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ABSTRACT
This paper presents a comparison between six different ways
to convey navigational information provided by a robot to
a human. Visual, auditory, and tactile feedback modalities
were selected and designed to suggest a direction of travel to
a human user, who can then decide if he agrees or not with
the robot’s proposition. This work builds upon a previous
research on a novel semi-autonomous navigation system in
which the human supervises an autonomous system, provid-
ing corrective monitoring signals whenever necessary.

We recorded both qualitative (user impressions based on
selected criteria and ranking of their feelings) and quanti-
tative (response time and accuracy) information regarding
different types of feedback. In addition, a preliminary analy-
sis of the influence of the different types of feedback on brain
activity is also shown. The result of this study may provide
guidelines for the design of such a human-robot interaction
system, depending on both the task and the human user.

Categories and Subject Descriptors
H.1.2 [Models and principles]: user/machine systems;
H.5.2 [Information interfaces and presentation]: user
interfaces; I.2.9 [Artificial intelligence]: Robotics

General Terms
Human Factors

Keywords
Auditory feedback, visual feedback, vibro-tactile feedback,
robot navigation, brain-computer interface, multimodal in-
teraction
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Figure 1: Scheme of the proposed semi-autonomous
navigation concept.

1. INTRODUCTION
Robots interacting with humans should be able to receive

commands as well to communicate relevant information such
as perceptual input or internal states back to the human.
This is even more relevant for robots helping humans, as
in service robotics. We have proposed a new concept for
semi-autonomous navigation for disabled people where the
user relies mainly on the machine and provides only correc-
tive monitoring signals when needed [17]. In this approach,
shown in Figure 1, the robot is endowed with autonomous
capabilities (depicted on the right part) and can interact
with the human in order to reach the user’s desired goal.
For instance in navigational tasks, at each relevant place in
the environment (e.g., crossroads), the robot chooses a direc-
tion of travel according to local environmental information
and to the previously learned human-machine interaction.
This choice is then submitted to the human user for approval
before its execution. In general, the human monitors the ac-
tivity of the robot and provides a corrective signal whenever
the robot proposition differs from the user’s desired action.

In this approach designed for daily use, it is then crucial to
reliably communicate the controller’s decisions to the human
user. This paper seeks to compare different ways to pro-
vide such communication when completing a navigational
task. We will explore the three major feedback modalities,
namely visual, auditory, and tactile feedback. Three differ-
ent kinds of visual feedbacks (i.e., icons, spatially located
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squares, and text), two of auditory (i.e., spatially located
sounds and voice) and one tactile (i.e., spatially located ac-
tuators) are tested. Both quantitative (accuracy and rapid-
ity) and qualitative (user feelings about the feedback types)
information was used to assess their suitability.

In the long term, the described approach for sustained
human-robot interaction might also be implemented using
Brain-Computer Interfaces (BCI), where brain signals are
translated onto robot commands. To this end, we perform a
preliminary analysis of electroencephalographic (EEG) sig-
nals generated while performing the described task, with a
particular focus on signals generated when human subjects
supervise the robot’s decisions.

In the next section, a brief review of the state of the art of
different feedback principles and input systems is proposed.
Then, in section 3, we will describe our experimental setup
and the protocol used for collecting information. Section 4
will present the results, which are discussed in section 5.
Finally, we will conclude with a summary and an outlook
on future work.

2. STATE OF THE ART
The proposed semi-autonomous navigation system implies

a closed human-machine communication loop. On one side,
the robot’s decisions are sent to the user (i.e., machine-to-
human communication), and on the other side, the human
sends monitoring signals to the controller (i.e., human-to-
machine communication). This section contains a brief re-
view of related work with a focus on their application in
brain computer interfaces.

2.1 Input systems
Common input systems for human-machine interaction

range from keyboards, joysticks, and touch screens to de-
vices more adapted to disabled persons, like voice commands,
eye-tracking, or sip and puff systems [20, 24].

In recent years, a novel technology has been studied, namely
brain-computer interfaces (BCI). Non-invasive, electroen-
cephalography (EEG) based BCIs rely on the decoding of
brain activity in order to manipulate robotic devices, vir-
tual keyboards, or more general computer applications [15,
22]. It allows the use of a new communication channel, the
brain, instead of limb or eye movements or voice commands.

The work done by Ferrez and Millán [7, 8] about error po-
tentials is a recent addition to the available decoded brain-
commands for human robot interaction. This potential in-
dicates the human awareness of an erroneous response made
by the system when classifying the user intention. In the ex-
periments we are presenting, we will study the influence of
the different feedback modalities on the recognition of this
error potential.

The choice of an input system depends on the human user
and also on the targeted application. Information from the
input system can be either discrete, for buttons or voice
command, or continuous, for joysticks or eye-tracking sys-
tems. BCI systems can be designed to provide both types of
inputs. As opposed to continuous input systems, discrete in-
put systems typically encode fewer control commands, thus
having a lower information bit rate, therefore they are used
to convey high-level information, as in our proposed human-
robot interaction scheme. The input processing has to be de-
signed accordingly, as well as the information provided to the
user. Moreover, we have shown that a semi-autonomous ap-

proach where the user emits corrective actions yields higher
information transfer rates than explicit navigational discrete
commands [17].

2.2 Feedback systems
In Human-Computer Interactions, Brewster have proposed

the transcription of visual information to auditory or tactile
representation. His so-called earcons [4] or tactons [3] try
to imitate the use of visual icons to represent files, folder,
menus, or actions. Specific tacton (respectively earcon) pat-
terns are created by modifying the frequency (pitch), ampli-
tude (intensity), duration, rhythm, or body location (tim-
bre) of the stimuli. Vibro-tactile stimuli have also been stud-
ied for providing spatial information to the human about
directions to explore in a building-clearing task [13].

EEG studies have largely used stimulus presentation in
order to provide feedback of the subject’s performance of a
task or to provide a cue to react to. Visual feedback is widely
used, as it is considered a natural communication channel.
Auditory feedback is a good alternative or a complement to
the visual one. Vibro-tactile (haptic) feedback is nowadays
getting more and more attention due to the novelty and
to the potential applications it has. Feedback has also an
influence on brain activity and has to be carefully designed
for optimal usage [14].

When providing visual feedback about EEG signal classi-
fication, the performance of a user can be displayed either
with bars, lines, moving cursor, or icons [7, 11, 23]. Hinter-
berger et al. experimented the usage of audio melodies for
indicating the output of the EEG classification [10, 11] or
for representing the brain activity itself with the sonification
of the EEG in real time [9]. Vibro-tactile systems have re-
cently been studied in comparison with visual feedback [12].
They show no significant difference for the realisation of the
task, but do allow the visual channel to be freed up or to
complete the information flow.

Some brain signals, the so-called evoked potentials, appear
as responses to external stimuli. For instance, the P300
signal is a positive EEG deflection 300 ms after stimulus
onset, elicited when a significant, rare stimulus appears in
a sequence of frequent other stimuli. There are numerous
applications on the use of P300 using both visual [5, 18] and
auditory [19] stimuli.

In recent years, there has been an increased interest in
studying brain activity during real-world experiences. In
particular, virtual reality techniques have been applied to
both functional magnetic resonance imaging (fMRI) [21] and
EEG studies [2]. This work follows the same approach and
aims to exploit the high temporal resolution of EEG, as op-
posed to fMRI higher spatial resolution, in realistic situa-
tions.

3. METHODS
Twenty-two subjects (6 women) aged 24-52 (mean 30.18,

std. dev. 5.87) participated in the experiment. All partici-
pants gave informed written consent before the experiment.
In addition, EEG activity was recorded for four of these
subjects while they performed the task.

During the experiment, subjects are asked to monitor the
decisions of a simulated robot navigating in a virtual maze
(Figure 2). The correct trajectory is indicated by arrows
drawn on the floor of the corridors. At each junction, the
controller decision is presented to the user using one of six



(a) (b)

Figure 2: (a) Example of maze with T crossings only.
(b) Subject’s view of the maze. The visual cue on
the floor shows the correct direction.

(a) (b)

(c) (d)

Figure 3: Examples of visual feedback. Pictograms
(V1); (a) correct and (b) erroneous feedback. (c)
Squares (V2) and (d) text feedbacks (V3).

different feedback modalities. The subject is asked to press
a key whenever an erroneous decision is presented. Each
modality was tested separately and user responses and re-
action times were recorded for each condition. Moreover,
verbal reports were acquired before, during, and after the
experiment to assess the user’s preference among the differ-
ent modalities.

3.1 Types of Feedback
Six different types of feedback were tested to convey the

robot’s navigation decisions, i.e., turn left, turn right, and
forward. At each point, one of three decisions is presented
to the subject. The tested feedback conditions were:

• Visual pictograms (V1). An icon containing an arrow
(pointing left, right, or up), similar to a traffic sign, is
shown in the center of the screen (c.f. Figure 3a,b).

• Visual squares (V2). Colored squares are shown at the
left, right, or center of the screen (c.f. Figure 3c).

• Visual text (V3). The words left, right, and forward
are shown in the center of the screen (c.f. Figure 3d).

(a) (b)

Figure 4: Vibro-tactile actuator (a) front and side
view and (b) placed on the body.

• Auditory tones (A4). Sound tones, spatially localized
to the left, right, or center of the user, were played
back through stereo headphones. The same tone was
used for the three conditions so as the information was
solely provided by the spatial localization.

• Auditory words (A5). A pre-recorded voice informed
the user about the controller’s decision pronouncing
the words left, right, and forward.

• Tactile (T6). Vibro-tactile actuators1 were located in
the upper back of the user (c.f. Figure 4). The elec-
tromagnetic devices provide a short vibration to the
subject, i.e., an oscillation at 200 Hertz during 50 mil-
liseconds.

The motivation for the selection of these feedback types
was to cover the major human sensory channels (sight, hear-
ing, touch) and to make the association stimulus-command
evident. This avoids the need for the subjects to learn the
association and reduces the risk of misinterpretation.

3.2 Experimental Protocol
Throughout the experiment, subjects were asked to grade

the different types of feedback with respect to the following
adjectives: (i) Natural, (ii) Understandable, (iii) Not Dis-
turbing, and (iv) Pleasant. The whole experiment consists
of three phases and lasts around 90 minutes 2.

3.2.1 Preliminary Measures
This phase is intended to establish a priori feedback pref-

erences of the subjects before actually experiencing the maze
navigation. After hearing the description of the experiment,
subjects were asked which type of feedback ranks first and
last for the above mentioned criteria. Moreover, the re-
sponse time needed for pressing a key as soon as a stimulus
was presented on a black screen was measured.

A control situation was also included where the subject
actively drives the robot through the maze by pressing one
of the arrow keys according to the visual cue on the floor.
This helps the user to get used to the 3D maze environment
and the cues to follow. This manual driving is similar to
the semi-autonomous navigation strategies encountered in
robotics: at each relevant place, i.e., crossings, the robot

1From Engineering Acoustics, INC., Fl, USA [6]
2Experimental sessions involving EEG recordings lasted
about 60 minutes more to account for electrode placement,
subject preparation, and additional trials per condition.



waits for a direct order from the user [1, 24]. This test
serves as a basis of comparison for the reaction times and
for the percentage of correct orders.

3.2.2 Semi-Autonomous Maze Navigation
In this phase the subjects have to monitor the robot’s

decisions while navigating inside the virtual maze with a
first-person view. In order to focus our attention on the
human-robot interaction, the robot is following predefined
paths. This prevents a long learning period of the rather
complex environment by the subjects. This allows further-
more to correctly label the sample, to run more experiments
than with a real robot, and even to involve novice users
without previous experience with robots (which otherwise
might appear to drive chaotically and thus distract their at-
tention). Three different mazes were designed, all of them
consisting of 36 binary intersections. The robot controller
was set up so as to take erroneous decisions in 40% of the
trials. The speed of the robot was set so as to spend three
seconds between two successive intersections.

When the robot arrives at an intersection, it proposes
an action using one of the feedback types described in Sec-
tion 3.1, waiting then for one second for the user’s response.
The subject is expected to press a key whenever the con-
troller makes an error. The system also informs the user
when he/she does not respond adequately (i.e., either by
pressing the key when there is no error -false positive- or
not pressing when an error occurs -true negative). If the
subject does not press a key within one second after an er-
ror, the trial is also counted as a failure. In all cases, the
robot will follow the correct trajectory towards the exit of
the maze.

Subjects whose EEG brain activity was recorded did the
three mazes for each condition (resulting in about 65 correct
and 43 erroneous feedbacks) while the rest of the subjects
choose two out of the three mazes (43 correct and 29 erro-
neous feedbacks). The order of mazes and feedback types
changed randomly across different subjects. After the sub-
ject completed the task for each condition, the operator
asked him/her to grade it, again according to the four cri-
teria already mentioned (i.e., Natural, Understandable, Not
Disturbing, and Pleasant). The scale ranged from one for a
perfect fit to the criteria (e.g., very pleasant), to five for the
opposite (e.g., very unpleasant), three being neutral.

3.2.3 Final Debriefing
Once the task has been completed for all the six different

types of feedback a post-experimental debriefing takes place.
The subject is asked to rank all the conditions in order to
obtain a posteriori preferences.

3.3 EEG recordings
We recorded EEG activity during the experiment for four

of the subjects (mean age 26.5; SD 1.0) using a Biosemi
acquisition systems (www.biosemi.nl). Data was acquired
with a sampling rate of 512 Hz using 64 electrodes accord-
ing to the standard 10/20 international system. Signals were
then re-referenced to the common average reference (CAR)
and a 1-10Hz band-pass filter was applied. External triggers
were sent to the acquisition board of the EEG system by the
experimental software to timestamp relevant events (i.e., ex-
periment start/stop, feedback delivery, and user’s response)
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Figure 5: (a) Response time in milliseconds for the
preliminary tests and during the experiments. (b)
Difference between the response times calculated for
each subject. See section 3.1 for the meaning of the
feedback labels.

EEG data was segmented into epochs corresponding to
each maze intersection and baseline activity computed in the
100 milliseconds prior to the feedback onset. Epoch activity
(in the time domain) was then used to classify correct and
erroneous trials. We use a linear logistic classifier trained
using an iterative recursive least square algorithm [16]. This
classifier is trained using EEG samples from a particular
time window (where the phenomena are expected to occur)
where each sample is considered independent.

Separate classifiers were designed per subject and type of
feedback. Classification performance was assessed using 10-
fold cross validation. Moreover, in order to emulate realistic
operating conditions of a BCI device, no artifact rejection
was applied and all the trials were included in the analysis.

4. RESULTS
This section presents the different performance measures

results. Reaction time, user performance, user feedback
evaluations, and EEG signals are analysed in order to as-
sess the suitability of each feedback type.

4.1 Reaction time
Figure 5a shows the reaction time during both the prelim-

inary measures and during maze navigation for all types of
feedback. For the preliminary measures, the visual feed-
back types have the shortest response time and also the
most uniform (small standard deviation), followed by vibro-
tactile feedback (T6). No significant difference was found be-
tween them (ANOVA test, α < 0.05, followed by a multiple-
comparison Bonferroni correction). The two auditory feed-
back types have the longest response time, the voice cues
being the slowest and having the biggest standard deviation.
This last result can be explained by the fact that subjects
reacted either as soon as they heard something or at the end
of the word.

When we look at the reaction times during the experi-
ments, we can see that V1, V2 and T6 elicit the quickest
responses when performing the monitoring task (no statisti-
cal difference). A possible explanation is that the position of
the squares on the screen (V2) reflects immediately the pro-
posed direction. As the subject already knows where to go,
the decision to accept or reject the proposition is immediate.
When displaying pictograms (V1), the subject has to do one
more step, i.e., a pattern matching process between the re-
quested direction and the proposed one. When providing
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Figure 6: Percentage of erroneous responses made
by the subjects for (a) correct and (b) false robot
propositions. See section 3.1 for the meaning of the
feedback labels.

the information by mean of vibrations (T6), the processing
is similar to that in V2 but slightly slower. Having to de-
code text (V3), auditory cues (A4) or words (A5) in order to
compare with the desired direction takes significantly more
time. As before, some subjects also waited until the end of
the word before acting and some not, thus explaining the
large standard deviation. The two auditory feedback types
are statistically the slowest.

Figure 5b represents the difference between the mean re-
sponse time before and during the experiments, calculated
for every subject. It highlights the larger variability in the
time required to process the voice feedback (A5) and the
change in the feedback’s processing. But there is no statis-
tical difference among the different conditions.

4.2 Understandability - User performance
Figure 6 gives us insights into the understandability of

each feedback type by displaying the percentage of erro-
neous responses made by the subjects for each feedback type,
given a correct or erroneous proposition from the robot. The
poorest performance corresponds to 3D sound (A4). Users
reported difficulty in distinguishing the center tone from the
side ones, thus explaining the percentage of false answers.
A different tone per cue would have helped.

The performance with the voice feedback (A5) is the best,
closely followed by the pictogram cues (V1). Although the
auditory proposition takes longer to process, the user are
more self-confident about the answer. The traffic signs have
two characteristics which make them easy to process ad-
equately: they are well-known by the subjects (from their
car-driving experiences) and they are similar to the cues con-
tained in the maze. The result of the text feedback (V3),
with the second worst performance, differs greatly from the
voice feedback. A possible explanation is the fact that the
text was not distinguishable enough from the background.

It can be argued that subjects would make more mistakes
at the beginning of a new maze because they would have to
remember the task to be solved or to adapt themselves to the
new type of feedback. Comparison of the error percentages
in the full maze (as shown in figure 6), or after removing the
first five, ten, and fifteen crossings showed no significant dif-
ference (data not shown). This may suggest that no specific
training was required for the different feedback types.

The performance of the subjects when providing a navi-
gational command at each crossing reached 99.6%. It can
be deduced that the cues placed in the maze and the first-

Natural Underst Not Disturbing Pleasant
0

2

4

6

8

10

12

14

16

18
A−priori positive preferences

C
ou

nt

(a)

Natural Underst Not Disturbing Pleasant
0

2

4

6

8

10

12

14

16

18
A−priori negative preferences

C
ou

nt

 

 

V1
V2
V3
A4
A5
T6

(b)

V1 V2 V3 A4 A5 T6

1
2
3
4
5

Natural

Ev
al

 [1
−

5]

V1 V2 V3 A4 A5 T6

1
2
3
4
5

Understandable

V1 V2 V3 A4 A5 T6

1
2
3
4
5

Not Disturbing

V1 V2 V3 A4 A5 T6

1
2
3
4
5

Pleasant

(c)

V1 V2 V3 A4 A5 T6

1
2
3
4
5
6

Natural

Ra
nk

in
g 

[1
−

6]

V1 V2 V3 A4 A5 T6

1
2
3
4
5
6

Understandable

V1 V2 V3 A4 A5 T6

1
2
3
4
5
6

Not Disturbing

V1 V2 V3 A4 A5 T6

1
2
3
4
5
6

Pleasant

(d)

V1 V2 V3 A4 A5 T6

2
4
6
8

10

A−priori favorite

C
ou

nt

(e)

V1 V2 V3 A4 A5 T6

1
2
3
4
5
6

A−posteriori favorite

Ra
nk

 [1
−

6]

(f)

Figure 7: Qualitative assessment of the different
feedback types: a-priori evaluation of (a) positive
or (b) negative preferences, (c) evaluation during
the tests and (d) a-posteriori rank. (e) A-priori pre-
ferred feedbacks and (f) a-posteriori preferences. A
ranking or an evaluation of 1 corresponds to the best
grade. See section 3.1 for the meaning of the feed-
back labels.

person view were well assimilated by the subjects and do
not perturb the navigational decision process.

4.3 Verbal reports
When asked for their a-priori best and worst feedback

types according to our criteria, the participants in the tests
widely agreed on the fact that the visual feedback using signs
(V1) should be the best: it is natural, understandable, not
very disturbing, and pleasant (see figure 7a,e). Although the
voice (A5) is ranked as second favorite, second most natu-
ral, and second most understandable, people would find it
disturbing and unpleasant for daily use (figure 7b). Tac-
tile feedback (T6) is little known and sometimes dreaded.
Its scores were the most negative. Users didn’t show any
particular trend with respect to other feedback types.

If we compare the feedback types as evaluated during the
tests (figure 7c), one can see that V1 is still strongly pre-
ferred. Voice (A5), square (V2), and tactile feedback (T6)
are statistically the next-best rated feedback types. The low-
est scores, according to our four criteria, were given to text
(V3) and sound feedback (A4). This is mostly due to the



Subject Time Window Electrodes Elect. location
1 [150ms, 450ms] Fz, FCz, Cz

FCz
Fz

Cz

2 [200ms, 450ms] Fz, FCz
3 [200ms, 450ms] Fz, FCz
4 [200ms, 450ms] Fz, FCz, Cz

Table 1: Selected electrodes and time windows used
for EEG classification. Rightmost column shows the
location of the electrodes used for classification on
the subject’s scalp.

fact that the people had to concentrate in order to properly
read and understand what was written on the screen and
that it was difficult to discriminate the different auditory
stimuli solely by spatial location. Some subjects reported
their wish to have a different sound for each stimulus.

The a-posteriori ranking of the different feedback types
(Figure 7d) reflects their evaluation during the tests but
strengthens their differences. From the statistics and fig-
ure 7f, showing the overall a-posteriori ranking of the six
feedback types, we can order the feedbacks by preference:
pictograms (V1), followed by squares (V2) and voice (A5),
followed by tactile (T6), followed at the end by text (V3)
and sounds (A4).

4.4 EEG recordings
We want to assess whether event related potentials elicited

by the different types of feedback can be used to classify er-
roneous and correct trials. Based on previous studies [7],
we focus the analysis on electrodes located in fronto-central
areas (i.e. electrodes Fz, FCz and Cz). Moreover, to dis-
card the use of motor activity in the classification, the sig-
nal of the first 150ms after the feedback onset was not taken
into account. Independent classifiers were designed for each
individual. Table 1 show the selected electrodes and time
windows chosen for each subject. Except for subject one,
classification was based on the time signal from 200ms to
450 ms after the feedback onset.

Classification performance for each condition and subject
is shown in Figure 8. Each point in the figure, represents the
mean classification performance (10-fold cross validation) in
the ROC (Receiver Operating Characteristic) space. In this
space, the x-axis corresponds to the false positive rate, FPR
(i.e., misclassified error trials), while the y-axis corresponds
to the true positive rate, TPR (i.e., properly classified cor-
rect trials). The performance of a perfect classifier corre-
sponds to the point (0,1), i.e. upper left corner in the plot,
while random classification lies along the diagonal line.

It can be observed that, with the exception of subject
4, classification above random levels is obtained for several
types of feedback; in general, a higher classification rate was
obtained for correct rather than for error trials. The best
classification rates were obtained for the tactile feedback
(T6) in subject 2 (TPR = 0.76; FPR = 0.30); and visual
squares (V2) in subject 3 (TPR = 0.71; FPR = 0.40).

In contrast, text feedback (V3) yields near-random per-
formance in three of the subjects. This type of feedback
was lowest ranked and most unnatural during the verbal re-
ports, several subjects pointing out that this stimulus was
not salient enough and the interpretation of the text message
required extra cognitive processes.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Subject 1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Subject 2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Subject 3

T
P

R

FPR
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1
Subject 4

V1
V2
V3
A4
A5
T6

Figure 8: EEG classification performance for all sub-
jects and types of feedback. Mean classification per-
formance (10-fold cross validation) is shown in the
ROC space. TPR = True positive rate, FPR = False
positive rate. See section 3.1 for the meaning of the
feedback labels.

These preliminary results suggest that, in certain condi-
tions, it is possible to recognize EEG activity related to the
recognition of errors. It should be noticed that a simple clas-
sifier was used in this study, and more powerful techniques
might provide better classification results. In particular, we
plan to apply Gaussian classifiers which have been previ-
ously used to recognize error potentials in BCI applications
[7].

5. DISCUSSION
Using a virtual reality environment, we have presented a

qualitative and quantitative evaluation of different types of
feedback used to communicate a robot’s navigational deci-
sions to a human user. The human subject acts as a critic
of the robot, sending corrective signals whenever the robots
makes a wrong decision. Moreover, preliminary analysis of
EEG signals elicited in this task is also provided as a first
step towards future implementation using Brain-Computer
Interfaces.

In general, the visual pictograms (V1) is the most liked
feedback and the one providing the quickest and best an-
swers. It is not a surprising result given the structured world
we live in. “A picture is worth a thousand words”: carefully
selected pictograms transmit immediately the desired infor-
mation. This is especially true in our test environment, were
the cues pointing to the exit are the same as the provided
feedback. This facilitates decision making, but not detract
from it in a normal environment where subjects know where
they want to go. Furthermore, it is easy to design new pic-
tograms for other navigational commands, like entering a
door, docking at a desk, or making a U-turn for example.
Pictograms are therefore the most convenient feedback types
from a user and communication point of view.

Spatially placed squares (V2) and text (V3) elicit quick
responses as well but are less accurate. They are also less ap-
preciated by the users, the text having the worst a-posteriori
rank. An extension of the available feedbacks to new com-
mands is easy for the text, but the design of this feedback



type should be improved in order to have more distinguish-
able stimuli and reduce the amount of erroneous responses.
Concerning the squares, new commands would imply specific
new locations or specific successions of squares, thus need-
ing some learning for the human subject. Pictograms and
text feedback could fit on a relative small display, whereas
localized squares (or any type of icons) may require a bigger
display. Alternatively, squares could be replaced by lights
when transferred onto a real mobile platform, thus simplify-
ing the interface from a technical point of view and clearing
the field of view. However, for a larger set of commands,
squares might not be an appropriate type of feedback.

Voice feedback (A5) did not leave anybody indifferent.
Its appreciation and the time used to process the auditory
information differed greatly from subject to subject. Inter-
estingly, it had the best percentage of correct responses, ar-
guably in association with its largest reaction time. As noted
by some subjects, this feedback doesn’t have a pop-up effect
that might trigger false responses. Thus it could be a precise
but slow feedback system, easily extendible to further nav-
igational commands. Subjects had also different strategies
in processing the stimuli. Some reacted at the beginning
of the words as a result of a short learning phase. The
present study aimed also at understanding the processing of
spatially places tones (A4) and the results are worse than
expected, mainly due to the fact that the different stimuli
were not distinguishable enough. Subjects took more time
before reacting in order to be sure of their answer, which
was often even then wrong. Therefore they mostly agreed
on the second-worst rank of this feedback type. A different
tone per stimulus would have helped a lot but would have
required a learning phase, which we wanted to avoid. This
learning phase may also be required if the number of com-
mands increases, demanding a higher number of tones, as is
the case for the earcons [4].

Similarly ranked than voice feedback (A5), vibro-tactile
feedback (T6) performed worst in terms of the amount of
erroneous responses. Some people reported difficulties in
feeling the actuator placed in the center of the back and
suggested placing it on the chest. However, reaction time
for vibro-tactile feedback was the second best after visual
stimuli. Thus, if we remove the visual feedbacks from the
available ones in order not to clutter the visual channel, to
leave intact the visual field of view, or to ease the technical
apparatus, tactile and voice feedback seem to be a sensible
choice. The user would also have more freedom to interact
with people or to enjoy the surroundings if he/she does not
have to concentrate on a screen. On the other hand, the ex-
tension of navigational commands would lead to more com-
plex haptic stimuli, like the tactons [3], requiring a learning
process. It would thus give an advantage to voice feedback
despite its slower reaction time.

The comparison between a-priori feelings and a-posteriori
ranking reveals a real change in opinion about vibro-tactile
(T6) and text feedback (V3). Subjects were not familiar
with vibro-tactile feedback, thus producing a poor a-priori
evaluation. After the experiments, they discovered that it
was more suitable for such a human-robot interaction than
thought. Although not enough female subjects were in-
cluded in the study to assess gender specific preferences, we
found that men tend to positively evaluate the tactile feed-
back more than women. However, a further study would
be required to confirm this finding. As mentioned before,

text feedback was not well appreciated because of the poor
saliency of the stimuli, thus resulting in the change in opin-
ion. In a similar way, there was a large variability in the
a-priori evaluation of voice feedback (A5), but it decreased
after the experiment. In the end, A5 was selected as one of
the best feedback types other than the visual ones.

It should be noted that the task to be solved by the sub-
ject was not very natural to them at the beginning. People
reported the desire to provide an input for agreeing instead
of disagreeing with the robot’s proposition. One could have
thus expected worst performances at the beginning of a new
modality or of a new maze, which didn’t appear significantly
in the results.

Additionally, we present preliminary results on the classi-
fication of EEG signals elicited by the different types of feed-
back. Consistent with the subject’s qualitative evaluations,
visual text feedback (V3) has the poorest classification per-
formance. The fact that the stimuli were not salient enough
and the required decoding process may cause event-related
potentials to not be well synchronized across trials, makes
its recognition more difficult.

Although the classification performance obtained is not
very high (especially for erroneous trials), these results, us-
ing a simple classifier with no artifact rejection, constitute
a promising basis to further explore the use of BCI systems
in this type of human-robot interaction. We plan to extend
the present study by including a larger number of subjects
and comparing different classification algorithms.

Finally, a fine adaptation of every feedback system pre-
sented in this paper to each user is required, as there is
a large inter-subject perceptual variability. Adaptation to
possible sensory impairments as well as to the personal feel-
ings of the human is also required. For example, a female
voice could be preferred by a male user, a male one by a
female user, or a different tone intensity in each ear. The
more adapted the human-robot interaction is, the better the
results.

In summary, the present paper provides a detailed com-
parison between the user’s perception of different feedback
modalities for human-robot interaction, confirming some de
facto hypotheses but also providing new information about
less common types of feedback, like vibro-tactile actuators.
Some guidelines for the design of feedback systems or for
increasing the number of the available commands are also
brought to light. The next step of the study will be to
assess the learning curves for each modality as another as-
pect of a feedback’s adequacy for human-robot interaction.
Having more subjects will contribute to the refinement on
the psychophysical aspects of the findings, but especially for
the recognition of the error potential in brain activity. As
previously mentioned, more women participating in the ex-
periments could bring better insights into the inter-subject
or even the inter-gender variability of the perception of the
different stimuli. We will also perform experiments in an
office environment where subjects will have to visit different
places, either along self-generated or fixed paths.

The present study used explicit cues to signal the correct
path to follow in order to have a well-controlled experimental
setup, i.e. the correct labeling of erroneous robot decisions.
In future work, we will reproduce this experiment using the
user’s own representation of the correct path (e.g. the sub-
ject learns the correct trajectories prior to the experiments),
which is closer to realistic situations.
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A. Grether, N. Hofmayer, B. Wilhelm, H. Flor, and
N. Birbaumer. A multimodal brain-based feedback
and communication system. Experimental Brain
Research, 154(4):521–526, 2004.

[12] L. Kauhanen, T. Palomäki, P. Jylänki, F. Aloise,
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