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ABSTRACT 
It is of prime importance in everyday human life to cope with and 
respond appropriately to events that are not foreseen by prior 
experience. Machines to a large extent lack the ability to respond 
appropriately to such inputs. An important class of unexpected 
events is defined by incongruent combinations of inputs from 
different modalities and therefore multimodal information 
provides a crucial cue for the identification of such events, e.g., 
the sound of a voice is being heard while the person in the field-
of-view does not move her lips. In the project DIRAC (“Detection 
and Identification of Rare Audio-visual Cues”) we have been 
developing algorithmic approaches to the detection of such 
events, as well as an experimental hardware platform to test it. An 
audio-visual platform (“AWEAR” – audio-visual wearable 
device) has been constructed with the goal to help users with 
disabilities or a high cognitive load to deal with unexpected 
events. Key hardware components include stereo panoramic 
vision sensors and 6-channel worn-behind-the-ear (hearing aid) 
microphone arrays. Data have been recorded to study audio-visual 
tracking, a/v scene/object classification and a/v detection of 
incongruencies. 

Categories and Subject Descriptors 
H5.1 [Multimedia Information Systems]: Multimedia 
Information Systems – Artificial, augmented, and virtual realities.  
I.5.5 [Pattern Recognition]: Implementation – Interactive 
systems, Special architectures. 

General Terms 
Algorithms, Design, Experimentation, Human Factors, Security. 
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1. INTRODUCTION 
Under normal conditions, humans show a remarkable ability to 
identify and respond to unforeseen stimuli and events. 
Appropriate responses have frequently significant consequences 
(high utility), e.g., a car that suddenly approaches can lead to a 
potentially dangerous situation. Persons with sensory impairment 
(e.g., elderly) or high cognitive load (e.g., security personnel) 
would benefit from an assistive device that automatically detects 
such events and directs their attention towards them. 
Algorithmic identification of unexpected events is non-trivial 
since they frequently do not have the properties of simple outliers. 
For example, individual features may be well within their normal 
ranges, but their combination is atypical. In this manner, the 
components of such stimuli may “make sense” but their 
combination is unexpected in certain contexts or situations. The 
notion of incongruencies is therefore closely linked to unexpected 
events, and incongruencies across modalities are particularly 
prominent to motivate our research of rare events detection on 
multimodal processing. 
This contribution presents our initial progress towards developing 
a theoretical framework and a physical device for detection of 
unexpected events and highlights some results. The conceptual 
approach and its relevance for machine learning is outlined in 
section 2. We present building blocks of an audio-visual system 
that permits audio-visual tracking and classification in section 3. 
A high-level cue integration system combines audio and video 
streams to perform multi-modal classification and detect 
incongruencies across modalities (section 4). The first example 
applications outlined here is an audio-visual gender detection task 
where incongruency is to be detected when gender estimates 
based on visual appearance and speech characteristics diverge. 
Another task presented aims at audio-visual identification of in- or 
out-of-trusted-group subjects. 



2. RARE AND INCONGRUOUS EVENTS 
Machine learning systems build models of the world using 
training data sampled from the application domain as well as prior 
knowledge about the problem. These trained models are applied to 
new data in order to estimate the current state of the world. An 
implied assumption is that the future is stochastically similar to 
the past. This approach fails when the system is confronted with 
situations that are not anticipated from the past experience.  
In contrast, successful natural organisms identify new, 
unanticipated stimuli and situations and frequently generate 
responses that are most appropriate in these situations. 
Unexpected stimuli are indicated and can be defined by 
incongruence between the predictions induced by the prior 
experience (training) and the evidence provided by the sensory 
data. 
Our work attempts to emulate this biological ability by developing 
a theoretical framework for incongruent stimuli. To identify input 
as an incongruent stimulus, i.e., one that is not an element of a 
known class of objects or events, we use two parallel classifiers. 
The first is strongly constrained by specific knowledge (both prior 
and data-derived), available for a particular class of items. The 
second classifier is more general and less constrained, potentially 
comprising a superset of the objects recognizable by the more 
specific classifier.  Both classifiers are assumed to yield class-
posterior probabilities in response to a particular input signal.  A 
sufficiently large discrepancy between posterior probabilities 
induced by input data in the two classifiers is taken as indication 
that an object or event should be considered to be incongruent. 
There are various ways to incorporate prior hierarchical 
knowledge and constraints within different classifier levels. One 
approach, used to detect images of unexpected, incongruous 
visual objects, is to train the more general, i.e., the less 
constrained classifier using a larger more diverse set of stimuli, 
e.g., two wheeled vehicles and the other classifier using a more 
specific (i.e. smaller) set of more specific objects (e.g. bicycles). 
An incongruous item (e.g. motor bike) could then be identified by 
smaller posterior probability estimated by the more specific 
classifier relative to the probability from the more general 
classifier.  

A different approach was applied in our work on identifying 
unexpected (out-of-vocabulary) lexical objects, e.g., new words 
[3]. The more general classifier was trained to classify (segment) 
speech into a sequence of phonemes, thus yielding an 
unconstrained sequence of phoneme labels. The more constrained 
classifier was trained to classify a particular set of words (highly 
constrained sequences of phoneme labels) from the information 
available in the whole spoken sentence. A word that did not 
belong to the expected vocabulary of the more constrained 
recognizer could then be identified by discrepancy in posterior 
probabilities of phonemes derived from both classifiers. To 
compare posterior probability streams, several techniques have 
been used, e.g. based on simple Kullback-Leiber (KL) divergence. 
Current version of the system is able to work with quite large 
vocabulary of about 5000 words. 
Multimodal information streams present a related means to detect 
incongruous events within this framework. The unimodal 
classifiers are regarded as weakly constrained and their 
classification results are used as input for a “fusion” classifier. An 
incongruency between the unimodal streams will be detected as 
the disagreement between the more constrained fusion classifier 
and one of the unimodal classifiers, provided that the unimodel 
outputs are obtained with a sufficiently high confidence score. 

3. THE AWEAR PLATFORM 
In order to experiment with the proposed framework in the 
multimodal arena we developed the mobile audio-visual hardware 
platform “AWEAR” (“audio-visual wearable device”, 
schematically depicted in Fig. 1). Extensive data recordings have 
been carried out in realistic environments and situations during 
which audio-visual data from several prototypical situations 
comprising audio-visual incongruent events have been obtained. 
The processing pipeline of the system is shown in Fig. 2. The 
unimodal sensor streams are first preprocessed and then fed into 
detection and tracking modules. These provide the inputs for the 
high-level sensor fusion system that performs multimodal 
classification and the detection of incongruous events. 
Vision data has been acquired by an omnidirectional camera 
consisting of the Nikon FC-E9 lens and Kyocera Finecam M410R 
providing 180 degrees of field of view at resolution 0.23 degrees 
per pixel and 3 frames per second.  Omnidirectional imaging 
helps to monitor a large surrounding of the user in a small number 
of images and thus detect many events at the same time at 
acceptable data flow. The exotic image projection was rectified by 
using automatic camera calibration [8, 13] to generate perspective 
cutouts or cylindrical panoramas which  ease further image 
processing and  face and pedestrian detection. For moving 
cameras, structure from motion [9] can be used to estimate camera 
motion and to rectify the images as if taken by a steady camera 
[13]. 
Audio data has been recorded with a 6-channel worn-behind-the-
ears microphone array that consists of two hearing aid satellites, 
one behind each ear and each with three microphones. The 
resulting system is very unobtrusive and its geometry can be 
considered as a hybrid incorporating bio-inspired (binaural 
system) and engineering elements (near-linear 3-channel sub-
arrays). Data was converted to digital using an Edirol FireWire 
AudioCapture FA-101 AD/DA-converter. Depending on the setup 
of the recording situation, one or two additional channels have 
been recorded from close-talking lapel and headset microphones 
(Shure and Sennheiser, respectively).  

 
Figure 1: Schematic of the AWEAR setup. 



3.1 Video Processing 
On the vision side, we combine a pedestrian detector with a face 
detection approach in order to deliver robust performance for a 
range of different distances. 
For pedestrian detection, we use the Implicit Shape Model (ISM) 
approach introduced in [10], which has been shown to work well 
in similar applications. This approach represents an object 
category by a set of local appearance features (a codebook), 
extracted by an interest point detector, and their learned spatial 
occurrence distributions. Because of the unequal camera 
resolution, objects that are farther away appear very small in the 
image, while foreground objects grow disproportionally large (and 
additionally suffer from distortions). Hence, several adaptations 
are necessary in order to apply this approach to the 
omnidirectional images available from the AWEAR platform. 
While in principle possible, it would be computationally 
inefficient to directly work with an omnidirectional camera 
geometry. Instead, we try to let the detector operate at its optimum 
resolution by creating a cylindrical panorama from the original 
omni-directional image. This way, pedestrians approaching the 
AWEAR setup in a 180° field of view are well visible and only 
show distortions when they get very close to the camera (at about 
1.5m distance). 
In addition, we can make several simplifying assumptions that 
together make detection considerably more robust. Using our 
knowledge about the camera setup, we can constrain pedestrian 
detections to lie on the ground plane. This results in a significant 
reduction of the search space for possible objects and thus speeds 
up detection. In addition, we impose a prior on plausible object 
sizes, which helps reduce the number of false detections.  
For face detection, we use a detector based on the well-known 
approach by Viola & Jones [14]. The detector is applied by sliding 
a detection window over the image at different scales and 
clustering the responses. The particular detector we use is trained 
on frontal faces, but exhibits some tolerance to small pose 
changes of up to 20-30 degrees. The face detector is employed in 
combination with pedestrian detection. It serves two main 
purposes. One is to observe people at close range to the camera, 
where pedestrian detection may fail since only part of their body 
is visible. The second purpose is to identify if somebody in the 
surroundings is facing the AWEAR user and, if this is the case, 
deliver a close-up view of such a person’s facial area for visual 
gender recognition. 

3.2 Audio Processing 
Preprocessing methods used for the audio stream are motivated by 
the fact that real audio data is characterized by its strong 
amplitude modulation content, i.e., signal energy exhibits a large 
variance when observed with a time-constant of about 30 ms. To 
capture the modulation structure of the sounds, signals were first 
decomposed into 17 different spectral “ERB” bands from about 
50 Hz to about 3800 Hz with a spectral width of one ERB unit 
that resembles the logarithmically scaled sensitivity of human and 
animal auditory systems. Log-scaled signal amplitudes within 
each band were analyzed with a second spectral decomposition of 
1 s long windows that characterized the time-scale of the 
amplitude modulations from 2 Hz to 30 Hz within this spectral 
band. Hence, the original time-domain audio signal was 
transformed into the 3-dimensional representation of the 
“amplitude modulation spectrogram” [7] with dimensions time, 
frequency and modulation frequency which was then employed as 

features for further larger margin-based classification stages for 
detection of sound and in particular speech sources. 
Tracking of audio sources is based on the DOA (direction of 
arrival) method that has been adapted to adequately reflect the 
acoustic properties of the head-worn microphone array. The basic 
version of the employed tracking algorithm is based on estimation 
of time-delays between left- and right-ear microphones and 
derives angular source direction estimates through the 
Woodworth-Schlossberg formula that compensates for the 
traveling time of the acoustic wave around the approximate sphere 
of the human head [12]. A refined version of the tracking 
algorithm compensates for the shading effect of the head that 
introduces level differences between left and right ears. 

4. AUDIO-VISUAL INCONGRUENCY 
DETECTION 
A multitude of audio-visual scenes with incongruencies across 
modalities has been recorded, covering in total over 100 scenes 
recorded with 27 speakers. One type of incongruency used 
pertains to localization, i.e., the spatial position or direction of a 
subject is different in audio and video channels. E.g., a person is 
appearing in the field of view at a frontal position but sound is 
localized as originating from the side. Another incongruency 
investigated is that of visual and audio appearance of gender. E.g., 
a male person would speak with a high-pitched voice leading to 
contradictory gender classification results in the different 
modalities. 
To integrate the audio-visual inputs from the AWEAR platform 
for performing audio-visual tracking, a/v scene/object 
classification and a/v detection of incongruencies, we use the 
high-level integration approach. A classifier is constructed for 
each separate cue, each of them providing a class label estimate. 
All those hypotheses are then combined together to achieve a 
decision. In case of audio-visual tracking, the hypotheses are the 
predicted positions. For classification and recognition tasks, the 
hypotheses are confidence values for the predicted labels. 
The integration strategy we applied is an extension of the weak 
coupling method called accumulation [5]. It is a weighted linear 
combination of the hypotheses on different cues. It has been 
shown in many cognitive and neurophysiology studies [4, 6] that 
humans use a similar approach for integrating multi-sensory 
inputs and integrate them in an optimal way. It has also been 
shown to achieve better performance when implemented on 
artificial systems [1]. The incongruent events are first defined as 
different classifiers giving contradicting decisions, however, both 
with very high confidence. To interpret these incongruencies also 
requires some prior-knowledge, that is, to define a proper 
threshold so as to minimize the false alarm due to input noise, 
while maintaining a high detection rate. 

 
Figure 2: Processing pipeline of our system. 



4.1 Detection Results 
We report first results for incongruency detection on data of 30 
audio-visual speaker sequences (17 speakers, 7 male and 10 
female) acquired using the AWEAR platform, cf. Fig. 3 for an 
example snapshot. The speakers were asked to approach the 
camera and read a sentence about one minute long. The speech 
signals were captured by a head microphone worn by the actors. 
In a few sequences, the actors were asked to pretend an altered 
voice, that is, the male actors tried to speak with a high-pitched, 
female-like voice, and vice versa. We performed two kinds of 
experiments on the sequences, namely gender recognition and 
speaker verification, and found that integration of audio-visual 
cues could achieve better recognition performance than using a 
single modality alone, in particular under very noisy condition. 
For example, in some of the sequences the illumination conditions 
were very bad and the visual classifier gave many wrong 
decisions on each frame and provided low confidence in its 
output, while the audio classifier performed well and compensated 
for the weak classifier. The same effect was observed in the 
opposite direction when the audio chancel was noisy. 

In the gender recognition task, when the speakers were using 
altered voices, the audio gender classifier was usually “fooled” by 
the voice: It’s output indicated high confidence for a wrong 
decision, while visual gender classifier gave the opposite decision 
again with high confidence. In the speaker verification task, we 
randomly selected 6 speakers as the trusted group, and the rest of 
the speakers belonged to the untrusted group. Our algorithms can 
accurately recognize all the speakers in the trust group. In 
addition, an ROC curve for unknown speaker verification was 
obtained by varying the detection threshold (cf. Fig. 4). It shows 
that by integrating audio-visual cues we are able to achieve higher 
detection performance at lower false alarm rate. 

5. CONCLUSION 
The present contribution has motivated the significance of dealing 
with unexpected events and has proposed the use of multi-modal 
information to detect unexpected events that are characterized by 
cross-modal incongruencies. The study has been facilitated by 
data recorded with the AWEAR device that is intended as an 

audio-visual cognitive aid. First results with 
our biologically-inspired approach on those 
data indicate that multimodal information 
provides significant cues for continuous 
evaluation of the consistency of events in our 
environment and thereby enables humans to 
identify cross-modal incongruous events. Our 
future work will be focused on evaluating and 
testing the approach in more realistic 
situations and applications. 
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Figure 3: Example omnidirectional 

image for speaker verification. 
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Figure 4: ROC curves of  

speaker verification. 


