracy of the Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 Practical Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.3.1 Lexical Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.2 Prosodic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3.3 Combination of Lexical and Prosodic Features . . . . . . . . . . . . . . . . . 37

6.4 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.5 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.5.1 F-Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5.2 NIST-SU Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5.3 Test Error Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Experiments and Results 41

7.1 Experiment Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
7.2 Cross-Classification among MRDA, SWBD and TDT4 . . . . . . . . . . . . . . . . . 41

7.2.1 Corpora Ordering According to the Difficulty of Classification . . . . . . . . 42
7.2.2 Varying the Acceptance Threshold . . . . . . . . . . . . . . . . . . . . . . . . 43

7.3 Adaptation of SWBD on MRDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3.1 SWBD Adaptation on BED . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.3.2 SWBD Adaptation on MRDA . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7.4 Adaptation within the MRDA Meeting Types . . . . . . . . . . . . . . . . . . . . . . 53
7.4.1 BRO Adaptation on BED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.5 The Importance of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.5.1 Motivating Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.5.2 Subset of Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8 Conclusions and Outlook 61

A Logistic Regression 63

B Additional Experiments on MRDA Meeting Subtypes 67

B.1 Evaluation of BED, BRO and BMR on BED . . . . . . . . . . . . . . . . . . . . . . . 67

Bibliography 71



List of Figures

1.1 ASR output from a meeting excerpt. . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Human transcription of the meeting excerpt of Figure 1.1. . . . . . . . . . . . . . . . 2
1.3 Enriched ASR output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Grammatical rule example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Grammatical rule example extended . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Unsegmented ASR output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Segmented ASR output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

6.1 Repartition of the sentence boundaries between the 5 dialog acts . . . . . . . . . . . 32
6.2 Dialog acts statistics for MRDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.3 Dialog acts statistics for SWBD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 True/false positive/negative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.5 Example of metrics use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7.1 Recall-Precision graph for 20 acceptance thresholds. . . . . . . . . . . . . . . . . . . 44
7.2 NIST-SU error rate, F-Measure, recall and precision as a function of the threshold. 45
7.3 Comparison of the logistic and exponential loss functions for the BED meetings. . 46
7.4 Performance of BED with SWBD on BED, reference conditions . . . . . . . . . . . . 47
7.5 Performance of BED with SWBD on BED, STT conditions . . . . . . . . . . . . . . . 47
7.6 Performance of MRDA with SWBD on MRDA, reference conditions . . . . . . . . . 51
7.7 Zoom of SWBD with MRDA on MRDA, reference conditions . . . . . . . . . . . . . 51
7.8 Performance of BED and MRDA on BED and MRDA . . . . . . . . . . . . . . . . . 53
7.9 Performance of BED with BRO on BED . . . . . . . . . . . . . . . . . . . . . . . . . 55

B.1 BED, BMR and BRO performances on BED . . . . . . . . . . . . . . . . . . . . . . . 68
B.2 Random sets performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
B.3 BED, BMR and BRO performances on MRDA . . . . . . . . . . . . . . . . . . . . . . 69

v





List of Tables

6.1 Dialog acts labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
6.2 Excerpt of meeting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.3 Data characteristics for MRDA and SWBD . . . . . . . . . . . . . . . . . . . . . . . . 35
6.4 Data characteristics for BED, BRO and BMR . . . . . . . . . . . . . . . . . . . . . . . 36
6.5 List of features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7.1 Error rates for the cross-classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.2 Error rates for the cross-classification with optimal threshold . . . . . . . . . . . . . 44
7.3 Lexical statistics for BED test set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.4 Error rates for the four feature sets, reference conditions . . . . . . . . . . . . . . . . 57
7.5 F-Measure for the four feature sets, reference conditions . . . . . . . . . . . . . . . . 57
7.6 Error rates for the four feature sets, STT conditions . . . . . . . . . . . . . . . . . . . 57
7.7 F-Measure for the four feature sets, STT conditions . . . . . . . . . . . . . . . . . . . 57
7.8 End word statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.9 Top five end words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.10 Top five begin words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

vii





Acknowledgments

I would like to thank my advisor at ICSI, Dilek Hakkani-Tür, for al-
ways keeping her door open and taking the time to answer my tech-
nical and life-related questions. Working with her has been instructive
and a great experience.

I am also thankful to Prof. Hervé Bourlard for his trust and for giving
me the opportunity to discover Berkeley and California.

I have to mention my long-time close friend, classmate and colleague
Jean-Philippe “Short One” Pellet and thank him for the fertile, late-
night IM debates between Zurich and Berkeley on machine learning
and the meaning of the derivative of the life–value function, as well as
for his precious help with LATEX.

Thank you to all the persons that have helped me finalize this work
during the last weeks. I am in particularly indebted to Mathew Maga-
mai who patiently initiated me to the scientifical style of writing and to
all the friends who generously devoted some of their time to give me
linguistic advice.

Finally, I would like to thank every member of the Speech Group at
ICSI for their hearty welcome into the group and their openness to dis-
cussion. Working – and playing Foosball! – with such people has been
a real pleasure.

This work was supported by the Swiss National Science Foundation
through the research network IM2.

1



2



CHAPTER

1

Introduction

Throughout the last decades, tasks related to the speech processing domain have gained impor-
tance. One of the reasons for this is the increase of the computer abilities, in terms of processing
speed and memory size, and the rapid development of the world wide web, all of which have
made it possible to share, store and process audio and video data. Another reason for this growth
of interest toward speech related tasks is the huge progress that has been made in speech recog-
nition since the beginning of the development of speech recognition systems in the 1930’s. Since
then, lots of research has been conducted in the speech recognition field and the improving re-
sults have opened new horizons in the exploitation of speech. For example, applications have
been developed that allow the user to interact with a system by speaking to it (Jurafsky, 1994;
Gorin et al., 1997, among others).

One of these new horizons is the retrieval of the information contained in speech data. Indeed,
the progress of the automatic speech recognition systems (ASR) have led to more accurate textual
transcriptions of speech, allowing researchers to apply textual processing techniques (question
answering, summarization, etc.) to speech transcriptions. However, two main problems have
appeared in the processing of speech transcriptions. First, despite the progress in the automatic
transcription of speech, the word error rate of nowadays ASR is still high and the information
retrieval techniques are therefore not as efficient as on textual data. Second, the sequence of words
output by ASR misses information that are inherent in textual data. To illustrate this lack of
information, an example of ASR output is given in Figure 1.1, and the same sequence of words
with speaker boundaries, punctuation and capitalization is shown in Figure 1.3, while the correct
sequence of words is shown in Figure 1.2. A comparison of Figure 1.1 and Figure 1.3 shows that
the ASR output of Figure 1.1 in particular lacks capitalization, marks of speaker turn change and
punctuation.

These informations are assumed by the textual tasks mentioned above. For example, in the au-
tomatic summarization task, one approach is to form a summary by concatenating the sentences
from the original text, that contain the most information (Mrozinski et al., 2005). To extract sen-
tences from the original text, the system has to know where the sentence boundaries are. Thus,
when done on speech transcriptions, automatic summarization needs the sentences to be de-
tected first by a sentence segmentation classifier. Adding information to the ASR output, in this
case the sentence boundaries, is part of a meta-data extraction process that aims at enriching the
ASR output to guide further textual tasks.

Sentence segmentation is part of this meta-data extraction, or enrichment process together with

1



CHAPTER 1. INTRODUCTION

i i i i i yeah i think it i guess except the better
filters because i sent it to everybody just blew
it off okay it’s really simple that

Figure 1.1: ASR output from a meeting excerpt.

we i uh i i you didn’t get it i don’t think i did i guess
these have got better filters because i sent it to everybody
you uh just blew it off okay it’s really simple though

Figure 1.2: Human transcription of the meeting excerpt of Figure 1.1.

other tasks such as speaker diarization and speaker change detection. Finding the correct posi-
tions of the sentence boundaries can be seen as a binary classification task by deciding that for
every word boundary, either a period has to be inserted (sentence boundary) or not (non-sentence
boundary). We mentioned above that the errors made in the word recognition by the ASR make
this task tougher on speech than it is on textual data. But the errors of the ASR are not the most
challenging part for the sentence segmentation task. The most challenging part of sentence seg-
mentation from speech comes from the nature of speech and its emission by humans.

Being produced by humans, speech is prone to variability created by the differences of gender,
accent, education and emotional state of the speaker as well as by the environment (Shriberg,
2005; Cetin & Shriberg, 2006). The variability in speech makes it difficult for a machine to find
patterns that indicate sentence boundaries. One could easily understand some of the issues met
by a machine with speech by thinking of how often people begin a sentence and start a new one
without having finished the previous one, how often people stammer, or how often they interrupt
each other in the case of multi-speaker environment.

The frequency of the various disfluencies in speech depends on the context (number of speakers,
formal/informal environment, etc.) in which the speech takes place. For example, disfluencies
are expected to occur more frequently in a meeting, when several people are involved in a dis-
cussion, than in a broadcast news show, where there is most of the time only one main speaker.
We designate the context and the particularities of a given speech as the speech style.

As mentioned above, sentence segmentation is a binary classification task; to perform a classi-
fication task, one needs to train a classifier on data that have been labeled. Usually, the amount
of data used to train an efficient classifier for sentence segmentation is large; at the same time,
labeling data is a very time consuming and labor intensive task that has to be done by humans.1

Therefore, the labeling effort is usually reduced by using data that have already been labeled to
train a classifier. This is typically what is done in language models training, where the language
models are often trained on large amount of data that do not all come from the same corpus. The
differences between speech styles make it inefficient to simply merge data that come from two
different domains. In such a case, the classification model of one domain needs to be adapted to
the second domain, in order to better match the characteristics (frequency of sentences, vocabu-
lary, etc.) of the speech style of the second domain. The domain whose model is adapted is called
the out-of-domain and the domain to which it is adapted is called the in-domain.

In the previous case, we made the assumption that very few data from the in-domain was avail-
able. However, adaptation can also be useful when a large amount of data has already been la-
beled. Depending on the similarity of the speech styles of the in-domain and out-of-domain and
on their respective amount of data, using the out-of-domain classifier may lead to a reduction

1While the work load of labeling data is indeed a problem in general, it must be mentioned that some exceptions
have recently appeared. For example, the idea of making the labeling task entertaining is a new field that researchers are
exploring and has been applied to the labeling of images for the web. In this particular case, the labeling task is presented
as an online peer-to-peer game and has been shown to be very successful both in terms of participation from players and
in the quality of the labeling. More details on this can be found on and in von Ahn (2006).

2
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CHAPTER 1. INTRODUCTION

Speaker 1: I I I I I.
Speaker 2: Yeah.
Speaker 2: I think it.
Speaker 3: I guess except the better filters.

Because I sent it to everybody.
Speaker 3: Just blew it off. Okay.
Speaker 1: It’s really simple that.

Figure 1.3: ASR output enriched with capitalization, sentence segmentation and speaker turn
change.

of the classification error achieved by the in-domain classifier. Adaptation can thus be helpful to
both reduce the amount of labeled data needed and increase the accuracy of a classifier.

In this work, first show the need for adapting the data among speech styles. We examine in par-
ticular adaptation among three speech styles: broadcast news, telephone conversations and meet-
ings. Various adaptation methods to build mixed classifiers that perform sentence segmentation
on speech transcriptions are used to adapt telephone conversations to meeting speech style. With
the aim of understanding better the differences between the speech styles, we provide statistical
measures on the data of each speech style and perform a cross-classification for broadcast news
and meeting speech style using four combinations of lexical and prosodic features.

Structure of this work

In the next chapter, we give an overview of the speech recognition process; in particular, we
explain how to extract the textual data on which the sentence segmentation is performed from
the audio. We motivate the utility of sentence segmentation and discuss the concept of sentence
in the context of speech. The last part of this chapter covers the prior work done in the field of
automatic sentence segmentation.

Chapter 3 introduces the concept of adaptation and how it can be used to improve the accuracy
of a classification task. We describe the most popular adaptation methods and report how they
have been used in the speech and language processing domains.

In this entire work, we focus and use only one learning algorithm, the Boosting algorithm.
Chapter 4 gives a detailed presentation of this algorithm and explains how we use it for the
particular task of sentence segmentation.

Chapter 5 is devoted to the theoretical description of the adaptation techniques used in this work.

Chapter 6 is mostly dedicated to the practical description of the sentence segmentation problem.
In particular, it describes the data sets and the metrics that are used in the experiments.

In Chapter 7, we present the results of the various experiments that were performed.

Finally, Chapter 8 summarizes the results discovered in this work and relates them with the fu-
ture challenges of sentence segmentation and adaptation.

3
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2

Sentence Segmentation

In this chapter, we first formalize the sentence segmentation task as a binary classification
problem. We then discuss the concept of sentence and the differences between textual data
and speech transcriptions. The way speech transcriptions are extracted from the original
audio wave of the speech is described in the last part of the chapter, preceding an overview of
the sentence segmentation prior work.

2.1. Sentence Segmentation

While recognizing the words was a big deal at the beginning of speech recognition, current
recognizers have become better and better in performing this basic task. Their increased accu-
racy allows us to look toward new challenges for the speech domain, such as parsing, auto-
matic machine translation, information extraction, question answering, topic detection and sum-
marization, which are all current and future promising research topics (Mrozinski et al., 2005;
Makhoul et al., 2005; Shriberg et al., 2000).

These tasks however, require more information than the sequence of words output by the ASR,
and the output of the ASR thus has to be enriched. For example, in the automatic summarization
task, one approach is to detect the sentences that contain the most information, to extract them
from the original text and to combine them together as a summary (Mrozinski et al., 2005). To
extract sentences from the original text, the system has to know where the sentence boundaries
are. Thus, when done on speech transcriptions, automatic summarization needs the sentences to
be detected first by a sentence segmentation classifier.

Sentence segmentation is part of the enrichment process (also called meta-data extraction) that
consists of adding information to the speech transcription of the ASR to guide further high-level
textual processing tasks. Other tasks of the enrichment process are speaker diarization, speaker
identification or speech activity detection, among others. Two excellent examples of rich tran-
scription systems are the one built jointly by ICSI and SRI (Liu et al., 2006) and the one developed
by IBM (Soltau et al., 2005).

5



CHAPTER 2. SENTENCE SEGMENTATION

2.1.1 Formalization as a Classification Problem

The role of sentence segmentation is to determine, given a sequence of words, where sentence
boundaries should be inserted. Sentence boundaries can appear between each two words of a
sequence of words. In other words, for each word boundary, a decision has to made whether a
sentence boundary should be inserted or not. Sentence segmentation can thus be seen as a binary
classification task where the instances to classify are the word boundaries and the class to which
an instance is assigned is either the sentence boundary class Cs or the non-sentence boundary
class Cn. We will explain further more in details how the classifier hypothesizes either one of the
two classes.

As explained in the introduction of this chapter, most high-level speech processing tasks assume
the presence of sentence boundaries. Moreover, sentence boundaries and punctuation in general
are also useful for human readability. However, while people agree on the importance of finding
the sentence boundaries, the concept of “sentence” is not always clear. In the next section, we
discuss the issues related to the definition of what is a sentence.

2.1.2 Definition of a Sentence

Although the concept of “sentence” is the cornerstone of most languages, giving an accurate
definition of it is difficult. Sentences have a structure that follows grammatical rules. For example,
one of the most basic grammatical rules to form a correct sentence is “subject-verb-object”. A
simple illustration of this rule is shown in Figure 2.1. Grammatical rules can then be recursively
extended; for example, the “object” part of the sentence can be composed of more than a noun
phrase. Thus, one possibility of adding a prepositional phrase in the object of the sentence of
Figure 2.1 is the sentence of Figure 2.2. Such a syntactically rule-based grammar description is
easy to express to a computer and has been widely studied in the field of textual processing
(Allen, 1995; Baker, 1979).

The cat [S] eats [V] the mouse [O].

Figure 2.1: Illustration of the grammatical rule “subject-verb-object”.

The cat [S] eats [V] the mouse under the table [O].

Figure 2.2: Same as Figure 2.1, but the object of the verb has been extended.

While useful for text applications, the rule-based grammar approach can however not be used
in the speech domain. The main reason for this is that people do often not form grammatically
correct sentences when they speak. Shriberg (2005) describes the way people talk, examining in
particular the various disfluencies such as filled pauses, repetitions, repairs and false starts, and
the influence of emotion on the speech. Another element that tends to increase the variability of
speech is the presence of multiple speakers. Indeed, when people talk to each other, they very
rarely talk one after the other with no overlap at all. Cases in which people speak at the same
time are frequent, as presented by Cetin & Shriberg (2006). Their analysis done on 26 meetings
shows that on average, 12% of the overall foreground speech is overlapped by speech from one
or more talkers. For instance, attendees often try to grab the floor by saying things like “Yes,
but” or “Okay, but” , which are designated as floor grabbers. Floor holders are the opponents to
the floor grabbers and try to hold the floor by filling the blanks, which is usually manifested by
a repetition of the same word or the emission of a noise such as “um” . In a more peaceful way,
one can also show when he agrees with the current speaker by uttering little words such as “I
see” , “Uhhuh” , “Right” , which are known as backchannels. Finally, people sometimes begin a
sentence, realize that this is not the way they want to express whatever they want to express, and
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then begin the sentence again in another way, which are referred to as disruptions. Floor grabbers,
backchannels and disruptions are called dialog acts and more details on them can be found in
Zimmermann et al. (2006b).

The units generated by the segmentation into dialog acts can be, as shown with the above exam-
ples, syntactically incorrect and should thus not be considered as sentences. On the other hand,
if we do not consider them as sentences, we will end up with longer sentences that do not make
sense either, such as the one shown in Figure 2.3. In this example, the regular sentence “I think
we should decide option one instead of option two” is interrupted by the floor
grabbers “okay but” and the backchannels “right” , “okay” emitted by other speakers. The
correct punctuation according to the dialog act segmentation is shown in Figure 2.4.

I think we should decide option one right okay instead of opti on okay two but.

Figure 2.3: A sentence where neither backchannels nor floor grabbers are followed by a period.

I think we should decide option one. Right. Okay.
Instead of option Okay two. but.

Figure 2.4: Same sentence as in Figure 2.3 with backchannels and floor grabers followed by a
period.

This example points out that even though a segmentation according to dialog acts would lead to
syntactically incorrect sentences, it makes more sense to segment the sequence of words accord-
ing to dialog acts than to the whole sentences, which is often not syntactically correct anyways.
The segmented parts created according to dialog acts are called sentence units (SU). The five dialog
acts that are considered and marked as sentence units are backchannels, disruptions, floor grab-
bers, statements and questions. In the rest of this work, we use the term “sentence” to designate
the sentence units formed by the dialog acts.

The definition of the sentence through the five dialog act classes allows the sentence segmentation
classifier to know what it is looking for. The next challenge is to find an appropriate learning
algorithm to train the classifier and a set of features to represent the data, such that the sentence
segmentation can be performed accurately. Section 2.3 gives an overview on how these two issues
have been dealt with in the past, while the next section explains the practical process that leads
from audio to a sequence of words.

2.2. Speech Recognition Overview

As formulated by Jurafsky & Martin, the purpose of speech recognition can be expressed as:

“What is the most likely sentence out of all sentences in the language L given some
acoustic input O?”

Although this looks like a rather simple question, the machines that currently answer it the most
accurately (ASRs) are a succession of non-trivial processes, which are described below.

2.2.1 Acoustic Analysis

The first step of the speech recognition process is to make the signal captured by the micro-
phone, independent from the environment in which it was recorded (noise, reverberations, type
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of microphone, etc.). Ideally, the audio source ends up being independent from any non-lexical
information and the lexical information can then be extracted.

Since the speech signal is a continuous and non stationary signal, it also needs to be decomposed
into a digital signal. This is typically done by slicing the audio signal into overlapping windows of
20ms to 30ms every 10ms. Each of the windows is assumed to be stationary. An acoustic vector
is derived from each of the windows, and all windows vectors are then concatenated to form
a sequence of vectors. The final representation of an audio wave is thus a sequence of acoustic
vectors that pictures the wave form at each 10ms interval. The acoustic input or observations
O mentioned in the question at the beginning of this section are nothing but this sequence of
vectors.

2.2.2 From Acoustic Vectors to a Sequence of Words: General Approach

According to the question at the beginning of this section, the goal is to identify the sequence of
words Ŵ that is the most likely to occur according to a given observation vector O obtained from
the acoustic analysis. This can be expressed as:

Ŵ = argmax
Wj∈L

P(Wj|O). (2.1)

Since the number of observations O is small compared to the number of possible sentences, esti-
mating Equation 2.1 is difficult. Bayes’ rule can be used to rewrite Equation 2.1 as follows:

Ŵ = argmax
Wj∈L

P(O|Wj)P(Wj)

P(O)

Since P(O) is independent of the hypothesis Ŵ (O is the same for every possible sentence), the
above equation can be reduced to:

Ŵ = argmax
Wj∈L

P(O|Wj)P(Wj) (2.2)

The unknown sequence of words Wj that we are trying to find can be modeled by a hidden
Markov model (HMM). P(Wj) and P(O|Wj) depend on the parameters Θ of the HMM model,
which makes Equation 2.2 become:

Ŵ = argmax
Wj∈L

P(Oj|Wj, Θ)P(Wj|Θ). (2.3)

The previous equation makes the simplifying assumption that the set of parameters Θ is the
same for all sentences Wt. This is a practically required assumption since it would be impossible
to have different parameters, and thus different models, for each possible sentence. To match
with this assumption, the models representing the sentences are decomposed into smaller lexical
units. While in the very early speech recognizer systems the lexical unit was the word, most of
the recent ASRs use phonemes as lexical units (Gadde et al., 2002).

Up to now, we have examined the recognition part of the speech recognition task, which takes two
input arguments: the acoustic observations O and the HMM model described by its parameter
Θ. However, we have not explained where the probabilistic models that allow to compute the
most probable sequence of words Ŵ come from. In fact, the probability models need to be trained
before they can be used in the above equations. Equation 2.3 contains two probabilistic models
P(O|Wj, Θ) and P(Wt|Θ) and can be decomposed according to them. As we will see, this split is
appropriate since P(O|Wj, Θ) and P(Wt|Θ) each models one part of the problem.

8



CHAPTER 2. SENTENCE SEGMENTATION

The likelihood P(O|Wj, Θ) can be seen as the acoustic contribution and can be estimated
with HMMs. During the training phase, the HMM parameters are optimized to maximize
the likelihood of the set of training sentences given their associated HMM model. The train-
ing of the HMM parameters is beyond the scope of this work and the reader is referred to
(Jurafsky & Martin, 2000; Boite et al., 1999, among others) for more details on them.

The second part of Equation 2.3, P(Wj|Θ), is the probability of having a particular sequence of
words. Since this probability has no dependence on the observed acoustic vector O, it can be
estimated a priori on lexical only dependent data, typically using a Markov model. The indepen-
dence of the sequence of words Wj with respect to the observed acoustic model O allows to split
the parameters Θ into two subsets, the language dependent parameters ΘL (called the language
model) and the acoustic dependent parameters ΘA (called the acoustic model).

The language model is often simplistically seen as a set of N-grams with associated probabilities
that have been estimated on large corpora using only statistical computation (Markov model).
The language model can nevertheless also contain syntactic and semantic features. In all cases,
the language model is used to find the most probable sequence of words. In particular, given a
sequence of words, it can be used to output a list of the most probable following words with a
probability associated to each possibility.

The split of the parameters Θ into the two independent sets ΘA and ΘLis a simplifying assump-
tion, since in the reality a word is often pronounced differently depending on its position in a
sentence. However, this simplifying assumption is particularly accommodating in the practice,
since it allows to train the language model on textual data, and thus enables to increase the size
of the training data. According to this split of the parameters Θ into ΘL and ΘA, we can rewrite
Equation 2.3, that expresses the recognition task, as:

Ŵ ≈ argmax
Wj∈L

P(O|Wj, ΘA)P(Wj|ΘL). (2.4)

2.2.3 STT vs. Reference Conditions

Recall that in order to be able to train a classifier that detects sentence boundaries, one needs
to have sequences of words annotated with the sentence boundaries. The annotation is done by
humans who listen to the original audio recording of the speech and write down what they hear,
annotating their transcription with punctuation. The transcription done by humans for a given
audio wave is called the reference transcription. The reference transcription WREF annotated by
humans is assumed to contain the words that were indeed uttered by the speakers. In practice
this is not exactly the case since humans can make mistakes; however, these mistakes can be
partly removed by having different persons labeling the same audio source. Moreover, the human
transcription of the speech is the transcription that is the nearest from the truth that one can
obtain. Another type of transcription, the speech-to-text one (STT), is obtained from the sequence
of words WASR output by the ASR.

Although the probability that the sequence of words WASR corresponds to the reference sequence
of words WREF has been optimized by the process described in the previous section, it is often
the case that WASR and WREF do not exactly match. As explained in more detail further in this
section, WASR can in particular contain words that are not in WREF (insertion), can miss words
that are in WREF (deletion), or replace words of WREF by other words (substitution).

While the annotation has been done on the reference conditions, the STT conditions are the ones
that correspond to the reality and under which the classifier should also be trained. The STT tran-
scriptions also have to be annotated, but annotating data is a time-consuming and labor-intensive
task, and one therefore wants to avoid to have humans annotate the STT conditions. Instead, an
automatic alignment between WREF and WASR can be done that allows the STT transcription to
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be automatically annotated with the tags from the reference conditions. The alignment process,
which we explain in more detail below, is also used to complete the time information that is
missing in the reference conditions.

Reference conditions

For the reference conditions, the speech is transcribed by humans into an enriched sequence of
words that contains a tag for each word of the transcription. The tag can be one of the five di-
alog acts if the word marks the end of a dialog act, or a tag indicating that no dialog act ends
after the word. No information about the timing is known at this point. This information is ob-
tained through a procedure called forced alignment. Forced alignment takes as input the correct
words along with the spectral feature vectors and produces the optimal sequence of phones. It
is called forced because the correct sequence of words is given and the algorithm only has to find
the best sequence of phones according to the pronunciation of the given words and the feature
vectors. Once this has been done, the beginning and end times of each word can be added to the
transcriptions.

STT conditions

For the STT conditions, the recognition process described in Subsection 2.2.2 is used to obtain the
sequence of words: feature vectors are extracted from speech, phone likelihoods are estimated
and turned into words. The problem is that the sequence of words issued from the automatic
recognition process does not contain any punctuation information, which is needed in order to
train and test classifiers for sentence segmentation. Asking humans to label it would turn out to
do again what has already been done for the reference conditions. In order to spare this work
and since the sequence of words in the reference and STT conditions is mostly similar despite the
ASR errors, the correct tags of the STT words can be assigned by proceeding to an alignment be-
tween the correct sequence of words of the reference conditions WREF and the guessed sequence
of words of the STT conditions WASR. This task is however not trivial because the ASR is not per-
fect, deleting, inserting and substituting words during the word recognition phase. Taking these
errors into account, the alignment algorithm uses dynamic programming and finds the align-
ment that minimizes the number of mismatches between the two sequences of words. This leads
to a bijective function between each sequence of words. Each word in WASR is then assigned the
same tag (one of the five dialog act tags or the non-dialog act tag) as its corresponding word in
WREF.

Problems caused by insertions, deletions and substitutions

The two above-described tasks of matching dialog acts tags to words of the STT transcriptions
and matching beginning and end times to words of the reference transcriptions are made tougher
because of the insertions, deletions and substitutions that ensue from the alignment process. For
instance, it is often the case that the ASR misses a word (deletion), converts some background
noise into a word (insertion) or detect the presence of a word without being able to determine
the correct word (substitution). During the alignment with the reference sequence of words, the
words that are missing in WASR are added, but there is no time information for them since the
ASR did not notice them. On the contrary, the words that were inserted by the ASR have time
information but since there is no corresponding dialog act tag in the reference transcription for
them, their dialog act information is missing. In such cases, we associate a non-sentence boundary
to the inserted word. In case of a substitution, both time and dialog act informations are present
but the word is incorrect or missing (replaced by a @reject@ tag).
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These errors in the alignment process then result in a lack of information in the final STT and
reference transcriptions, which have to be handled during the training phase. The long-term goal
of the whole speech recognition process is to tend to a maximal automatization. So for consis-
tency, the data on which the classifier is trained should correspond to the data that come out of
this automated process, i.e. the ASR output. For this reason the sequence of words that is given
to the classifier in both STT and reference conditions for the learning, does not contain the words
deleted by the ASR, while it contains the words that the ASR falsely inserted. Once again, this
can appear to be suboptimal since the sequence of words on which the classifier is trained is not
the real one. Nevertheless, as the classifier is meant to be evaluated on the ASR output, it makes
more sense to train it on the same kind of data that it will be evaluated on, even if these data
do not exactly match with the original text. However, it should also be noticed that even with
the accurate speech transcriptions of the reference conditions, the sentence segmentation on the
reference transcriptions cannot be compared to the sentence segmentation task on textual data
for speech fundamentally differs from text, as explained in Subsection 2.1.2.

2.3. Related Work on Automatic Sentence Segmentation

2.3.1 Acoustic vs. Linguistic Segmentation

A computationally efficient way of segmenting a sequence of words is to perform the segmenta-
tion at the audio level. In such a case, the ASR segments the wave form into acoustic sentences
according to acoustic features, such as long silences or speaker changes. The problem with such
segmentations is that they do in general not match with the linguistic segmentations done by hu-
mans (e.g. the ones described above with the dialog acts). For example, it is possible that the
speaker makes a break in the middle of a sentence, in which case what is actually one sentence
would be split into two sentences by the ASR; or that two acoustic sentences are merged be-
cause the speaker does not make any significant break between two sentences. Stolcke & Shriberg
(1996) and Meteer & Iyer (1996) have shown the relevance of performing linguistic segmenta-
tion instead of acoustic segmentation. They used a combination of hidden Markov models and
N-gram language models (HELM for hidden event language model) that outputs a probability of
having a sentence boundary between any two words. The probability is then converted to an
actual sentence boundary or a non-sentence boundary using a thresholding process, i.e. if the
probability of seeing a sentence boundary is higher than a given threshold, a sentence boundary
is inserted.

2.3.2 Classifiers

The HELM method was also used by Gotoh & Renals (2000) and by Shriberg et al. (2000) and ex-
tended with confusion networks (Hillard et al., 2004; Zimmermann et al., 2006a). Confusion net-
works were used in this case to take advantage of different word hypotheses from the ASR to
reach a more accurate sentence segmentation. While all these works rely on a combination of lan-
guage models and HMM, other classifiers have also been used. Zimmermann et al. (2006a) have
compared various classification algorithms, such as boosting on weak learners, HELM, maxi-
mum entropy and decision trees. Their results showed that the best sentence segmentation per-
formance was reached by a combination of the HELM classifier and a boosting algorithm on
weak learners, originally designed for textual classification.

In a recent study, Roark et al. (2006) presented a new approach that did not use Markov models.
Their main assertion was that Markov models are not able to model sufficiently long sequences
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to be efficient on the sentence segmentation task. In their approach, they used the maximum
entropy model presented by Liu et al. (2006) to produce n-best lists of possible segmentations
and extracted disambiguation features to choose the best one among them. Their new approach
allowed them to use some features that had not been used in the above-presented methods, in-
cluding statistical and syntactic ones.

2.3.3 Features

While these syntactic and statistical features have not been used before, at least two other main
types of features have been widely studied for the problem of sentence segmentation: the lexical
ones and the prosodic ones.

Lexical features are represented as word N-grams with sentence boundary. Word N-grams are
naturally well shaped by the HELM method described in the previous paragraph, but they can
also appear in other classifier types such as boosting. The main advantage of lexical features is
that they are not limited to audio training data but can also be extracted from text corpora, and
can therefore benefit from a larger amount of data than prosodic features.

Indeed, prosodic features are by definition related to oral characteristics such as rhythm, stress and
intonation and hence require an audio representation of the data. Prosodic features have been
used by Shriberg et al. (2000) and Liu et al. (2005), among others, and the results showed that
prosodic features reduced the sentence segmentation error when added to the lexical features.
In particular, pause duration has been shown to be one of the most important feature for the
sentence segmentation task.

As mentioned in the previous paragraph, syntactic features have recently been used in a re-ranking
approach and led to promising results (Roark et al., 2006). In another attempt to find new fea-
tures, Eisenstein & Davis (2005) studied the effect of gestural cues for sentence segmentation.
They showed that gestures were indeed good indicators to detect the sentence boundaries, but
that they did not improve the sentence segmentation performance when used together with lex-
ical and prosodic features, since the information that they contained was already conveyed in
the lexical and prosodic models used. However, this redundancy with the lexical and prosodic
features makes gestural features a promising field for the cases where speech or prosody data are
noisy.

2.3.4 Utility of Sentence Segmentation

The last two works mentioned herein may be the most important ones, since they showed the
importance of performing sentence segmentation. Mrozinski et al. (2005) showed that automatic
summarization performs better when done on data on which the punctuation is correct. They
used different language styles corpora (broadcast news, conference proceedings and lectures),
extracted the sentences that had the most significance and put them together to form a sum-
mary. They used random, automatic and human labeled sentence segmentation methods and
showed that the more accurate the sentence segmentation, the most relevant the summarization.
Makhoul et al. (2005) evaluated two tasks of the information extraction domain, entity and rela-
tion extraction, as a function of the punctuation. They showed that even if the most important
factor for a efficient entity and relation extraction was the word error rate (WER) performed by
the ASR, using automatic boundary detection instead of full correct punctuation, considerably
reduced the score of both entity and relation extraction.

12



CHAPTER

3

Adaptation

This chapter first defines terms related to model adaptation and machine learning in gen-
eral. We then describe the concept of model adaptation and justify the use of adaptation for
classification tasks. A formalization of the model adaptation is then proposed, followed by
the examination of two statistical frameworks (MLE and MAP), as well as how and in what
fields they have been used for adaptation purposes.

3.1. Definitions

In the rest of this work, we will use some words that are specific to machine learning or to model
adaptation. Since different terminologies are used in literature, we specify the meaning of some
expressions that will be used throughout this work.

Classifier. A classifier is the result of the learning process. It is a predictive function c = f (x)
that, given an instance x and a set of classes C, associates one class c ∈ C to the instance x, i.e. it
classifies the instance.

Labeled or annotated data. Labeled/annotated data refers to a set of data in which each in-
stance in the data set is manually assigned a corresponding class. The class of each instance is
considered as the true one for that particular instance. Unlabeled/unannotated refers to the in-
stances of the data that do not have a class assigned by a human labeler.

In-domain and out-of-domain. We consider a domain as a space that contains data which come
from the same source. A domain can be a corpus of data, but as we will see from the MRDA
adaptation experiment, it can also be a subpart of a corpus. With the task of adaptation, we dis-
tinguish two domains: the in-domain and the out-of-domain. The in-domain refers to the domain
on which the classification task has to be applied. The out-of-domain refers to another domain
which has no formal relationship with the in-domain, but can however be thought of as being
helpful to classify data of the in-domain. Usually, the out-of-domain contains significantly more
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data than the in-domain and is used to create a general model, while the in-domain data are used
to adapt the general model to a model that reduces the mismatch between the general model and
the characteristics of the in-domain.

Training or building a classifier. Feeding a learning algorithm L with some training data Dt

results in the creation of a classifier. We call this process the training phase. We also can say that
the resulting classifier is built on Dt using L.

Testing or evaluating a classifier. Once a classifier has been trained on some data Dt it can be
evaluated on another set of data De, with Dt ∩ De = ∅. In the evaluation phase, also called test-
ing phase, the classifier attributes a class ce ∈ C to every instance x ∈ De. The class ce that was
attributed by the classifier to the instance x is then compared to the true class ct of the instance
x. If the two classes match, i.e. ce = ct, the classification of x is considered correct. In the oppo-
site case (ce 6= ct), the classification of x is considered erroneous. Different metrics can then be
used to evaluate the classification performance, based on the number and the type of instances
erroneously and correctly classified.

In the rest of this work, a typical sentence in the description of the experiments will be: “The
performance of the MRDA classifier is tested/evaluated on SWBD”. This means that a classifier
has been built on the training data of the MRDA corpus using the Boosting learning algorithm
and its performance is evaluated on the test set of the SWBD corpus.

3.2. Definition and Usage of Adaptation

As explained in the previous chapter, our approach to the sentence segmentation is to consider it
as a binary classification problem (i.e. two classes), in which every word boundary has to be classi-
fied as a sentence boundary or as a non-sentence boundary. In the statistical learning process, one
first needs to choose a learning algorithm. In this work, we mainly focus on a boosting algorithm
which we describe in more detail in Chapter 4, as it was shown to yield top-tier performances for
sentence segmentation (Zimmermann et al., 2006a) as well as text classification tasks (Gupta et al.,
2006). Once a learning algorithm has been selected, the next step is to feed this algorithm with a
set of training data. The data set is split into instances (also called examples) which are represented
by a set of features and a class. For the sentence segmentation task, the features are mainly word
N-grams and prosodic characteristics, as presented in Section 2.3. In order to be able to learn how
to classify the instances according to their features, the algorithm needs to be provided with the
true class of the training instances, i.e. with instances that have been labeled.

Labeling the data, i.e. attributing the correct class to each instance of the data set, has to be done
by humans, since they are the only ones able to define what a sentence is according to the com-
plex definition given in Subsection 2.1.2. This is a time-consuming task which has to be done
meticulously and following a number of well-defined rules to make the data as consistent as
possible.1

Adaptation is a general concept which can be employed to reduce the human labeling effort
by reusing existing labeled data, even when these existing data do not exactly match with the
domain of the data that need to be classified. Indeed, large amounts of data have already been
labeled in the past years through various projects in the spoken language processing field. Some
of these sets of data, called corpora, are publicly available. Adaptation is the process of using
these already labeled data (out-of-domain) to help build or improve a classifier for the new do-
main (in-domain). We distinguish two adaptation methods: unsupervised adaptation and supervised

1An example of these rules are the labeling guidelines for the ICSI meeting project (Dhillon et al., 2004).
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adaptation. Unsupervised adaptation refers to the case where no labeling is provided for the in-
domain data. The only labeled data are thus the data of the out-of-domain.

The data of the out-of-domain are however not specific to the in-domain and can even be different
from the in-domain data. Thus, classifying the in-domain data with a classifier built on out-of-
domain data could result in a low accuracy classification. To make the classifier more closely
related to the in-domain, one may therefore want to include some knowledge of the in-domain
data into the classification model construction. If so, some in-domain data thus have to be man-
ually labeled. In this case, the classifier is provided with some knowledge of the in-domain and
the adaptation is then known as supervised in this case.

3.2.1 The Choice of the Out-of-Domain and the In-Domain

Adaptation requires the data of the in-domain and the out-of-domain to share some similarities.
It would, for example, make no sense to perform language model adaptation from one corpus
in English to another one in Arabic. The exact amount of similarities is however difficult to eval-
uate, although some statistical measures from the information theory (mutual information, KL-
divergence, etc.) can be used to this end. Percepting the relation between the in-domain and the
out-of-domain data can also lead to selective sampling techniques, where the samples containing
useful knowledge are uppermost selected.

Besides quantitative assumptions, one could also make some qualitative assumptions on what
has to be the same for both the out-of-domain and the in-domain data. For example, the number
of classes in both domains should be related, i.e. either be the same or at least have a common
identical subset. Another requirement would be that the data had been labeled following the
same guidelines, or at least if the labelings are different, that they could be made consistent to-
gether. The latter point is especially important in the context of sentence segmentation, because
as we have seen in Subsection 2.1.2, defining what is a sentence boundary (and what is not), is
not always straight forward.

The relation between the out-of-domain and the in-domain can change depending on the task
for which adaptation is used. The out-of-domain can be a domain which has the same major
characteristics as the in-domain, but for which some characteristics differ from the in-domain.
The adaptation of telephone conversations on meetings that is studied in this work is such a
case, since telephone conversations and meetings share the similarity of both being conversa-
tional speech but differ in the number of speakers and the possibility of seeing one’s interlocutor,
among others. Another way of considering adaptation is to take the out-of-domain as a gen-
eral classification model and to adapt it to a more specific in-domain. This is the approach used
when creating speaker-dependent language models: a general language model is built based on
the words that a large population use and is then adapted to a more specific domain, i.e. the
speaker-related domain (Souvignier & Kellner, 1998, among others). The previous example re-
veals that model adaptation is not limited to the sentence segmentation task. As we will see in
Subsection 3.3.2, adaptation can be used in several problems across various domains.

3.2.2 Formalization

This section has been inspired by the work of Daumé & Marcu (2006).

In the classification problem, it is typically assumed that a set of data D = (xn, yn) ∈ X × Y is
available where X is the feature space and Y is the finite set of labels. The data set D is usually
split into three subsets: the training set, the test set and the development (or held-out) set. It is
assumed that every sample (xn, yn) is drawn from an unknown fixed distribution p. The learning
task consists of finding a predictive function f : X → Y from the training set, so that f minimizes
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the number of errors when applied on the test set, where errors are the cases in which the label
ye,n guessed by f for an instance xn is different from the true label yn. The development set can
be used to optimize parameters.

In the case of adaptation, we assume two sets of data D(o) and D(i) drawn from two different
fixed unknown distributions, p(o) and p(i) respectively. D(o) stands for the out-of-domain data
while D(i) stands for the in-domain data. The learning problem is to find a function that has a
high predictive accuracy, i.e. that minimizes the number of errors on the in-domain test set, T(i).
From a mathematical point of view, the problem could be inverted and the goal could be defined
as finding a predictive function on the test set of the out-of-domain data. This is however not the
case in practice, since the amount of labeled data available in the in-domain is much smaller than
the amount of labeled data available in the out-of-domain: |D(o)| = N(o) ≪ N(i) = |D(i)|.

In the introduction to this chapter, we mentioned that the in-domain and the out-of-domain
should share similarities to enable adaptation. These similarities can now be formally expressed
as the similarity between the two distributions p(o) and p(i). If the two distributions are the same,
the two data sets can be merged into one single set and no adaptation is needed. If on the contrary
the two distributions of the two domains are independent, then the knowledge of one domain
brings nothing to the other one and adaptation is thus useless. When proceeding to adaptation,
we therefore assume that p(o) and p(i) are neither independent nor identical.

In the case of sentence segmentation from speech, we typically adapt a classification model with
one speech style to a domain with a different speech style. For example, as we will see further
in this work, one sentence segmentation classifier can be built on telephone conversations and
adapted to multi-party meetings. In this case, differences between the speech styles could be a
different number of speakers and the possibility or not to see one’s interlocutor, among others.
These differences make the distributions of the sentence boundaries in the two domains not iden-
tical. However, since there also are a number of similarities among these two speech styles, such
as the language (English) and the type of speech (conversational), the distribution of the sentence
boundaries is not independent.

Being a general concept, adaptation requires some choices to be made to become applicable to a
given problem. In particular, one has to choose:

• a set of relevant features to represent the data,
• a learning algorithm,
• a way to adapt the out-of-domain classifier to the in-domain.

Features. The set of features describing the samples to classify must be relevant in both the
out and the in-domain. For example, in the case of the sentence segmentation task, if the pause
duration between two words is the most decisive feature in the in-domain data whereas for some
reason it is of no importance in the out-of-domain data, it is likely that a classifier built on the
out-of-domain data will lead to an inaccurate classification on the in-domain data. Results using
different sets of features are shown and discussed in Section 7.5.

Learning algorithm. The learning algorithm chosen should be appropriate to the task. For ex-
ample, while support vector machines (SVM) yield top results in most of the learning tasks,
(Zimmermann et al., 2006a) have shown that the BoosTexter tool (Schapire & Singer, 2000), which
implements a boosting learning algorithm, is particularly efficient for text categorization and
sentence segmentation problems. Another work showed the efficiency of Boosting for adaptation
tasks (Tur, 2005). We therefore use the BoosTexter tool in our experiments. Chapter 4 describes in
more detail the learning algorithm implemented by BoosTexter.
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Adapatation methods. The last choice one has to make is the way of combining the classifiers
of the in-domain and the out-of-domain. The combination of both classifiers should exploit the
maximal in-domain relevant knowledge from the two domains. We discuss different adaptation
methods in Chapter 5.

The three presented choices have a big influence on the quality and the accuracy of the classifica-
tion that will be obtained by our system. As mentioned for the choice of the learning algorithm,
looking at what have previously been done is useful. In the next section, we review the work
that has been done on this particular aspect of combining one out-of-domain model with one
in-domain model to perform classification on the in-domain data.

3.3. Related Work on Model Adaptation

The most reported models of adaptation in the literature use either the maximum a posteriori
(MAP) framework or the maximum likelihood estimation (MLE). In order to better understand how
these two statistical models are used for the adaptation, we shortly recall the basic principles of
both of them.

3.3.1 Brief Presentation of MLE and MAP

In both cases a set of data X = {x1, . . . , xn} is given and is assumed to be drawn from an unknown
distribution p(x). Our goal is to find the parameters θ of the distribution that match the best with
the data X.

The likelihood for a particular sample x ∈ X with respect to θ is defined as the joint probability
function p(x|θ). MLE assumes that the parameters θ of the distribution are fixed but unknown.
For example, we can assume that the data is distributed according to a Gaussian (or a mixture of
Gaussians) for which we want to estimate the parameters θ = (µ, Σ) that will make the Gaussian
distribution the nearest from the data contained in X. Assuming that the data in X are indepen-
dent, the likelihood turns out to be:

p(x|θ) =
n

∏
j=1

p(xj|θ)

In an intuitive way, MLE defines the estimator of θ as being the one that yields the largest likeli-
hood p(x|θ):

θMLE = argmax
θ

p(x|θ) (3.1)

θMLE can be found by deriving the log likelihood and setting it to zero.

The MAP model is part of the Bayesian estimators family, which have a completely different ap-
proach. While MLE assumed that the parameters θ were unknown but fixed, Bayesian estimation
assumes that the parameters θ are also random variables with a prior distribution p(θ). Therefore,
the posterior distribution that we want to maximize is now:

p(θ|x) =
p(x|θ)p(θ)

p(x)
≈ p(x|θ)p(θ)

The parameter θMAP estimated by MAP can be directly expressed from this equation:

θMAP = argmax
θ

p(θ|x) = argmax
θ

p(x|θ)p(θ) (3.2)
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A comparison of equations 3.1 and 3.2 makes it clear that MLE is only a special case of MAP,
where the prior distribution p(θ) of the parameter θ is uniform. The differences in the two ap-
proaches are especially important for the problem of adaptation and the cases where only a lim-
ited amount of data is available. Indeed, MLE requires an important amount of training data to
achieve accurate results, since it makes no assumption on the parameters θ. On the contrary, the
prior distribution p(θ) used in the case of MAP can be seen as a prior knowledge of the model
(before any data has been observed) and can be useful in the case where only a little data is
available.

This case is exactly the one of the adaptation problem, in which very little data of the target
domain (in-domain) is available. The prior distribution p(θ) of the parameter θ can be estimated
on the out-of-domain data. Denoting the data sets as D(i) and D(o) for the in-domain and the
out-of-domain and their parameters as θi and θo respectively, Equation 3.2 becomes:

θ̂i = argmax
θi

p
(

D(i)|θi

)

Prior distribution of θi
︷ ︸︸ ︷

p









θi| argmax
θo

p(θo)p
(

D(o)|θo

)

︸ ︷︷ ︸

MLE estimation on the out-of-domain









(3.3)

As Huang et al. showed (2001), the weight of the prior knowledge can be formulated as a function
of the amount of in-domain data available. Thus, as the amount of in-domain data increases, the
MAP estimate tends to the ML estimate, since the in-domain data get a higher weight than the
prior knowledge. Although the MAP approach seems very attractive, one should keep in mind
that the estimation of p(θ) is a critical operation, especially because p(θ) may be a non trivial
distribution and because the quality of the guess of p(θ) depends on the similarity between the
out-of-domain and the in-domain, which is usually difficult to predict.

Another more subtle limitation of the MAP approach is that only the distributions of the param-
eters that appear in the in-domain data can be modified. This could thus lead to a very slow
adaptation and require some extra means to have the poorly adapted parameters altered. So in
some cases, it might be better to use the MLE approach instead of the MAP one. The adaptation
of the parameter θ can be done using linear regression transformation functions (MLLR). An ex-
ample of such an adaptation is shown in Huang et al. (2001, p. 450) for speaker adaptation using
HMM with Gaussian probability density functions. Note that the MAP approach and the MLLR
can be combined to take advantage of both methods. The reader is referred to Huang et al. (2001)
for more details on MLLR and the inclusion of the MAP approach into it.

3.3.2 Prior Work

As far as we know, model adaptation has never been applied to the problem of sentence seg-
mentation. Both supervised and unsupervised adaptation have however been shown to be use-
ful in other speech and language related tasks, such as language models (LM) and probabilistic
contextual free grammars (PCFGs) (Bacchiani & Roark, 2003; Roark & Bacchiani, 2003). The ap-
proach presented in these two articles is based on the above-presented MAP approach. For the
LM adaptation, Bacchiani & Roark used the Dirichlet density to estimate the prior discrete dis-
tribution across words. By only changing the parameter of the prior Dirichlet distribution, they
achieved two techniques, count merging and model interpolation. These two techniques were
evaluated at 4 stages of the recognition process and both count merging and model interpo-
lation outperformed the baseline in all cases. The MAP approach presented in this work has
later been compared with a perceptron algorithm which re-weights paths in a lattice of words
in (Bacchiani et al., 2004). The experimental results of this study showed that the MAP approach
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outperformed in general the perceptron algorithm, but that the latter had the same performance
as the MAP under certain conditions.

X. Fang & Sheng (2003) identified two main problems for the LM adaptation, which are the poor
quality of the out-of-domain data and the mismatch between the N-gram distributions in the
out-of-domain and the in-domain. To solve these two problems, X. Fang & Sheng used filtering
techniques together with a linear interpolation between the out-of-domain and the in-domain
LMs. The results showed a reduction of the perplexity.

The count merging and model interpolation techniques mentioned above for LM adaptation have
also been used in the case of PCFGs (Roark & Bacchiani, 2003). The prior distribution was still es-
timated with the Dirichlet distribution, but the goal was to evaluate the left-hand side of each rule
of the PCFG instead of the discrete distribution across words. The results showed that adaptation
can achieve big improvements for statistical parsing.

Chelba & Acero (2004) investigated the MAP approach together with a maximum entropy clas-
sifier. The approach used is to train a maximum entropy model on the out-of-domain data and
to use the optimal weights of this model as the mean weights for the Gaussian priors of the in-
domain model. The task described in this work was to recover the correct capitalization of uni-
formly cased text. The adaptation was performed from the Wall Street Journal corpus to broadcast
news data and showed a reduction error of 20% over the non-adapted version.

Another domain of speech processing where adaptation has been used is spoken language un-
derstanding systems. Tur (2005) used supervised adaptation for intent classification from one ex-
isting application to one similar new target application. He showed that using adaptation reduces
the amount of labeled data required to achieve a given classification accuracy. In the same effort
to reduce the amount of labeled data, he also showed that the same error rate can be achieved
with a smaller amount of labeled data by selecting the examples that need to be labeled before to
give them to the human labelers. This technique is called active learning and can be used together
with supervised adaptation.

While all the above presented methods follow the most common approach of considering
two different distributions for the out-of-domain data and the in-domain data as explained
in Subsection 3.2.2, an interesting approach using three distributions has been presented by
Daumé & Marcu (2006). The basic idea was to create one general distribution common to the
in-domain and the out-of-domain models. This common distribution is then used in conjunc-
tion with the out-of-domain and the in-domain data to build truly domain specific distributions
for the out-of-domain and the in-domain, respectively. Daumé & Marcu developed a new frame-
work using the maximum entropy models and showed that the developed framework allows to
reduce the classification error on language processing tasks significantly.

Another common approach is to build a classification model on the out-of-domain data and
then use the prediction of this model as a feature for the in-domain. This approach has the ad-
vantage of being classifier independent, since only the prediction of the out-of-domain is used.
Florian et al. (2004) used this approach for the entity detection and tracking problems. The results
presented showed top-tier performance. Although Florian et al. did not explicitly measure the
relative improvement of including predictions of out-of-domain classifiers to the in-domain data
as feature, this tends to show the efficiency of the latter method.

19



CHAPTER 3. ADAPTATION

20



CHAPTER

4

Boosting Algorithm

This chapter is dedicated to Boosting, the learning algorithm that we use throughout this
work. We begin by retracing the history of Boosting and the mystery that surrounded it
when it was first presented. We then go through the key ideas of the algorithm and explain
how we use it for the sentence segmentation task. In the last part of the chapter, we examine
in more detail the weak learners and the loss function used by Boosting, two concepts needed
to transform Boosting in a convenient adaptive algorithm.

4.1. Key Concepts and History of Boosting

While the adaptation scheme presented in the previous chapter is a general concept, it requires
in practice the usage of a classifier. In this work, we chose to use AdaBoost, an algorithm that
uses boosting. Boosting is general concept in machine learning that consists of improving the
final result of a learning algorithm by iteratively training a classifier on a weighted training set
of data. At the end of the learning process, a weighted linear combination of the classifiers built
at each iteration forms the final classifier.1 Boosting is part of a larger theory called ensemble learn-
ing. While ordinary machine learning algorithms, such as decision trees or perceptrons, work by
searching the best hypothesis for a set of data, ensemble learning algorithms have a different ap-
proach. Rather than finding a unique hypothesis, they construct a committee of simple hypotheses
and combine them to obtain a final hypothesis.

When AdaBoost was first presented (Freund & Schapire, 1995), it immediately drew the attention
in the machine learning community, since it was one of the most accurate classification algorithm
available at that time. Researchers associated it to bagging at the beginning and thought that
the major strength of Boosting had to do with variance reduction. But experiences showed that
Boosting also reduces bias and thus differs from bagging (Friedman et al., 1998). It has since then
led to more research, both on the practical side and on the theoretical side and is still a widely
and lively discussed topic in the machine learning field.

For example, one fascinating characteristic of Boosting is that it seems to be resistant to overfit-

1We used the particular AdaBoost.MH version of the algorithm, presented below. This is the algorithm which we will
refer to as Boosting in the rest of this work and implicitly when mentioning boosting in general.
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ting. This phenomenon had no theoretical explanation until 1998 when Schapire et al. found an
upper bound error for Boosting and argued that the non-overfitting effect was explained by the
fact that Boosting produced a high margin distribution. This demonstration was however voided
by Breiman (1996) who presented an algorithm that had a higher margin distribution than Boost-
ing and yet was less accurate. Recently Schapire et al. showed that their proof still holds if the
classifier complexity is not increased (Reyzin & Schapire, 2006).

For the case of sentence segmentation, Boosting has been proven to outperform all other tech-
niques to which it was compared, including decision trees, HELM and Maximum Entropy clas-
sifiers (Zimmermann et al., 2006a). Being an efficient learning algorithm in general, Boosting is
moreover appropriate for the sentence segmentation task since it handles word N-grams and at
the same time accepts continuous features as well, which is needed for most of the prosodic
features have real number values.

4.1.1 The Algorithm

In this study, the experiments were run with the BoosTexter tool developed by Schapire & Singer.
BoosTexter implements different versions of the AdaBoost algorithm for the task of text catego-
rization. The version used in this work has a discriminative power because it not only checks for
the presence of a feature but also for the absence of it. As explained above, the idea of boosting is
to run several times one simple classifier on a weighted training set of data, changing the weights
at each iteration. More formally, at each iteration t, a new simple classifier ht is built and all sim-
ple classifiers ht, t ∈ [1, . . . , T] are combined at the end of the T iterations of the learning process
into one final classifier f (x, l):

f (x, l) =
T

∑
t=1

αtht(x, l) (4.1)

with αt the weight of the weak learner ht.

In the case of BoosTexter, the simple classifiers used are weak learners. In the case of Boosting,
a weak learner has the same form as a one-level decision tree. The pseudo-code of the Ad-
aBoost.MH algorithm is shown in Algorithm 1. The next paragraph summarizes the functioning
of Boosting, but the reader is encouraged to examine Schapire (2001) and related papers for more
details on this algorithm.

Each training example i is assigned L weights D(i, l), i.e. one weight for each possible class
(“s” and “n” in the case of sentence segmentation). At the beginning of the learning process,
all weights are equal. At each iteration, a weak learner finds a weak hypothesis ht(x, l) : X → ℜ
given the distribution of the weights D(i, l). The sign of ht(x, l) is interpreted as a prediction
of whether the label l belongs to the set of labels assigned to the sample x (ht(x, l) > 0) or not
(ht(x, l) ≤ 0). Once this evaluation has been done for each label l, the following function Y[l] can
be described:

Y[l] =

{
+1, if l ∈ Y
−1, if l /∈ Y

for Y ⊆ Y the set of labels attributed to x and l ∈ Y . In the binary classification task, the mem-
bership sign ∈ can be replaced by the equal sign since only one label can be attributed to each
example. The weights are then updated such that the next iteration t + 1 will force the weak
learner to focus on the examples that were wrongly classified at the last iteration t. The final hy-
pothesis is a weighted linear combination of the hypotheses of all iterations, with higher weights
attributed to the weak hypotheses with a lower classification error rate.
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Algorithm 1 AdaBoost.MH

Given the training data: (x1, Y1), ..., (xm, Ym) where xi ∈ X , Yi ⊆ Y
Initialize the distribution D1(i, l) = 1/mk, i = 1..m, k = 1..|Y|
for each iteration t = 1..T do

Train a base learner ht using distribution Dt

Update

Dt+1(i, l) =
Dt(i, l)e(−αYi[l]ht(xi,l))

Zt
(4.2)

where Zt is a normalization factor and αt is the weight of the base learner
end for
The final classifier is the weighted sum of the ht(x, l):

f (x, l) =
T

∑
t=1

αtht(x, l)

4.2. From Continuous Predictions to Classification

The final output of the boosting algorithm described in Algorithm 1 yields a real number value
w = f (x, l) for each example x and label l. These w = f (x, l) are the weights of the label l
attributed to a sample x. To achieve the final goal of classifying the example x as a sentence
boundary Cs or as a non-sentence boundary Cn, the weights f (x, l) need to be interpreted and
mapped to a class. The conversion from the weights output by the Boosting to the attribution of
a class is done in two steps. First, each weight is turned into probability p(l|x) according to the
following equation:

p(l|x) =
1

1 + e−2 f (x,l)T
(4.3)

where T is the number of iterations used to train the classifier and f (x, l) the final classifier output
by the learning algorithm. These probabilities can then be converted into a binary classification
by using a threshold, which we refer to as the acceptance threshold tacc.

H(x) =

{
Cs, if p(Cs|x) > tacc

Cn, if p(Cs|x) ≤ tacc
(4.4)

H(x) designates the class of the example x. The threshold tacc is a parameter and can be optimized
on the development set. The effects of varying tacc are discussed in more detail in Section 6.4.

4.3. More on Weak Learners

In the above-presented description of Boosting, the presence of a weak (or base) learner ht was
assumed. The role of the weak learner was to provide a weak hypothesis at each iteration. The
weak hypotheses returned by the weak learner throughout the T iterations all have the form of
a one-level decision tree. Even though the weak hypothesis ht(xi, l) maps each sample x to a
real value in ℜ, it is easier to understand it in the simplest case where each ht(xi, l) is binary, i.e.
restricted to {−1, +1}. The base learner minimizes the probability that the wrong label will be
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attributed to a sample x for the current weights distribution Dt. This probability can be expressed
by the following error function:

ǫt = Pri∼Dt
[ht(xi) 6= Yi[l]] (4.5)

For instance, in the sentence segmentation task, one wants to determine if a word is followed
by a sentence boundary or not. For each example x, we also give to the algorithm the previous
word. The weak learner then chooses the word wp among all the “preceding words” set of words
and create a basic rule saying “if the word in instance x is preceded by the word wp than give it value
r1, otherwise give it value r2”. The choice of the word wp takes into account the overall weighting
error made by choosing this word. In the usual case where more than one feature is available, the
best hypothesis obtained out of all features is returned.

Once the algorithm has been provided with a base classifier ht, the next step is to determine the
weight αt ∈ ℜ that will be attributed to ht in the linear combination that forms the final classifier.
In the case of a binary hypothesis ht(xi, l), this is done as follows:

αt =
1
2

ln
(

1 − ǫt

ǫt

)

Thus, if the error ǫt inferred by the base classifier ht is big, the weight αt assigned to ht is small. A
small αt results in a higher exponent for e in the weights update (Equation 4.2). If the hypothesis
done by ht was correct for the example xi, yi and ht(xi) have the same sign and the exponent is
thus negative, leading to a reduction of the weights D(i, l) of the example xi. On the contrary, if
the hypothesis done by ht was wrong, the signs of Yi[l] and ht(xi) in Equation 4.5 are opposed,
leading to a positive exponent and thus to an increase of the weight D(i, l) of sample xi. The
sample xi will therefore have a bigger importance in the next iteration when a new base classifier
will be chosen.

4.4. Changing the Loss Function

Friedman et al. explained the phenomenon of Boosting in statistical terms (Friedman et al., 1998).
In particular, they showed that the additive model (also called weighted committee or ensemble)

f (x, l) =
T

∑
t=1

αtht(x, l)

produced by Boosting is nothing but a Newton method for optimizing a particular exponential
loss function. In a much shorter and more bare work, Fleuret showed that Boosting can be seen
as a gradient descent, considering that at each iteration, the weak learner selected is the one that
decreases the most the training error. The Boosting algorithm presented in Algorithm 1 minimizes
the exponential loss function:

∑
i

∑
l

e−Yi[l] f (xi,l) (4.6)

where, Y[l] = 1 if l ∈ Y and −1 otherwise. The two works that were just mentioned emphasize
the fact that the loss function of Equation 4.6 is an abstract concept and thus can be substituted
by another loss function. In particular, a logistic loss function can be used that has the following
shape:

∑
i

∑
l

ln(1 + e−Yi[l] f (xi,l)) (4.7)

with the same symbols as for Equation 4.6. This will reveal to be particularly convenient for the
Boosting adaptation method that we will present in Section 5.4.
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Adaptation Methods

In this work, we use the existing labeled data or models to improve the classification per-
formance in a new domain. The combination of the two sets of data can be done at various
levels, such as the data level, the classifier level or the score level. This chapter describes and
discuss four adaptation methods that will be experimentally compared in Chapter 7.

5.1. Data Concatenation

Data concatenation is the simplest way of combining two sets of data: the classification model
is trained on the concatenation of the out-of-domain data D(o) and the in-domain data D(i). By
concatenation, we mean simply joining the two sets in one set that is the union D(u) = D(o) ∪

D(i) of the two original sets. The classification model is then trained on the D(u) data set. An
alternative to data concatenation is the tagged data concatenation, where an extra feature that
contains the source corpus of the example is added. This method has been used in particular in
Tur (2005).

Although data concatenation is a very basic way of performing adaptation between two sets of
data, there are at least two reasons for using it. First, it can be used as an easy baseline result:
whatever the adaptation method, if it performs worse than concatenation, it is not worth use it.
Second, the result of a classifier trained on the concatenated data is an early indicator concerning
the compatibility of the in-domain and the out-of-domain. Indeed, since the out-of-domain data
are not weighted when added to the in-domain data, if they do not match with the in-domain
data, they will hurt the classification performance.

5.2. Interpolation using Logistic Regression

Interpolation using logistic regression is a score-level adaptation method. The basic idea is to build
separately the two classifiers, i.e. the out-of-domain classifier on the out-of-domain data D(o)

and the in-domain classifier on the in-domain data D(i). Once trained, each classifier is used to
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evaluate a score for each example xj in the form of a posterior probability P(Cs| xj) for xj to be
associated with a sentence boundary. The posterior probabilities P(o)(Cn| xj) and P(i)(Cn| xj) of
the out-of-domain and in-domain respectively are then combined to form the final prediction
Pf (Cn| xj) of xj. The combination of P(o)(Cn| xj) and P(i)(Cn| xj) can be done in various ways.
The most intuitive one may be the linear combination

Pf (Cn| xj) = αP(i)(Cn| xj) + (1 − α)P(o)(Cn| xj),

where α is a parameter that balances the importance of the in-domain and the out-of-domain,
and can be optimized on the development set.

The method that we present here follows the idea of the previous paragraph, except that the
final combination between the two predictions P(o)(Cn| xj) and P(i)(Cn| xj) is done using logistic
regression. The expression of Pf is shown in Equation 5.1. The goal of logistic regression is to find
a discrete outcome from a set of variables that might be discrete or continuous, called predictor
variables. No assumption is made about these variables (e.g. they do not need to be normally
distributed or have a linear dependency to some other variables). In our case, the outcome is
dichotomous and indicates the presence or the absence of a sentence boundary. The predictor
variables are the probabilities output by in-domain and out-of-domain classifier that an event is a
sentence boundary. The relationship between the predictor variables and the output is described
by Equation 5.1. We describe the framework of logistic regression in more detail in Appendix A.

Concretely, each sample of the held-out set is evaluated by the classifier C(i) trained on the in-
domain data and the classifier C(o) trained on the out-of-domain data. These evaluations yield
two sets of probabilities P(i)(Cn|x) and P(o)(Cn|x) that the event associated with the sample x is
a sentence boundary according to the classifier C(i) (resp. C(o)). These probabilities are used to
optimize b1, b2, b3 by minimizing the negative log likelihood of Equation 5.1, using the Newton-
Raphson method which is shortly presented in Appendix A. The two same classifiers C(i) and
C(o) are then used to estimate two probabilities for each instance of the test set. The final deci-
sion is made from the combination of these two probabilities using the logistic function with the
weights optimized previously on the development set:

Pf (Cn| x) =
1

1 + e(−b1−b2P(i)(Cn| x)−b3P(o)(Cn| x))
(5.1)

where b1, b2, b3 are parameters that were previously optimized on the held-out set.

In the rest of this work, we refer to this method as the “logistic regression” method.

5.3. Using Out-of-domain Model Prediction as an Extra Feature

C(o) is run first on the training set of the in-domain data; the result of this run is a posterior
probability P(o)(Cn|xj) of having a sentence boundary for each instance xj of the in-domain data
set D(i) according to the out-of-domain classifier. This probability is added as an extra feature to
the data set D(i), so that the new feature set F becomes:

F = F ∪ P(o)(Cn|x).

The final prediction is output by the classification model C(i) then trained on the training set of
D(i) extended with the new feature. Note that the prediction of the out-of-domain model should
not only be added to the training data set of the in-domain, but also to the test set so that the two
feature set of the training data and the test data are the same.
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In the rest of this work, this adaptation method is designated as the “feature” method.

5.4. Boosting Adaptation

Boosting adaptation has first been suggested in the case of a spoken language understanding
system (Schapire et al., 2005). Schapire et al.’s goal was to be able to provide some human-crafted
prior knowledge to the Boosting model. Later on (and still as part of a spoken language system), this
method was used by Tur (2005) to adapt intent classification from one spoken dialog application
to another similar application. The basic idea of Boosting adaptation is that instead of directly
building a classification model M from some data d, one first builds a model MP based on some
existing prior knowledge. By modifying the Boosting learning algorithm, or more precisely by
modifying the loss function of the algorithm, a new model MD is built starting from the MP

model and adapting it to the data d. The next paragraph shows the details of Boosting adaptation.

First, as explained in Section 4.2, recall that even if the final goal is to perform classification and
thus have a discrete output, Boosting has been shown to be an additive logistic regression model.
In logistic regression, we build a function f : X → ℜ and estimate the probability Pr[y = +1|x]
of having y = +1 for a given test example x with σ( f (x)) where:

σ(z) =
1

1 + e−z
. (5.2)

We compute f by maximizing the conditional likelihood of the data, or as is usually done in
statistics, minimizing the negative log conditional likelihood instead, which turns to be:

∑
j

− ln
(

1

1 + e− f (x j)

)

= ∑
j

− ln(1) + ln(1 + e−y j f (x j))

= ∑
j

ln(1 + e−y j f (x j)) (5.3)

Note that Equation 5.3 simplifies the notation compared to Chapter 4 by assuming yj = ±1 as
being the label of the example xj (this is allowed since we describe the case of a binary classi-
fication). The minimum of the function in Equation 5.3 is not trivial to find and several meth-
ods have been developed to approximate it. In this work, we use the Newton-Raphson method,
whose basic principles are explained in Appendix A. For now we assume that the minimum of
the function in Equation 5.3 can be found and concentrate on how to use logistic regression to
perform adaptation.

In the version showed in Algorithm 1, AdaBoost implicitly minimizes the exponential loss func-
tion of Equation 5.4 by minimizing Equation 5.5. The expression of the weights Dt(j) before nor-
malization is given in Equation 5.6.

∑
j

e(−y j f (x j)) (5.4)

∑
j

Dt(j)e−y j f (x j) (5.5)

Dt(j) ≈ e−y j ft−1(x j) (5.6)
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ft(x) =
t

∑
t′=1

αt′ht′(x) (5.7)

Thus to apply logistic regression to Boosting, we have to modify the loss function of Equation 5.4
so that it matches the shape of the logistic regression function. This is done by leaving the final
loss function in Equation 5.5 unchanged but modifying the weights Dt(j) in the following way
(still before normalization):

Dt(j) ≈
1

1 + ey j ft−1(x j)
(5.8)

Thus, Equation 5.5 now becomes:

∑
j

Dt(j)e−y j f (x j) = ∑
j

1

1 + ey j ft−1(x j)
·e−y jht(x j)

= ∑
j

e−y jht(x j)

1 + ey j ft−1(x j)

= ∑
j

1

1 + ey j ft−1(x j)
(5.9)

which corresponds to the logistic function described by Equation 5.2.

We now explain how to include prior knowledge to the logistic loss function that we just de-
scribed. We assume that we are given a prior model with a distribution π(·|xj) for each example
xj and some training data d. The model that we want to build should fit both the prior model
and the training data. We deal with this constraint by changing the logistic loss function of
Equation 5.3 in a two-terms loss function. The first term measures the fit of the constructed model
to the data d by using the log conditional likelihood, as before. The goal of the second term is to
prevent the model built on the data to diverge from the prior model. The divergence between the
two models is measured according to the binary relative entropy (also called Kullback-Leibler
divergence and therefore abbreviated KL) between the prior model and the model built by Boost-
ing on the training data plays this role. Formally, we have

∑
j

[

ln
(

1 + e−y j f (x j) + ηKL
(
π+(xj)‖σ( f (xj)

))]

= ∑
j

[

ln
(

1 + e−y j f (x j) + η
(

π+(xj) ln
(

1 + e− f (x j)
))

+ η
(

1 − π+(xj) ln
(

1 + e f (x j)
)))]

(5.10)

where

KL (p‖q) = p ln
(

p

q
+ (1 − p) ln

(
1 − p

1 − q

))

and π+(x) = π(y = +1|x). The KL term basically measures the distance between two probability
distributions. If the two distributions are independent, this term will have a large value. If on the
contrary the two distributions are identical, the term will turn out to be null and the function
will then be reduced to the first term only which is the normal Boosting case. In our case, we
measure the distance between the distribution of the prior model built on the out-of-domain
data P(Yj[l] = 1|xj) and the distribution of the new model built on the in-domain data ρ( f (xj, l)),
where ρ(x) is the logistic function 1/(1 + e−x). The weight η balances the influence of the logistic
loss function and the binary relative entropy and is optimized using the held-out set.
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5.5. Discussion of the Presented Methods

The methods presented above all combine two sets of data to build a classifier, but they differ in
the way the combination of the data is done. Indeed, the combination of the two sets of data can
be implemented at different levels:

• the data level (e.g. data concatenation)
• the feature or classifier level (e.g. Boosting adaptation)
• the classifier output or score level (e.g. logistic regression)

Despite the differences in the level at which the combination is done, note that these different
implementations of adaptation are equivalent under certain conditions. For example, while one
can perform the combination at the score level by interpolating the outputs obtained by two
models, the same effect can be represented in a single interpolated model, i.e. at the classifier
level, as typically done in language models (Stolcke, 2002). Similarly, data concatenation (data
level) can be seen as an unweighted linear interpolation in certain cases.

Chapter 3 presented the MAP framework and some of its applications in the speech domain.
Among the methods that were presented above, only the Boosting adaptation purely follows
the MAP framework. In fact, Boosting adaptation is the only adaptation method that builds one
model on the out-of-domain data and adapts the same model to the in-domain. Indeed, for data
concatenation, logistic regression and the “feature” methods, the in-domain model does not use
the MLE estimation of the parameters on the out-of-domain as the prior distribution of the pa-
rameters.

Considering the adapted model as being between the in-domain and the out-of-domain model,
it should be noticed that the models created by the above-presented methods have different de-
gree of similarity with the the in-domain and the out-of-domain model. For example, the sim-
ilarity of the data concatenation model with the in-domain data can be seen as proportional to
the percentage of in-domain data in the entire training data set, (the concatenation of the out-of-
domain data and the in-domain data). For the other methods, the similarity with the in-domain
and out-of-domain models is a function of the method parameters. Thus for logistic regression,
the weights b1, b2, b3 allow the final prediction to give more importance to one of the models,
while for the Boosting adaptation, the same role is played by the weight η. Logistic regression
and Boosting adaptation therefore have a higher freedom than data concatenation to follow the
in-domain or the out-of-domain model.

This is not the case of the “feature” method, which is more closely related to the in-domain model.
Indeed, for this particular method, the prediction of the out-of-domain model is represented only
as one feature, while the in-domain model is represented by all of its features. The weight given to
the out-of-domain model thus depends on the weighted number of times that the out-of-domain
prediction feature is used by the base learner in the construction of the classifier. To give a highest
weight to the out-of-domain model, the weighted number of times that the single out-of-domain
prediction is used should be higher than the weighted number of times that all features of the
in-domain are used, which is unlikely to happen. The “feature” method is thus meant to stay
relatively close to the in-domain model.
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CHAPTER

6

Data and Metrics

In this chapter, we present qualitatively and quantitatively the three corpora that we use for
the meetings, telephone conversations and broadcast news speech styles (genres). We then
detail the practical set-up of our experiments and describe the metrics that we use to measure
the performance of sentence segmentation.

6.1. Data

The experiments presented in this work use three different corpora of data, that correspond to
three different speech styles:

• meetings
• broadcast news
• telephone conversations

A qualitative description of these three corpora is presented in more detail below, while the main
statistical characteristics of the data sets are shown in Table 6.3.

6.1.1 Meetings (MRDA)

The meeting data used come from the ICSI meeting corpus (MRDA) (Janin et al., 2004). This cor-
pus contains 75 meetings which are split into three main subtypes: “Even Deeper Understanding
weekly meeting” (BED), “Robustness weekly meeting” (BMR) and “Meeting Recorder weekly
meeting” (BRO). These three types of meetings have been recorded at the same place. The same
settings were used in almost all meetings, especially the one headset microphone per participant.
The meetings are however different in their substance since the people who took part in them
are not the same and the subjects that they discuss also differ from one meeting type to another.
The difference in the number of participants and the “relationships” between the participants are
especially important. To illustrate this, imagine a meeting in which one of the participant is the
chief. Further imagine that this chief turns out to be very authoritative and speaks most of the
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time with nobody daring interrupt him. In such a case, disruptions will surely not appear as often
as in a meeting where people feel free to interrupt each other. Some statistics about the 3 types of
meetings BED, BMR and BRO of the MRDA corpus are shown in Figure 6.1 and in Table 6.4.

The MRDA corpus has been detailed in Dhillon et al. (2004). We used transcriptions in which one
dialog act has been attributed to each word boundary: if a dialog act unit (sentence unit) is ending
with a word, the tag corresponding to the dialog act unit is attributed to the word with which the
dialog act unit ends. The words on which no dialog act unit ends are assigned the tag ’n’, for non-
sentence unit. Statistics of the dialog acts frequency in the MRDA corpus are shown in Figure 6.2.
The dialog acts are mapped onto the sentence boundary class (Cs) or the non-sentence boundary
class (Cn). The backchannels, disruptions, floor grabbers, questions, statements, and the samples
that were not annotated by the labelers are mapped onto the sentence boundary class. The rest of
the instances are mapped onto the non-sentence boundary. Table 6.1 lists the dialog acts and their
corresponding mapping for the MRDA corpus, but also for the SWBD and the TDT4 corpora that
are presented below.
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Figure 6.1: Repartition of the sentence boundaries between the 5 dialog acts. Note that the regular
statement class ’s’ has been excluded from the statistics computation.

Mapped on MRDA SWBD TDT4

Backchannel s b b NA
Disruption s d i NA
Floor grabber s f NA NA
Question s q q NA
Statement s s s s
Unannotated s z z NA
Non SU n n n n

Table 6.1: Dialog acts details for each corpus. ’NA’ means that the dialog act was not labeled in
the corpus. In the column showing the mapping of the dialog act on the sentence boundary class
or the non-sentence boundary class, ’s’ stands for the sentence boundary class, while ’n’ stands
for the non-sentence boundary class.
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6.1.2 Telephone Conversations (SWBD)

The telephone conversations corpus that were used are taken from the subset of the Switchboard
(SWBD) corpus provided by the LDC (RT04). It is the smallest of the three corpora in terms of
the number of words. Figure 6.3 shows the frequency of each dialog acts in this corpus. Note
that, as pointed out by Table 6.1, the dialog acts for SWBD are not identical to the ones presented
above for the MRDA corpus. This is caused by the differences in the labeling guidelines. For
example in the SWBD corpus, interruptions and floor grabbers were not marked, whereas they
were in the MRDA corpus. However, even if the floor grabbers were not marked in the SWBD
corpus, this does not affect the sentence segmentation task since the floor grabbers were implicitly
marked as incompletes (’i’), and the incompletes are mapped to the same class ’s’ as the floor
grabbers. For more details about the labeling differences between MRDA and SWBD, one can
refer to Dhillon et al. (2004).

6.1.3 Broadcast News (TDT4)

The broadcast news corpus is the largest of the three corpora in terms of the number of words.
However, even if the absolute training data is bigger than for MRDA and SWBD, it should be
noted that the number of sentence boundaries is approximately the same in TDT4 and MRDA.
Indeed, while telephone conversations and meetings are both conversational speech, broadcast
news imply long segments with only one speaker and thus less interruptions in the speech.
Hence, the average sentence unit length is approximately twice as big on the TDT4 corpus than
on the MRDA as shown in Table 6.3. The speech style differences between conversational speech
and broadcast news also appear in the dialog acts. Indeed, the broadcast news shows of TDT4
have been labeled with only two dialog act tags, the sentence boundary one (’s’) and the non-
sentence boundary one (’n’). This is reasonable, since there usually is only one simultaneous
speaker and therefore fewer overlaps between the speakers. Indeed, the interaction between the
main speaker and the reporters on the field are usually a question-answer based conversation
and do not lead to much disruptions or backchannels.

6.1.4 Accuracy of the Labeling

Although the human-labeling is considered as true during the classification task, it is important
to note that the labeling can be noisy. Indeed, the labeling is done by different labelers which
have different sensitivities and ways of interpreting the labeling guidelines. Therefore, although
the guidelines are supposed to lead to a consistent labeling, this is not always the case. One way
of measuring the inaccuracy in the labeling of some data is to make different person label the
same data and measure the pairwise human agreement. Unfortunately we could not find the sen-
tence boundary pairwise human agreement neither for the MRDA corpus nor for the SWBD one
(the TDT4 has no such number since the sentence boundaries have been inserted according to
their original textual transcriptions). Although there are no quantitative measures, a qualitative
estimation seems to show that the SWBD corpus contains some labeling inconsistencies. For ex-
ample, a triple repetition of the word “yeah” is sometimes labeled as three different sentence
units “yeah. yeah. yeah.” and sometimes as only one “yeah yeah yeah” . We did not
find such errors in the MRDA corpus for which the guidelines given to the labelers were more
precise.1

1Thank you to Dan Jurafsky and Elizabeth Shriberg for their helpful explanations on the labeling process of the SWBD
and the MRDA corpus.
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6.2. Practical Set-Up

Both the MRDA corpus and the TDT4 corpus are available in the reference and STT conditions
described in Subsection 2.2.3. For the SWBD corpus, the ASR output of the telephone conversa-
tions was not available no forced alignment could thus be performed to obtain the files in STT
conditions.

From a performance viewpoint, the STT transcriptions incorporate the errors made by the ASR
in the process of recognizing the words (as an order of magnitude the word error rate on the
MRDA corpus is 35.4% (Jurafsky et al., 1998)) and the classifier performance is therefore expected
to be worse on them than on the reference transcriptions. The study under the STT conditions is
however of big interest in the effort of reducing the human work, since it allows one to get tran-
scriptions of meetings automatically and requires human work only for the dialog act labeling
task.

In both reference and STT conditions the transcriptions contain various information. An excerpt
from one meeting transcription is shown in Table 6.2. Although this is a transcription from a
meeting of the MRDA corpus, the files from all three corpora are in the same format.

a 288.170 0.110 the fe004 n
a 288.280 0.470 students fe004 n
a 288.750 0.120 in fe004 n
a 288.870 0.110 the fe004 n
a 288.980 0.360 undergrad fe004 n
a 289.340 0.380 class fe004 n
a 289.720 0.090 that fe004 n
a 289.810 0.150 he’s fe004 n
a 289.960 0.370 teaching fe004 q
2 290.770 0.540 um mn015 f
2 291.490 0.260 well mn015 n
2 291.750 0.190 he mn015 n
a 291.857 0.340 e- fe004 d
2 291.940 0.380 said mn015 n
2 292.850 0.640 um mn015 n

Table 6.2: An excerpt from a meeting transcription.

The first column is the channel identifier and is correlated with the fifth column which identifies
the speaker. The next two columns show the time at which the word on column four begun and
how long it last as estimated by the ASR. The last column contains the label that indicates which
dialog act follows the word in column four. The letters ’b’, ’d’, ’f’, ’q’, ’s’ stand for the five types
of dialog acts described in Subsection 2.1.2 and summarized in Table 6.1. Using the mapping of
Table 6.1, one can thus say if the word is followed by a sentence boundary or not.

Table 6.3 provides numerical comparisons of the MRDA, TDT4 and SWBD corpora. For MRDA
and TDT4, although the meetings are the same for the reference and the STT conditions, the size
of the corpus in STT conditions is not the same as the one in reference conditions. The lack of
data in STT conditions appears because the ASR was unable to recognize certain portions of the
speech from the audio. For example, if the speaker talks quietly or if there is a lot of ambient
noise, the ASR will not be able to extract words from the audio files and entire parts of the audio
wave will be rejected. The smaller size of the file logically reflects on the vocabulary size and the
STT vocabularies contain less words than the reference ones.
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Figure 6.2: Dialog acts statistics for the MRDA corpus; ’s’ stands for sentence boundary, ’n’ for
non-sentence boundary, ’b’ for backchannel, ’d’ for disruption, ’f’ for floor grabber, ’q’ for ques-
tion and ’z’ for the unannotated dialog acts. The graph on the left shows the relative percentage
of the dialog acts that corresponds to the sentence boundary class, except the dialog act ’s’. The
graph on the right shows frequencies of all dialog act classes.
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Figure 6.3: Dialog acts statistics for the SWBD corpus; ’s’ stands for sentence boundary, ’n’ for
non-sentence boundary, ’b’ for backchannel, ’i’ for incomplete sentence and ’q’ for question. The
graph on the left shows the relative percentage of the dialog acts that corresponds to the sentence
boundary class, except the dialog act ’s’. The graph on the right shows frequencies of all dialog
act classes.

MRDA SWBD TDT4

reference STT reference reference STT
Training set size 538,956 476,041 379,498 1,134,860 1,122,976
Test set size 101,510 87,576 - 84,787 82,644
Held-out set size 110,851 94,433 - 83,760 81,788
Vocabulary Size 11,034 12,092 13,109 32,209 25,915
Average utterance length 6.54 7.65 7.57 14.69 14.59

Table 6.3: Numerical data characteristics for MRDA and SWBD. Sizes and sets are given in num-
ber of words.
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BED BRO BMR

Number of meetings 15 23 29
Total size 144,554 198,618 317,949
Average size of one meeting 9,637 8,636 10,963
Average speaker number 5.67 5.74 6.721
Average number of words between speaker changes 8.11 8.92 5.50
Average utterance length 6.56 6.38 6.71
Vocabulary Size 4,467 4,826 6,681

Table 6.4: Numerical data characteristics for the three MRDA meeting types; sizes and sets are
given in number of words.

6.3. Features

The features used throughout the experiments are listed in Table 6.5. They can be split into three
main classes: the lexical features, the prosodic features and a mix of both of them. In the pre-
sentation of the experiments in chapters 7 and 7.5, the four following sets of features will be
distinguished, which contain the following features:

• lexical features only (lexical),
• lexical features and the pause duration, including the discretized pause duration (lexical+),
• prosodic features only, including the pause duration and various pitch and energy mea-

sures (prosodic),
• all lexical and prosodic features (all).

6.3.1 Lexical Features

The decision of hypothesizing a sentence boundary or not has to be made after each word. It
is thus natural to look for features that relate to the word. That is what is done for the lexical
features, considering N-grams of different sizes that combine the word after which the decision
is made (which is designated as current word) and the two words that surround it, i.e. the pre-
vious word and the next word. The length of the N-grams is limited to three (trigrams), since in
our experiments longer N-grams did not bring significant improvements in the segmentation
performance and they make the training task much slower, as the number of features increases
significantly.

6.3.2 Prosodic Features

For the prosodic features, we distinguish two pause durations: the intra-channel pause duration,
which is independent for each channel, and the inter-channel pause duration, which stops timing
a pause whenever a word is uttered on any channel. The intra-channel pause duration is useful
since it depicts a cleaner picture of the pauses than the inter-channel one. In particular the intra-
channel pause duration does not take backchannels into account as opposed to the inter-channel
pause duration. The inter-channel pause duration is nevertheless also useful since it can help to
detect disruptions, which are often signaled by a null pause or even more often an overlap. In
this work, no overlap information has been included in the feature set, but it could be worth to
try it according to Cetin & Shriberg (2006).

The other prosodic features used are all related to the pitch and energy in the voice of the speaker.
More precisely, they are F0 derived features which take various measures between two adjacent
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windows or two adjacent words. Examples of these measures are the logarithmic ratio between
the minimum, the maximum and the mean energy levels in two adjacent windows (resp. words),
or the slope of the pitch and its logarithmic ratio between two windows (resp. words). They were
extracted with a Java-based tool called Algemy developed at the Stanford Research Institute (SRI)
(Bratt, 2006). In total, the prosodic features set contains 34 features.

6.3.3 Combination of Lexical and Prosodic Features

The combination of the prosodic and lexical features is shaped only by two features, one prosodic
and one lexical. It uses the intra-channel pause duration between two words and combines it with
the two words. The motivation behind this is that neither the bigram composed of the two words
or the pause duration can achieve an accurate classification by themselves in some cases. For
example, consider the following two sentences:

‘‘This is the fork I’m gonna eat with. It is much better than a
regular fork!’’

At the separation point between the two sentences, i.e. where the sentence boundary is, the word
bigram is “with it” . This particular bigram is not a relevant indicator of a sentence boundary
between with and it , since it is much more usual to see it within a sentence than as it appears
here. Therefore the use of lexical features would most likely lead to hypothesize a non-sentence
boundary between “with” and “it” . Prosodic features only do not ensure either to detect cor-
rectly this particular sentence boundary, since the speaker may have not used a proper intonation.
It is however likely that the speaker made a pause in his speech between the words “with” and
“it” . We can use this pause by performing a binary discretization on it and creating a new tri-
gram (with, 1, it) if the pause is higher than a given threshold and (with, 0, it) if the
pause is lower than the threshold. The threshold value was set to 0.2 seconds, which empirically
revealed to be the most performing one.

Lexical Prosodic Lexical and prosodic

current word intra-channel pause duration (curr., discret. pause)
previous word inter-channel pause duration (curr., discret. pause, next)

next word energy ratio/log. ratio
(current word, next word) pitch ratio/log. ratio

(prev. word, curr. w., next w.)

Table 6.5: List of features used to describe an instance to the classifier. For the lexical features,
“current word” stands for the word after which the decision of hypothesizing a sentence bound-
ary or a non-sentence boundary has to be made. The “previous” and “next” word are the words
surrounding it in the sequence of words.

6.4. Method

To build a classifier, the learning algorithm described in Algorithm 1 is provided with the in-
stances of the training set; each instance is a vector of the feature space. There are four different
feature spaces which correspond to the four different sets of features described in the previous
section, but for a given experiment, all instances must be described in the same feature space.
After T iterations, Boosting outputs a function f (x) which computes the probability p(Cs|x) that
the instance x is hypothesized as a sentence boundary. An acceptance threshold tacc is then used to
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map this probability on either a sentence boundary or a non-sentence boundary, and thus decide
of the class C(x) of the instance x:

C(x) =

{
Cs if p(Cs|x) > tacc

Cn otherwise (6.1)

where Cs stands for the sentence boundary class and Cn the non-sentence boundary class.

The acceptance threshold tacc is a parameter that can be optimized on the held-out set; its value is
by default set to 0.5. As will be shown further in the practical results, a lower acceptance thresh-
old leads the final hypothesis to contain more sentence boundaries, while a higher acceptance
threshold on the contrary leads to less hypothesized sentence boundaries. Varying tacc can help
adjusting the number of hypothesized sentence units so that it matches with the sentence unit
frequency of the domain to which the classifier is applied. It can also be used to give a precise
profile to the classifier by balancing the performance between the recall and the precision, two
metrics that are presented in the following section.

6.5. Metrics

To estimate the accuracy of a classification, we compare for each instance in the test set the class
estimated by the classifier to the one assigned by humans, which we refer to as the correct one.2

In the case of a binary classification task, the classification guessed by the classifier can be either
the same or different as the correct one; moreover, the example that is classified belongs to either
the sentence boundary class Cs or the non-sentence boundary class Cn.

This leads to four designations to compare the estimation of the system with the correct classi-
fication: the true positives/negatives and the false positives/negatives. The true positives and
the true negatives represent the examples that the classifier guessed correctly. More precisely, a
sentence boundary that was identified as a sentence boundary by the classifier is a true positive
whereas a non-sentence boundary that the classifier identified as a non-sentence boundary is a
true negative. The true negatives are much more frequent, since the non-sentence boundaries are
more frequent than the sentence boundaries. The two remaining classes are the ones containing
the examples that were wrongly classified. The false negatives represent the sentence boundary
that the classifier missed, that is to say the sentence boundaries that the classifier estimated as
non-sentence boundaries. Finally, the false positives are the non-sentence boundaries that the clas-
sifier estimated as sentence boundaries. The designations are summarized in Figure 6.4.

To measure the performance of a classification as a concrete number, we used the F-measure and
the error defined by the National Institute of Standards and Technology (NIST), which we re-
fer to as being the NIST-SU error rate. These two measures are both combinations of the four
designations that were described in the previous paragraph.

6.5.1 F-Measure

In order to understand what the F-measure is, one first has to understand two additional con-
cepts, the recall and the precision. The recall is the ratio of sentence boundaries hypothesized by
the classifier to the total number of reference sentence boundaries. It can be expressed as:

Recall =
TP

TP + FN
. (6.2)

2As already mentioned, even though humans can make mistakes in their labeling, there is no better way to approach
the truth. The labeling done by humans is thus considered as the absolute truth when evaluating the hypotheses done
by a classifier. In this work, the sentence boundaries assigned by human labelers will also be referred to as true sentence
boundaries or reference sentence boundaries.
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Correct classification System estimation Abbreviation
True positive SU SU TP
True negative non-SU non-SU TN
False positive non-SU SU FP
False negative SU non-SU FN

Figure 6.4: The four possible combinations between the correct classification and the system esti-
mation. “SU” stands for sentence boundary.

Hence, if only recall was taken into account to measure the performance, the best solution would
be to hypothesize sentence boundaries everywhere, which would yield to a recall of 100%. Such
a case is avoided by combining the recall measure with the precision measure. This latter is the
ratio of true sentence boundaries within the hypothetized sentence boundaries to the overall
number of hypothetized sentence boundaries:

Precision =
TP

TP + FP
(6.3)

In the previous extreme case with a recall of 100%, the precision would thus be very low. On the
contrary, if only non-sentence boundaries are hypothesized the precision is 100%, but the recall
is 0%. Formally, using the abbreviation of Figure 6.4, we have:

Figure 6.5 shows an example of a sequence of words with the reference sentence boundaries and
the sentence boundaries estimated by the classifier. Let us compute the recall and the precision
for this classification. For the recall, we need the number of true positives and the number of false
negatives. As indicated in Figure 6.5, there are two true positives (#4 and #8) and two false neg-
atives (#5 and #7). The recall is thus 2/(2 + 2) = 0.5. For the precision, we need again the count
of true positives (2) and the count of false positives, which is only 1 (#1). Hence, the precision for
this example is 2/(2 + 1) = 0.66.

The recall and precision measures taken separately are however not sufficient, as pointed out by
the above-mentioned extreme cases. These two measures are complementary and should there-
fore be combined. This is achieved by the F-measure, which is nothing but the weighted harmonic
mean of these recall (R) and precision (P) measures:

F-Measure =
P·R(α + 1)

αP + R

where α is a coefficient usually set to 1.

Note that even if recall and precision are not used as evaluation means, it can be worth looking at
their behavior in some cases. For instance, it could be easier for further speech processing tasks,
such as summarization, to have very short sentence units, as opposed to very long sentence units.
In this case, we would like to build classifiers that rather find more sentence boundaries than not
enough and therefore aim at having a high recall, while precision would become less important.

6.5.2 NIST-SU Error Rate

Beyond F-Measure, which is a widely used measure for classification performance evaluation, we
use a second more field related metric, the NIST-SU error rate. The NIST-SU error rate is the ratio
of the number of wrong hypotheses made by the classifier to the number of reference sentence
boundaries. Expressed in terms of the four designations of Figure 6.4, this is:

NIST-SU =
FN + FP

TP + FN
.

39



CHAPTER 6. DATA AND METRICS

Reference at.the.same.time|no|oh.okay|no|
System at|the.same.time|no.oh.okay.no|
Errors E C C C E C E C
Classification FP TN TN TP FN TN FN TP
SU-id 1 2 3 4 5 6 7 8

Figure 6.5: The first two lines show the reference sentence segmentation and the system estimate
for the sequence of words “at the same time no oh okay no” . Sentence boundaries are
marked with a ’|’ and non-sentence boundaries with a ’.’. The third line indicates if the system
guessed correctly (C) or made an error (E). The fourth line indicates the type of classification
between true positive (TP), true negative (TN), false positive (FP) and false negative (FN). The
last line shows the ID attributed to each classified example, for reference purposes.

Metric Computation Value

NIST-SU 2(FN)+1(FP)
2(TP)+2(FN)

0.75

Recall 2(TP)
3(TP)+1(FN)

0.50

Precision 2(TP)
2(TP)+1(FP)

0.66

F-Measure (α = 1) 2(Precision ×Recall )

(Precision +Recall )
0.80

Test error 2(FN)+1(FP)
3(TN)+2(TP)+1(FP)+2(FN)

0.38

So if no boundaries are marked by the classifier, the NIST-SU error rate is 100%, but it can exceed
100% in some cases. The maximum NIST-SU error rate is indeed the ratio of number of words
to the number of reference sentence boundaries. In the example of Figure 6.5, we have two false
negatives (#5 and #7), one false positive (#1) and two true positives (#4 and #8), which yields a
NIST-SU error rate of (2 + 1)/2 + 2 = 0.75. Note that while the NIST-SU is an error rate measure
and thus tends to decrease when the classification becomes more accurate, the F-Measure has the
opposed behavior and increases with more accurate classifications.

6.5.3 Test Error Rate

Although we will rarely use it to evaluate the performance of a classification, we will sometimes
refer to the test error as being the number of errors done in the classification, divided by the total
number of instances on which the classifier was tested:

Test error =
FN + FP

FN + FP + TP + TN
.

In the case of the example of Figure 6.5, we have 3/80 = 0.38.
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7

Experiments and Results

Experimental results are presented in this chapter. The first experiment presents a cross-
classification among MRDA, SWBD and TDT4, showing the need for adaptation among
these speech styles. The second set of experiments describes adaptation of the conversational
speech style data from the SWBD corpus to the meeting speech style of the MRDA cor-
pus using the four methods presented in Chapter 5. Adaptation is performed on the entire
MRDA corpus and on a subpart of it. The third part of the chapter studies in more detail the
importance of the features.

7.1. Experiment Set-Up

We used the split of data usually used in learning tasks and describe in the previous chapter, that
is to say a training set, a test set and a development (or held-out) set. The training sets contains
approximately 80% of the labeled data whereas the remaining 20% are evenly split between the
test set and the development. For the MRDA and the TDT4 corpora, we used the same splits of
the data as in Ang et al. (2005) and Zimmermann et al. (2006b) respectively. The training of the
classifier is done on the training set, the held-out set is optionally used to optimize parameters
and the test set is used to evaluate the performance of the classifier.

When nothing is mentioned, the data are represented by the lexical+ features set, that is to say
lexical features and the pause duration. The choice of the lexical+ features set and its 9 features is
a trade-off between the learning time and the accuracy of the classifier.

7.2. Cross-Classification among MRDA, SWBD and TDT4

The statistics of the three corpora that we are dealing with are shown in Table 6.3. The first ex-
periment that we do to see how the corpora can perform on each other is to perform a basic
cross-classification experiment. This experiment consists of building one classifier on each of the
three training sets and assess their performance on the test set of each of the three corpora. The
NIST-SU error rates of this experiment are shown in Table 7.1.
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First, we observe that each classifier built on a specific corpus is the best performer when evalu-
ated on this very same corpus. This is an expected result since in these particular cases both the
data on which the classifier is built and the data on which the classifier is tested are of the same
speech style and share the same settings (recording, labeling, etc.). Another observation is that
classification on the STT conditions leads to higher error rates than on the reference conditions.
This is, as explained in Section 6.1, because the classification is done on top of the ASR output
which already contains errors, and the data are thus less consistent.

A different behavior is however to be noticed for MRDA and TDT4 on what relates to the differ-
ence between reference and STT conditions. Indeed, while the MRDA reference and STT classi-
fiers perform approximately the same (same on STT and 1.6% absolute difference on reference),
the TDT4 reference classifier performs 14.3% absolute better on TDT4 in reference conditions
than the TDT4-STT classifier, while the inverse situation shows a difference of only 6.5% abso-
lute in favor of the STT classifier. These differences between the TDT4-REF and the TDT4-STT
classifiers can be explained by the large number of words available in the TDT4 corpus which is
likely to lead to more word recognition errors than on the MRDA corpus, where the words that
have a strong correlation with the sentence boundary are easier to detect (more on this topic in
Section 7.5). Therefore, the TDT4-REF classifier, which was trained on the true and thus reliable
sequence of words, is particularly penalized when evaluated on STT conditions.

7.2.1 Corpora Ordering According to the Difficulty of Classification

Let us compare, for each classifier built on a corpus C, the classification performance obtained
on the test set of the same corpus C: for MRDA, the NIST-SU error rate is 37.2%; for SWBD, the
NIST error rate is 48.5% while it is 56.1% for TDT4. These numbers tend to show an ordering in
the difficulty of the classification task for each corpus. It is especially outstanding that TDT4 has
the worst error rate, while its speech properties (one speaker, prepared text, professional reader,
etc.) are supposed to make it ideal for the sentence segmentation task. Moreover, an eventual lack
of training data with respect to MRDA or SWBD is not a valid argument since the TDT4 corpus
is the largest one among the three corpora. Hence, the highest error rate for TDT4 has another
source, which is the low sentence units frequency (14.6 words per sentence vs. 6.5 and 7.6 for
MRDA and SWBD respectively), i.e. the sentence units in the TDT4 corpus are longer.

Test corpus

Training corpus TDT4-REF TDT4-STT MRDA-REF MRDA-STT SWBD-REF

TDT4-REF 56.1% 82.9% 66.4% 74.7% 90.4%
TDT4-STT 70.4% 76.4% 71.2% 72.6% 91.5%
MRDA-REF 95.1% 120.5% 37.2% 50.2% 71.0%
MRDA-STT 100.2% 106.1% 38.8% 50.1% 72.4%
SWBD-REF 97.2% 129.0% 45.7% 60.0% 48.5%

Table 7.1: NIST-SU error rates for the basic cross-classification experiment with the default accep-
tance threshold set to 0.5.

This low sentence units makes it penalizing with the NIST-SU error rate, since the divisor in the
NIST-SU formula is the number of sentence units. Using the test error instead of the NIST-SU
error would result in having TDT4 performing the best, since the divisor would in this case be
the total number of words. This explanation does however not hold for SWBD and the higher
error rate compared to MRDA is more likely to be explained by inconsistencies in the labeling.
Indeed, as explained in Section 6.1, even if there are no human agreement number for the sen-
tence boundary labeling for the SWBD and the MRDA corpora, it is a fact that labelers had more
precise instructions on how to label the MRDA corpus than for the SWBD corpus. Furthermore,
as the MRDA corpus was created after the SWBD corpus, the experience of the SWBD annotation
must also have been useful to improve the consistency of the labeling.
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The labeling inconsistencies do yet not prevent the SWBD classifier to do very well when evalu-
ated on MRDA in reference conditions (MRDA-REF). It only performs 8.5% absolute worse than
the MRDA-REF classifier does in this case (45.7% vs. 37.2%). One should notice that this is even
2.8% absolute better than the performance of the SWBD classifier when evaluated on SWBD itself,
which tops 48.5%. This observation confirms that the SWBD corpus seems to be more difficult to
classify than the MRDA-REF one. This efficiency of the SWBD classifier on MRDA-REF is all the
more noticeable when compared to the poor performance obtained by the TDT4-REF classifier
on MRDA-REF (66.4%). This difference between the performance of the SWBD classifier and the
TDT4-REF classifier evaluated on MRDA-REF points out the importance of the speech style.

Indeed, while these three corpora all represent three different speech styles, telephone conversa-
tions and meetings share some characteristics that TDT4 does not have. In particular, telephone
conversations and meetings are both conversational speech style in a multi-speaker environment,
which implies disruptions and hesitations in the utterances. This is typically not the case of broad-
cast news, since there is most of the time only one speaker who reads out loud a written text. This
reduces the spontaneity in the speech and the probability of hesitations, language disfluencies
and interruptions by other speakers. These high-level differences can also be noticed in the poor
classification performance of SWBD and MRDA-REF classifiers evaluated on TDT4-REF (97.15%
and 95.05% vs. 56.06% for TDT4).

7.2.2 Varying the Acceptance Threshold

As explained in Section 6.4, an acceptance threshold has to be chosen, in order for the probability
p(Cs|x) of having a sentence boundary for an instance x output by the classifier, to be converted
into an actual class C. The class C is either the sentence boundary class Cs, or the non-sentence
boundary one Cn. Table 7.2 shows the same result as Table 7.1 but with the acceptance threshold
that optimizes the NIST-SU error rate on the test set.1 Reading the acceptance threshold values
that lay in the diagonal from the upper left to the lower right of the table shows that the optimal
acceptance threshold for the probabilities output by the classifier of the corpus that is being eval-
uated (SWBD for SWBD, for example) is always 0.5. When on the contrary the corpus on which
the classifier has been trained has a different speech style from the domain on which it is evalu-
ated, the optimal acceptance threshold is usually not the same. An example of this is shown in
the MRDA STT column, where both TDT4 classifiers have optimal acceptance thresholds of 0.3
while the two MRDA classifiers and the SWBD classifier have an optimal acceptance threshold
of 0.5. These differences in the value of the acceptance threshold can be explained by the lower
sentence unit frequency in the TDT4 corpus (one SU every 14.6 words) than in the SWBD and
MRDA ones (6.5 and 7.6). As a consequence, the classifier has to compensate its lack of sentence
unit hypotheses by lowering the acceptance threshold.

This explanation does however not hold in the inverted case in which we would expect the
MRDA and SWBD classifiers to increase their acceptance threshold when they are evaluated
on the TDT4 corpus, so that less sentence boundaries would be hypothesized. Table 7.2 shows
that the MRDA-REF and the MRDA-STT classifiers have an acceptance threshold of 0.4 and 0.3
respectively, while they have an optimal acceptance threshold of 0.5 and 0.4 when evaluated on
MRDA-REF. However, when the error rates are as high as they are in this case, that is just below
100% NIST-SU error rate, it does not seem to make much sense to try to draw any conclusion
from them. Indeed, a 100% NIST-SU error rate is the error rate that a classifier hypothesizing

1We are aware that the approach used here would not be correct if our goal was to actually compare the NIST-SU error
rate obtained with the optimized acceptance threshold to the one of the standard one and make any deduction from the
acceptance threshold optimization. In such a case, we would need to optimize the acceptance threshold on the held-out
set for each experiment and then use this acceptance threshold as the optimal one, although it might actually not be the
optimal one on the test set. But because our goal is here to show that the actual optimal acceptance threshold on the test
set is different from the default one, we do not use this standard approach.
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only non-sentence boundaries (called chance classifier) would reach and it might be that the re-
sults around this number lead to hypotheses that are as wrong as the ones done by the chance
classifier. This is typically the case for large acceptance thresholds, such as for example the 0.9
acceptance threshold for MRDA-REF evaluated on TDT4-STT.

Test corpus

Training corpus TDT4-REF TDT4-STT MRDA-REF MRDA-STT SWBD

TDT4-REF 56.0% [0.5] 81.1% [0.6] 63.5% [0.3] 73.1% [0.3] 89.9% [0.6]
TDT4-STT 69.9% [0.4] 76.5% [0.5] 64.4% [0.2] 71.1% [0.3] 91.5% [0.5]
MRDA-REF 94.8% [0.4] 98.7% [0.9] 37.2% [0.5] 50.1% [0.5] 70.8% [0.4]
MRDA-STT 94.9% [0.3] 99.3% [0.9] 37.9% [0.4] 50.1% [0.5] 71.2% [0.4]
SWBD 97.1% [0.5] 102.1% [0.9] 45.7% [0.5] 60.0% [0.5] 48.5% [0.5]

Table 7.2: NIST-SU error rates for the basic cross-classification experiment. Each pair of result
contains the NIST-SU error rate for the optimal acceptance threshold, which is the number in
brackets.

Figure 7.1 shows a typical recall vs. precision graph for 20 different acceptance thresholds going
from 0.95 to 0.0 with a step of 0.05 between each of them. The values are the ones obtained by
the MRDA reference classifier evaluated on the MRDA reference corpus. This graph shows the
relationship between the recall and precision measures and the acceptance threshold. Varying the
acceptance threshold allows one to balance the precision and the recall yielded by the classifier,
which could be useful in some applications as explained in Section 6.5. The minimum acceptance
threshold 0.0 (the point at the most right on the graph) has the effect of hypothesizing only sen-
tence boundaries. The recall is thus 100%, whereas the precision is the number of true sentence
boundaries divided by the total number of instances to classify. This is nothing but the inverse
of the sentence unit frequency: 1/6.5 = 15.4%. The other extreme point, at the most left, is the
one where the acceptance threshold tends to 1.0 (it cannot be 1.0 since the number of hypothe-
sized sentence boundaries would then be null and the precision would have a null denominator).
This means that very few sentence boundaries are hypothesized and the precision tends to 100%,
while the recall is very low.
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Figure 7.1: Recall-Precision graph for 20 acceptance thresholds from 0.95 to 0.0 with a gap of 0.05
between each of them.

We have seen the effect of varying the acceptance threshold on the NIST-SU error rate through
Table 7.1 and Table 7.2. Figure 7.1 then showed us the behavior of the recall and the precision as
functions of the acceptance threshold. The overall picture with the NIST-SU error rate, the recall,
the precision, and the F-Measure as functions of the acceptance threshold shown in Figure 7.2 .
We observe that the optimal acceptance threshold is well and truly 0.5, as already noticed from
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the results in Table 7.2, but that the performance obtained with the other acceptance thresholds
is not very far from the optimal one. The maximum F-Measure value shows up on the point
where the recall and the precision curves cross. As for the NIST-SU error rate, there is no obvious
maximum for the F-Measure since the curve is pretty flat as its highest values, i.e. for acceptance
thresholds value between 0.25 and 0.5. We can interpret this as being the zone where a loss in the
precision is still compensate by a gain in the recall and vice versa.
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Figure 7.2: NIST-SU error rate, F-Measure, recall and precision as a function of the acceptance
threshold; graph for the MRDA-REF classifier evaluated on the MRDA-REF test set.

7.3. Adaptation of SWBD on MRDA

Section 7.2 has given us a first insight into the characteristics of the three corpora that we are
dealing with. In particular, we have observed that the speech style and the labeling are two major
differences among those corpora. What we did in Section 7.2 is not properly speaking an adap-
tation, since we used a classifier trained on one domain (out-of-domain) to classify data from
another domain (in-domain), but did not use any in-domain training data. More precisely, this
can be considered as unsupervised classification since in the building phase of the classifier, we
do not use any data from the domain on which we are testing the classifier. In the reality, it is
however reasonable to assume that we can count on some labeled data from the in-domain, and
thus use the approaches presented in Chapter 5 to perform supervised adaptation. As explained
in Chapter 3, the two domains involved in the adaptation process should share some similari-
ties. Since the SWBD and the MRDA corpora seemed to be the two corpora that are the most
similar according to the first basic cross-classification presented in the previous section, we per-
form adaptation on these two domains, using the MRDA corpus as the in-domain and the SWBD
corpus as the out-of-domain.
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Learning curves

The next question is to know how to evaluate the adaptation methods presented in Chapter 5.
The experiment done in the previous section was very basic since it always assumed no data from
the in-domain and a very large set of data of the out-of-domain. To better match with the reality,
we will study the effect of having different amount of the in-domain data which we represent on
graphs with learning curves.

These learning curves are shown both for the whole MRDA corpus and for only one of its meet-
ing types, the BED one. Performing an experiment with only the BED type of meetings aim at
reducing the variance between the instances, which could be increased by the difference that
appear between the different types of meetings, as explained in Section 6.1.

Note on the loss function used for all following experiments

Recall that the Boosting algorithm that we use gives us the choice between two loss functions: the
exponential loss function and the logistic loss function. Figure 7.3 shows a comparison between
the two of them for the MRDA classification. The logistic loss function performs slightly better
and we use it for the rest of the experiments of this subsection.
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Figure 7.3: Comparison of the logistic and exponential loss functions for the BED meetings of the
MRDA corpus. The unit of the data size is the number of words.

7.3.1 SWBD Adaptation on BED

The characteristics of the BED meeting type can be found in Table 6.4 and the ones of SWBD in
Table 6.3.

The learning curves in Figure 7.4 and Figure 7.5 show the evolution of the NIST-SU error rate (a)
and the F-Measure (b) in reference and STT conditions when the number of training samples of
meetings from the BED corpus is increased. In an attempt to smooth the results and hence prevent
them from being dependent from noise in the data, all results are averaged on three experiments
with three different subsets of the training data as training set. The default acceptance threshold
value of 0.5 is used.
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Figure 7.4: NIST-SU error rate (a) and F-Measure (b) for the BED classifier evaluated on the BED
test set; in reference conditions.
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Figure 7.5: NIST-SU error rate (a) and F-Measure (b) for the BED classifier evaluated on the BED
test set; in STT conditions.
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The learning curve graphs that are presented in this work contain five curves, which correspond
to the performance of the four adaptation methods presented in Chapter 5 and the performance
of the classifier trained on the in-domain data only. In the case of Figure 7.4 and Figure 7.5, the
in-domain classifier is the curve labeled as ’BED’.

We first examine the reference conditions on Figure 7.4. Boosting adaptation and logistic regres-
sion are the methods that perform the best when there is very little BED training data available.
The “feature” adaptation does not achieve such an accurate classification when there is little BED
data available, i.e. it does not exploit the SWBD data as well as Boosting adaptation and logistic
regression in this particular case. As has been discussed in Section 5.5, the poor performance of
the “feature” adaptation is a consequence of its strong binding to the in-domain classification
model.

The concatenation method performs poorly in comparison to the other methods, independently
from the amount of BED data used. As explained in Section 5.5, the weight given to each model
of the data is proportional to the amount of data of the model, which makes it impossible for
the combined classifier to be efficient even when lots of in-domain data is available, since the
out-of-domain data still weigh in the classifier decision.

On the contrary, logistic regression is in the best perforers independently from the size of the BED
data used. It reduces the NIST error rate by 17.5% relative for 1k, 8.4% for 3k and 3.7% for 80k,
which are all statistically significant improvements according to a Z-test with 95% confidence
range.

On the experiment in STT conditions, the “feature” adaptation method performs even worse than
the simple concatenation of data. However, the performance of the “feature” method gets better
than the concatenation method as soon as 5k of BED data are available. Note that on the REF
conditions, the “feature” method always outperforms the concatenation method.

All figures show that the more meeting data, the lower the absolute error rate and the smaller the
difference between the classifier trained on BED only and the ones that use SWBD to create a new
adapted model. Such a behavior is expected since adding in-domain data to the training set used
by the learning algorithm to build the predictive function f (x, l) (and assuming that these data
are consistent and reasonably noiseless) the added data allow the classifier to make the predictive
function f (x, l) more accurate. However, it should be noticed that even with the full BED training
data, all adaptation methods but the data concatenation perform as well, when not better, as the
classifier built only on the BED data.

Getting the same error rate with less labeled data

Up to now, we have compared the performance of the BED classifier for a given amount of in-
domain data and compared it to the performance of adaptation methods for the same amount
of in-domain data (i.e. looking at the different curves for a fixed point on the x-axis). We have in
particular observed that independently from the amount of the BED data available, the adapta-
tion methods always outperform the BED classifier. This way of looking at the adaptation per-
formance is however only one of the benefits of adaptation. Indeed, as explained in Chapter 3,
adaptation also allows, by using the out-of-domain data together with an amount a1 of in-domain
data, to reach the same classification accuracy as would have been obtained using an amount a2
of in-domain data only, with a1 < a2.

This interpretation of the performance can be seen on Figure 7.4 by fixing a point on the y-axis
and looking at the x-values for the different curves. For example, looking on the NIST-SU error
rate graph, we observe that one would need to use 1k of in-domain data together with SWBD
data, using the Boosting adaptation or the logistic regression method, to reach the error rate of
the BED classifier for 4k of in-domain data. The difference becomes bigger when more in-domain
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data is available: with 15k of in-domain data, the error rate yielded by the Boosting adaptation
method is equal to the one of the BED classifier trained on 35k of in-domain data. Finally, the best
performance achieved by the BED classifier (75k of in-domain training data) is equal to the one
topped by the Boosting adaptation and the logistic regression methods with only 20k of in-domain
training data.

Differences between STT and reference conditions

The performances on the STT conditions globally show the same pattern as the performance on
the reference conditions, although they are per se 10%-15% lower. Once again, this absolute error
rate difference can be explained by the errors made by the ASR in the word recognition phase.
Nonetheless, in both STT and reference conditions, one would need to label four times as much
in-domain training data (1k vs. 4k) to reach the same first performance, assuming a classifier
needs at least 1k of training data to be trained. Approximately, the same ratio holds for the best
performance of the whole BED corpus with 75k of data, reached by logistic regression on both
STT and reference conditions with only 15 − 20k of BED training data.

Besides the lower absolute performance on STT conditions than on the reference ones, the only
major difference between the figures 7.4 and 7.5 is that data concatenation outperforms the
“feature” method on the STT conditions, while it was always worse than any other adaptation
method on the reference conditions. This difference can be explained by the fact that while the
overall performance on the STT conditions is worse than the one obtained on the reference con-
ditions by the BED-STT and BED-REF classifiers respectively, the SWBD model is in both cases
trained on the reference conditions, which means that it is lexically accurate. Thus, using mas-
sively the SWBD data as done by the concatenation method helps when very little BED data are
available. On the other hand, having the same errors on the training set and the test set can help.
For example, keeping the words that were wrongly inserted by the ASR during the recognition
phase on the training set makes sense since it is likely that the ASR is going to do the same inser-
tions on similar instances of the test set. These similarities shared by the training and the test set
are however not able to compete with the higher lexical accuracy provided by SWBD when very
little data is available.

Because the experiments in STT conditions have shown to have the same pattern that the ones
done in reference conditions, we focus in the next experiments on the reference conditions only
and compare them with the results obtained in this experiment.

7.3.2 SWBD Adaptation on MRDA

The results for the reference conditions are presented in Figure 7.6 in the same form as in the
previous section. Figure 7.7 shows the same two curves but only for the data size from 1k to 80k,
which makes it easier to compare the results of the current experiment with the ones presented
in the previous section for the SWBD adaptation on BED. Notice that on Figure 7.6, the Boost-
ing adaptation curve is stopped at 135k. This is because the Boosting adaptation requires a lot of
memory and ran out of memory after the 135k point.2

The total available amount of MRDA data is 540k, as shown in figure 7.7. When very little in-
domain training data is available, adding in-domain data to the training set has the effect of
greatly improving the classification performance. This is especially made clear by the almost
vertical slope of all adaptation methods (except concatenation) and the MRDA classifier on the
extreme left. However, the more available in-domain data is added to the training set, the less ef-
fective the repercussion on the classification performance is. After a certain amount of in-domain

2This problem will be solved soon, since a new version of Boostexter compiled for 64 bits machines should be released
soon.
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data is available for the training set, adding in-domain data seems to not improve significantly
the classification performance anymore. For example, the “feature” adaptation has a F-Measure
value of 80.0 with 135k of in-domain data. With 540k of in-domain data, the F-Measure value is
80.7. So in this case, adding more than 300k of in-domain labeled data to the training set has led
to an improvement of less than 1% of the F-Measure.

The asymptotic behavior of the curves tends to an imaginary limit. Although it is hard to estimate
such a limit and there is no proof of its existence, one can reasonably assume its existence, based
for example on the knowledge that the data set is noisy. Moreover, this limiting behavior has
also been observed in prior work, such as in Tur (2005). The limiting behavior also strengthens
the effectiveness and importance of using adaptation. For example, the “feature” method reaches
the top performance of the MRDA classifier with less than 300k of data, which means 240k less
labeled data. Naturally, when labeling a new corpus, one cannot compare the performance of the
adaptation with the performance of the classifier trained on the full in-domain data, since one’s
goal is precisely not to have to label the whole corpus. Thus, there is a risk that the performance
of the adaptation is lower than the one that would have been obtained with the whole in-domain
classifier. However, one could develop means to estimate the top reachable error based on the
evolution of the learning curves with little amount of in-domain data.

Discussion on the Adaptation Methods

With 50k of in-domain training data, we notice that the Boosting adaptation curve has a perfor-
mance that seems out of the natural evolution of the curve. This can be explained by the way the
optimization of the weight η, that balances the importance of the out-of-domain model and the
in-domain model, is done. Indeed, the optimization η is done by manually trying eight different
weights on the development set and choosing the one that minimizes the test error. Although
the parameter η used on the test set is averaged over three experiments, there is no warranty
that it is the weight which leads to the optimal adaptation between the out-of-domain and the
in-domain model. Moreover, and this also holds for both the Boosting adaptation and the logistic
regression method (and every other methods that would need to optimize some weights on the
development set), the data distribution in the development set is different from the one in the test
set and an optimal weight for the development set might not be optimal for an evaluation on the
test set. These two reasons lead to some suboptimal performance on the evaluation classification.

For the logistic regression method, the optimization of the weights can also be suboptimal in
essence. Indeed, as explained in Appendix A, the Newton-Raphson method used to find the op-
timal weights is an iterative algorithm that may end up finding local optima. This explains the
performance of the logistic regression method, which is lower than the one of the MRDA clas-
sifier, while it should not since optimal weights should allow the logistic regression method to
do at least as well as the MRDA classifier by ignoring the out-of-domain classifier if it hurts.
One could argue that the sub-optimality is the consequence of the optimization of the weight
on the development, as explained above. However, the uncertainty about the difference between
the development set and the test set can be removed by optimizing the weights on the test set.
Since the weights are optimized on the same set as the one used for the evaluation of the classi-
fier, the weights are guaranteed to yield the best possible classification performance on this set.
Results showed that even with this cheating experiment, the logistic regression method yields
lower result than the MRDA classifier.

The non linear relation between the prediction and the predictor variables in logistic regression
makes it not straight forward to interpret the weights and see if, for instance, the in-domain of
the out-of-domain classifier has been given a null importance. The use of linear regression could
be useful for this particular case, since the weights in linear regression are easily interpretable.

Although the Boosting adaptation and the logistic regression experiment do not perform as well
as the MRDA classifier, the best classification performance is still due to an adaptation method,
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Figure 7.6: NIST-SU error rate (a) and F-Measure (b) for the adaptation of SWBD on MRDA using
the four adaptation methods described in Chapter 5 in reference conditions. The curve named
’MRDA’ is the performance obtained by using only the classifier that was trained on the MRDA
corpus, i.e. without any adaptation, and can thus be considered as the baseline.
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Figure 7.7: Zoom on the first 80k of in-domain training data of Figure 7.6.
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i.e. the “feature” method, rather than to the in-domain classifier. Note that this is an inverted
ranking compared to the BED experiment of the previous section in which this one method was
the worst among the three adaptation methods. Recall that, as explained in Section 5.5, the “fea-
ture” method builds a classifier that uses the in-domain data to which the prediction of the out-
of-domain classifier has been added as a feature. This is not the case of logistic regression, which
uses only the predictions of the in-domain and the out-of-domain classifier, neither is the one of
the Boosting adaptation which, uses the classifier built on the in-domain data and adapt it using
the data of the out-of-domain. The “feature” method is thus, by construction, the one that gives
the most importance to the in-domain data. As a consequence, its performance is tightly related
to the one of the in-domain classifier. This can be an advantage in the case where the in-domain
classifier has a high performance, as in this experiment, but it can also be a drawback if the in-
domain classifier performs poorly and the out-of-domain data are able to improve consequently
the classification accuracy, as in the previous experiment.

Differences with the BED experiment

Since BED is a subset of the MRDA corpus, this experiment can be seen as an extension of the
adaptation of SWBD on BED experiment presented in the previous section. One could there-
fore expect to observe the same results on both experiments. Some remarks done in the previ-
ous paragraph and a comparison of the curves presented in the graphs presented in Figures 7.6
and 7.7 with the ones of 7.4 undermine this hypothesis. One obvious difference can be observed
on the performance of all methods with the maximal amount of MRDA data: the MRDA classifier
outperforms the logistic regression and concatenation methods and only the “feature” method
performs better than the MRDA classifier does (80.7 vs. 80.3 F-Measure). Since the Boosting adap-
tation performance could not be assessed for this amount of data, one could argue that this par-
ticular method could have outperformed the MRDA classifier as well. However, looking back at
the beginning of the curves, we observe that already for 10k and up to 80k of in-domain training
data, the Boosting adaptation method is outperformed by the MRDA classifier. For the last point
computed for the Boosting adaptation (135k), the performance of the Boosting adaptation method
yet comes back to the level of the MRDA classifier (79.5 F-Measure for both of them).

Even though Boosting adaptation is the weakest of the adaptation methods (apart from concate-
nation), the fact that it is outperformed by the MRDA classifier is not due to a weakness of this
particular adaptation method. Indeed, the logistic regression method has a lower F-Measure than
the MRDA classifier for every evaluation done with 50k and more in-domain training data. Re-
call that on the BED experiment with the exact same SWBD classifier, Boosting adaptation and
logistic regression both outperformed the in-domain classifier independently of the amount of
in-domain data. The BED data being 1/5 of the MRDA data and the other 4/5 being supposedly
similar to the BED data makes this difference between the experiment on BED and MRDA diffi-
cult to explain. Two reasons can however be propound to explain this difference. First, the MRDA
test set seems to be easier to classify than the BED test set for the MRDA and BED classifier as
shown in Figure 7.8. The two graphs on this figure show the performance of the BED and the
MRDA classifiers respectively, evaluated on both the MRDA and the BED test set. In both cases,
the performances of the classifier are significantly better when evaluated on the MRDA test set.
While the two presented graphs tend to show that the MRDA test set is easier to classify than the
BED test, the performance of the SWBD classifier contradicts this assertion. Indeed, the NIST-SU
error rate of the SWBD classifier of the BED test set is 60.4% while the NIST-SU error rate of the
same SWBD classifier on the MRDA test set is 61.3%. Thus, the SWBD corpus fits the BED subset
of MRDA better than the whole MRDA corpus. The more accurate performance of SWBD on BED
is confirmed by looking at the concatenation curves on both graphs: with 1k of in-domain train-
ing data, the NIST-SU error rate on BED is 1.9% absolute lower than the one of concatenation on
MRDA (57.1% vs. 59.0%). Adding in-domain data reduces the difference between the two error
rates, such that for 75k of data they are identical (49.0).
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Figure 7.8: Evaluation of the BED (a) and the MRDA (b) classifiers on the BED test set and the
MRDA test set. The legend indicates the test set.

The differences between the evaluations on the BED and the MRDA test sets mentioned in the
previous paragraph are partly due to a sampling accident, since an evaluation on the develop-
ment set shows a lower difference in the classification performances. However, even though these
differences are less obvious on the development set than on the test set, they are still repeated on
the development set and incite to think of more genuine differences between the BED corpus
and the rest of the MRDA corpus. In the next section, we examine in more detail the differences
between the meeting types of the MRDA corpus by means of lexical statistics and another adap-
tation experiment.

7.4. Adaptation within the MRDA Meeting Types

As already mentioned above, the MRDA corpus is divided into three main types of meetings,
BED, BMR and BRO. While these meetings have all been recorded using the same settings, their
speakers as well as the subjects that they discuss are yet different, as has been explained in more
detail in Section 6.1. Therefore, proceeding to some kind of adaptation on them is not pointless
and can even be useful in practice, although they technically all belong to the same corpus. Imag-
ine for example that one decides to extend the MRDA corpus with a new type of meeting that
would have been recorded with the same settings as the three already existing meeting types.
The existing meetings could be used to help label the new recorded meetings.

Concretely, one could train a classifier on the existing meetings and use it to output predictions
for the new meetings, assigning a confidence to each of the prediction output. The instances
with low confidence could then be given to human labelers, who would thus get a much smaller
amount of data to label. This procedure is called active learning and has been studied by Tur (2005)
for the case of spoken dialog system. Another approach could be to use the study on the three
already labeled types of meetings to estimate the amount of data of the new meeting type that
would need to be labeled in order to reach an error rate under a certain percentage. The labelers
could consequently estimate the amount X of data that the use of the already existing labeled
data could save them from labeling.

More experiments concerning the meeting types within the MRDA corpus have been done and
the interested reader can found them in Section B.1.
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BED test BED BRO BMR

# words 2486 4257 665 4731 830 6681 589
# bigrams 16036 34563 9445 48562 9497 66846 8373
# trigrams 27221 67600 22723 108885 22418 148590 21523

Table 7.3: Lexical statistics for the test set of BED (first column) and the training sets of the three
meeting types of MRDA. For each training set the first column shows the absolute number of
distinct words (resp. bigrams and trigrams) that appear in the training data. The second column
shows the number of words (resp. bigrams and trigrams) that appear in the BED test set and do
not appear in the training set of the meeting type.

7.4.1 BRO Adaptation on BED

In this section, we perform the same kind of experiment as in Subsection 7.3.1 and
Subsection 7.3.2. As observed in Section B.1, the BRO classifier performs better on the BED and
MRDA test sets than the BMR classifier when compared with an identical amount of in-domain
training data. We therefore chose the BRO corpus as the out-of-domain. The results of these ex-
periments are reported in Figure 7.9 as before in a shape of learning curves for both the NIST-SU
error rate and the F-Measure.

As for the adaptation of SWBD on BED, Boosting adaptation, logistic regression and “feature”
adaptation methods all perform better than the BED classifier independently of the amount of
in-domain training data available. The major difference with the SWBD on BED experiment is
the performance of data concatenation which is significantly better than all other methods: 2%
absolute better for every amount of in-domain training data size. This outstanding performance
of the concatenation method is even more surprising when compared with the SWBD adaptation
on BED and the SWBD adaptation on MRDA, where the concatenation was each time the worst
method. The difference between these two previous experiments and the current one is that in the
current one, both the in-domain and the out-of-domain come from the same corpus. Therefore,
even if they have some lexical and structural differences as explained above, the distribution of
their training data are still very near from each other. Thus, one can think that concatenating data
from the out-of-domain is in this case the same as adding data from the in-domain.

The other adaptation methods show once again the same patterns as observed in the previous
experiments: logistic regression and Boosting adaptation are very near from one another, with
logistic regression performing better with little in-domain data. The “feature” method is the one
that sticks the most to the in-domain classifier performance, that is to say in this case the one that
performs the worst. They all converge to the same performance when the amount of in-domain
data is increased.

7.5. The Importance of Features

The learning task consists of some data that have to be classified into classes on one side, and a
learning algorithm able to classify a set of data on the other side. The question is: how can the
data and the learning algorithm interact? In other words, how can one represent a set of data
such that a learning algorithm can handle them. Features play the intermediary role between
the learning algorithm and the data by creating a representation of the data. The choice of the
features is crucial since they contain all the knowledge that the learning algorithm has about the
data. So the challenge is to make the features represent the data in a way that discriminates the
classes, so that the classifier built by the learning algorithm has a higher probability to put each
instance of the data in the correct class.
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Figure 7.9: NIST-SU error rate (a) and F-Measure (b) for the BED classifier by itself and the same
BED classifier combined with BRO using the same four adaptation methods as before.

7.5.1 Motivating Example

In order to better understand the importance of features, let us consider the problem of classifying
cars into three exclusive categories: sport cars, SUVs and standard cars. What features would one
choose to discriminate these three types of cars? Intuitively, a low engine power would most
likely mean that the car is a standard car, and a high engine power that the car belongs to the
SUV or sport car categories. To distinguish those two categories, the height of the car could be
a good choice, since SUVs are usually bigger than sport cars. So by using the engine power
and the height of one car, it intuitively seems that one can classify cars into the three categories
standard cars, SUVs and sport cars. In other words, given the height and the engine power of a
car, a classifier should be able to tell if the car belongs to the category sport cars, standard cars or
SUVs.

However, let us imagine that instead of the height and the engine power of a car, one had chosen
the year of construction of a car and the country in which it was built as features. The year of
construction and the origin country are two features that are not helpful at all to distinguish the
three categories of cars considered in this example. For example, knowing that a car was built in
2001 in Germany does not tell anything about its belonging to either of the three classes. The year
of construction and the origin country are not discriminative for the classification task desired in
this example. It does not mean that these two features are wrong or do not describe properly the
cars, it only means that they are not appropriate for this particular task.

Coming back to our primary choice of features, we have two features, the height and the engine
power, that intuitively would help to perform the classification into the three classes SUVs, stan-
dard cars and sport cars. Now, these features will probably not be enough to prevent the learning
algorithm from misclassifying some cars. For example, it might be that a car considered as a stan-
dard car be powerful and thus ends up being classified as a sport car. So we will need to add
features to describe a car more precisely to the learning algorithm. But what features? Could the
length of the car help? What about the color?

In most cases it is impossible to know in advance what features will help or hurt for the given
classification task, for at least two reasons. The first reason is that it is not straight forward to
know if a feature distribution will be correlated with the classes distribution. For example, would
the color of a car help classify a car in one of the three categories? It is difficult to say, since the
common sense would say that sports car are generally more flashy than standard cars, but some
standard cars also have flashy colors. The second reason that makes it difficult to know if an
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additional feature will help to predict more accurately the class of an instance (a car in the current
example), is that even if the distribution of the new feature is correlated with the distribution of
the classes, it might also be correlated with the distribution of a feature which is already in the
feature set, and hence not bring any improvement. In the case of the cars example, the height
and the weight of a car are two features that might be strongly correlated (although counter-
examples can always be found). In the case of sentence segmentation, Eisenstein & Davis (2005)
have shown that although gestural features are correlated with sentence segmentation, adding
them to classification models that already contain prosodic and lexical features does not make the
classification more accurate because the gestural features are correlated with the prosodic and the
lexical features.

7.5.2 Subset of Features

In Section 6.3, we presented four different subsets of features to describe the data: one containing
lexical features only (designated as the lexical set in the rest of the section), one with prosodic
features only (prosodic), the third one with lexical features and the pause duration between two
words (lexical+) and finally one containing all available features, that is all prosodic and lexical
features (all).

In this section, we study and compare the performances of the classification models built on
each of these four subsets of features. We use the MRDA and TDT4 corpora, since the prosodic
features for the SWBD corpus were not available. For the MRDA corpus, we had the prosody
information only for the reference conditions. For every measure reported in the tables, the ac-
ceptance threshold has been optimized on the development set. The optimization was done by
trying all thresholds between 0.1 and 0.9 with a step of 0.1 between each of them. The threshold
that yielded the best NIST-SU error rate (respectively F-Measure) on the development set was
chosen and used as the acceptance threshold on the test set.

The results (F-Measure and NIST-SU error rate) are presented in Tables 7.4, 7.5, 7.6 and 7.7 for the
reference (7.4, 7.5) and the STT conditions (7.6, 7.7). The purpose of this section is to compare the
performance of one classifier through the four different sets of features – this is done by reading
the tables column-wise. For example in Table 7.4, the first column shows the performance by
means of the NIST-SU error rate of the MRDA classifier evaluated on the MRDA test set for the
four sets of features. We observe that the best performance in this case is topped by the classifier
that used the all features subset, followed by the lexical+ subset, than the lexical set and finally the
prosodic features set. Considering that the all features set uses 43 features, the performance of the
same classifier with only the 9 features of the lexical+ features set is remarkably high, since the
all classifier uses 34 more features than the lexical+ one (36.5% vs. 35.6% NIST-SU error rate). One
could be tempted to conclude from this observation that all the prosodic features added in the
all features set are not that helpful.

Pause Duration: the most discriminative feature

Concluding that the prosodic features are not helpful is however wrong. First, and even if the
absolute error rate gain is little (0.9%), the relative error gain is 2.5%, which is statistically sig-
nificant. Second, the performance of the classifier with only these prosodic features is only 4.9%
absolute worse than the one yielded by the classifier that was fed with only lexical features (53.7%
vs 48.8%). Since the NIST-SU error rate of a classifier that hypothesizes sentence boundaries ev-
erywhere (also called chance performance) is by definition 100%, this performance shows that
prosodic features are indeed useful for the detection of sentence boundaries. The little change
observed when adding them to the lexical+ feature set is partly due to the presence of the pause
duration feature in the lexical+ feature set.
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Classifier: MRDA TDT4

Test set: MRDA TDT4 TDT4 MRDA
Lexical 48.8 100.3 93.4 72.5
Prosodic 53.7 92.2 65.5 73.3
Lexical+ 36.5 97.8 56.4 65.3
All 35.6 93.3 49.2 60.4

Table 7.4: NIST-SU error rates for the classifiers built on the MRDA and TDT4 corpora for the
four different sets of features. The two classifiers are evaluated on both the MRDA and the TDT4
test sets for each set of features. In reference conditions.

Classifier: MRDA TDT4

Test set: MRDA TDT4 TDT4 MRDA
Lexical 74.2 35.5 48.0 60.5
Prosodic 69.9 52.9 67.4 64.7
Lexical+ 80.9 55.9 72.5 66.2
All 81.7 58.3 75.5 68.3

Table 7.5: F-Measure results for the classifiers built on the MRDA and TDT4 corpora for the four
different sets of features. The two classifiers are evaluated on both the MRDA and the TDT4 test
sets for each set of features. In reference conditions.

Classifier: MRDA TDT4

Test set: MRDA TDT4 TDT4 MRDA
Lexical 70.9 101.9 97.7 86.6
Prosodic NA NA 78.1 NA
Lexical+ 49.5 99.3 76.2 72.4
All NA NA 71.2 NA

Table 7.6: NIST-SU error rates for the classifiers built on the MRDA and TDT4 corpora for the
four different sets of features. The two classifiers are evaluated on both the MRDA and the TDT4
test sets for each set of features. In STT conditions.

Classifier: MRDA TDT4

Test set: MRDA TDT4 TDT4 MRDA
Lexical 62.4 29.0 39.7 51.4
Prosodic NA NA 58.0 NA
Lexical+ 73.3 47.2 59.5 62.8
All NA NA 61.8 NA

Table 7.7: F-Measure results for the classifiers built on the MRDA and TDT4 corpora for the four
different sets of features. The two classifiers are evaluated on both the MRDA and the TDT4 test
sets for each set of features. In STT conditions.
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Indeed, the pause duration between two words is intuitively a very natural indicator of the pres-
ence or absence of a sentence boundary. This intuition is confirmed by the 12.3% absolute NIST-
SU error rate gained between the lexical features and the lexical+ features set, which is the same
set with only the pause duration added to it. Another indicator of the importance of the pause
duration feature can be seen in the structure of the Boosting classifier. Recall that at each of the
1000 iterations of the learning process, Boosting builds the new basic rule that helps to reduce
the most the current classification error rate. This rule is based on one feature, and counting the
number of times that one feature is used to build a basic rule along the learning process gives
us an indication of its importance. The pause duration feature appears 82 times out of the 1000
iterations in the MRDA classifier built on the all feature set; it is from far the most used feature,
followed by the windows energy difference, the words energy difference and the pitch windows
difference measures.

Redundancy of the prosodic and the lexical models

The second reason that can be put forward to explain the little performance difference between
the lexical+ and the all sets of features is the redundancy of the information conveyed by the
prosodic model and the lexical model. The information contained in the two models is not ex-
actly the same, since as pointed out before, merging the two sets of features allows us to reduce
the error rate of 2.5% relative. Even though it is difficult to prove formally this redundancy be-
tween the lexical and the prosodic models, it could be an explanation for the use of all lexical
features not improving drastically the performance towards the lexical+ feature set. Moreover,
the prosodic features amongst themselves also have a huge degree of redundancy, since among
the 43 features, most of them are only different measures of the same physical phenomenon. For
example, the energy differences between to consecutive words w1 and w2 generates four features:
the difference between the maximum energy of w1 Emax

w1
and the minimum energy of w2 Emin

w2
, the

difference between the two maximums Emax
w1

and Emax
w2

, the difference between the two minimums
Emin

w1
Emin

w2
and the difference between Emin

w1
and Emax

w2
.

Differences between the MRDA and TDT4 corpora

Back to Table 7.4 and Table 7.5, one observes that the ranking that had been established for the
MRDA classifier evaluated on the MRDA corpus also holds for the TDT4 classifier evaluated on
the MRDA test set: first the all features set, then the lexical+ one, the lexical one and finally the
prosodic one.

Now if we look in more detail at the first and the third columns, we observe some slight differ-
ences between the MRDA and the TDT4 corpora. First, the ranking among the feature sets for
the classifier built on the TDT4 corpus and evaluated on itself is not the same as was described
above for the MRDA corpus: the experiment with the lexical features set performs much worse
than the one with the prosodic features set (65.5% vs. 93.4% NIST-SU error rate and 67.4 vs. 48.0
F-Measure).

This result suggests that either lexical features have less accuracy on the TDT4 corpus than they
have on the MRDA corpus, which the high NIST-SU error rate (93.4%) on the lexical experiment
tends to confirm, or that prosodic features are more accurate on the TDT4 corpus than on the
MRDA corpus. Since the TDT4 corpus contains more structured speech, one could indeed expect
the prosodic information to be more reliable, all the more because the broadcast news speakers
are professional speakers and should therefore particularly stress the intonation in their sentences
as well as the pauses between their sentences. The effects of prosodic features will be discussed
in more detail below.
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On the contrary, the well-structured speech of TDT4 seems to weaken the lexical information,
at least for the sentence segmentation task. This is confirmed by Table 7.5.2, which shows statis-
tics on the words ending a sentence in both MRDA and TDT4 training data sets. As noticed in
Section 6.1 on the description of the data, the MRDA corpus has a higher absolute number of sen-
tence units than TDT4, although the number of words in TDT4 is higher. However, the number of
different words that end a sentence units is much smaller on MRDA than TDT4. Thus a word in
MRDA that ends at least one sentence unit in MRDA ends on average 14.7 sentence units, while
this number on TDT4 is only 7.4. This already gives a clue of why the lexical model is stronger
on MRDA than on TDT4.

Tables 7.9 and 7.10 show the percentage of sentence units ended (resp. started) by the five words
that end (resp. start) the more sentence units in each corpora. The word that ends the most sen-
tence units in MRDA (“yeah” ) ends more than 10% of them, while the most frequent one in
TDT4 is the @reject@ token of the ASR and appears 1.85% of the cases. The @reject@ token of
the ASR (which is always followed by a sentence boundary) being the most frequent word to end
a sentence indicates that there is no strong lexical pattern for the sentence unit ending mark in
TDT4. On the contrary, the words that appear the most frequently on the end of a sentence unit
express that the MRDA data have a lexical repetitive pattern that is proper to the conversational
speech style.

The difference between the TDT4 and the MRDA corpora is weaker on the words starting a
sentence unit. The presences of “and” , “i” and “the” are expected among the five most fre-
quent words that start a sentence. The presence of the hesitation word “uh” is more surprising
for TDT4, since the speakers on broadcast news, being professional speakers, are expected to be
fluent.

On the meetings, the word “yeah” is the most frequent one to start a sentence boundary. Recall
that it was already the most frequent to end a sentence boundary. This is explained by the double
usage of the word “yeah” : while “yeah” can be used to grab the floor and confirm what some-
one has just said, or answer a question, it is also frequently used in meetings to acknowledge in
the background what the foreground speaker says (backchannel). Thus, 2% of the sentences in
the MRDA corpus begin with the word “yeah” and 39% of the backchannels in the same cor-
pus are a simple “yeah” . Furthermore, the five most frequent words to start a sentence unit are
words that can be used as backchannels.

MRDA TDT4

Number of SUs 82,435 77,262
Number of distinct words that end an SU 5,595 (50.7%) 10,453 (32.5%)
Number of distinct words that start an SU 1,955 (17.7%) 4,733 (14.7%)
Avg. nb. of SUs for each word ending an SU 14.7 7.4
Avg. nb. of SUs for each word starting an SU 42.1 16.32

Table 7.8: Statistics on the words ending a sentence unit (SU) on the MRDA and the TDT4 corpora.
In the second and third rows, the percentage indicates the percentage of words in the vocabulary
of the corpus that start (resp. end) and SU. The vocabulary size were presented in Table 6.3

Prosodic features

We mentioned above that the high reliability of the prosodic features in the TDT4 corpus can
be the cause of the performance gap between the prosodic experiment and the lexical experiment
by the TDT4 classifier on the TDT4 test set. This gap is all the more remarkable because the
performance of the prosodic and lexical experiment on the MRDA corpus are inverted, i.e. the
lexical features achieve a better performance than the prosodic ones. When using the TDT4-REF
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MRDA TDT4

word 1 yeah (10.82%) @reject@ (1.85%)
word 2 uhhuh (4.32%) it (1.16%)
word 3 right (3.96%) today (0.72%)
word 4 okay (2.91%) that (0.65%)
word 5 um (2.48%) yesterday (0.62%)

Table 7.9: The five words that end the more sentence units in each corpus and the corresponding
percentage of sentence units that they end.

MRDA TDT4

word 1 yeah (11.20%) @reject@ (11.11%)
word 2 and (9.42%) the (8.51%)
word 3 so (8.09%) and (4.28%)
word 4 i (6.31%) uh (3.63%)
word 5 but (5.14%) i (3.24%)

Table 7.10: The five words that begin the more sentence units in each corpus and the correspond-
ing percentage of sentence units that they begin.

classifier, the performance on the MRDA test set follows the same order as on the TDT4 test
set for the F-Measure: the prosodic features outperform the lexical ones. In fact the performance
yielded by the experiment on the prosodic feature set show that the variability of the prosodic
features does not depend as much on the corpus as the variability of the lexical features. As an
illustration, the F-Measure score is higher than 50 in all cases and if we exclude the result of the
MRDA classifier on TDT4, all F-Measure scores are around 65 to 70. This is clearly not the case of
the lexical experiment, whose performances are much more variable depending on the training
and testing corpora (F-Measure going from 35.5 to 74.2).

The little variability of the prosodic features make them ideal candidates for adaptation from
the TDT4 to the MRDA corpus and vice versa. In particular, this could lead to the idea of using
an out-of-domain classification model without any lexical information and to adapt it to the in-
domain by using a lexical classification model of the in-domain.

STT conditions

While the above-mentioned observations about the results are mainly based on the results in
reference conditions, we also report the same results in STT conditions in Tables 7.6 and 7.7. These
results are however sparse, since the prosodic features for the MRDA corpus in STT conditions
were not available. As already mentioned in the preceding experiments comparing the STT and
reference conditions, we again observe that the general pattern (classifier ranking, feature subset
ranking) is the same as on reference conditions, but the absolute performance measured by the
NIST-SU error rate and F-Measure is lower. An example of this can be noticed by comparing
Table 7.4 and Table 7.6 row by row. For instance in the first row, although the gap gets smaller
when the errors are big, the results in reference conditions outperform the ones in STT conditions
in every case.
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Conclusions and Outlook

Sentence segmentation from speech is a difficult task because of the high variability of speech.
The high variability of speech can especially be noticed in the differences of the speech charac-
teristics among various speech styles. In an effort to reduce the labeling of data and to improve
the accuracy of the sentence segmentation on a given in-domain, we aimed at using data from an
out-of-domain with a potentially different speech style from the in-domain.

Throughout this work, we studied three speech styles: broadcast news, telephone conversation
and meeting speech style. We first showed that the sentence segmentation performance of a clas-
sifier trained on one speech style is not accurate when applied to a speech style with different
characteristics, such as the average sentence length and the number of speakers.

The low sentence segmentation accuracy obtained when segmenting data from the in-domain
data with a classifier built on the out-of-domain data justified the need for adapting the classifier
built on the out-of-domain to the in-domain. We presented various model adaptation methods
for the sentence segmentation task and experimentally assessed them.

In particular, we showed that using a model adapted from telephone conversations to perform
the sentence segmentation task on meeting data is useful in two ways. First, the adapted model
achieves the same classification accuracy as the in-domain model with less in-domain data, i.e.
the adapted model reduces the amount of labeled meetings data needed to achieve a given perfor-
mance. Second, the adapted model was also shown to improve the accuracy of the classifier built
on the entire meeting data set.

Among the various methods presented, the optimal adaptation method was shown to be depen-
dent on the amount of in-domain data available and on the level of classification difficulty of the
in-domain data. When very little in-domain data is available, the methods that can exploit the
best the out-of-domain classifier, such as logistic regression and boosting adaptation, performed
the best; on the contrary, when a large amount of in-domain data is available, the methods that
allow the adapted model to stick to the in-domain model and give less importance to the out-of-
domain, such as the “feature” method, were the most efficient. All methods that we presented,
although used only for the sentence segmentation in this work, could be used for other tasks.

The variability of speech between the speech styles gives a particular importance to the features,
since the features that are the most discriminative on one domain are not necessary the most
discriminative the other domain. The study of the lexical and prosodic features used in this work
confirmed the importance of the pause duration. A comparison of the lexical and the prosodic
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features showed that the features that allow the most accurate performance depend on the speech
style.

In particular, results showed that the lexical features were stronger indicators of sentence bound-
aries than prosodic features in meetings, whereas it was the contrary for the broadcast news.
On both speech styles the best accuracy of the sentence segmentation task was performed using
the prosodic and the lexical features. Finally, we showed that the accuracy of a classifier on the
out-of-domain was nearer the performance of the in-domain classifier when using prosodic fea-
tures rather than when using lexical features. We concluded that, at least on broadcast news and
on meetings, the prosodic features are more independent from the speech style than the lexical
features.

Future work

This work presented model adaptation methods for the sentence segmentation task. We stud-
ied model adaptation in both STT and reference conditions, using three speech styles: meetings,
broadcast news and telephone conversations. We also examined the differences between these
three speech styles by comparing their performance with various subsets of features.

As a continuation of the current study and to show the effect of the model adaptation on further
tasks, one could study the effect of the sentence segmentation performed by an adapted model
on the dialog act segmentation and classification tasks.

Another challenge is to further improve the adaptation methods presented in this study. In partic-
ular, one could aim at finding a method that performs as well as Boosting adaptation and logistic
interpolation when only a small amount of data is available, and as well as the “feature” method
when a large amount of in-domain data is available. This could either be done by finding a new
method or interpolating the presented methods.

The improvement of the adaptation is closely related to the features used by the classifier. Finding
features that are as independent from the corpus as possible is particularly promising. A general
classification model could be built on these adaptable features from an out-of-domain corpus and
adapted to the in-domain, i.e. adaptation would not be used as a combination of two domains on
the same level but as a specialization of one general model to a more specific one.

In an effort to reduce the labeling work, active learning should definitely be considered. The goal
would be to automatically select and label only a subset of the instances of the in-domain, de-
pending on the knowledge provided by the out-of-domain. The promising field of labeling data
through games is another challenge that could be tried for the sentence segmentation labeling.

62



APPENDIX

A

Logistic Regression

Logistic regression is part of the generalized linear models category. It allows to make a discrete
prediction from a set of variables that can be continuous or discrete, called the predictor variables.
The output is usually dichotomous (or binary) and indicates the presence or the absence of a
feature. In the case of sentence segmentation task, the output variable indicates the presence
or the absence of a sentence boundary. Although the output is binary, the relation between the
predictor variables and the response variable is the following real-value function:

p(x) =
e(β0+β1x1+β2x2+...+βtxt)

1 + e(α+β1x1+β2x2+···+βtxt)
, (A.1)

where β0 is a constant and βi is the coefficient of the ith predictor variable. The binary output is
found from the response variable. The parameter α adjusts the probability p for the cases where
xi are zero, while the parameters βi adjusts how quickly the probability p changes when the xi

change. Note that these βi do not have a straight forward interpretation, as is the case in linear
regression for example, since the relation between p and xi is non linear. Multiplying both the
numerator and the denominator with e−(β0+β1x1+β2x2+...+βixi), we can rewrite Equation A.1 as
follows:

p(x) =
1

1 + e−(β0+β1x1+β2x2+...+βtxt)
(A.2)

Equation A.1 can also be written in the linear way:

p′(x) = ln

[
p(x)

1 − p(x)

]

(A.3)

= β0 + β1x1 + β2x2 + ... + βtxt (A.4)

by assuming the following transformation:

p′(x) = ln
(

p(x)

1 − p(x)

)

The goal is to minimize the error done by approximating p. While some models do have a math-
ematical solution that minimizes the sum square residuals, there is no such mathematical solu-
tion for the logistic curve. The alternative solution is to use a maximum likelihood loss function,
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where we estimate the parameters of the model such that the computed likelihood (or conditional
probability) minimizes the error. The estimation of model parameters is done by an iterative pro-
cedure called Newton-Raphson method.

We show the formalism for the binary classification case, since it is the one we use in this work.
We denote the set of classes with:

C = c0, c1

and the set of parameters of the model by:

θ = {β0, β1, . . . , βi}.

Moreover, we denote yi = 0 if a sample xi ∈ c0 and yi = 1 if xi ∈ c1. We want to maximize the
conditional probability for an example xi of being associated with its class c, given the parameters
θ of the model:

pc(xi; θ) = Pr(C = c | X = xi; θ)

We are given a set of training data with N samples that are pair matching a data example x to
a class of c ∈ C . Since all samples are assumed to be independent from each other, the posterior
probability for the N samples can be written as the product of all single probability:

N

∏
i=1

pci
(xi; θ)

The log-likelihood of this expression is therefore:

l(θ) =
N

∑
i=1

log pci
(xi; θ) (A.5)

In the case of the binary classification, since either yi = 0 or 1 − yi = 0, we have:

log pci
(x; θ) = yi log p(x; θ) + (1 − yi) log(1 − p(x; θ)),

with θ being the vector of parameters (θ0, . . . , θt). Therefore the conditional log-likelihood of
Equation A.5 can now be rewritten as:

l(θ) =
N

∑
i=1

log pci
(xi; θ) (A.6)

=
N

∑
i=1

[log pci
(x; θ = yi log p(x; θ) + (1 − yi) log(1 − p(x; θ))] (A.7)

Going back to Equation A.2, we see that we can rewrite p(x; θ) and 1 − p(x; θ) as:

p(x; θ) =
eθx

1 + eθx
(A.8)

1 − p(x; θ) =
1

1 + eθx
, (A.9)

which once substituted in Equation A.7 gives:

l(θ) =
N

∑
i=1

[

yixi − log(1 + eθxi)
]

. (A.10)

Equation A.10 is the expression that we want to maximize. To find its maximum, we need to find
the first order derivative ∂l(θ)

θ and set it to zero. This yields a set of nonlinear equations which
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we can solve by using the Newton-Raphson algorithm. The mathematical developments needed
for the Newton-Raphson algorithm are beyond the scope of this work and we refer the reader to
Kolen & Brennan (2004); Neter & Wasserman (1974) for more details.

The Newton-Raphson algorithm is an iterative method. At the beginning, every βt in θ are set
to 0. The estimated class yi of each example xi ∈ N are then initialized according to the class they
belong to. The iterative procedure is then started: first it computes the probability p(xi; θ). Next,
using special matrices and vectors of the Newton-Raphson algorithm and the probability p(xi, θ)
that has just been estimated, a new θ is computed that reduces the classification error. These steps
are repeated until a stopping criterion is met.
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APPENDIX

B Additional Experiments
on MRDA Meeting Sub-
types

In the following section, we study in more detail the differences between the meeting subtypes
in the MRDA corpus (BED, BMR and BRO). We train a classifier on each of the three corpora
and evaluate them on the BED test set. The results of this experiment are compared to the ones
of a chance experiment with the aim of discovering if the lexical and environmental differences
between the three corpora, shown in Chapter 6, influence the classification model built on these
corpora.

B.1. Evaluation of BED, BRO and BMR on BED

The BED meeting type was chosen to perform the adaptation, since it is the one which contains
the less data and it is more realistic that in practice the in-domain has less data than the out-of-
domain. Figure B.1 shows the performance of the three classifiers trained on the BED, BRO and
BMR data, and evaluated on the BED test set.

First, notice that note all curves have the same number of points, because the amount of data
in the corpora BED, BRO and BMR is different: BMR contains approximatively 200k of training
data, versus 145k and 80k for BRO and BED respectively. At first glance, all classifiers seem to
have the same performance, with little variations of maximum 2% absolute NIST-SU error rate.
With only 1k of in-domain data, the performance of the BED classifier is the worst of the three.
This is unexpected, since the test set was built on the same corpus – but not the same set – as
the BED classifier and a better performance of the BED classifier could thus be expected. Indeed,
when two data sets D1 and D2 come from the same source, a basic intuition expects the classifier
built on D1 to have a higher accuracy on D2 than a classifier built on a set of data that do not
come from the same source.

The reasons why the BED classifier performs less accurately on the BED test set than the other
classifier are not obvious. It was observed in the previous section that the BED corpus was more
difficult to classify than the MRDA corpus. This is shown again by the better performance ob-
tained by the same classifier on the MRDA test set in Figure B.3. This repeatedly proven higher
difficulty in the classification of the BED corpus, even by a classifier built on BED itself, could find
an explanation in some noise in the BED data. The noise – whose origin should be examined –
together with the relatively small amount of BED data, would make the BED meeting type more
difficult to classify and thus also turn a classifier that learned rules on these data less accurate.

67



APPENDIX B. ADDITIONAL EXPERIMENTS ON MRDA MEETING SUBTYPES

0 20 40 60 80 100 120 140 160 180 200
40

45

50

55

60

65

Data size (k words)

N
IS

T
−

S
U

 e
rr

or
 (

%
)

BED, BRO and BMR evaluated on BED

 

 

bed
bro
bmr

(a) NIST-SU

0 20 40 60 80 100 120 140 160 180 200
62

64

66

68

70

72

74

76

78

Data size (k words)

F
−

M
ea

su
re

BED, BRO and BMR evaluated on BED

 

 

bed
bro
bmr

(b) F-Measure

Figure B.1: NIST-SU error rate (a) and F-Measure (b) for the three meeting types BED, BMR and
BRO evaluated on BED.

More precise measures on the BED data should however be taken before one can definitely qual-
ify the BED data as more noisy than the BRO or BMR data. Although the reported results have
been averaged on three experiments which had different test sets, there is still a chance that the
poor BED performance is the consequence of some randomness. The crisscross of the curves
on both graphs of Figure B.1 supports this explanation, since adding more data seems to make
the performance differences of the three classifiers become narrower. For example, for 50k of in-
domain data all NIST-SU error rates are the same; with 75k, the maximal difference is between
the three NIST-SU error rate is less than 1.0% absolute (0.9% between BRO and BMR).

To prove that the results shown in Figure B.1 are rather caused by some randomness in the selec-
tion on the data than by the differences among the meeting types, a further “chance” experiment
was tried. Three new sets of data are built from scratch independently from their original meeting
type. On the same model as in the experiment that involved BED, BMR and BRO, one classifier
is built on each of these new data sets and evaluated on the MRDA corpus. The purpose of such
an experiment is to see whether the same pattern as on Figure B.1 appears, in which case the
behavior of BED, BMR and BRO would be shown to be similar to randomness. The results of the
“chance” experiment are shown in Figure B.2. The results on the graph on the left show that the
difference between the NIST-SU error rate among the three classifiers for 1k of in-domain data is
even bigger than in the case of BED, BMR and BRO (60.5% to 55.0% vs. 62.9% to 59.7%). Start-
ing from 80k of in-domain data, the results of the three classifiers converge more consistently on
Figure B.2 than on Figure B.1, and the difference is almost null between the performance of the
three classifiers after 80k, whereas it was still around 1% on Figure B.1.

The comparison of BED experiment with the random experiment shows that the results on the
BED experiment are not exactly the same as the ones on a random experiment. However, the
differences between the performance of the classifiers on Figure B.1 are too small to allow us to
affirm that the three meeting types BED, BMR and BRO require adaptation. The three meeting
types are indeed not that different from a classification viewpoint, although they have different
vocabularies and characteristics as shown in Tables 6.4 and 7.3.
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Figure B.2: NIST-SU error rate (a) and F-Measure (b) for three randomly created training sets.
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Figure B.3: NIST-SU error rate (a) and F-Measure (b) for the three meeting types BED, BMR and
BRO evaluated on MRDA.
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