
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. R. Longchamp, président du jury
Prof. D. Bonvin, Dr A. Karimi, directeurs de thèse

Prof. H. Hjalmarsson, rapporteur 
Dr L. Miskovic, rapporteur 

Prof. P. M. J. Van den Hof, rapporteur

Non-Iterative Data-Driven Model Reference Control

THÈSE NO 4658 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 9 AVRIL 2010

À LA FACULTÉ SCIENCES ET TECHNIQUES DE L'INGÉNIEUR

LABORATOIRE D'AUTOMATIQUE

PROGRAMME DOCTORAL EN INFORMATIQUE, COMMUNICATIONS ET INFORMATION

Suisse
2010

PAR

Klaske VAN HEUSDEN

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147956999?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




Acknowledgements

First of all I would like to thank Dr. Alireza Karimi. This thesis is
the result of many of our short, long and even longer discussions.
Thank you for always being available to answer my questions, for
your calmness and for your capability of putting things in perspec-
tive. Thanks also to professor Dominique Bonvin for the valuable
feedback and support.

Several other people have contributed to this thesis, either di-
rectly or indirectly. Many thanks to professor Torsten Söderström,
professor Maarten Steinbuch and Arjen den Hamer for their collab-
oration. Thanks to professor Robert Bitmead, who’s remarks indi-
rectly led to some of the results in this thesis. I would also like to
thank the members of my thesis committee for their thorough read-
ing of this thesis.

Thanks to professor Roland Longchamp, professor Dominique
Bonvin and Dr. Denis Gillet for having accepted me as a PhD student
in the Automatic Control laboratory. Thanks to my colleagues at the
LA for contributing to the enjoyable atmosphere in the lab. Thanks
to the LA secretaries and technical staff, for facilitating life in many
ways. A special thanks goes to my office mates Yvan, Damien and
Basile. Sorry I had to cut down on the breaks lately.

The years spent in Lausanne working on this thesis were very
enjoyable, for which many of the people I got to know here are re-
sponsible. Thanks to Karin, for everything (but obviously mainly
the cooking), Chloe (for the ironing), Antoine (the perfect flatmate),



ii

Nino (no it really wasn’t him), Annabelle (for the funny stories at
sat), Seb, Davor, Jo, Andrea and all the others that I do not mention
here for some unexplainable reason. Thanks to my friends at the ski
school for the entertainment in winter and to my friends of the Kayak
Club Lausanne for the distraction in summer. Thanks also to Mike
and Fleur for taking the brilliant decision of moving to Geneva and
to Maaike, Marije, Sarah, Imme and Maja, cause some things will
never change. Last but not least, I cannot think of a better way to
describe my appreciation of the support of my parents than to say:
’t kon minder.



Abstract

In model reference control, the objective is to design a controller
such that the closed-loop system resembles a reference model. In the
standard model-based solution, a plant model replaces the unknown
plant in the design phase. The norm of the error between the con-
trolled plant model and the reference model is minimized. The order
of the resulting controller depends on the order of the plant model.
Furthermore, since the plant model is not exact, the achieved closed-
loop performance is limited by the quality of the model.

In recent years, several data-driven techniques have been pro-
posed as an alternative to this model-based approach. In these ap-
proaches, the order of the controller can be fixed. Since no model
is used, the problem of undermodeling is avoided. However, closed-
loop stability cannot, in general, be guaranteed. Furthermore, these
techniques are sensitive to measurement noise.

This thesis treats non-iterative data-driven controller tuning.
This controller tuning approach leads to an identification problem
where the input is affected by noise, and not the output as in stan-
dard identification problems. A straightforward data-driven tuning
scheme is proposed, and the correlation approach is used to deal with
measurement noise. For linearly parameterized controllers, this leads
to a convex optimization problem. The accuracy of the correlation
approach is compared to that of several solutions proposed in the lit-
erature. It is shown that, if the order of the controller is fixed, both
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the correlation approach and a specific errors-in-variables approach
can be used.

The model reference controller-tuning problem is extended with
a constraint that ensures closed-loop stability. This constraint is de-
rived from stability conditions based on the small-gain theorem. For
linearly parameterized controllers, the resulting optimization prob-
lem is convex. The proposed constraint for stability is conservative.
As an alternative, a non-conservative a posteriori stability test is
developed based on similar stability conditions.

The proposed methods are applied to several numerical and ex-
perimental examples.

Keywords: Data-driven controller tuning, convex optimization,
closed-loop stability, bias error, variance error



Résumé

L’objectif de la commande par modèle de référence est de di-
mensionner un régulateur afin que le système en boucle fermée se
comporte comme le modèle de référence (ou modèle de poursuite).
La solution classique utilise un modèle du système pour minimiser la
norme de l’erreur entre ce modèle du système en boucle fermée et le
modèle de poursuite. L’ordre du régulateur dépend ainsi de l’ordre
du modèle. La performance en boucle fermée est limitée par la qualité
du modèle.

Plusieurs techniques pour la synthèse d’un régulateur à partir
de données expérimentales ont été proposées récemment. Ces tech-
niques offrent une alternative aux techniques basées sur un modèle.
L’ordre du régulateur peut être fixé à l’avance. Puisque aucun mo-
dèle du système n’est utilisé, le problème de sous-modélisation est
évité. Pourtant, la stabilité du système en boucle fermée ne peut gé-
néralement pas être garantie. De plus, ces techniques sont sensibles
au bruit de mesure.

Dans cette thèse on étudie la synthèse non-itérative d’un ré-
gulateur basée sur les données. Cette approche directe mène à un
problème d’identification, où contrairement aux problèmes d’iden-
tification standards, l’entrée, et non pas la sortie, est affectée par
le bruit de mesure. Un schéma simple est proposé pour la synthèse
des régulateurs et l’approche de corrélation est utilisés pour éliminer
l’effet du bruit de mesure. Le problème d’optimisation résultant est
convexe si la paramétrisation du régulateur est linéaire. La précision
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de l’approche de corrélation est comparée à la précision d’autres so-
lutions proposées dans la littérature. Si l’ordre du régulateur est fixe,
l’approche de corrélation ainsi qu’une approche spécifique pour des
problèmes EIV (errors-in-variables) peuvent être utilisés.

Afin de garantir la stabilité du système en boucle fermée, une
contrainte est ajoutée au problème de la commande par modèle de
référence. Le problème d’optimisation sous contrainte est convexe si
la paramétrisation du régulateur est linéaire. La contrainte de stabi-
lité est basée sur le théorème des petits gains et est par conséquent
conservatrice. Une alternative consiste à vérifier la stabilité a poste-
riori. Un test de stabilité non-conservatrice est développé basée sur
les mêmes conditions.

Les méthodes proposées sont appliquées à plusieurs exemples nu-
mériques et expérimentaux.

Mots-clés : Synthèse d’un régulateur à partir de données expéri-
mentales, optimisation convexe, stabilité en boucle fermée, erreur de
biais, erreur de variance
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Introduction

1.1 Motivation

The robot shown in Figure 1.1 is designed to perform pick-and-place
tasks with high accuracy. The structure is designed such that these
tasks can be performed with high velocity. This hardware is the nec-
essary basis to achieve the performance required in modern robotics.
To actually achieve the required performance, a feedback controller
needs to be designed that ensures both safe operation and precision
of movements with high velocity.

The control engineer has a large choice of possible control strate-
gies to achieve the required task. He or she can decide to develop a
model of the system based on the geometry of the robot and physi-
cal laws (known as first-principle modeling). This model can then be
used to design a controller and to evaluate the performance specifi-
cations for the feedback loop of the controller and the model. If this
design is performed carefully, the controller achieves the required
performance when applied to the model. However, this does not
guarantee that the controller achieves the required performance when
applied to the robot. The model is necessarily a simplification of the
real plant. Furthermore, variables such as the inertia of the robot
arm are not known exactly. The achieved performance depends on
the mismatch between the plant and the model. Besides limited per-
formance due to limited model accuracy, first-principle modeling is
in general time-consuming and therefore expensive.
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Fig. 1.1. Pick-and-place robot.

The control engineer can also decide to use system identification
techniques, where a mathematical model is derived from observed
data from the plant. In this case, identification experiments need
to be designed and performed and an appropriate model structure
needs to be chosen. The collected set of data is then used to identify
the parameters of this model structure and the identified model can
be used to design a controller. This approach thus uses two optimiza-
tions, one in the identification step and a second one in the controller
design. As for first-principle modeling, the identification step intro-
duces in general a mismatch between the model and the plant, and
the performance of the controller is limited by this mismatch.

An additional difficulty of model-based approaches is that the
complexity of the resulting controller depends, in general, on the
complexity of the model. The order of the controller might actually
be too high to be implemented, and a controller-order reduction step
might be needed before implementation.

In recent years, several data-driven techniques have been pro-
posed as an alternative to the model-based approaches described
above. In a data-driven approach, the data are used directly to
minimize a control criterion. The identification and controller de-
sign steps are thus lumped together, resulting in a direct “data-to-
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controller” algorithm. Compared to a model-based approach, the
modeling step is omitted and the problem of undermodeling of the
plant is avoided. Furthermore, since there is no intermediate model,
the structure of the designed controller does not depend on the struc-
ture of this model, and the order and structure of the controller can
be fixed.

Even though these data-driven techniques have been shown ef-
fective on various application examples, the control engineer is not
likely to choose such a method, mainly because it cannot ensure safe
operation of the robot. Since measured data are used directly to
compute the controller that minimizes a control objective, no model
of the plant is needed for controller design. Consequently, no model is
available to verify the robustness margins either, and stability cannot
be guaranteed before actual controller implementation. Another dif-
ficulty, related to the stability problem, is that without a model it is
difficult to verify whether the defined control objectives are actually
achievable. Furthermore, the effectiveness of data-driven approaches
is strongly affected by measurement noise.

Development of a method that guarantees closed-loop stability
for data-driven controller tuning is a necessary step towards a seri-
ous alternative to model-based approaches. Furthermore, solutions
are needed that deal with the effect of noise. Ideally, a data-driven
approach comprises a complete controller design recipe that includes
experiment design and an approach to define adequate control ob-
jectives.

1.2 State of the art

This thesis studies data-driven controller tuning. Such techniques
are often compared to or even opposed to model-based techniques.
However, both terms are ambiguous. Many techniques can be re-
ferred to as model-based, and their characteristics differ considerably.
Methods that use identification techniques to estimate a model from
data, and then use this model to calculate a controller are sometimes
referred to as model-based, but have also been named data-driven.
The following definition clarifies which techniques are referred to by
the term model-based approach in this thesis.
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Definition 1.1 (Model-based approach) Two distinct steps are
used to calculate the controller. In a first step a model of the plant is
defined. In a second step the controller is calculated using the model,
algebraically or by optimization.

Methods that use first-principle modeling to define a plant model,
and then use this model to calculate a controller are an example of
such model-based techniques. Methods that use identification tech-
niques (an optimization) to define a model of the plant, and then use
the model parameters in a second optimization for controller design
are another example.

In contrast to these model-based approaches, the term data-
driven approach refers to techniques with the following property.

Definition 1.2 (Data-driven approach) Measured data are used
directly to minimize a control criterion. Only one optimization in
which the controller parameters are the optimization variables is used
to calculate the controller.

In these definitions model-based approaches can be regarded as indi-
rect, whereas data-driven approaches are direct. Note that a method
that identifies a plant model parameterized directly in terms of the
controller parameters is also an example of a direct approach. In
this case no intermediate model parameters are involved and the
controller parameters are estimated directly from the data.

Various data-driven controller tuning methods have been pro-
posed in the literature. A non-exhaustive overview is given in Sec-
tion 1.2.1. Two adaptive control schemes are treated, but the main
focus is on more recent approaches, like Iterative Feedback Tuning
(IFT), Iterative Correlation-based Tuning (ICbT), unfalsified con-
trol, and Virtual Reference Feedback Tuning (VRFT). Controller
tuning methods that use non-parametric frequency domain models
are also discussed.

In non-iterative data-driven controller tuning, a set of measured
data from one single experiment is used to calculate a fixed-order
controller. The exact same data set could be used to identify a
model of the plant, which can then be used to calculate a controller.
In model-based techniques, the order of the resulting controller is in
general related to the order of the model. Identification of models
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that can be used for fixed- or low-order controller design is treated
in Section 1.2.2.

One of the main challenges in data-driven controller tuning is
closed-loop stability. In Section 1.2.3, ideas to incorporate conditions
for closed-loop stability in the controller design are discussed, as well
as a posteriori stability tests.

1.2.1 Data-driven controller tuning

Adaptive control

In the 1950’s, extensive research on adaptive control was triggered
by the development of autopilots for aircrafts [6]. These systems
function over a wide range of operating conditions, related to the
speed and altitude of the aircraft. Adaptive schemes were developed
to deal with changing conditions. Measured data are used in feedback
to adapt the controller continuously.

The literature on adaptive control is extensive, see for example [6]
and [48]. In the following, two specific schemes are summarized,
Model Reference Adaptive Control (MRAC) and Self-Tuning Regu-
lation (STR).

In MRAC, the control objective is given as a reference model,
which generates an ideal plant output for the applied reference sig-
nal. The parameters of the controller are then adjusted such that
the error between this ideal output and the measured output of the
plant is minimized. This approach is direct, since the parameters
of the controller are adjusted without the use of an intermediate
model. In the original MRAC, the MIT rule was used to update
the controller parameters [60]. The parameter update is based on a
steepest descend approach, where the update is proportional to the
derivative of the objective function with respect to the parameters.
The gradient can, for example, be estimated using a model of the
plant. Other update rules have been proposed, for example based on
stability theory [6].

STR is an indirect adaptive approach. The measured data are
used to identify a plant model. The controller is then calculated on-
line, using this updated plant model. This scheme is very flexible
as different identification approaches and different controller design
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methods can be combined. Because the design calculations can be
time consuming, the model can be reparameterized to simplify the
design step. A model that is parameterized using the controller pa-
rameters is called a direct parameterization. It can be shown that,
in some specific cases, an MRAC approach is equivalent to an STR
approach that uses a direct parameterization ( [6], p. 182).

Stability of adaptive control methods cannot be guaranteed in
general [4]. One of the problems due to the continuous controller
updates is related to persistence of excitation. If the controlled plant
functions at steady state, the ideal controller achieves a constant
error. Consequently, the measured signals are not rich enough to
identify a correct model, resulting in a parameter update that drives
the controller away from the ideal controller. As a result, the er-
ror increases and a correct model can, again, be identified. This
phenomenon is called bursting [2].

In the adaptive control approaches described above, the controller
or model parameters are estimated. These estimates are then used
as if they represent the true system. This is called the “certainty
equivalence principle” [6]. Unmodeled dynamics and estimation un-
certainties are not taken into account.

Iterative Feedback Tuning

In practice, the “certainty equivalence principle” is not realistic. Since
the order of the controller is limited and modeling errors cannot be
avoided, the controller performance is limited by the quality of the
model. Iterative Feedback Tuning (IFT) can be used to overcome
these problems. IFT was initially not intended to deal with time-
varying systems. It is a fine tuning approach that optimizes an initial
fixed-order controller that does not meet the performance specifica-
tions. Experiments are performed with one fixed controller. A new
controller is then calculated off-line.

The approach was first proposed in [30]. The control objective
is formulated as a desired trajectory for the given reference signal,
which can for example be generated using a reference model. The
control objective is then minimized using a gradient approach to find
a (local) optimum, with the initial controller as a starting point. At
each iteration, closed-loop experiments are performed and the re-



1.2 State of the art 7

sponse of the plant is used directly to estimate the gradient. No
plant model is needed and the estimate of the gradient is unbiased.
The controller parameters are updated using a stochastic approxi-
mation procedure. Convergence of the method to a local optimum is
shown in [30], provided the measured signals remain bounded. The
optimization thus converges, if the successive controllers are all sta-
bilizing.

IFT was initially developed for LTI SISO systems. The method
was then extended to LTI MIMO systems [27]. Analysis of the
method for nonlinear systems is provided in [26]. Performance of
the method has been shown in several application examples, see [28]
for an overview. A gradient approach that is similar to IFT is pro-
posed in [37]. In this method, the gradients are calculated using
non-parametric frequency domain descriptions of the current closed-
loop system.

The controller parameters converge to a local minimum, provided
the successive controllers all stabilize the system. Unfortunately,
guaranteeing stability is not straightforward and it is in general not
known whether this condition is satisfied. In [33], it is proposed to
minimize an H∞ criterion that ensures robust stability. A robust
H2 criterion is also proposed. In [66], a robust criterion is proposed,
where a second term that represents robustness is added to the orig-
inal performance criterion. The optimal controller that minimizes
these criteria is robust, but stability cannot be guaranteed through-
out the iterations. The choice of an adequate control criterion for
nonminimum-phase plants is discussed in [52], where a degree of free-
dom in the reference model is introduced to avoid cancelation of the
unstable zero.

IFT can also be used for disturbance rejection, where the norm
of the system output due to noise is minimized. For each iteration,
one experiment is performed in the standard operating conditions,
without excitation of the reference signal. A second experiment is
performed to estimate the gradient, with excitation of the reference.
The convergence rate of the algorithm depends on the quality of the
gradient estimate, which is analyzed in [25]. The excitation in the
first experiment is the noise, which cannot be adjusted to improve the
accuracy. In [24], the reference signal used in the second experiment
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is shaped using a prefilter to improve the convergence rate. In [35],
addition of external excitation is proposed to improve convergence.

Iterative Correlation-based Tuning

In Iterative Correlation-based Tuning (ICbT), the control criterion
is defined as a reference model. Instead of minimizing the norm of an
error signal related to the model reference criterion, the correlation
between the known reference signal and the error signal is minimized.
The resulting controller is asymptotically insensitive to noise [57].

A correlation function is defined as the mathematical expecta-
tion of the multiplication of an instrumental variable and the model
reference error. If the complexity of the controller is sufficient to
achieve the model-reference objective, decorrelation of the instru-
mental variables and the error signal can be achieved using the iter-
ative Robbins-Monro stochastic approximation algorithm [43]. If a
large number of data is available, the Newton-Raphson algorithm for
deterministic optimization can be used to improve the convergence
speed [42]. The accuracy of the controller parameters is analyzed
in [43], where conditions for convergence are also given. Compared
to IFT, fewer experiments are needed per iteration, but a model is
used to calculate the gradient. The effect of undermodeling on the
convergence is studied.

If the complexity of the controller is not sufficient to match the
model-reference criterion, complete decorrelation cannot be achieved.
In this case, a norm of the correlation can be minimized. For a spe-
cific choice of extended instrumental variables, the optimal controller
minimizes the model reference criterion weighted by the square of
the power spectrum of the reference signal [41]. Specifications on
the input sensitivity can be added to the approach [58]. In [57], the
approach is adapted for disturbance rejection.

The method has been extended to MIMO controllers [59]. The
procedure decouples the system by decorrelating the reference from
the non-corresponding outputs. A single experiment is sufficient per
iteration, in contrast to other data-driven methods, where the num-
ber of experiments increases with the number of inputs and outputs.
The variance of the controller parameters is analyzed for simulta-
neous excitation of the different reference signals and for separated
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excitation. It is shown that the variance is smaller is the reference
signals are excited separately.

The correlation approach has also been applied to precompen-
sator tuning [38].

Unfalsified control

Unfalsified control, introduced in [70], uses the philosophical princi-
ple that a scientific theory cannot be proven to be true, but that the
best one can do is to show that a hypothesis is wrong, i.e. a false
hypothesis can be falsified by observations. In unfalsified control,
a set of controllers is considered and the control specifications are
defined as a function of a time-domain reference signal, input to the
plant and output of the system controlled by each controller in the
set. These signals can be computed ‘virtually’, for each controller in
the set, using only one set of measured data. If the virtual signals
do not satisfy the control specifications, the controller is falsified and
discarded. The algorithm can be implemented recursively or in batch
adaptation.

The control specifications need to be verified for each controller
in the set. In the early publications on unfalsified control, the con-
troller set was therefore discrete, and for fixed-order controllers the
parameter spaces were gridded. In ellipsoidal unfalsified control [81],
the parameter space is continuous and the parameters can be up-
dated analytically, which reduces the computational load consider-
ably. Several application examples have been reported and a con-
siderable effort has been made towards stability and convergence of
the method, see [81] and [4] and the references therein. It is shown
in [15] that, even though under certain hypotheses convergence to
a stabilizing controller can be guaranteed, this does not prevent the
system response to become arbitrarily large before convergence, and
unfalsified control can therefore not be applied safely.

An H∞ approach named iterative controller unfalsification is pro-
posed in [47]. The approach uses time-domain data to evaluate an
H∞-norm control criterion. The approach converges as the length of
an experiment tends to infinity, but neither convergence nor stability
can be shown for the proposed iterative approach. Furthermore, the
approach is sensitive to measurement noise [31].
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Virtual Reference Feedback Tuning

The concept of virtual reference controller design was first intro-
duced in [23]. By using a specific filtering scheme, an error signal
corresponding to an approximate model reference error can be evalu-
ated for each controller using only one experiment and no iterations
are needed to minimize an approximate model reference criterion.

Several papers have treated this approach since, e.g. [9, 71]. An
extension to the original method with appropriate weighting for
fixed-order controllers is presented as Virtual Reference Feedback
Tuning (VRFT) in [9]. If the controller is parameterized linearly,
the optimization problem becomes convex and, in contrast to IFT
and ICbT, convergence to the global optimum can be shown. The
method is developed for noise-free measurements. For noisy mea-
surements, the use of instrumental variables is proposed. In [71],
several remarks and extensions to [9] are proposed. The use of a
prediction error method (PEM) for the identification of the inverse
controller is suggested to deal with measurement noise.

In [31], the use of cross-correlations is suggested for identifica-
tion for control and it is shown how VRFT fits into the proposed
framework. The paper discussed asymptotic properties. Many ex-
tended instrumental variable techniques as well as some frequency
domain approaches fit into the proposed framework, but no detailed
identification algorithm is presented.

Several examples of application of VRFT have been reported,
e.g. [10, 65]. The method has been extended to 2 degree-of-freedom
controllers [51] and to nonlinear plants [11]. In [46], a technique de-
rived from VRFT is proposed, which intends to shape both the sensi-
tivity and complementary sensitivity functions. The main difference
with VRFT is that the sensitivity and complementary sensitivity do
not necessarily match those of one and the same reference model.
The resulting controller does not minimize an (approximate) model
reference criterion, but provides a trade-off between a match of the
sensitivity and a match of the complementary sensitivity function.
The resulting tuning scheme is very simple.
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The techniques mentioned above summarize the main results in data-
driven controller tuning. Other ideas have been reported, for example
the use of the behavioural approach in [56], where the measurements
are assumed to be noise-free. Most of the methods discussed above
use time-domain data. Approaches using frequency-domain data can
also be found under the name “direct” or “data-driven”. Some recent
frequency-domain results are discussed next.

Frequency-domain methods

In [34], it is proposed to use frequency response function (FRF) data
from a system to directly identify a controller. It is argued that,
since no intermediate optimization step is used for the identification
of this FRF, the problem of undermodeling of the plant is avoided and
consequently the resulting performance limitation due to the plant-
model mismatch is also avoided. One can argue whether such an
approach is truly data-driven, since an explicit representation of the
plant is used. However, this non-parametric model can be measured
directly, or computed from time-domain data without any optimiza-
tion step, in which case it can be seen as a representation of the
measured data in the frequency domain. Furthermore, the claimed
advantage that undermodeling of the plant is avoided corresponds to
the main motivation for data-driven techniques.

An H2 and an LQG scheme are proposed in [34]. The robustness
issue is taken into account by adding a stability term to the cost
function, which penalizes solutions that approach the critical point
in the Nyquist curve. In [18], a direct approach for H∞ controller
design is proposed using FRF data.

In [40] and [39], non-parametric frequency-domain models are
used to design fixed-order controllers. In [40], the open-loop transfer
function is shaped using linear programming. Robustness margins
are imposed as bounds in the Nyquist diagram. In [39], it is shown
how the H∞ robust performance condition can be approximated in
the Nyquist diagram. For linearly parameterized controllers, the re-
sulting constraints are convex. The approach can handle frequency-
domain uncertainty as well as multimodel uncertainty.
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Challenges of direct data-driven control

In a recent review of challenges encountered in adaptive control [4],
model-free approaches as well as iterative identification and control
are considered. It is shown that the problems encountered in these
methods are similar to some of the known problems of adaptive con-
trol. A major theoretical problem is closed-loop stability. A second
problem, which is closely connected to the stability problem, is the
choice of the control objective. In data-driven and iterative iden-
tification and control techniques, a full description of the plant is
lacking. It is therefore impossible to decide beforehand whether the
defined control objective can be achieved. If the control objective
is inadequate, at least, the desired performance will not be achieved
and, at worst, the closed-loop might be unstable. In [31], a sim-
ple analytical example shows an unachievable control objective that
leads to destabilizing optimal controllers in model-free approaches.

1.2.2 Model-based fixed-order controller design

In a model-based approach, the order of the controller typically de-
pends on the order of the plant. In order to limit the order of the
controller, it is therefore desirable to limit the order of the model.
An overview of identification of restricted-complexity models can be
found in [29]. In the following, identification of low-order models
for controller design is discussed and some results on the accuracy
of model reduction and direct identification of low-order models are
given.

Identifying low-order models for controller design

If the order of the model is limited, a bias error exists between the
model and the plant due to undermodeling. It has been shown that
bias shaping, i.e. imposing a frequency dependent weighting on this
error due to undermodeling, is essential for meeting the control per-
formance [20]. The main idea is that the modeling error can be large
in frequency zones that are not important for the resulting closed-
loop performance, but the error must be limited in other frequency
zones, typically around the bandwidth of the closed-loop system.
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The identification criterion used to identify the plant must thus be
connected to the control objective.

In [67], this idea is used for model reduction. An optimal low-
order model for controller design is calculated by minimizing a cri-
terion that reflects the control objective. The optimal weighting for
identification of the plant model actually depends on the controller
that is to be designed. This observation is the basis of iterative iden-
tification and control techniques, see [1] for an overview. The idea is
that a first model is identified in closed-loop operation. This model
is then used to calculate a new controller, which is implemented.
A new model is identified with this new controller, thus resulting
in an iterative approach. The quality of consecutive models should
improve, because the frequency weighting approaches the optimal
weighting as the controller approaches the ideal controller. However,
convergence of such methods cannot be shown.

If an approximation of the ideal filter is used, bias shaping can
be done by prefiltering of the data, where the approximate filter is
applied to the data before identification of the plant. This approach
is non-iterative. According to [29], VRFT can be seen as such a
prefiltering approach, where the low-order plant is parameterized
through the parameterization of the controller. This parameteriza-
tion is known in adaptive control as the direct parameterization.

A statistical view on identification of low-order models

Low-order models can either be identified directly from data, or be
calculated in a model-reduction step, after having identified a high-
order model. An obvious question is then, which of these methods
should be preferred? Should one first identify a full-order model and
then use this model for further calculations or is it better to identify
a reduced-order model directly? This question is treated in [29].

The discussion in [29] is based on the so-called separation princi-
ple, which uses the invariance principle of maximum-likelihood (ML)
estimation (Theorem 5.1.1 [84]). Let g : Θ → Ω be a function map-
ping θ ∈ Θ ∈ Rn to an interval Ω ∈ Rm, with m 6 n. The theorem
states that, if θ̂ is a maximum-likelihood estimator of θ, then g(θ̂) is
a maximum-likelihood estimator of g(θ).
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According to [29], “it follows under very general conditions on

g that, if θ̂ is asymptotically efficient, i.e. it is consistent and its
asymptotic covariance matrix reaches the Cramér-Rao lower limit,
then g(θ̂) is also asymptotically efficient.” The results of [80] on
model reduction confirm this idea.

According to this separation principle, a full-order model can be
identified and then used in further calculations without jeopardiz-
ing the asymptotic efficiency. However, the properties for a finite
number of data of such an asymptotically efficient estimator are not
necessarily optimal.

1.2.3 Ensuring closed-loop stability

Ideally, a control-design method should guarantee closed-loop sta-
bility. Attempts to incorporate a stability condition at the design
stage can be found for iterative identification and control [53]. The
main idea is that, if the controller change is small enough, insta-
bility cannot occur. This idea of cautious controller updates and
gradual performance increase is widely accepted in iterative identi-
fication and control [3, 7]. If the design method does not include a
stability guarantee, the controller can be tested before actual imple-
mentation. Several tests have been developed to verify closed-loop
stability before implementation of the controller.

In [37], it is suggested to include an a posteriori stability test
in an iterative controller-tuning scheme. The stability condition is
based on ν-gap metrics and can be verified using spectral estimates
of the current closed-loop system, which are also used in the iterative
scheme. Extensions to the approach are given in [36]. In [62], the
ν-gap metric is used not only to ensure stability conditions but also
to ensure a certain closed-loop performance. For validation of the
conditions, the H∞-norm of a matrix of loop-transfer functions with
the current controller in the loop needs to be identified.

In [83], it is shown that it is impossible to ensure stability in it-
erative unfalsification and control schemes, based on a finite number
of data and without additional information on the plant. A priori
assumptions are necessary in order to guarantee stability. An algo-
rithm that uses an a priori assumption on the maximal derivative of
the plant frequency response function is proposed.
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In [50], stability of iterative identification and control methods is
treated. It is pointed out that model-based methods need an accu-
rate model of the plant in order to verify the stability of a controller
based on an approximate model, which somewhat contradicts the
controller design approach. This raises the important question of
how much information is really needed in order to guarantee sta-
bility and how reliable is the answer. A stability test for iterative
identification and control methods is presented, where the difference
between two consecutive controllers is small. The needed accuracy
of the nonparametric model identified in the proposed test is related
to this controller change. In [16], the approach is detailed for both
linear SISO and linear MIMO systems.

In [71], a scheme is proposed that generates the necessary sig-
nals to identify the closed-loop system without actually implement-
ing the controller. The resulting stability test requires the accurate
identification of a possibly unstable system in an errors-in-variables
problem. Another model-based approach based on an uncertainty
set that contains the true plant with a certain probability has been
proposed by [21].

1.3 Contributions

This thesis presents algorithms for and analysis of non-iterative data-
driven controller tuning, where an approximation of the model refer-
ence criterion is minimized. Only linear time-invariant SISO systems
are considered. The contributions can be summarized as follows:

Proposition of straightforward schemes for non-iterative
controller tuning
Two schemes are proposed, one for open-loop experiments and
one for closed-loop experiments. The approach is therefore ap-
plicable to both open-loop stable and unstable systems.

Application of the correlation approach to deal with noise
The controller identification problem for stable systems is ana-
lyzed in detail. It is shown that, if the order of the controller is
fixed, the controller parameters identified using standard PEM
do not converge to the optimal values due to noise. Application
of the correlation approach is proposed to deal with the noise,
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and it is shown that the controller converges to the optimal con-
troller, also for fixed-order controllers.

Proposition of a data-driven approach with integrated con-
straint for closed-loop stability
A sufficient condition for closed-loop stability is proposed, which
can be added as a constraint to the (approximate) model refer-
ence problem. In the case of stable systems, an active constraint
indicates that the control objective cannot be achieved. In a
data-driven approach, the stability constraint needs to be esti-
mated. Stability is guaranteed as the number of data tends to in-
finity. In order to guarantee stability for a finite number of data,
the estimation error needs to be taken into account. Bounds
on the error are given for periodic data. For linearly parame-
terized controllers, the data-driven approach for the constrained
approximate model reference problem is a convex optimization
problem.

Proposition of a posteriori data-driven test for stability
A non-conservative a posteriori stability test is proposed, based
on a similar stability condition as used in the data-driven ap-
proach with guaranteed stability. The condition is verified using
an estimate based on available open- or closed-loop data. If some
a priori information on the plant and disturbances is available,
error bounds can be defined and stability can be guaranteed.
If no error bound can be defined, the proposed approach offers
a straightforward trade-off between conservatism and reliability.
Data from different closed-loop experiments can be combined,
also if the data is collected with different controllers in the loop.

Analysis of the accuracy of data-driven model reference
control
Various identification approaches have been proposed to deal
with the measurement noise in the context of non-iterative data-
driven controller tuning. The accuracy of these approaches is
compared to the accuracy of the correlation approach and that
of an errors-in-variables approach for periodic data. It is shown
that, if the ideal controller is in the controller set, the Cramér-
Rao bound can be obtained. If the order of the controller is
fixed, the estimate converges to the optimal controller only for
(extended) instrumental variable methods, which includes the
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correlation approach. A comparison with a statistically efficient
model-based approach shows that data-driven controller tuning
is asymptotically equivalent to this model-based approach. For
a finite number of data, the data-driven approach can be more
accurate, as shown in a numerical example.

1.4 Outline

Chapter 2 introduces the approximate model reference problem.
Data-driven tuning schemes for stable and unstable plants are pro-
posed in Section 2.2. The assumptions used throughout the thesis
are also given in this section. The resulting controller identification
problem is analyzed in Section 2.3. Implementation of the correlation
approach is discussed in Section 2.4 and application of the method
to a pick-and-place robot is presented in Section 2.5.

Chapter 3 presents correlation-based controller tuning with guar-
anteed stability. A stability constraint for model reference control is
introduced in Section 3.1. In Section 3.2 and 3.3, constraints for
stability are added to the correlation approach presented in Chap-
ter 2. The connection of the proposed approach with Toeplitz-based
methods as used in model and controller unfalsification is shown in
Section 3.4. Error bounds for the estimate of the stability condition
for a finite number of periodic data are given in Section 3.5, and
Section 3.6 illustrates the effectiveness of the proposed approach in
simulation and on an experimental setup.

The non-conservative a posteriori stability test is presented in
Chapter 4. In Section 4.1, conditions for closed-loop stability are
given. In Section 4.2, it is shown how the signals that are necessary
to verify the stability conditions can be generated. The data-driven
test is presented in Section 4.3. Section 4.4 describes how to combine
data from different closed-loop experiments. The effectiveness of the
test is shown in a numerical example in Section 4.5.

In Chapter 5, the accuracy of non-iterative model reference con-
troller tuning is discussed. Different identification approaches for
data-driven controller tuning are analyzed in 5.1. The performance
of these approaches is compared in Section 5.2. In Section 5.3, the
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accuracy of the controller parameters is compared to the accuracy of
a statistically efficient model-based approach.

Conclusions and perspectives are provided in Chapter 6.



2

Non-iterative data-driven controller

tuning: an identification problem

The control objective used throughout this thesis is an approximation
of the model reference control problem. This approximation, which
has been used in model reduction and data-driven controller tuning,
is defined in Section 2.1. In Section 2.2, tuning schemes for both
open-loop and closed-loop experiments are proposed, which generate
an error signal that can be used to directly minimize the approximate
model reference criterion over a predefined set of controllers. The set
of controllers, and therefore the order of the controller, is fixed. This
characteristic is essential throughout this thesis.

If the order of the controller is fixed, the control objective can
in general not be achieved, and a bias error exists between the ideal
controller and the optimal controller in the predefined class of con-
trollers. Due to this bias error and the effect of noise, controllers
identified using prediction error methods do not converge to the op-
timal controller, as shown in Section 2.3. The use of the correlation
approach is proposed to deal with the effect of noise in the design
of fixed-order controllers. The approach has been applied to a pick-
and-place robot, the results of which are presented in Section 2.5.

2.1 An approximate model reference criterion

Consider the unknown LTI SISO plant G(q−1), where q−1 denotes
the backward shift operator. Specifications for the controlled plant
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are given as a stable strictly proper reference model M(q−1). The
objective is to design a linear, fixed-order controller K(q−1, ρ), with
parameters ρ, for which the closed-loop system resembles the refer-
ence model M(q−1).

This can be achieved by minimizing the (filtered) two-norm of the
difference between the reference model and the achieved closed-loop
system:

Jmr(ρ) =

∥

∥

∥

∥

F

[

M − K(ρ)G

1 +K(ρ)G

]∥

∥

∥

∥

2

2

(2.1)

with F a weighting filter. Note that the objective is to design a
fixed-order controller and Jmr(ρ) = 0 can in general not be achieved.

The model reference criterion (2.1) is non-convex with respect to
the controller parameters ρ. An approximation that is convex for
linearly parameterized controllers can be defined using the reference
model M as illustrated next. M can be represented as:

M =
K∗G

1 +K∗G
. (2.2)

The backward shift operator is omitted here and in the sequel. K∗

is the ideal controller, which is defined indirectly by G and M :

K∗ =
M

G(1 −M)
. (2.3)

This controller K∗ exists because M 6= 1, since M is strictly proper.
K∗ might be of very high order since it depends on the unknown and
possibly high-order plantG. Furthermore,K∗ might not stabilize the
plant internally and might be non-causal. However, the unknown
ideal controller will only be used for analysis and the results will
be valid also for a non-causal K∗. Furthermore, since M is strictly
proper, K∗G = M(1 −M)−1 is causal.

The ideal sensitivity function is given by

1

1 +K∗G
= 1 −M. (2.4)

Using (2.2), the model reference criterion (2.1) can be expressed as:

Jmr(ρ) =

∥

∥

∥

∥

F

[

K∗G−K(ρ)G

(1 +K∗G)(1 +K(ρ)G)

]
∥

∥

∥

∥

2

2

(2.5)
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Approximation of 1
1+K(ρ)G by the ideal sensitivity function (2.4)

leads to the following approximation of the model reference crite-
rion:

J(ρ) =

∥

∥

∥

∥

F

[

K∗G−K(ρ)G

(1 +K∗G)2

]∥

∥

∥

∥

2

2

=
∥

∥

∥
F (1 −M)[M −K(ρ)(1 −M)G]

∥

∥

∥

2

2
. (2.6)

Let the controller be linearly parametrized

K(q−1, ρ) = βT (q−1)ρ, ρ ∈ DK (2.7)

where the set DK is compact and β(q−1) is a vector of stable linear
discrete-time transfer operators:

β(q−1) = [β1(q
−1), β2(q

−1), . . . , βnρ
(q−1)]T . (2.8)

Note that orthogonal basis functions can be chosen. nρ is the num-
ber of controller parameters. With this structure of K(ρ), the ap-
proximate model reference criterion J(ρ) is convex in the controller
parameters ρ.

Special cases of unstable controllers can also be handled, for ex-
ample if β(q−1) contains an integrator. In this case, the reference
model M needs correspond to the controller structure to ensure that
J(ρ) is bounded on DK , see Section 2.4 for details.

Definition 2.1 (Optimal controller) Let the controller be param-
eterized as in (2.7) and J(ρ) given by (2.6). The parameters ρ0 of the
optimal controller K(ρ0) are defined as the optimum of the following
convex optimization:

ρ0 = arg min
ρ∈DK

J(ρ). (2.9)

Note that, if the ideal controller K∗ is in the set of controllers given
by K(ρ), the optimal K(ρ0) is given by K(ρ0) = K∗, i.e. ρ0 = ρ∗.
In this case, ρ∗ does not depend on the frequency weighting, since
K(ρ∗)G(1−M) = M and therefore both J(ρ∗) = 0 and Jmr(ρ

∗) = 0;
the approximate model reference criterion J(ρ) and Jmr(ρ) have the
same optimum, ρ∗.
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The criterion J(ρ) is a good approximation of Jmr(ρ) if the dif-
ference between K(ρ) and the ideal controller K∗ can be made small.
This approximation has been used in model reduction and controller
reduction, see [29] for an overview. A similar approximation in the
H∞ framework is for example used in [5], an H2 example can be
found in [68]. The approximation has also been used in data-driven
controller tuning [9]. The quality of the approximation is discussed
in [9].

2.2 Non-iterative data-driven controller tuning

schemes

In the following, two data-driven tuning schemes are presented that
can be used to define a time-domain estimate of the control cri-
terion J(ρ). This criterion consists of the error transfer function
M −K(ρ)(1−M)G, filtered by F (1−M), where F is a user-defined
filter. The open-loop tuning scheme proposed next, is a straightfor-
ward implementation of this error function, filtered by the filter L.
This filter L should be chosen such that the data-driven controller
converges to the optimal controller K(ρ0), and is discussed in de-
tail in Section 2.4. The scheme can be used for stable systems, and
the global optimum of the time-domain criterion can be found using
only one set of measured data. For unstable systems, one closed-loop
experiment is proposed.

2.2.1 Tuning scheme for stable plants

Let the error εc(t, ρ) be given by the tuning scheme of Figure 2.1.
εc(t, ρ) can be expressed in terms of the exogenous signals r(t) and
v(t) as follows:

εc(t, ρ) = L [Mr(t) −K(ρ)(1 −M)y(t)]

= L [M −K(ρ)(1 −M)G] r(t) − LK(ρ)(1 −M)v(t) (2.10)

This error signal can be evaluated for each controller K(ρ), using
only one experiment. If the filter L is chosen, as discussed in Section
2.4, this scheme can be used to identify the optimal controller K(ρ0).
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K(ρ)G 1 − M
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Fig. 2.1. Tuning scheme for the model reference control problem using
only one open-loop experiment

However, in the resulting parameter estimation problem, the input to
the function to be identified, K(ρ), is affected by noise, in contrast to
classical identification problems, where its output is affected by noise.
For this particular identification problem, standard prediction-error
methods cannot be used, as shown in Section 2.3. The correlation
approach can be used to reduce the effect of noise on the estimated
controller parameters.

2.2.2 Tuning scheme for unstable plants

If the plant is unstable, an initial stabilizing controller Ks is needed
to perform an experiment. Data from an experiment on the plant
controlled by this stabilizing controller Ks is assumed available, but
Ks need not be known. Consider the tuning scheme shown in Figure
2.2. The excitation signal r(t) is applied directly to the input of the
plant. The data set consists of the exogenous excitation signal r(t),
the output of the controller u1(t), the resulting input to the plant
u2(t) = u1(t)+ r(t), and the output of the controlled plant y(t). The
error εc(t, ρ), which reads

εc(t, ρ) = L [Mu2(t) −K(ρ)(1 −M)y(t)] , (2.11)

can be used to compute the optimal controller. Again, prediction-
error methods cannot be used for this specific identification problem
and the correlation approach will be used to reduce the effect of
noise. In Section 2.4, the correlation approach is detailed for both
the open-loop and the closed-loop scheme. Note that the closed-loop
scheme can also be used for stable systems.
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Fig. 2.2. Tuning scheme for model reference control problem using one
closed-loop experiment

2.2.3 Definitions and assumptions

The following definitions and assumptions are used throughout this
thesis. The auto-correlation of the signal r(t) is defined as

Rr(τ) = lim
N→∞

1

N

N
∑

t=1

E{r(t− τ)r(t)}. (2.12)

The spectrum of r(t) is defined as:

Φr(ω) =

∞
∑

τ=−∞

Rr(τ)e
−jτω , (2.13)

provided the infinite sum exists. The cross-correlation between the
signals r(t) and v(t) is defined as:

Rrv(τ) = lim
N→∞

1

N

N
∑

t=1

E {r(t − τ)v(t)} . (2.14)

The auto-correlation of the periodic signal r(t) with period Np is
defined on one period and given by:

Rr(τ) =
1

Np

Np
∑

t=1

r(t − τ)r(t), (2.15)

for τ = 0, . . . , Np − 1. The spectrum of the periodic r(t) is defined
as
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Φr(ωk) =

Np−1
∑

τ=0

Rr(τ)e
−jτωk , ωk = 2πk/Np, k = 0, . . . , Np − 1.

(2.16)
The measurement noise v(t) is assumed to satisfy:

A1 The measurement noise v(t) is uncorrelated with r(t), i.e.

Rrv(τ) = lim
N→∞

1

N

N
∑

t=1

E {r(t − τ)v(t)} = 0 (2.17)

for all τ .
A2 The measurement noise can be represented as

v(t) = Hv(q−1)e(t),

where e(t) is a zero-mean white noise signal with variance σ2 and
bounded fourth moments. Hv and H−1

v are stable filters.

If non-periodic signals are considered, the reference signal is as-
sumed to satisfy the following assumptions:

A3 r(t) is quasi-stationary, i.e. Rr(τ) exists for all τ .
A4 The spectrum of r(t) satisfies Φr(ω) > 0, ∀ω.

Assumption A3 includes deterministic as well as stochastic signals,
i.e. r(t) can be the realization of a stochastic process. In some cases,
periodic input signals will be considered:

A5 The reference signal is periodic with period Np, i.e. r(t+nNp) =
r(t) for any integer n. The signal r(t) includes an integer number
of periods, i.e. N = npNp, with np the number of periods. If r(t)
is used to excite a plant, the output of the plant is also assumed
to be periodic, i.e. there are no transients present in the response
of the system.

A6 The spectrum of the periodic reference signal r(t) satisfies
Φr(ωk) > 0, ωk = 2πk/Np, k = 0, . . . , Np − 1.
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K(ρ)G (1 − M)2

open-loop experiment
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Fig. 2.3. Tuning scheme for model-reference problem, with L = 1 − M .

2.3 Analysis of the controller identification

problem

In the following, the nature of the controller identification problem
is analyzed using well-known prediction-error methods (PEM). Only
stable plants and open-loop measurement data are considered here.
Assume that the user-defined filter F = 1 and the filter L is fixed as
L = 1−M . The controller tuning scheme of Figure 2.1 is now given
by Figure 2.3.

2.3.1 Controller identification in the prediction error
framework

The scheme of Figure 2.3 can be rearranged as depicted in Figure 2.4,
to show clearly the nature of the identification problem. The input
yc(t) of the controller to be identified K(ρ) is affected by the noise
term ỹc(t). The output of the ideal controller K∗ is not affected by
noise. Its input, y∗c (t) is also noise-free. The unknown signals in this
scheme are v(t), y∗c and the noise signal ỹc(t) given by:

ỹc(t) = (1 −M)2v(t) = Hỹe(t). (2.18)

The known signals are r(t), yc(t) = (1 −M)2y(t) and s(t) given by:

s(t) = (1 −M)2GK∗r(t) = (1 −M)Mr(t).

In contrast to errors-in-variables problems, there is no fundamental
identifiability problem since the output s(t) is not affected by noise
and the reference signal r(t) is available.

Two cases are considered:
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Fig. 2.4. Alternative representation of data-driven controller tuning
scheme

C1 The objective can be achieved, i.e. K∗ ∈ {K(ρ)}. Therefore
K(ρ0) = K∗ and J(ρ0) = 0

C2 The objective cannot be achieved, i.e. K∗ /∈ {K(ρ)}, K(ρ0) 6=
K∗ and J(ρ0) > 0.

Case C1 is often assumed in system identification. However, since
one of the main advantages of data-driven controller design is that
the order of the controller can be fixed, this assumption does not
necessarily hold and C2, the case of undermodeling of the controller,
needs to be considered.

Assume that A1 and A2 are satisfied and that, in Case C1:

A7 The input r(t) = 0, ∀t 6 0. r(t) is persistently exciting of order
nρ and L(1 −M)G has no zero on the imaginary axis.

In case C2, the control objective is formulated as minimization of
J(ρ), the 2-norm of an error function. Because the 2-norm is con-
sidered, i.e. the integral of the error function over all frequencies,
and J(ρ) 6= 0, ∀ρ, the system must be excited at all frequencies. The
assumption that the spectrum of r(t), Φr(ω) > 0, ∀ω is sufficient for
the analysis of convergence of the estimate in case C2. However, for
the ease of notation, the following stronger assumption will be used.

A8 The input r(t) is a zero-mean white noise with unit variance and
L(1 −M)G has no zero on the imaginary axis.

Consider the scheme of Figure 2.4. Using (2.7), the error can be
calculated as
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εc(t, ρ) = s(t) − ŝ(t) = s(t) −K(ρ)yc(t) = s(t) − φT (t)ρ, (2.19)

where the regression vector φ(t) is given by:

φ(t) = βyc(t) = βy∗c (t) + βỹc(t) , φ0(t) + φ̃(t), (2.20)

with β(q−1) defined in (2.8). The error signal can be written as

εc(t) = K∗y∗c (t) −K(ρ)y∗c (t) −K(ρ)ỹc(t)

= [K∗ −K(ρ)]y∗c (t) −K(ρ)Hỹe(t) (2.21)

Note that the noise filter is given by K(ρ)Hỹ, which corresponds to a
parameterization of the noise model H(η, ρ), where the noise model
depends on the controller parameters ρ as well as on the parameters
η. In the prediction error framework, the corresponding prediction
error is then given by:

εp(t, η, ρ) = H−1(η, ρ)εc(t)

= H−1(η, ρ) (K∗y∗c (t) −K(ρ)y∗c (t) −K(ρ)ỹc(t))

= H−1(η, ρ) ([K∗ −K(ρ)]y∗c (t) + [H(η, ρ) −K(ρ)Hỹ]e(t)) − e(t),

(2.22)

Non-iterative data-driven controller tuning thus corresponds to an
identification problem with a specific parameterization of the noise
model, given by H(η, ρ) = K(ρ)Hp(η), where Hp(η) is the part of
the noise model independent of the controller parameters.

2.3.2 Full-order controllers: no undermodeling

In the standard identification framework, the system to be identified
is usually assumed to be contained in the model set, i.e. no under-
modeling is present. A well-known result in this case is that, if the
noise model and the plant model are independently parameterized,
the noise model does not affect the consistency of the estimate of the
plant [54]. However, non-iterative data-driven controller tuning leads
to a structure where the controller parameters appear in the noise
model. Consequently, the estimate of the controller is consistent only
if the noise model is identified correctly.
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The PEM estimate with a fixed noise model, i.e. the output error
structure with H(η, ρ) = 1, is now used to illustrate the differences
with a standard identification problem. If H(η, ρ) = 1 and the con-
troller is parameterized as in (2.7), the PEM criterion 1

N

∑N
t=1 ε

2
p(t, ρ)

is a quadratic function of ρ. The optimizer is given by the least-
squares solution:

ρ̂ =

[

1

N

N
∑

t=1

φ(t)φ(t)T

]−1

1

N

N
∑

t=1

φ(t)s(t). (2.23)

In Case C1, it follows from (2.20) that

s(t) = φT
0 (t)ρ0 = φT (t)ρ0 −K(ρ0)ỹc(t).

The estimation error is then given by

ρ̂− ρ0 =

[

1

N

N
∑

t=1

φ(t)φ(t)T

]−1

1

N

N
∑

t=1

φ(t)K(ρ0)ỹc(t). (2.24)

The regressor φ(t) is correlated with the noise ỹc(t), and consequently
the estimate is not consistent.

In contrast to the standard identification problem, the PEM es-
timate is not consistent here, unless the noise model is identified
correctly. Similar to the case of closed-loop identification [19], a
tailor-made parameterization can be used to find a consistent esti-
mate.

To summarize:

• In the prediction error framework, the controller tuning problem
requires a tailor-made parametrization, where the noise model is
parameterized as K(ρ)Hp(η). If the noise model is not estimated
correctly, the estimate is not consistent, contrary to the standard
Box-Jenkins identification problem.

• (Hp(η)K(ρ))−1 needs to be stable.
• The identification problem becomes a non-convex optimization

problem, also for the linearly parameterized controllers (2.7).
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2.3.3 Fixed-order controllers: undermodeling of the
controller

If, in practice, the order of the controller is fixed, Case C1 typically
does not apply. In Case C2,K∗ /∈ {K(ρ)}, the criterion J(ρ) > 0 and
the frequency weighting of the error becomes critical for the quality
of the controller. This bias shaping is well known in the context of
iterative identification and control [20].

Asymptotic convergence of the estimate is analyzed next, under
Assumption A8. The optimal controller K(ρ0) is defined in Defini-
tion 2.1. The estimate converges asymptotically if

lim
N→∞

ρ̂ = ρ0 = arg min
ρ∈DK

J(ρ).

Using (2.22), the prediction error estimate is given by

ρ̂ = arg min
ρ∈DK

1

N

N
∑

t=1

ε2p(t, η, ρ) = arg min
ρ∈DK

Jp(ρ). (2.25)

Then

ρ̂ = arg min
ρ∈DK

1

N

N
∑

t=1

[

H−1(η, ρ)
(

[K∗ −K(ρ)]y∗c (t)

+ [H(η, ρ) −K(ρ)Hỹ]e(t)
)]2

(2.26)

If no measurement noise is present, the estimate is given by

ρ̂ = arg min
ρ∈DK

1

N

N
∑

t=1

[

H−1(η, ρ)(1 −M)
(

M −K(ρ)(1 −M)G
)

r(t)
]2

The estimate converges asymptotically to ρ0, the minimizer of (2.6),
only if the noise model is chosen as H(η, ρ) = 1 (output error
structure). In this case, limN→∞ Jp(ρ) = J(ρ) and consequently
limN→∞ ρ̂ = ρ0. However, if the measurements are affected by noise
and e(t) 6= 0, the controller parameters appear in the noise term

ρ̂ = arg min
ρ∈DK

1

N

N
∑

t=1

[

H−1(η, ρ)
(

(1−M)
(

M −K(ρ)(1−M)G
)

r(t)

+ [H(η, ρ) −K(ρ)Hỹ]e(t)
)]2

. (2.27)
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The noise modelH(η, ρ) should thus be equal toK(ρ)Hỹ to eliminate
the effect of noise, and equal to 1 for bias shaping. Since these two
objectives are in general conflicting, limN→∞ ρ̂ 6= ρ0.

To summarize: In case C1, the PEM gives a consistent estimate,
when a tailor-made parametrization is used. However, the PEM can-
not be used for bias shaping in case C2. Since the possibility to fix
the order of the controller is one of the main advantages of data-
driven controller tuning approaches, case C2 needs to be consid-
ered in practice. A PEM is therefore not an adequate identification
method for this specific problem.

2.4 Application of the correlation approach

The correlation approach can be used to deal with the effect of noise
in direct controller tuning. The use of cross-correlations is well-
known in identification, for example in instrumental variable tech-
niques [74] and in spectral analysis. The use of cross-correlations
for identification for control is proposed in [31], but no details for
implementation are given. In ICbT, a specific choice of extended
instrumental variables is proposed. Because this specific choice of
instrumental variables permits bias shaping, also in Case C2 [41],
this approach is applied here to the non-iterative data-driven model
reference problem. The proposed approach is therefore applicable in
both Case C1 and Case C2.

Consider the open-loop tuning scheme of Figure 2.1. The ideal
controller K(ρ∗) achieves M = K(ρ∗)G(1 −M). As a result, the
error signal (2.10) becomes filtered noise:

εc(t, ρ
∗) = −K(ρ∗)L(1 −M)v(t) (2.28)

Since according to Assumption A1 v(t) is not correlated with the
reference r(t), the ideal error εc(t, ρ

∗) will not be correlated with
r(t) either. In the correlation approach, the objective is to tune the
controller parameters ρ such that εc(t, ρ) and r(t) become uncorre-
lated. In the following, the correlation approach is detailed for the
open-loop scheme of Figure 2.1 and the closed-loop scheme of Figure
2.2, both for periodic and non-periodic data.
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2.4.1 Use of open-loop experiments

Let the plant G be excited by r(t) as illustrated in Figure 2.1. The
output of the plant is affected by noise, y(t) = Gr(t) + v(t). Assume
that the signals r(t) and y(t) of length N are available, that A1-
A4 are satisfied and that L(1 −M)G has no zero on the imaginary
axis. The error εc(t, ρ) is calculated according to the tuning scheme
of Figure 2.1 and is given by (2.10). The vector of instrumental
variables ζ(t), correlated with r(t) and uncorrelated with v(t), is
defined as:

ζ(t) = [r(t+ l1), r(t+ l1 − 1), . . . r(t), r(t− 1), . . . , r(t− l1)]
T (2.29)

where l1 is a sufficiently large integer. A discussion on the choice of
l1 can be found in Section 2.4.3. The correlation function is defined
as

fN,l1(ρ) =
1

N

N
∑

t=1

ζ(t)εc(t, ρ) (2.30)

and the correlation criterion JN,l1(ρ) as

JN,l1(ρ) = fT
N,l1(ρ)fN,l1(ρ). (2.31)

The optimizer ρ̂ of the data-driven problem is defined as:

ρ̂ = arg min
ρ∈DK

JN,l1(ρ). (2.32)

Since JN,l1(ρ) is a quadratic function of ρ, the global optimum can
be found analytically.

Theorem 2.1 Consider the controller structure defined in (2.7).
Let the stable filter L be defined as:

L(e−jω) =
F (e−jω)(1 −M(e−jω))

Φr(ω)
(2.33)

This filter might be non-causal. Then, as N, l1 → ∞ and l1/N → 0,
the optimizer ρ̂ in (2.32) converges w.p.1 to ρ0, the optimizer of J(ρ)
as defined in Definition 2.1:

lim
N,l1→∞,l1/N→0

ρ̂ = ρ0 (2.34)
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Proof: Firstly stochastic convergence is established. We have [54]:

lim
N→∞

fN,l1(ρ) = [Rrεc
(−l1, ρ), . . . , Rrεc

(l1, ρ)]
T , w.p. 1

The correlation criterion is a continuous function of this variable,
which leads to ( [63], page 450):

lim
N→∞

JN,l1(ρ) =

l1
∑

τ=−l1

R2
rεc

(τ, ρ), w.p. 1. (2.35)

Note that this result holds for finite l1. In this case the correlation
criterion converges because N → ∞ implies l1/N → 0.

Secondly, convergence of this deterministic variable to J(ρ) is
established as l1 → ∞. Since K(ρ) is stable, L(M −K(ρ)(1−M)G)

is stable and
∑l1

τ=−l1
R2

rεc
(τ, ρ) and the limit

∑∞
τ=−∞R2

rεc
(τ, ρ) are

bounded on DK . The sequence of deterministic convex functions
∑l1

τ=−l1
R2

rεc
(τ, ρ) then converges uniformly to

∑∞
τ=−∞R2

rεc
(τ, ρ) on

the compact set DK as l1 → ∞. This follows from Theorem 10.8 from
[69], which states that pointwise convergence of a series of convex
functions to a convex limit function implies uniform convergence on
a compact set.

It then follows that as N, l1 → ∞, l1/N → 0 the correlation
criterion converges uniformly:

lim
N,l1→∞,l1/N→0

JN,l1(ρ) =

∞
∑

τ=−∞

R2
rεc

(τ, ρ), w.p. 1. (2.36)

Using Parseval’s theorem, this is equivalent to:

∞
∑

τ=−∞

R2
rεc

(τ, ρ) =
1

2π

∫ π

−π

|Φrεc
(ω, ρ)|2dω

=
1

2π

∫ π

−π

|L
(

M −K(ρ)(1 −M)G
)

|2Φ2
r(ω)dω

With the expression of L given in (2.33), (2.36) becomes:

lim
N,l1→∞,l1/N→0

JN,l1(ρ) = J(ρ),w.p.1. (2.37)
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Because convergence is uniform, this implies that the minimizing
argument ρ̂ converges to the minimizing argument ρ0 of J(ρ).

Remark: JN,l1(ρ) converges uniformly to J(ρ) on DK if J(ρ)
is bounded. This is the case if L(M − K(ρ)(1 − M)G) is stable.
If K(ρ) is unstable, for example when the controller contains an
integrator, and the unstable poles of K(ρ) are zeros of (1 −M)G,
then L(M − K(ρ)(1 −M)G) is stable and J(ρ) is bounded. If M
is chosen with care such that L(M −K(ρ)(1 −M)G) is stable, the
convergence result holds also for unstable controllers.

Note that the error signal εc(t, ρ) is filtered by L in the above
implementation. This filtering can also be applied to the instrumen-
tal variables, as proposed in [44]. As the number of data tends to
infinity, the estimates are equivalent.

2.4.2 Use of closed-loop experiments

Assume that data from the system stabilized by Ks are available.
The closed-loop system of this controller and the plant G is given by
Ms, i.e.

Ms =
KsG

1 +KsG
.

Let the unstable plant G be excited by r(t) in closed loop according
to the scheme of Figure 2.2. The output of the plant is affected by
the noise v(t). The discrete-time signals r(t), y(t), u1(t) and u2(t)
of length N are available and are assumed to satisfy A1-A4. It is
assumed that L(1 −M)G/(1 +KsG) has no zero on the imaginary
axis. The error εc(t, ρ) is given by (2.11). The vector of instrumental
variables ζ(t) is given by (2.29). The correlation function fN,l1(ρ) is
given by (2.30), the correlation criterion JN,l1(ρ) is defined in (2.31).
The optimizer ρ̂ is defined in (2.32).

Theorem 2.2 Consider the controller structure defined in (2.7).
Let the stable filter L be defined as:

L(e−jω) =
F (e−jω)(1 −M(e−jω))
(

1 −Ms(e−jω)
)

Φr(ω)
. (2.38)
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Then, as N, l1 → ∞ and l1/N → 0, the optimizer ρ̂ in (2.32) con-
verges w.p.1 to ρ0, the optimizer of J(ρ) as defined in Definition
2.1:

lim
N,l1→∞,l1/N→0

ρ̂ = ρ0 (2.39)

Proof: The proof is similar to that of Theorem 2.1. As N, l1 → ∞
and l1/N → 0, the correlation function fN,l1(ρ) converges w.p.1 to
the cross-correlation between r(t) and εc(t, ρ);

Rrεc
(τ, ρ) = lim

N→∞

1

N

N
∑

t=1

E {r(t− τ)εc(t, ρ)}

= lim
N→∞

1

N

N
∑

t=1

r(t− τ)L(1 −Ms)
[

M −K(ρ)(1 −M)G
]

r(t).

Using Parseval’s theorem, the correlation criterion converges to:

∞
∑

τ=−∞

R2
rεc

(τ, ρ) =
1

2π

∫ π

−π

|Φrεc
(ω, ρ)|2dω

=
1

2π

∫ π

−π

|L(1 −Ms)
[

M −K(ρ)(1 −M)G
]

|2Φ2
r(ω)dω

Using the expression of L in (2.38) leads to

lim
N,l1→∞,l1/N→0

JN,l1(ρ) = J(ρ) (2.40)

Even though G is unstable, the initial closed loop is stable and so is
L(1 −Ms)(M −K(ρ)(1 −M)G). The rest of the proof follows from
the proof of Theorem 2.1.

Remark: The filter L depends on the unknown plant G and thus
cannot be implemented. However,
(

1 −Ms(e
−jω)

)

Φr(ω) =
1

1 +Ks(e−jω)G(e−jω)
Φr(ω) = Φru2

(ω),

where Φru2
(ω) is the cross-spectrum between r(t) and u2(t), which

can be estimated using the measured data. The weighting filter is
then given by:

L(e−jω) =
F (e−jω)(1 −M(e−jω))

Φru2
(ω)

. (2.41)
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2.4.3 Use of a finite number of data

The following analysis is detailed for the scheme for stable plants.
Analysis for the case of unstable plants is similar and therefore omit-
ted here.

According to Theorem 2.1, as the number of data tends to in-
finity, the estimate ρ̂ of (2.32) converges to ρ0, the optimum of the
approximate model reference problem as defined in Definition 2.1. In
practice, only a finite number of data is available and an approxima-
tion of the criterion J(ρ) is used. The quality of this approximation
is analyzed next.

Using assumption A2, the error εc(t, ρ) can be written as:

εc(t, ρ) = L
[

M −K(ρ)(1 −M)G
]

r(t) − LK(ρ)(1 −M)Hve(t)

= Ddr(t) −Dse(t) = rDd
(t) − eDs

(t) (2.42)

with obvious definitions for the filters Dd and Ds. The filter L for
stable plants is given by (2.33). rDd

(t) represents the deterministic
part of the error that stems from the reference signal r(t), eDs

(t)
results from the stochastic noise v(t) = Hve(t). The correlation
function fN,l1(ρ) can be expressed as:

fN,l1(ρ) =
1

N

N
∑

t=1

ζ(t)
[

rDd
(t) − eDs

(t)
]

(2.43)

In the absence of noise, the correlation criterion is given by:

J̃N,l1(ρ) =
1

N2

N
∑

t=1

ζT (t)rDd
(t)

N
∑

t=1

ζ(t)rDd
(t) =

l1
∑

τ=−l1

R̂2
rrDd

(τ)

where R̂rrDd
(τ) = 1

N

∑N
t=1 r(t− τ)rDd

(t) is an estimate of the cross-
correlation between r(t) and rDd

(t) given by

RrrDd
(τ) = lim

N→∞

1

N

N
∑

t=1

E{r(t− τ)rDd
(t)}.

The length of ζ(t) defines the size of the rectangular window.
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The expected value of the correlation criterion JN,l1(ρ) based on
a finite number of data can then be expressed as:

E {JN,l1(ρ)} ≈ J̃N,l1(ρ)

+
σ2(2l1 + 1)

2πN

∫ π

−π

|1 −M |4|K(ρ)|2|Hv|2|F |2
Φr(ω)

dω, (2.44)

where the expected value is taken with respect to the noise e(t).
Consequently, the minimizer ρ̂ of JN,l1(ρ) based on a finite number
of data is biased with respect to noise. Derivation of (2.44) is shown
in Appendix A.1.

Asymptotically, J̃N,l1(ρ) converges to J(ρ) and the second term
becomes zero, thus corresponding to the result of Theorem 2.1. How-
ever, for a finite number of data, the deterministic J̃N,l1(ρ) corre-
sponds to a windowed estimate of J(ρ) and the second term adds a
bias to the minimizer of this estimate.

Remarks:

• The controller that minimizes the biased criterion JN,l1(ρ) will
have a low gain wherever |1 −M |2|Hv||F | is large. (1 −M) is
the sensitivity function of the reference model and Hv represents
the frequency contents of the noise. Hence, the controller gain is
reduced at frequencies where both the sensitivity and the noise
are high. This will in general increase the robustness of the closed-
loop system.

• The controller gain is reduced in the frequency ranges where the
input spectrum is weak. This is an interesting characteristic in
the sense that, if the data are not informative in a frequency
region, the controller gain in this region is decreased, which again
increases the robustness of the closed-loop system.

• The bias in JN,l1(ρ) decreases as the number of data N increases.
It increases as the number of lags l1 used in the instrumental
variable vector ζ(t) increases.

Practical issues
The choice of l1 determines the quality of the estimate J̃N,l1(ρ).

Assume that RrrDd
(τ) ≈ 0 for |τ | > τ0, where τ0 is an integer that

depends on the length of the impulse response of Dd and the length
of Rr(τ). In order to find a good estimate of J(ρ), the length l1 of
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ζ(t) should be chosen as l1 > τ0. However, (2.44) states that the bias
increases as l1 increases. With the choice of l1, a trade-off is made
between accuracy and bias.

2.4.4 Use of periodic data

The correlation function fN,l1(ρ) as defined in (2.30) is an estimate
of the cross-correlation between r(t) and εc(t, ρ), which is, in the
noise-free case, given by R̂rrDd

(τ) defined in Section 2.4.3. For non-

periodic signals, this estimate is not exact, i.e. R̂rrDd
(τ) 6= RrrDd

(τ).
If on the other hand periodic signals are considered, the deterministic
part of the correlations can be calculated exactly. Periodic excitation
should therefore be used whenever possible. In the following, the use
of periodic data is discussed in detail for the open-loop scheme of
Figure 2.1. Implementation for the closed-loop scheme is similar and
is therefore not detailed here.

Let the plant G be excited in open loop by the periodic signal
r(t) of length N satisfying A5 and A6. Assume that L(1 −M)G
has no zero on the imaginary axis and that the noise satisfies A1
and A2. For the periodic reference signal r(t), the vector of instru-
mental variables defined in (2.29) is also periodic. The length of
the instrumental variable vector ζ(t) satisfies l1 6 (Np − 1)/2. The
correlation function fN,l1(ρ) is defined in (2.30) and the correlation
criterion JN,l1(ρ) in (2.31). The optimizer ρ̂ is defined in (2.32).

Theorem 2.3 Consider the controller structure defined in (2.7).
Let the stable weighting filter L be defined for the frequencies ωk

where the spectrum Φr(ωk) is nonzero:

L(e−jωk) =
F (e−jωk)(1 −M(e−jωk))

Φr(ωk)
. (2.45)

Then, as N, l1 → ∞ and l1/N → 0, the optimizer ρ̂ in (2.32) con-
verges w.p.1 to ρ0, the optimizer of J(ρ) as defined in Definition
2.1:

lim
N,l1→∞,l1/N→0

ρ̂ = ρ0 (2.46)
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Proof: The correlation function fN,l1(ρ) converges to the cross-
correlation between r(t) and εc(t, ρ), which is unaffected by noise
due to A1:

lim
N→∞

fN,l1(ρ) = [Rrεc
(−l1, ρ), . . . , Rrεc

(l1, ρ)]
T ,w.p.1. (2.47)

The proof of Theorem 2.1 then holds as N, l1 → ∞, l1/N → 0.

This theorem states that the estimate converges to ρ0 as the number
of data tends to infinity. This result is equivalent to the non-periodic
case of Theorem 2.1. However, because the deterministic part of the
correlations can be calculated exactly for periodic data, the quality
of the estimate is better for a finite number of data.

Remark: If a parametric representation of Φr(ωk) is available,
the filter L can be implemented in the time domain since F (q−1)
and M(q−1) are known. If such a representation is not available, the
exact filter (2.45) can be applied in the frequency domain. The deter-
ministic part of the periodic cross-correlation can therefore be found
without any approximation, which is not the case for non-periodic
reference signals. If a parametric representation is not available, the
spectrum of a non-periodic signal needs to be estimated. Estimation
of the spectrum leads to an approximation of L and consequently to
an approximation of RrrDd

(τ).
A bias expression similar to (2.44) can be found for the periodic

case. In general, the bias increases the robustness of the controller
(see 2.4.3). The bias decreases as N increases, but it increases with
the length of the instrumental variables. As for the non-periodic case,
a trade-off between accuracy and bias is made through the choice of
l1.

2.5 Application to a double SCARA robot

In the previous sections, non-iterative correlation-based controller
tuning is proposed to calculate the optimal controller parameters ρ0

as defined in Definition 2.1. These parameters minimize the approx-
imate model reference criterion for a given reference model M and
a given controller structure. The designed controller achieves good
performance if both M and the structure of K(ρ) are appropriate for
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End-effector

Fig. 2.5. FAMMDD double SCARA pick-and-place robot.

the plant. In practice, M and K(ρ) are defined by the user and it is
not straightforward how to choose either of them.

In this section, application of the proposed approach to a pick-
and-place robot is discussed. It is shown how the approach can be
used to systematically design low-order controllers, starting with the
design of a high-order FIR controller. An orthogonal basis is then
chosen to approximate the high-order FIR controller by a controller
that can actually be implemented. If the order of the controller needs
to be reduced further, the main characteristics of the high-order con-
trollers can be used to define an appropriate structure for K(ρ). In
this example, all controllers are implemented, but the iterations can
also be performed off-line. An iterative procedure is used to define
the reference model, based on the windsurfing approach for itera-
tive control design [3], where the required performance is increased
gradually by increasing the bandwidth of the reference model.

Experimental setup

The pick-and-place robot considered is known as the FAMMDD, Fast
and Accurate Manipulator Modules, Direct Drive. This robot is
developed at Philips CFT [76]. The main design specification is
that, for relatively simple assembly operations, the robot should be
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Fig. 2.6. Schematic representation of FAMMDD.

able to compete with a manual station. The version of the robot
in the laboratory of the Control Systems Technology group at the
Eindhoven University of Technology uses no transmission, hence the
name Direct Drive.

The FAMM consists of two SCARAs (Selective Compliant As-
sembly Robot Arms), see Figures 2.5 and 2.6. The upper arms are
fixed to two concentric axes, and the end-effector is situated at the
wrist. The robot is driven by four AC motors, two in the wrist and
two on the main axis. Only displacements in the horizontal plane
will be considered in the experiments, the position of the end-effector
in the wrist is fixed.

Both SCARAs are driven by a servomotor integrated in the axis.
Permanent magnets are fixed to the axis, which acts as the rotor of
the motor. The base of the robot contains the stator coils. An ad-
vantage compared to a single SCARA robot is that the mass of the
main actuators does not move as the end-effector is displaced. The
arms are designed such that the moving mass is minimized, while
the required stiffness is maintained. The transmission-free actuation
avoids play and other transmission disadvantages, but the load dy-
namics are dominant since they are not reduced by a transmission
either.

The first motor drives the left arm, and affects the angle α1, as
shown in Figure 2.6. The second motor drives the right arm, affecting
the angle α2. If both motors are moving in the same direction,
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Fig. 2.7. Controlled variables as implemented on the FAMMDD.

α1 − α2 = 0 and the end-effector rotates around the main axis. If
the motors move in opposite directions, the distance ℓ of the end-
effector from the main axis changes. The load dynamics depend
on the position ℓ of the end-effector, thereby resulting in nonlinear
behavior.

Both angles α1 and α2 are measured. The objective is to position
the end-effector, and the controlled variables are the rotation angle
α = (α1 + α2)/2 and ℓ̃ = (α1 − α2)/2. Note that ℓ is a nonlinear
function of the controlled variable ℓ̃. The implementation of this
change of variables is shown in Figure 2.7. Outputs of the system are
α and ℓ̃, inputs are uk1 and uk2, and um1 and um2 are the resulting
inputs to the first and second motor respectively.

If the distance of the wrist from the main axis, ℓ, is constant, and
only small rotations α around the axes are considered, the system is
approximately linear. In the following experiments, the distance of
the wrist from the main axis is controlled by Kℓ̃, a PD controller with
a low-pass filter. The controller for the resulting SISO system with
input uk1 and output α is designed using the approach of Section
2.4.2.

Experiments

An initial stabilizing controller, Kα, is available and the experiments
are performed in closed loop, according to the scheme of Figure 2.8.
Because there is no friction compensation, the experiments are per-
formed on the robot in movement. The system is sampled with a
sampling time of 1 ms. r(t) is a PRBS with a period length of
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Fig. 2.8. Closed-loop setup used for controller tuning.
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Fig. 2.9. Measured frequency response function from uk1 to α.

Np = 4095 and amplitude 0.24. A sinusoid of ≈ 0.25 Hz with am-
plitude 0.6 radians is applied to αd(t), where the exact frequency is
chosen such that the excitation and its harmonics due to nonlineari-
ties are located at frequencies in between the frequencies ωk excited
by r(t).

A set of data of length N = 150Np is collected according to the
scheme of Figure 2.2. The DFT of these signals is used to calculate
a frequency response function of the transfer function from uk1 to α,
see Figure 2.9. The first anti-resonance and resonance are situated
around 150 rad/s.

Correlation-based non-iterative data-driven controller
design

At low frequencies, the system behaves as a double integrator. The
first reference model M1 is chosen accordingly, such that 1−M1 has
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two zeros at 1:

M1 =
0.00137q−4 − 0.00135q−5

1 − 3.75q−1 + 5.32q−2 − 3.42q−3 + 0.898q−4 − 0.037q−5
.

The bandwidth of M1 lies below the first anti-resonance of the plant
and it is expected that this objective can be achieved. Due to the
anti-resonances in the system, the ideal controller (2.3) is expected
to show resonant behaviour. In an FIR structure, such resonant
behaviour can only be described if the order of the FIR filter is
high. An FIR controller of order 1500 is therefore designed using the
approach of Section 2.4.2. It is assumed that the distance between
K∗ and this high-order FIR controller K(ρ) can be made very small,
and that K(ρ) approximates the characteristics of K∗. Since r(t) is
a PRBS signal, the extended instruments of (2.29) can be taken as,

ζ(t) = [r(t), r(t − 1), . . . , r(t− l1)]
T . (2.48)

F = 1 and l1 = (Np − 1)/2. Note that, since ρ̂ can be determined
analytically, and Np = 4095, no computational problems are encoun-
tered for the calculation of 1500 parameters.

The Bode diagram of the 1500th-order FIR controller is shown in
Figure 2.10. The controller contains two poorly damped resonances,
one that cancels the first anti-resonance of the plant and a second
one at a higher frequency. This controller cannot be implemented,
first of all because the order of the controller is too large. Secondly,
even though this controller may achieve perfect model matching for
the measured output α, it is not necessarily a good controller for
the plant. For systems that contain an anti-resonance, cancelation
of this anti-resonance may cause oscillations in other (not necessarily
measured) parts of the system.

A second controller of order 30 is therefore calculated, with an
orthogonal basis of Laguerre functions with poles in 0.8. This or-
thogonal basis offers many degrees of freedom at low frequencies, and
thus permits model matching at the frequencies that are important
for closed-loop performance. However, the match at high frequencies
is expected to be limited. The Bode diagram of the resulting con-
troller is shown in Figure 2.10. The damping of the low-frequency
resonance is larger than that of the FIR controller. As expected, the
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Fig. 2.10. Calculated controllers for M1. Grey dashed: FIR of order 1500.
Black: Laguerre basis functions of order 30.

10
1

10
2

10
3

−80

−70

−60

−50

−40

−30

−20

−10

0

10

Frequency [rad/s]

M
ag

ni
tu

de
 [d

B
]

Fig. 2.11. Achieved closed-loop performance. Grey dashed: reference
model M1. Black: measured FRF of the complementary sensitivity with
30th-order controller.

controller resembles the FIR controller at low frequencies, but the fit
at higher frequencies is limited.

The 30th-order controller is implemented and the same experi-
ment as described above is performed with this controller in the loop.
The measured response is used to estimate the complementary sen-
sitivity function. The achieved closed-loop performance is shown in
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Fig. 2.12. Calculated controllers for M1. Grey dashed: Laguerre basis of
order 30. Black: K1 of order 4

Figure 2.11. The controller structure does not permit perfect model
matching, but the error is small at all frequencies ranges.

If, for practical reasons, the order of the controller needs to be
reduced further, the characteristics of the 1500th- and 30th-order
controller can be used to choose an appropriate structure for the low-
order controller. In this example, a controller of order 4 is designed,
using the data that is measured with the 30th-order controller in the
loop. The high-order FIR controller and the 30th-order controller
clearly show the behaviour of a notch filter at about 160 rad/s. Some
of the parameters of the low-order controller need to be fixed to
reproduce this behaviour. The fixed part of the controller therefore
includes a notch filter, designed using the response of the 30th-order
controller. The remaining two poles are fixed at 0.7. The structure
of the controller is given by:

K1(ρ) =
(ρ0 + ρ1q

−1 + ρ2q
−1)(1 − z1q

−1)(1 − z2q
−1)

(1 − p1q−1)(1 − p2q−1)(1 − p3q−1)(1 − p4q−1)
,

where z1 = z∗2 = 0.98 + 0.15i, p1 = p∗2 = 0.95 + 0.14i and p3 = p4 =
0.7. This controller structure cannot cancel the anti-resonance of the
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Fig. 2.13. Achieved closed-loop performance. Grey dashed: reference
model M1. Black: measured FRF of the complementary sensitivity with
K1.

system. ζ(t) is defined as (2.48), with l1 = 500 and F = 1. The Bode
diagram of the resulting controller is shown in Figure 2.12, where the
Bode diagram of the 30th-order controller is given for comparison.

The achieved closed-loop performance is shown in Figure 2.13.
The controlled system matches the reference model at low frequen-
cies, up to the bandwidth of M1. At higher frequencies, the model
cannot be matched due to the limited structure of K1. However,
since the controlled system resembles the reference model up to the
bandwidth, the tracking performance achieved with this low-order
controller is expected to be good. The time response of the con-
trolled system is shown in Fig. 2.14. As expected, the response of
the system follows the response of the reference model reasonably
well. Note that the time responses shown in this section are normal-
ized for comparison.

Increasing the bandwidth of the controlled system

The performance requirements can be increased by increasing the
bandwidth of the reference model. A second reference model is de-
fined as

M2 =
0.03211q−4 − 0.03117q−5

1 − 3.01q−1 + 3.36q−2 − 1.68q−3 + 0.34q−4 − 0.013q−5
.

A new set of data of length N = 150Np is collected with K1 in
the loop. A low-order controller K2(ρ) is designed, with the same
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Fig. 2.14. Tracking performance. Dash-dot thin line: reference signal
αd. Black: measured response with K1. Grey dashed: response of the
reference model M1. Note that the measured response and the response
to M1 are overlapping up to about 0.2 seconds.
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Fig. 2.15. Calculated controllers for M2. Black: 4th-order controller K2,
calculated according to Section 2.4.2. Dash-dot: 5th-order controller Kls.

structure as that of K1(ρ). ζ(t) is defined according to (2.48), l1 =
500 and F = 1.

For comparison, another controller Kls is designed using loop
shaping. The non-parametric model of Figure 2.9 is used to design
the controller, and the cross-over frequency is chosen similar to that
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ofM/(1−M). A notch filter is introduced to deal with the resonance.
This filter is designed using the non-parametric model and is not the
same as the fixed part of K1 and K2. A lead filter is added for the
phase margin. A second-order low-pass filter is added to limit the
high-frequency gain, resulting in a 5th-order controller.

The Bode diagram ofK2 and ofKls are shown in Figure 2.15. The
achieved closed-loop performance is shown in Figure 2.16. Model-
matching up to the bandwidth is not possible with the limited
controller structure. Since the control objective for K2 is model-
matching, it is expected that the achieved model-reference crite-
rion Jmr of (2.1) is smaller for K2 than for Kls. Jmr can be
approximated by Ĵmr(K) =

∑

ωk
[M2(e

−jωk) − T (e−jωk)]2, where
T (e−jωk) is the measured FRF as shown in Figure 2.16. As expected,
Ĵmr(K2) = 93.9 < Ĵmr(Kls) = 104.2. The maximum value of the
measured sensitivity function S(e−jωk) is larger for K2 than for Kls

(not shown). This can be expected since there are no specifications
on the robustness margins in model reference control, whereas the
loop-shaping controller Kls satisfies a specification on the modulus
margin.

The time-domain response of the controlled plant is shown in
Figure 2.17. Note that the measured response of the plant controlled
by Kls cannot be distinguished from the overlapping response of the
plant controlled by K2. The response of the plant controlled by K2

is thus comparable to that of the plant controlled by Kls. Note also
that the reference signal αd in Figure 2.17 is the same as αd in Figure
2.14. The response of M2 is much faster than the response of M1

and the response of the reference model is almost superposed on αd.
The achieved tracking performance of K2 is thus comparable to

the tracking achieved by the loop-shaping controller Kls. The Bode
diagram of K2 and that of Kls are also very similar. This result
might not be surprising for such low-order controllers. However, it
should be noted that the structure of K2 is found systematically from
a series of optimization problems, and the proposed approach can be
used to calculate the optimal controller for any predefined controller
structure and order. If a higher order controller can be implemented
in practice, the achieved performance is improved, as illustrated by
the results achieved with the 30th-order controller, shown in Figure
2.11.
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Fig. 2.16. Achieved closed-loop performance. Grey dashed: reference
model M2. Black: measured FRF of the complementary sensitivity with
K2. Black dash-dot: measured complementary sensitivity with 5th-order
Kls.
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Fig. 2.17. Tracking performance. Dash-dot thin line: reference signal αd.
Black: measured response with 4th-order K2. Black dash-dot: measured
response with 5th-order Kls. Grey dashed: response of the reference model
M2.

2.6 Conclusions

In this chapter, an approximate model reference criterion is defined,
and straightforward schemes are proposed that can be used to iden-
tify the controller that minimizes this approximate model reference
criterion. The resulting controller identification problem is analyzed.
Two cases are considered. In the first case it is assumed that per-
fect model matching can be achieved with the predefined controller
structure. It is shown that, in this case, the controller identifica-
tion problem corresponds to an identification problem with a spe-
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cific noise model, where the noise model depends on the controller
parameters. In the second case, it is assumed that the structure of
the controller does not allow perfect model matching and that a bias
error exists between the ideal controller and the optimal controller.
It is shown that, in the presence of measurement noise, a controller
identified using prediction error methods does not converge to the
optimal controller.

The use of the correlation approach is proposed to deal with the
effect of noise in the controller identification problem. It is shown
that the estimated controller converges to the optimal controller,
also if perfect model matching cannot be achieved. Both periodic
and non-periodic excitation signals are considered and the approach
is applicable to both stable and unstable systems. A closed-loop
experiment is proposed for unstable systems. This closed-loop ap-
proach has been applied to a pick-and-place robot.





3

Data-driven controller tuning with

guaranteed stability

There is no guarantee that a controller determined by minimizing the
model reference criterion Jmr(ρ) or its approximation J(ρ) actually
stabilizes the plant. Instability can occur if the reference model is
chosen inappropriately or if the measurements are strongly affected
by noise. The ideal controller K∗ is defined indirectly from G and
M as shown in (2.3). Whether K∗ stabilizes the plant depends on
both the plant G and the choice of reference model M . If the plant is
nonminimum phase, internal stability can only be guaranteed when
M contains the unstable zeros of G. This clearly makes the choice
of an appropriate M difficult in a data-driven approach.

Even if the ideal controller K∗ stabilizes the plant, this is not
necessarily the case for the optimal controller K(ρ0) (see [31] for an
example where K∗ was not in the controller set). Furthermore, if the
optimal controller K(ρ0) stabilizes the plant, an estimate of K(ρ0)
based on noisy data might not be stabilizing.

Instability due to an inappropriate reference model is not specific
to data-driven methods, it is inherent to model reference control.
In the following, a constraint is proposed that can be added to the
model reference optimization problem, or to its approximation. The
optimizer of the constrained problem is guaranteed to stabilize the
plant.

Implementation of the constraint in a data-driven setting is dis-
cussed in Section 3.2 and 3.3. It is shown that, for linearly param-
eterized controllers, an estimate of the stability condition leads to
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a set of convex constraints. These constraints can be added to any
data-driven controller tuning scheme. In Sections 3.2 and 3.3, the
constraints are added to the correlation approach of Section 2.4.

3.1 Model reference control with guaranteed

stability

In the following, a sufficient condition is defined for closed-loop sta-
bility of the plant G controlled by the controllerK(ρ). This condition
is based on the existence of a stabilizing controller Ks. The sensi-
tivity and complementary sensitivity function of the plant controlled
by this Ks are used to define the stability condition. However, in
order to verify the condition, this Ks does not need to be known. In
Section 3.2 it is shown how, for stable minimum-phase plants, the
condition can be verified using the reference model and data from an
open-loop experiment. For unstable or nonminimum-phase plants,
data from a specific closed-loop experiment are sufficient to verify
the condition, as shown in Section 3.3.

Consider the stabilizing controller Ks. The closed-loop plant for
this controller is given by:

Ms =
KsG

1 +KsG
(3.1)

The closed-loop system with controller K(ρ) can be represented as
illustrated in Figure 3.1.

Define ∆(ρ) := Ms − K(ρ)G (1 −Ms) and its infinity norm
δ(ρ) := ‖∆(ρ)‖∞.

Theorem 3.1 The controller K(ρ) stabilizes the plant G if

1. ∆(ρ) is stable
2. ∃δN ∈ ]0, 1[ such that δ(ρ) 6 δN

Proof: If Condition 1 is satisfied, all transfer functions of the loop
opened at q are stable, since Ks stabilizes the plant, i.e. the transfer
functions from r(t), v(t) and q(t) to e(t), y(t), u(t) and q(t) are stable.
The sufficient condition for stability of the closed-loop interconnec-
tion follows from the small-gain theorem [85] : the interconnection
is stable if
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Fig. 3.1. Closed-loop system with controller K(ρ) and explicit represen-
tation of the controller error K(ρ) − Ks
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This is the H∞-norm of the transfer function from q back to q. Re-
placing KsG

1+KsG by Ms and 1
1+KsG by 1 −Ms gives

∥

∥

∥

∥

−(K(ρ) −Ks)G

1 +KsG

∥

∥

∥

∥

∞

= δ(ρ).

Theorem 3.1 thus follows from the small-gain theorem. Similar con-
ditions for stability have been used for controller reduction (see for
example [86], p. 491).

Condition 1 is satisfied if the controller K(ρ) is stable, but un-
stable controllers can also satisfy Condition 1. Consider for exam-
ple a controller with an integrator. The transfer function ∆(ρ) =
Ms −K(ρ)G (1 −Ms) is stable if G(1 −Ms) contains a zero at 1.

This sufficient condition for closed-loop stability can be used to
guarantee a stabilizing solution to the model reference problem of
Section 2.1.

Definition 3.1 (Stabilizing controller) Let the controller be pa-
rameterized as in (2.7) and J(ρ) given by (2.6). Let Condition 1 from
Theorem 3.1 be satisfied. The parameters ρs of the stabilizing con-
troller K(ρs) are given by the optimum of the following constrained
convex optimization:
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ρs = arg min
ρ∈DK

J(ρ)

subject to δ(ρ) 6 δN
(3.3)

In the following, a data-driven approach is presented that com-
bines minimization of the estimate JN,l1(ρ) and a set of constraints
that estimate the bound δ(ρ). The estimation errors can be taken
into account through the choice of δN , as shown in Section 3.5.

3.2 Data-driven approach for stable

minimum-phase systems

Theorem 3.1 is based on the small-gain theorem and requires the
closed-loop system Ms to be internally stable. For stable minimum-
phase plants, any stable reference model M defines the ideal con-
troller K∗ according to (2.3) that internally stabilizes the system.
The reference model can therefore be used to define the sufficient
condition for stability.

Lemma 3.1 Let Ms be given by M . The controller K(ρ) stabilizes
the stable minimum-phase plant G if ∆(ρ) = Ms−K(ρ)G(1−Ms) =
M −K(ρ)G(1 −M) is stable and ∃δN ∈ ]0, 1[ such that

δ(ρ) = ‖Ms −K(ρ)(1 −Ms)G‖∞
= ‖M −K(ρ)(1 −M)G‖∞ 6 δN (3.4)

Proof: Follows from Theorem 3.1 upon replacing Ks by the sta-
bilizing ideal controller K∗.

Remark: Through the definition of K∗ given in (2.3), K∗ might
be non-causal, but K∗G is always causal. The small-gain theorem
requires causality because algebraic loops will occur for non-causal
functions. However, since K∗G is always causal, no algebraic loop
occurs in the interconnection of Figure 3.1 and Lemma 3.1 remains
valid.

If the plant G or the controller K(ρ) contains one or several inte-
grators, the above scheme remains applicable provided the reference
model is chosen with care. Let ni be the number of integrators in
the loop function KG. It is then easily verified that ∆(ρ) is stable if
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1 −M has nz > ni zeros at 1. The reference model M needs to be
chosen such that this condition is satisfied. Note that, if ni = 1, all
reference models with unity static gain satisfy this condition.

For stable minimum-phase plants, the optimization in Definition
3.1 can thus be replaced by

ρs = arg min
ρ∈DK

J(ρ)

subject to

‖M −K(ρ)(1 −M)G‖∞ 6 δN

(3.5)

Remark: Condition (3.4) is sufficient but not necessary and
therefore conservative. The optimal controller K(ρ0) might stabi-
lize the system but not meet condition (3.4). However, this indicates
that the distance between K(ρ) and K∗ cannot be made small. In
this case, the approximate model reference criterion (2.6) is not a
good approximation of (2.1).

In a data-driven approach, the available signals from the scheme
of Figure 2.1 can be used to estimate δ(ρ). Define

εs(t, ρ) := Mr(t) −K(ρ)(1 −M)y(t)

=
[

M −K(ρ)(1 −M)G
]

r(t) −K(ρ)(1 −M)v(t) (3.6)

Note that the transfer function between r(t) and εs(t, ρ) is equal
to ∆(ρ). Hence, the available signals r(t) and εs(t, ρ) can be used to
estimate δ(ρ). It will be shown that a spectral estimate leads to a
set of convex constraints on the controller parameters ρ.

In Chapter 2, the open-loop scheme can be used for both mini-
mum and nonminimum-phase stable systems. However, Lemma 3.1
is not valid for nonminimum-phase stable systems, and the closed-
loop scheme of Section 3.3 needs to be used.

Implementation using spectral estimates

In the following, it is shown that a spectral estimate of δ(ρ) defines
a set of convex constraints. These constraints are added to the cor-
relation approach presented in Section 2.4.1. Let the plant G be
excited by r(t) as illustrated in Figure 2.1. The output of the plant
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is affected by noise, y(t) = Gr(t) + v(t). The signals r(t) and y(t) of
length N are available and assumed to satisfy A1-A4. The correla-
tion criterion JN,l1(ρ) is given by (2.31).

An estimate of δ(ρ) based on spectral estimates is given by:

δ̂(ρ) = max
ωk

∣

∣

∣

∣

∣

Φ̂rεs
(ωk, ρ)

Φ̂r(ωk)

∣

∣

∣

∣

∣

, (3.7)

where Φ̂r(ωk) is an estimate of the spectrum of r(t) for ωk =
2πk/(2l2 + 1), where k = 0, . . . , l2 + 1:

Φ̂r(ωk) =

l2
∑

τ=−l2

R̂r(τ)e
−jτωk ,

and R̂r(τ) is an estimate of the auto-correlation Rr(τ) of r(t):

R̂r(τ) =
1

N

N
∑

t=1

r(t − τ)r(t), for τ = −l2, . . . , l2, (3.8)

where l2 defines the length of the rectangular window. Φ̂rεs
(ωk, ρ) is

an estimate of the cross-spectrum between r(t) and εs(t, ρ):

Φ̂rεs
(ωk, ρ) =

l2
∑

τ=−l2

R̂rεs
(τ, ρ)e−jτωk ,

using an estimate of the cross-correlation Rrεs
(τ, ρ):

R̂rεs
(τ, ρ) =

1

N

N
∑

t=1

r(t − τ)εs(t, ρ), τ = −l2, . . . , l2.

Note that, although a rectangular window is used here, other win-
dows can also be used.

Using the controller parameterization (2.7), Φ̂rεs
(ωk, ρ) can be

expressed as a linear combination of the controller parameters:

Φ̂rεs
(ωk, ρ) =

1

N

l2
∑

τ=−l2

N
∑

t=1

[

r(t− τ)Mr(t)e−jτωk

− r(t − τ)βT (1 −M)y(t)e−jτωkρ
]

. (3.9)
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The estimate (3.7) can thus be used to define a set of convex con-
straints such that δ̂(ρ) 6 δN . An approximation of (3.5) is given
by:

ρ̂ = arg min
ρ∈DK

JN,l1(ρ)

subject to
∣

∣

∣

∣

l2
∑

τ=−l2

R̂rεs
(τ, ρ)e−jτωk

∣

∣

∣

∣

6 δN

∣

∣

∣

∣

l2
∑

τ=−l2

R̂r(τ)e
−jτωk

∣

∣

∣

∣

,

ωk = 2πk/(2l2 + 1), k = 0, . . . , l2 + 1

(3.10)

Note that, in contrast to the unconstrained problem of Section 2.4,
this optimization cannot be solved analytically. Both the objective
function and the constraints in (3.10) are differentiable and the con-
strained optimization can be solved numerically. The problem can
be solved for up to several thousand constraints and the solution is
the global optimum.

Theorem 3.2 Consider the controller structure defined in (2.7).
Let the stable filter L be defined as:

L(e−jω) =
F (e−jω)(1 −M(e−jω))

Φr(ω)
(3.11)

Assume that A1-A4 are satisfied, that L(1−M)G has no zero on the
imaginary axis and that a strictly feasible solution exists for (3.10),
for the series of optimization problems as N, l1, l2 → ∞ as well as
for (3.5). Then, as N, l1, l2 → ∞ and l1/N, l2/N → 0, the optimizer
ρ̂ in (3.10) converges w.p.1 to the stabilizing optimizer ρs of J(ρ)
defined in (3.5):

lim
N,l1,l2→∞,l1/N,l2/N→0

ρ̂ = ρs, (3.12)

Proof: Convergence of the unconstrained problem w.p.1 follows
from Theorem 2.1. As N, l1 → ∞, l1/N → 0 the correlation criterion
JN,l1(ρ) → J(ρ) and the convergence is uniform on DK .

As N → ∞, l2/N → 0, the estimate R̂rεs
(τ, ρ) converges w.p.1 to

Rrεs
(τ, ρ) and R̂r(τ) converges w.p.1 to Rr(τ), for τ = [−l2, . . . , l2].
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Consequently Φ̂rεs (ωk,ρ)

Φ̂r(ωk)
converges pointwise to ∆(ωk), w.p.1. ∆(ωk)

and δ(ρ) are bounded on DK since ∆ is stable. The series of con-
vex functions maxωk

|∆(ωk)| then converges uniformly to the convex
function δ(ρ) as l2 → ∞ (Theorem 10.8 of [69]). It follows that,

with probability 1, maxωk

∣

∣

∣

Φ̂rεs (ωk,ρ)

Φ̂r(ωk)

∣

∣

∣
converges uniformly to δ(ρ) as

N, l2 → ∞, l2/N → 0.
Convergence of the constrained optimization then follows from

the dual problem (Theorem 1.44 [13]): Consider the function L(ρ) :=
J(ρ) + ν(δ(ρ) − δN ), where ν is Lagrange multiplier and (ν0, ρ0) is
a KKT (Karush-Kuhn-Tucker) point of L(ρ). Then ρ0 is the global

optimizer of (3.5). Since JN,l1(ρ) and maxωk

∣

∣

∣

Φ̂rεs (ωk,ρ)

Φ̂r(ωk)

∣

∣

∣
converge

uniformly to J(ρ) and δ(ρ), the dual of (3.10) converges uniformly to
L(ρ). Since the convergence is uniform, it follows that the optimizer
of (3.10) converges to the optimizer of (3.5).

Implementation for periodic data

It is well known that the quality of spectral estimates can be im-
proved when periodic data is used [54]. Periodic excitation should
therefore be used whenever possible. The use of periodic data also
improves the quality of the correlation criterion estimate (see Section
2.4.4). The trade-off for this improved quality is a limited frequency
resolution.

Assume that A1, A2, A5 and A6 are satisfied. The length
of the instrumental variable vector ζ(t) of (2.29) is chosen as l1 6
(Np − 1)/2. The correlation criterion JN,l1(ρ) is defined in (2.31).

The auto-correlation of the periodic reference r(t) can be cal-
culated using (2.15). According to assumption A6, the spectrum
is nonzero for ωk = 2πk/Np, k = 0, . . . , Np − 1. Due to symme-
try, it is completely defined by half of the frequencies, i.e. ωk =
2πk/Np, k = 0, . . . , ⌊(Np − 1)/2⌋. Let the error signal εs(t, ρ) be
generated periodically, i.e. no transients are present in the response.
The cross-spectrum can be estimated for the same frequencies ωk:

Φ̂rεs
(ωk, ρ) =

Np−1
∑

τ=0

R̂rεs
(τ, ρ)e−jτωk , (3.13)
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where R̂rεs
(τ, ρ) is given by:

R̂rεs
(τ, ρ) =

1

N

N
∑

t=1

r(t− τ)εs(t, ρ), τ = 0, . . . , Np − 1. (3.14)

The spectral estimate

δ̂(ρ) = max
ωk

∣

∣

∣

∣

Φ̂rεs
(ωk, ρ)

Φr(ωk)

∣

∣

∣

∣

(3.15)

can be used to define a set of convex constraints. This estimate
does not contain leakage errors and has a decreasing variance with
increasing number of periods [54]. For periodic signals, the optimiza-
tion problem (3.5) can be approximated by:

ρ̂ = arg min
ρ∈DK

JN,l1(ρ)

subject to
∣

∣

∣

∣

Np−1
∑

τ=0

R̂rεs
(τ, ρ)e−jτωk

∣

∣

∣

∣

6 δN

∣

∣

∣

∣

Np−1
∑

τ=0

Rr(τ)e
−jτωk

∣

∣

∣

∣

,

ωk = 2πk/Np, k = 0, . . . , ⌊(Np − 1)/2⌋

(3.16)

⌊·⌋ denotes the closest integer below.

Theorem 3.3 Consider the controller structure defined in (2.7).
Let the stable filter L be defined for the frequencies ωk where the
spectrum Φr(ωk) is nonzero:

L(e−jωk) =
F (e−jωk)(1 −M(e−jωk))

Φr(ωk)
(3.17)

Assume that A1, A2, A5 and A6 are satisfied, that L(1 −M)G
has no zero on the imaginary axis and that a strictly feasible so-
lution exists for (3.16), for the series of optimization problems as
N, l1, Np → ∞ as well as for (3.5). Then, as N,Np, l1 → ∞ and
Np/N → 0, the optimizer ρ̂ of (3.16) converges w.p.1 to the stabiliz-
ing optimizer of J(ρ) defined in (3.5):

lim
N,Np,l1→∞,Np/N→0

ρ̂ = ρs (3.18)

Proof: Follows from Theorem 2.3 and Theorem 3.2 .
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3.3 Data-driven approach for nonminimum-phase

or unstable systems

For nonminimum-phase or unstable plants, an arbitrary reference
model M does not define a stabilizing ideal controller K∗. For such
plants, Lemma 3.1 is not applicable, and the optimization of (3.3)
needs to be used instead of (3.5). In (3.3), the control criterion
J(ρ) is defined using the (arbitrary) reference model M , whereas
the constraint for stability uses Ms. If a stabilizing controller Ks is
available, the closed-loop interconnection of G and Ks represents Ms

given in (3.1). In order to estimate δ(ρ), a set of input-output data
of the transfer function Ms −K(ρ)(1 −Ms)G is sufficient.

Consider the tuning scheme of Figure 2.2. Define

εs(t, ρ) := −u1(t) −K(ρ)y(t)

=
(

Ms −K(ρ)(1 −Ms)G
)

r(t) + (Ks −K(ρ))(1 −Ms)v(t) (3.19)

The transfer function between r(t) and εs(t, ρ) is equal to ∆(ρ), and
the signals available from the scheme of Figure 2.2 can be used to
estimate δ(ρ).

Remarks:

• In the case of stable minimum-phase plants, the fact that the
constraint in (3.5) is active indicates that the model reference
criterion was inappropriate. This is no longer the case for the
closed-loop scheme of Figure 2.2, where violation of the constraint
in (3.3) simply implies that closed-loop stability cannot be guar-
anteed, because the distance between the controller K(ρ) and
the stabilizing controller Ks is not small. This result agrees with
ideas from iterative identification and control, e.g. [3,53]. In [53],
the term “safe controller change” is used to denote an acceptable
controller change that ensures a certain stability margin. The
idea is that, by limiting the change in the controller, one can also
limit the degradation that can occur in the actual closed-loop
system.

• A test that uses experimental closed-loop data to verify whether
a controller stabilizes the plant is proposed in [50]. The method
uses coprime factorization and can handle unstable systems as
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well as unstable controllers. In the specific case of a stable con-
troller, the experiment proposed in [50] corresponds to the scheme
of Figure 2.2. The transfer function considered in our stability
criterion is the same as the transfer function considered in the
stability test in [50]. However, the stability tests are different.
In [50], both phase and amplitude are taken into account. The
Nyquist stability criterion then leads to a non-conservative test,
which corresponds to verifying whether Ms−K(ρ)(1−Ms)G does
not encircle the point −1 in the complex plane. A frequency-
domain model of Ms −K(ρ)(1 −Ms)G is identified and used for
verification. In this work, the stability criterion uses the small-
gain theorem, which leads to a conservative result. However, the
resulting H∞-norm constraint is convex and can be added to a
convex controller optimization. The non-conservative test using
both amplitude and phase information would lead to non-convex
constraints.

Implementation using spectral estimates

Let the unstable plant G be excited by r(t) in closed loop according
to the scheme of Figure 2.2. The output of the plant is affected by the
noise v(t). The discrete signals r(t), y(t), u1(t) and u2(t) of length N
are available. The error εc(t, ρ) is given by (2.11) and the correlation
criterion JN,l1(ρ) is defined in (2.31). The error signal εs(t, ρ) used
in the stability constraints is given by (3.19). Optimization problem
(3.3) can be approximated by (3.10).

Theorem 3.4 Consider the controller structure defined in (2.7).
Let the stable filter L be defined as:

L(e−jω) =
F (e−jω)(1 −M(e−jω))
(

1 −Ms(e−jω)
)

Φr(ω)
(3.20)

Assume that A1-A4 are satisfied, that L(1−M)G/(1+KsG) has no
zero on the imaginary axis and that a strictly feasible solution exists
for (3.3), for the series of optimization problems as N, l1, l2 → ∞
as well as for (3.10). Then, as N, l1, l2 → ∞ and l1/N, l2/N → 0,
the optimizer ρ̂ in (3.10) converges w.p.1 to the stabilizing optimizer
J(ρ) as defined in (3.3):
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lim
N,l1,l2→∞,l1/N,l2/N→0

ρ̂ = ρs. (3.21)

Proof: Even though G might be unstable, the filter (1 −Ms)G is
stable and consequently all filters involved are stable and all signals
are bounded. The proof then follows from the proof of Theorem 2.2
and Theorem 3.2.

As discussed in Section 2.4.2, the filter L depends on the un-
known plant G and cannot be implemented. However, it can be ap-
proximated by (2.41). As for the scheme for stable minimum-phase
systems, the quality of the estimates can be improved by using peri-
odic data. The implementation for the closed-loop scheme is similar
to the implementation for the open-loop scheme and therefore not
detailed here.

3.4 Alternative implementation using Toeplitz

matrices

In the method proposed in this thesis, anH∞ specification is added to
the controller tuning using the DFT. Similar H∞ specifications have
been used in system identification [64] and data-driven controller
tuning [47] as well as in the stability test introduced in [82]. In these
methods, non-periodic signals are considered, and the constraint on
the H∞-norm is defined using Toeplitz matrices, which leads to a
Linear Matrix Inequality (LMI).

The method proposed here is closely related to Toeplitz-based
methods. In the case of periodic signals, the method is equivalent
to using circulant matrices, and constraints (3.16) can be imposed
as an LMI. In order to show this, some results on circulant matrices
are summarized first.

A circulant matrix is defined for x(t) as

C(x) =















x(1) x(2) . . . x(N − 1) x(N)
x(N) x(1) . . . x(N − 2) x(N − 1)

...
...

. . .
...

...
x(3) x(4) . . . x(1) x(2)
x(2) x(3) . . . x(N) x(1)














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where each row is a cyclic shift of the row above it. Some character-
istics of circulant matrices are as follows [22]:

1. Consider two circulant matrices C(x) and C(z), then C(x)C(z) =
C(z)C(x), C(x)+C(z), C−1(·) and CT (·) are also circulant ma-
trices.

2. The eigenvalues of a circulant matrix of size N are given by :

λk(C(x)) =

N
∑

t=1

x(t)e−itωk , ωk = 2πk/N, k = 0, . . . , N − 1

(3.22)
3. The eigenvectors of a circulant matrix of size N are given by:

Uk =
1√
N

(

1, e−iωk , e−i2ωk , . . . , e−i(N−1)ωk

)

(3.23)

Note that the eigenvectors are independent of the elements of the
matrix.

4. Define the matrix U , which has the eigenvectors Uk, k =
0, . . . , N−1, as columns, and define Λ(·) = diag(λk(C(·)). Then,
U is full rank and unitary, i.e. UU∗ = I and U∗U = I. For each
circulant matrix C(·):

Λ(·) = U∗C(·)U (3.24)

Lemma 3.2 For two N ×N circulant matrices C(x) and C(z):

CT (x)C(x) − CT (z)C(z) 6 0 ⇐⇒
|λk(C(x))| − |λk(C(z))| 6 0, k = 0, . . . , N − 1 (3.25)

Proof: The proof follows from U being full rank:

CT (x)C(x) − CT (z)C(z) 6 0 ⇐⇒
U∗
(

CT (x)C(x) − CT (z)C(z)
)

U 6 0 ⇐⇒
Λ(x)∗Λ(x) − Λ(z)∗Λ(z) 6 0 ⇐⇒
|λk(C(x))| − |λk(C(z))| 6 0, k = 0, . . . , N − 1

The third expression follows from (3.24) and the last one from the
definition of Λ(·).
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Ct(·) is defined as a truncated circulant matrix of size N×T . The
multiplication of two truncated matrices CT

t (·)Ct(·) is a circulant
matrix of size T × T .

The main result is now presented in the following theorem.

Theorem 3.5 The convex constraints in (3.16) are equivalent to the
following LMI:

[

−δ2NCT
t (r)Ct(r)C

T
t (r)Ct(r) CT

t (r)Ct(εs(ρ))
CT

t (εs(ρ))Ct(r) −I

]

6 0 (3.26)

Proof:
CT

t (εs(ρ))Ct(r) = C(NR̂rεs
(τ, ρ)) (3.27)

where R̂rεs
(τ, ρ) is given by (3.15) for τ = 0, . . . , Np − 1. Its eigen-

values are given by:

λk

(

C(NR̂rεs
(τ, ρ))

)

= NΦ̂rεs
(ωk, ρ) (3.28)

Equivalently,
λk

(

CT
t (r)Ct(r)

)

= NΦr(ωk) (3.29)

Then, using Lemma 3.2, one can write:

CT
t (εs(ρ))Ct(r)C

T
t (r)Ct(εs(ρ)) − δ2NC

T
t (r)Ct(r)C

T
t (r)Ct(r) 6 0

⇐⇒ |Φ̂rεs
(ωk, ρ)| − δN |Φr(ωk)| 6 0,

ωk = 2πk/Np, k = 0, . . . , (Np − 1) (3.30)

Using the Schur complement, the LMI (3.26) is obtained.

Remark: Constraint (3.26) can be seen as a periodic version of
the norm proposed in [31]. The direct use of the DFT instead of these
circulant matrices has two advantages. First of all, the computational
load is much smaller. Secondly, the frequencies considered can be
chosen in a straightforward manner. For example, only frequencies
where the signal-to-noise ratio is reasonable could be selected.

3.5 Guaranteeing stability for a finite number of

data

In practice, the constraint δ̂(ρ) used for controller tuning in the op-
timization problem of (3.10) is an estimation of δ(ρ). Consequently,
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stability can only be guaranteed if the estimation errors are taken
into account. Next, a stochastic approach that leads to a (conserva-
tive) probabilistic bound is considered.

In the following, r(t) is assumed to satisfy A5 and A6. The noise
is assumed to satisfy A1-A2. Furthermore, assume that:

• there exists a finite pair of reals {A, γ} ∈ R, γ < 1, such that
|d(k)| 6 Aγk, for k ∈ Z+, where d(k) is the impulse response of
∆.

A and γ are in general not known beforehand and might need to be
verified a posteriori.

Implementation using spectral estimates

The estimate (3.15) contains an error term due to the estimation
error of ∆(e−jωk) at the frequencies ωk and a second error term due
to the finite frequency grid.

Estimation error at ωk. It follows from Assumption A5 that the
truncation error is zero and the error of ∆(e−jωk) is entirely due
to measurement noise.

Error due to finite frequency grid. The maximum of |∆(e−jω)|
might be situated in between two consecutive frequencies ωk and
ωk+1. This error due to the finite frequency grid depends on the

derivative of |∆(e−jω)| with respect to ω, i.e. d|∆(e−jω)|
dω , and the

distance between two consecutive frequencies.

If both errors are taken into account in the bound δN , stability is
guaranteed also for finite data length. Define Φr,min as the minimal
value of the spectrum Φr(ωk) at the frequencies ωk = 2πk/Np, k =
0 . . .Np − 1.

Theorem 3.6 The controller K(ρ) stabilizes the plant G, with prob-
ability p, if

∣

∣

∣

∣

∣

Φ̂rεs
(ωk, ρ)

Φr(ωk)

∣

∣

∣

∣

∣

< δN , for ωk =
2πk

Np
, k = 0 . . .Np − 1,
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where

δN = 1 − Aγ

(1 − γ)2
π

Np
− ‖(1 −M)K(ρ)‖∞

√

− ln(1 − p)
‖Hv‖2

∞ σ2

npΦr,min
.

Proof: See Appendix A.2

Note that the bound δN depends on the unknown parameters ρ.
‖(1 −M)K(ρ)‖∞ can be implemented using an LMI and (3.16) re-
mains convex.

The bound presented in Theorem 3.6 represents a worst-case er-
ror in between frequencies. Furthermore, the error due to noise is
based on inequalities. The bound is therefore conservative. Less con-
servative bounds can be formulated, based on the exact same data, if
an FIR model is used that corresponds to the spectral estimates [14].

Implementation using finite impulse response model

Define the response of ∆ to a periodic signal with period length Np

as:

dper(t) = d(t) +

∞
∑

i=1

d(t+ iNp), t = [0, . . . , Np − 1].

Define the vector

d̄per = [dper(0), dper(1) . . . dper(Np − 1)]

An FIR estimate of d(t) of length Np is given by:

θ̂ = [ΨΨT ]−1Ψε̄s (3.31)

where

Ψ = [ψ(1), ψ(2), . . . , ψ(N)]

ψ(t) = [r(t), r(t − 1) . . . r(t−Np + 1)]T

ε̄s = [εs(1) . . . εs(N)]T

εs(t) is defined in (3.6) and can be written as

εs(t) = ∆r(t) + (1 −M)K(ρ)v(t).
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The deterministic part of εs(t) is given by ∆r(t) = ψT (t)d̄per .
Since the noise is uncorrelated with the reference,

E{θ̂} = E{[ΨΨT ]−1Ψε̄s} = d̄per .

It is easily verified that

Ψε̄s = [R̂rεs
(0), . . . , R̂rεs

(Np − 1)],

and that the FIR estimate θ̂ is the deconvolution of R̂rεs
(τ) and

Rr(τ). This is the inverse Fourier transform of ∆̂(e−jωk , ρ), for ωk =

2πk/Np, k = 0, . . . , Np − 1. The estimate θ̂ is thus the time-domain
equivalent of ∆̂(e−jωk , ρ).

The estimate θ̂ can be used to define a constraint on the gain of
the error function that is defined over all frequencies:

∆̂(e−jω, ρ) =

Np−1
∑

t=0

θ̂(t)e−jωt = Γ T (e−jω)θ̂, (3.32)

where Γ (e−jω) = [1, e−jω, e−j2ω, . . . , e−j(Np−1)ω]T . The constraint
‖∆̂‖∞ < 1 can be implemented using an LMI based on a state-
space representation of the FIR model ( [8], chapter 2, bounded real
lemma). This constraint is convex.

In [14], it is shown that the choice of the length of the FIR model
introduces a trade-off between the bias and the noise error. The opti-
mal length, for which the tightest bounds can be defined, depends on
the system and the noise characteristics. The noise error is estimated
using the data and the bias error also contains transition errors. In
the following, a simplified bound is proposed. Only models with an
FIR length equal to the period Np are considered here. The results
are based on a priori information on the system and noise, and the
bounds are relatively simple to implement.

Theorem 3.7 The controller K(ρ) stabilizes the plant G with prob-
ability p, if

‖∆̂‖∞ < δN , for ωk =
2πk

Np
, k = 0 . . .Np − 1,
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where

δN = 1 − 2

(

AγNp

1 − γ

)

− ‖(1 −M)K(ρ)‖∞

√

− ln(1 − p)
‖Hv‖2

∞ σ2

npΦr,min
.

Proof: See Appendix A.3

This error bound is tighter that of Theorem 3.6 and is therefore less
conservative. However, this approach uses the H∞ norm based on an
FIR model, which leads to a large LMI, for which the computational
load is considerable.

3.6 Illustrative examples

3.6.1 Numerical example: delay system

A simple example was used in [31] to show that stability problems
occur “for the class of identification-for-control methods that use ar-
bitrary data in the identification”. The same example will be used
here to show that the method proposed in this thesis leads to stabi-
lizing controllers.

The pure time-delay system G(q−1) = q−1 is considered. The
proportional controller K = ρ is used to control the plant. The
controlled system is unstable for |ρ| > 1. The reference model is
M = 1−α+αq−1, where α is a parameter controlling the bandwidth.
The model-reference control problem is minimized by K(ρ0) = ρ0 =
4α−1
6α . For 0 < α < 0.1, |ρ0| > 1, and the controlled system will be

unstable.
The system is excited by a periodic PRBS with period Np =

63 and np = 4 periods. The reference model is chosen as M =
0.95 + 0.05q−1, i.e. with α = 0.05 for which the optimal controller
K(ρ0) = −2.67 destabilizes the plant. Two controllers are calculated
using noise-free simulation data. The first controller is calculated
without the stability constraints in (3.16). The controller found is
K(ρ1) = −2.67, which destabilizes the system. The second controller
is calculated using (3.16) with δN = 0.999. This optimization is
infeasible. A closer look at the bound shows that δ = ‖M −K(1 −
M)G‖∞ = 1 for all stabilizing controllers and the problem is indeed
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infeasible. The controller design was poorly formulated through an
inappropriate choice of M .

In order to show the effectiveness of the method in the pres-
ence of noise, the reference model used for the stability constraints
is slightly altered, Ms = 1 − α + 0.95αq−1. The reference model
used in the control objective remains unchanged. For this problem
δ = ‖Ms − K(ρ)(1 − Ms)G‖∞ < 1 for a subset of the stabilizing
controllers and the problem is thus feasible. The output of the sys-
tem is perturbed by a white noise such that the signal-to-noise ratio
is about 10 in terms of variance. The controller obtained without
using the constraints in (3.16) is K(ρ1) = −2.34, which again desta-
bilizes the system. The second controller calculated using (3.16) is
K(ρ2) = −0.33. Clearly, since |K(ρ2)| < 1, it stabilizes the system.
The difference between K(ρ1) and K(ρ2) indicates a poor problem
formulation.

The alternative implementation using circulant matrices leads to
a large LMI, which becomes expensive to compute for large data
length. The following comparison is found using Matlab V 7.4 on a
Mac with a 3 GHz processor and 5 GB memory. The optimization
is implemented using Yalmip [55] and SeDuMi [78]. The aforemen-
tioned problem for N = 252 leads to exactly the same result using
both implementations. The DFT approach is more expensive to
formulate but faster to run. The difference is small for small data
lengths, e.g. for Np = 63, N = 252 the DFT approach takes 0.7s vs.
2s for the LMI. For Np = 127, N = 1016, the DFT approach takes
2.2s vs. 13s for the LMI. For Np = 255, N = 2040, the LMI cannot
be solved (memory problems) whereas the DFT approach takes only
3s. When using the DFT approach, the data length can be increased
to at least Np = 1023, N = 8184, for which the optimization is solved
within 10s.

3.6.2 Numerical example: flexible transmission system

Consider the plant given by the discrete-time model G(q−1):

G(q−1) =
0.7893q−3

1 − 1.418q−1 + 1.59q−2 − 1.316q−3 + 0.886q−4
.
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This corresponds to a stable minimum-phase model of the flexible
transmission system proposed as a benchmark for digital control de-
sign in [49]. The control objective is defined by the reference model

M(q−1) =
q−3(1 − α)2

(1 − αq−1)2
,

with α = 0.606. The integral controller

K(ρ) =
ρ0 + ρ1q

−1 + ρ2q
−2 + ρ3q

−3 + ρ4q
−4 + ρ5q

−5

1 − q−1

is chosen, with the unknown parameters ρ0, . . . , ρ5. The reference
model M has unity static gain, thus ensuring that 1−M has a zero
at 1, which makes Lemma 3.1 applicable.

A PRBS signal of 255 samples with unity amplitude is used as
input to the system. Four periods of this signal are used for controller
design, N = npNp = 1020. The periodic output is disturbed by zero-
mean white noise such that the signal-to-noise ratio is about 10 in
terms of variance. The instrumental variables are defined according
to (2.29), with l1 = 20 in order to limit the bias due to the finite
number of data. For the same reason, the bound in the stability
condition is fixed to δN = 0.95. The filter F is chosen as F = 1.
The spectrum of the PRBS reference signal is known, Φr(ωk) = 1 for
all ωk except for ωk = 0. The spectrum is therefore approximated
in the weighting filter by 1 for all frequencies and, therefore L =
1−M . The filter is implemented in the time domain. The constraints
are implemented as in (3.16). A Monte Carlo simulation with 100
experiments is performed, using a different noise realization for each
experiment.

Bode plots of the resulting closed-loop system for all 100 con-
trollers are shown in Figure 3.2. All 100 controllers stabilize the sys-
tem and achieve acceptable performance. The stability constraint
is active for 4 controllers; however, the difference between the un-
constrained and the constrained solution is small. A small bias at
high frequencies can be observed as expected from (2.44). Since the
reference model is chosen appropriately, the optimal controller mini-
mizing J(ρ) stabilizes the system. Furthermore, because the quality
of the estimate found using the correlation approach is good, the
addition of the stability constraints does not affect the results.
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Fig. 3.2. Magnitude Bode plots of M (black line), achieved closed-loop
performance in Monte Carlo simulation for the proposed approach (grey
lines), and in the noise-free case (black dashed line).

Guaranteeing stability for VRFT

To show the effectiveness of the stability constraints, the same data
are used to calculate controllers using the VRFT approach [9]. The
goal is to show that, when the unconstrained problem has a desta-
bilizing solution, addition of the stability constraints leads to stabi-
lizing controllers. The VRFT approach that uses a second experi-
ment to define the instrumental variables is used specifically to find
these destabilizing controllers. This approach leads to an unbiased
estimate, but it is well known that the use of noise-corrupted instru-
mental variables increases the variance of the estimate [72]. This
variance might lead to instability even in the case of an appropriate
reference model. It should be noted that this variance results from
the choice of instrumental variables and is not inherent to VRFT.
Other methods to deal with measurement noise are suggested in [9].

For each of the 100 simulations, a second experiment is simulated
with a different noise realization. Hence, the VRFT controllers are
calculated using 2040 samples. Two controllers are calculated for
each set of data. The first controller is calculated using the VRFT
approach as proposed in [9]. For the second controller, the stability
constraints are added to the VRFT problem. The samples available
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Fig. 3.3. Magnitude Bode plots of M (black line), achieved closed-loop
performance without stability constraints for the 96 stabilizing VRFT con-
trollers (grey dashed lines), with stability constraints for 100 stabilizing
controllers (grey solid lines), and the noise-free case (black dashed line).

from both experiments are used in the constraints that are imple-
mented as in (3.16).

Four of the controllers calculated using the unconstrained VRFT
approach destabilize the system. All controllers calculated with the
stability constraints stabilize the system. Note that, due to the con-
servatism in the stability criterion, 7 of the 96 stabilizing VRFT
controllers do not satisfy the stability constraints. The optimum
of the constrained optimization problem is therefore different from
the VRFT solution. For these stabilizing controllers, the active con-
straints indicate poor closed-loop performance and the conservatism
in the constraints actually leads to better performance. This can
be seen in Figure 3.3, which shows the magnitude Bode plots of all
stabilizing controllers (96 for the unconstrained problem and 100 for
the constrained problem).

3.6.3 Experimental torsional setup

The effectiveness of the proposed approach is demonstrated exper-
imentally on the torsional setup shown in Figure 3.4. The setup
consists of three discs connected by a torsionally flexible shaft. Two
masses are fixed to each disc. The shaft is driven by a brushless servo
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Fig. 3.4. Torsional setup, ECP Model 205

motor. The angular displacement of the top disc is measured by an
encoder and expressed in degrees. The plant contains an integrator
and has two strong resonances. The sampling time is 60 ms. The
sampled plant model is assumed to be minimum phase.

A set of periodic open-loop data is collected using a zero-mean
PRBS input of 255 samples. Five periods of input and output mea-
surements are used for controller design. The controller structure is
fixed as a 7th-order FIR filter. The controllers are calculated using
(3.16) with F = 1. The input spectrum is approximated as 1 for
all frequencies, therefore L = 1 −M . ζ(t) is defined as (2.48) with
l1 = 127. The bound in the stability condition is fixed as δN = 0.8.
The reference model needs to have unity static gain since the plant
contains an integrator. Two different reference models are consid-
ered. The first one reads:

M1 =
0.0765q−1

(1 − 0.7q−1)2(1 − 0.15q−1)
.

The second reference model is chosen with a similar bandwidth but
a high-frequency roll-off of only one:
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Fig. 3.5. Magnitude Bode plot of the reference model M1 (black) and the
estimated closed-loop plant controlled by K1 (grey).

M2 =
0.3q−1

1 − 0.7q−1
.

The stability constraints in the optimization problem for M1 are
not active. The resulting controller is denoted K1. In contrast, the
stability constraints are active in the optimization problem for M2.
Two controllers are calculated using M2: controller K2 is the uncon-
strained optimum, controller K3 is the solution to the constrained
problem.

When applied to the plant, controller K2 leads to instability.
Stability is obtained with K1 and K3, for which the closed-loop
frequency-response can be identified. Four periods of the PRBS of
255 samples with amplitude 50 degrees are collected on the plant
controlled by K1. The frequency response estimated using DFT is
shown in Figure 3.5. The reference model M1 is appropriate, and
the achieved closed-loop system resembles the reference model. The
steady-state gain is smaller than one due to static friction. The plant
controlled by K3 is excited by a PRBS with a frequency divider of
2, 510 samples per period and amplitude 50 degrees. Three periods
are used for the DFT estimate. The result is shown in Figure 3.6.
The controller does stabilize the plant but the required closed-loop
performance is not achieved. Reference model M2 is inappropriate
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Fig. 3.6. Magnitude Bode plot of the reference model M2 (black) and the
estimated closed-loop plant controlled by K3 (grey).

and cannot be achieved. The fact that the stability constraints are
active actually indicates this problem.

Remark: In the numerical example of Section 3.6.2, addition
of the stability constraints to VRFT improves the closed-loop per-
formance. The reference model is appropriate and instability is the
result of the variance of the estimated controller parameters. In con-
trast, for the experimental torsional setup, instability is due to an
inappropriate reference model. Addition of the stability constraints
leads to a stabilizing solution, but the closed-loop performance re-
mains poor because it is not possible to achieve the required perfor-
mance.

3.7 Conclusions

A sufficient condition for closed-loop stability is proposed and it is
shown how an estimate of this condition can be used to guarantee
stability in data-driven controller tuning. The resulting controller
is guaranteed to stabilize the plant as the number of data tends to
infinity. The asymptotic nature of this result might seem restrictive,
but is equivalent to results for model-based approaches. If a model is
used, stability can be guaranteed only if the model is perfect, or if the
modeling errors are taken into account. Similarly, in the data-driven
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approach, the estimation error affecting the stability constraint can
be taken into account. Bounds are given for periodic data.

Note that two estimates are used in the constrained optimization
that guarantees stability, one for the control criterion and one for
the stability constraint. Since different characteristics of the plant
are determining for the control criterion and the constraint, two dif-
ferent identification techniques are used. The correlation approach
is used to estimate the control criterion whereas a spectral estimate
or a finite impulse response model are proposed for the stability con-
straint.

In data-driven model reference control, the choice of an appropri-
ate reference model is tricky. Since no model of the plant is available,
it is difficult to know beforehand whether the control objective can
be achieved or not. In the open-loop scheme proposed in this study,
the fact that the stability constraint is active indicates this problem.
In practice, the reference model can be adjusted until an adequate
reference model is found, off-line, without the need for additional
experiments.

In the closed-loop scheme, the stability constraint is defined with
respect to the previously implemented stable controller. The conser-
vatism of this solution is comparable to the conservatism introduced
in some iterative identification and control procedures, where the
allowed controller changes are small in order to maintain stability.
An approach similar to the windsurfing approach can be imagined,
where the performance of the reference model, and consequently the
controller, is increased gradually and several iterations are needed to
achieve the objective.



4

Data-driven stability test

The stability constraint proposed in Chapter 3 is conservative. As
an alternative, stability can be verified a posteriori. Suppose that
the controller K(q−1) has been designed to control the linear SISO
plant G(q−1). The proposed stability test can then be used to verify,
before implementation, whether this K(q−1) actually stabilizes the
plant.

The use of closed-loop experimental data to verify if controllers
are stabilizing has been proposed for iterative control design methods
[50]. In such methods, information from a closed-loop experiment is
used to redesign a controller in order to increase the performance.
In [50], a fundamental contradiction is pointed out for stability tests
for such methods. Limited information from closed-loop experiments
is used to obtain information for small controller changes that provide
performance improvement. However, in order to guarantee stability,
identification of the full dynamics of the plant is required.

An example of a stability test that requires identification of the
full plant dynamics is the model-based approach proposed in [21].
A parametric plant model is identified and the uncertainty of the
estimated parameters is described. Stability is then verified for all
plants in the uncertainty set. In the model-based approach of [71],
a method is proposed to identify the closed-loop system without ac-
tually implementing the controller. If the identified model is stable,
the controller is validated. In practice, the choice of model order
affects the reliability of the test, and it is not clear whether the re-
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sult obtained with a high-order model is more reliable than with a
low-order model or vice versa.

The stability test proposed in [50] uses phase information of some
error function. It is argued that, since instability can only occur when
the gain of some error function is bigger than unity, the phase in-
formation is important only at those frequencies where the gain of
the error is large. Consequently, partial information of the plant is
sufficient to guarantee stability for small controller changes. How-
ever, this approach indirectly implies that it is known up to which
frequencies the gain might be larger than one. Furthermore, even
though more data become available in consecutive iterations, the re-
liability of the test does not improve because the data are collected
with different controllers in the loop and cannot be combined.

In the following, a stability test is proposed that assumes neither
an iterative procedure, nor small changes in the controller. If the
plant is stable, open-loop experiments can be used. If some a pri-
ori information on the plant and the disturbances is available, the
estimation error can be taken into account and stability can be guar-
anteed also for a finite number of data. If the estimation error is not
taken into account, the test provides a clear trade-off between conser-
vatism and reliability. Furthermore, if closed-loop data are available
from measurements with different controllers in the loop, the data
can be combined. The tests are based on an extension of Theorem
3.1.

4.1 Conditions for closed-loop stability

In the following, Theorem 3.1 is extended to provide necessary and
sufficient conditions for closed-loop stability. Consider the controller
Ks, for which the closed-loop plant is given by (3.1). Define the error
function ∆ := Ms −KG (1 −Ms) and its infinity norm δ := ‖∆‖∞.
In Theorem 3.1, Ks is assumed to be fixed and stabilizing, which also
fixes Ms. Sufficient conditions for stability are then formulated with
respect to this fixed Ms. In the following, Ms and Ks are variable,
and an additional condition on Ks is needed.
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Theorem 4.1 The controller K stabilizes the plant G iff there exists
a stable strictly proper transfer function Ms, and 0 6 δN < 1 such
that

1. Ks = Ms

G(1−Ms) internally stabilizes the plant, i.e. G(1−Ms) and

Ms/G are stable,
2. ∆ is stable,
3. δ 6 δN .

Proof: Sufficiency can be shown using the small-gain theorem:
When the interconnection of Figure 3.1 is opened at q, the resulting
system is stable when Conditions 1 and 2 are satisfied. In this case,
the small-gain theorem can be applied to define a sufficient condition
for closed-loop stability: the interconnection is stable if δ < 1. This
is the H∞-norm of the transfer function from q back to q.

In order to show necessity, consider a stabilizing controller K. If
K stabilizes the plant, there exists an Ms such that

Ms =
KG

1 +KG

for which Condition 1 is clearly satisfied. For this specific Ms, the
controller Ks = K and ∆ = 0. It follows that Conditions 2 and
3 are satisfied. Combining this result with the sufficient condition
following from the small-gain theorem leads to 0 6 δN 6 1. This
completes the proof.

This theorem can now be used to verify closed-loop stability. The
main idea is as follows: If an Ms exists that satisfies the conditions
of Theorem 4.1, the controller is stabilizing. This Ms can be found
as follows:

• The structure of Ms is chosen such that Conditions 1 and 2 are
verified.

• Experiments are proposed to verify the Condition 3.
• A convex optimization is proposed to find an Ms that satisfies

the conditions.

If the optimization is feasible, the controller is validated.
Note that there are no assumptions regarding the linear SISO

plant G. Theorem 4.1 is applicable to stable, unstable, minimum-
phase and nonminimum-phase plants. However, Conditions 1 and
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2 imply that it is known whether or not some unknown controller
Ks stabilizes the plant, which is a non-trivial question in the case of
unstable or nonminimum-phase plants.

An appropriate choice of Ms for different types of plants and
controllers is summarized in the following lemma. The stable filter
X will be used to define a structure of Ms such that Conditions 1 and
2 are met. The lemma considers only stable controllers; however, the
specific case of controllers with poles on the unit circle can also be
handled. Although this does not cover all possible combinations of
plants and controllers, it does cover the cases encountered in many
control problems in practice.

Lemma 4.1 Consider a stable filter X and let the structure of Ms

depend on the type of plant G as follows:

a) For stable minimum-phase plants:
Ms = X

b) For unstable minimum-phase plants:
Ms = 1 −X(1 −M0), where M0 is the closed-loop system of the
plant controlled by a stable stabilizing controller K0,

M0 =
K0G

1 +K0G
.

c) For stable nonminimum-phase plants:
Ms = XG

Then, the plant G is stabilized by the stable controller K iff there
exists a filter X and 0 6 δN < 1, such that δ 6 δN .

Proof: Sufficiency: Conditions 1 and 2 of Theorem 4.1 are satisfied
if Ms, G(1 − Ms),Ms/G and KG(1 − Ms) are stable. Since Ms

is stable by definition, only the stability of G(1 −Ms),Ms/G and
KG(1 −Ms) remains to be verified.

a) If the plant G is stable minimum-phase and the controller K is
stable, that is both G and K have no poles outside or on the unit
circle, then these three transfer functions are stable for any stable
Ms.

b) For an unstable minimum-phase plant G, instability might oc-
cur in G(1 −Ms) or KG(1 −Ms). The plant controlled by the
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stabilizing controller K0 is given by M0 = K0G(1 + K0G)−1,
and M0 clearly satisfies Conditions 1 and 2, i.e. G(1 − M0)
and KG(1 − M0) are stable. For any stable transfer function
X , XG(1 − M0) and XKG(1 − M0) are also stable. Ms =
1 − (1 −M0)X thus satisfies Conditions 1 and 2.

c) For a stable nonminimum-phase plant, controlled by a stable con-
troller, instability might occur in Ms/G. This transfer function
is stable iff Ms contains the unstable zeros of G, which is the case
for Ms = XG.

If the structure of Ms is chosen as in Lemma 4.1, Conditions 1 and
2 are satisfied. According to Theorem 4.1, the remaining condition,
δ 6 δN , is sufficient for closed-loop stability.

Necessity: Consider the stable stabilizing controller K.

a)

X =
KG

1 +KG

is stable, satisfies Conditions 1 and 2 and achieves δ = 0.
b)

X =
1 +K0G

1 +KG
=

1

1 +KG
+K0

G

1 +KG

is stable since K is stabilizing and K0 is stable. This X achieves
δ = 0 and Conditions 1 and 2 are satisfied.

c)

X =
K

1 +KG

is stable, satisfies Conditions 1 and 2 and achieves δ = 0.

It thus follows that for every stable stabilizingK, there exists a stable
filter X that satisfies the conditions of Theorem 4.1. This completes
the proof.

Note that for unstable minimum-phase plants sufficiency can be
shown also if the controller K0 is unstable. However, in this case
necessity is lost and the stable controller K might stabilize the plant
also if no stable X can be found that satisfies Condition 3.

For the specific case of a controller or plant that contains poles
on the unit circle, for example an integrator, instability might occur
in G(1−Ms) or KG(1−Ms). These transfer functions are stable iff
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the unstable poles of G and K are zeros of 1 −Ms. An appropriate
choice for Ms is thus Ms = X , where the unstable poles of G and K
are zeros of 1 −Ms. In the specific case of a simple integrator in G
or K, this is equivalent to requiring unity static gain for X .

4.2 Generating the error signal

According to Theorem 4.1, the controllerK stabilizes the plantG iff a
Ms exists that satisfies Conditions 1, 2 and 3. Lemma 4.1 introduces
structures of Ms for which Condition 1 and 2 are satisfied, using a
stable filter X . If a stable filter X can be found such that Condition
3 is satisfied, the controller stabilizes the system. In Section 4.3, a
convex optimization is introduced to find an X that satisfies Condi-
tion 3. This requires parameterization of the stable filter X . Define
X(q−1, ρ) as a linear combination of stable linear discrete-time or-
thogonal basis functions β(q−1) = [β1(q

−1), . . . , βnρ
(q−1)]:

X(q−1, ρ) = βT (q−1)ρ, ρ ∈ DX , (4.1)

where the set DX is compact. Note that X(q−1, ρ) is a subset of all
stable filters X .

If the structure of Ms is chosen according to Lemma 4.1 and
X(q−1, ρ) is defined as (4.1), Conditions 1 and 2 of Theorem 4.1 are
satisfied, and only Condition 3, δ 6 δN , remains to be verified. δ is
the H∞-norm of some error function that depends on the unknown
plant G and is therefore unknown. However, it can be estimated
from measured data.

The basis of the data-driven stability test is therefore to generate
an error signal εs(t, ρ) corresponding to the error function ∆, for a
specific reference signal r(t). This error signal can be used to com-
pute δ̂, an estimate of δ. In the case of a stable minimum-phase plant,
the corresponding error signal can be generated using one open-loop
experiment. The error signal for unstable plants can be generated
using one closed-loop experiment. Generating the error signal for
nonminimum-phase plants requires two open-loop experiments.
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Fig. 4.1. Experimental scheme for closed-loop stability test using an open-
loop experiment for stable, minimum-phase plants

For stable minimum-phase plants

Consider the scheme of Figure 4.1, which includes one open-loop
experiment on the plant G. The reference signal r(t) is applied to
the plant. The resulting output y(t) = Gr(t)+v(t) is measured. The
measurement noise v(t) satisfies A1. The error is given by:

εs(t, ρ) = X(ρ)r(t) − (1 −X(ρ))Ky(t)

= [X(ρ) − (1 −X(ρ))KG] r(t) − (1 −X(ρ))Kv(t) (4.2)

The transfer function between r(t) and εs(t, ρ) is precisely ∆, when
Ms is chosen according to case a) of Lemma 4.1. A set of data
obtained using the scheme of Figure 4.1 can thus be used to estimate
δ and verify whether δ̂ 6 δN .

For unstable minimum-phase plants

Consider the closed-loop experiment where the unstable plant G is
controlled by the stabilizing controller K0. The excitation signal r(t)
is applied directly to the plant input, as illustrated in Figure 4.2. The
data set consists of the excitation signal r(t), the measured output of
the controller K0, u1(t), and the measured output of the closed-loop
system y(t). Define the error as:

εs(t, ρ) = [1 −X(ρ)] r(t) −X(ρ)u1(t) −X(ρ)Ky(t)

= [1 − (1 −M0)X(ρ) −X(ρ)KG(1 −M0)] r(t)

+

[

X(ρ)M0

G
−X(ρ)K(1 −M0)

]

v(t) (4.3)
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Fig. 4.2. Experimental scheme for unstable plants using one closed-loop
experiment

The transfer function between r(t) and εs(t, ρ) is equal to ∆, when
Ms is chosen according to case b) of Lemma 4.1. These two signals
can be used to estimate δ. Note that the error corresponds to the
error used by [50] in the specific case of a stable controller.

Only the data set r(t), u1(t) and y(t) is needed. The controller
K0 does not need to be known, and there are no requirements on
the performance of this controller other than the fact that it sta-
bilizes the system. A closed-loop experiment can also be applied
to a stable minimum-phase plant. In this case, the parameteriza-
tion of Ms corresponds to the parameterization for unstable plants,
Ms = 1 − (1 −M0)X(ρ).

For stable nonminimum-phase plants

Generating the error signal for nonminimum-phase plants requires
two open-loop experiments. In the first experiment, the reference
signal r(t) is applied to the plant and the output y1(t) = Gr(t)+v1(t)
is measured. In the second experiment the plant is excited by y1(t)
and gives y2(t) = Gy1(t) + v2(t). Note that a scaling can be used
here if necessary. The error signal corresponding to ∆ for Ms chosen
according to case c) of Lemma 4.1 is then given by

εs(t, ρ) = X(ρ)y1(t) −Ky1(t) +X(ρ)Ky2(t)

= [X(ρ)G−KG(1 −X(ρ)G)]r(t)

+ [X(ρ) −K +X(ρ)KG]v1(t) +X(ρ)Kv2(t) (4.4)
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4.3 Controller validation

In the following, a convex optimization problem is proposed, which
uses the error signal εs(t, ρ) introduced previously to compute X(ρ)

that minimizes δ̂. Since εs(t, ρ) is affected by noise, this estimate is
uncertain. In order to minimize the estimation error due to noise and
leakage, a spectral estimate will be used [54]. If possible, a periodic
reference signal should be used, for which the error due to leakage is
zero.

An estimate of δ(ρ) for non-periodic data, based on spectral es-
timates, is given by (3.7),

δ̂(ρ) = max
ωk

∣

∣

∣
∆̂(e−jωk)

∣

∣

∣
= max

ωk

∣

∣

∣

∣

∣

Φ̂rεs
(ωk, ρ)

Φ̂r(ωk)

∣

∣

∣

∣

∣

.

For periodic data, the estimate is given by (3.15). Note that, due to
the linear parameterization ofX(ρ), the error εs(t, ρ) is linear in ρ for
all the cases discussed in Section 4.2 and, consequently, Φ̂rεs

(ωk, ρ) is
a linear combination of ρ. The estimate of (3.7) (or (3.15) for periodic
signals) can therefore be used to define a set of convex constraints
such that δ̂(ρ) 6 δN .

Proposition 4.1 (Controller validation) Let εs(t, ρ) be gener-

ated as discussed in Section 4.2. Let δ̂(ρ) be defined as in (3.7) or
(3.15) for non-periodic and periodic data, respectively. The controller
K is validated if the minimizer γ̂ of the following convex optimization
problem satisfies γ̂ 6 δN < 1:

γ̂ =min γ,

subject to δ̂(ρ) 6 γ, δ ∈ DX .
(4.5)

Theorem 4.2 Assume that A1 is satisfied. For non-periodic signals
satisfying A3 and A4, let N, l2 → ∞ with l2/N → 0. For periodic
signals satisfying A5 and A6, let N,Np → ∞ with Np/N → 0.
Then, a validated controller K is guaranteed to stabilize G.

Proof: It follows from the proof of Theorem 3.2 that the estimate
δ̂(ρ) converges to δ and ρ̂ converges to the minimizer of δ(ρ) 6 γ.
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If γ 6 δN , the sufficient conditions for closed-loop stability given in
Theorem 4.1 are met, and K is guaranteed to stabilize G.

Remark: Theorem 4.1 presents necessary and sufficient conditions
for closed-loop stability. However, according to Theorem 4.2, the
data-driven approach of (4.5) is only sufficient. Necessity of the
stability conditions is lost due to the parameterization of X , which
depends on the choice of the basis functions in β. This introduces
a certain conservatism since the parameterization might not allow
∆ = 0.

Guaranteeing stability for a finite number of data

Theorem 4.2 states that, if the controller is validated, stability is
guaranteed as the number of data tends to infinity. In practice, only
a finite number of data is available and stability can be guaranteed
only if the estimation errors on δ̂(ρ) are taken into account in the
bound δN .

δN can be defined using the approach of Section 3.5. Both the er-
ror due to the finite frequency grid and the error due to measurement
noise and truncation need to be taken into account. The derivation
of the bounds is analogous to the derivation in Appendix A.2 and
is not detailed here. The error bound between frequencies presented
in Section 3.5 represents a worst-case error. Tighter bounds can be
formulated if an FIR model is used (see Appendix A.3), but the com-
putational load of the resulting optimization problem is considerable.

Note that the H∞-norm will, in general, be overestimated in the
presence of noise. Even though (for periodic data) the estimate
∆̂(e−jωk) is consistent, its absolute value |∆̂(e−jωk)| is biased and
E{|∆̂(e−jωk)|} > |E{∆̂(e−jωk)}|, [54].

4.4 Combining information from different

closed-loop experiments

The stability condition for closed-loop experiments (3.3) as well as
the condition used in [50] are defined with respect to some stabilizing
controller Ks. An error function is constructed using Ks, the plant
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controlled by this Ks, and the controller to be verified K. If this
error function satisfies the stability conditions, the controller K is
guaranteed to stabilize the plant. An experiment is performed with
the controller Ks in the loop and the conditions for stability are
verified using an estimate of the error function.

If a set of data from a second experiment is available, but ob-
tained with a different stabilizing controller (say K2) in the loop,
the stability conditions would be defined with respect to this con-
troller K2. Consequently, only the data available from this second
experiment can be used to verify the condition. This situation is for
example encountered in iterative identification and control [1] and
in the windsurfing approach [3], and also in iterative data-driven
approaches such as IFT [28]. Even though more data becomes avail-
able whenever a new controller is implemented, the effect of noise
does not decrease because data from different experiments cannot be
combined.

In Theorem 4.1, Ms and Ks are not fixed beforehand, the theo-
rem is valid for any Ks that satisfies the conditions. Consequently,
information from different experiments can be combined. In the fol-
lowing, a controller validation test is presented for iterative controller
tuning methods.

Assume that the plant G is minimum phase and that nc sta-
bilizing controllers, K1,K2, . . . ,Knc

, are available. Define M1,M2,
. . . ,Mnc

as the corresponding closed-loop systems, i.e.

M1 =
K1G

1 +K1G
,M2 =

K2G

1 +K2G
, . . . ,Mnc

=
Knc

G

1 +Knc
G
.

Sufficient conditions for closed-loop stability can then be formulated
as follows.

Lemma 4.2 Consider the stable filter X. Define Ms1 = 1 −X(1 −
M1),Ms2 = 1−X(1−M2), . . . ,Msnc

= 1−X(1−Mnc
). Let Ms be

defined as

Ms =
Ms1 +Ms2 + · · · +Msnc

nc
(4.6)

Then, the plant G is stabilized by the stable controller K if there
exists a filter X and 0 6 δN < 1, such that δ 6 δN .
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Proof: Conditions 1 and 2 of Theorem 4.1 are satisfied if
Ms, G(1 − Ms),Ms/G and KG(1 − Ms) are stable. Ms is stable
since M1,M2, . . . ,Mnc

are stable.

G(1 −Ms) = G

(

1 − (Ms1 +Ms2 + · · · +Msnc
)

nc

)

=

G

(

1 − 1 −X(1 −M1) + 1 −X(1 −M2) + · · · + 1 −X(1 −Mnc
)

nc

)

= G

(

X(1 −M1) +X(1 −M2) + · · · +X(1 −Mnc
)

nc

)

K1,K2 . . . ,Knc
stabilize the plant, therefore G(1−M1), G(1−M2),

. . . , G(1 − Mnc
) are stable. X is stable by definition, therefore

G(1 − Ms) is also stable. Since K is stable, KG(1 − Ms) is also
stable. Ms/G is stable since G is minimum phase and Ms is stable.
Conditions 1 and 2 are thus satisfied. According to Theorem 4.1, the
remaining condition, δ 6 δN , is sufficient for closed-loop stability.

Note that this lemma defines sufficient conditions for stability, and
can therefore be conservative. However, if this lemma is used for
controller validation, data from different closed-loop experiments can
be combined and the quality of the estimate can be improved as more
data becomes available.

Assume that nc experiments have been performed according to
the scheme of Figure 4.2, with different controllers K1 to Knc

in the
loop for each experiment. Assume that the excitation signal r(t)
was the same for all experiments. Let X(q−1, ρ) be parameterized
as (4.1). Let the error for each experiment be defined according to
(4.3), i.e. εs1(t, ρ) is the error calculated according to (4.3) for the
experiment with K1 in the loop, εs2(t, ρ) the error with K2 in the
loop, etc. The noise in the experiment with K1 in the loop is denoted
v1(t), in the experiment with K2 by v2(t), etc. Define the error signal
as
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εs(t, ρ) =
εs1(t, ρ) + εs2(t, ρ) + · · · + εsnc

(t, ρ)

nc
=

[Ms −X(ρ)K(1 −Ms)]r(t) +

[

X(ρ)M1

G
−X(ρ)K(1 −M1)

]

v1(t)

nc

+

[

X(ρ)M2

G
−X(ρ)K(1 −M2)

]

v2(t)

nc

+ · · · +
[

X(ρ)Mnc

G
−X(ρ)K(1 −Mnc

)

]

vnc
(t)

nc
.

(4.7)

The transfer function from r(t) to εs(t, ρ) then corresponds to ∆,
when Ms is chosen as in (4.6). Note that the stochastic properties
of the noise change as the controller in the loop changes. The noise
sequence of the consecutive experiments is therefore non-stationary.
In the following theorem, convergence is shown for periodic input
signals. This is a standard result for stationary stochastic sequences.

Theorem 4.3 Assume that r(t) satisfies A5 and A6. Let εs(t, ρ)
be calculated according to (4.7), Φ̂rεs

(ωk, ρ) according to (3.13) and
R̂rεs

(τ, ρ) according to (3.14). Assume that the noise in the nc ex-
periments is independent and satisfies A1 and A2. Then, with prob-
ability 1, as the number of experiments nc tends to infinity,

lim
nc→∞

Φ̂rεs
(ωk, ρ)

Φr(ωk)
= ∆(e−jωk).

Proof: The proof is given in Appendix A.4.

Theorem 4.3 states that, as the number of experiments tends to
infinity, the estimate

Φ̂rεs
(ωk, ρ)

Φr(ωk)

converges to the noise-free value ∆(e−jωk). If this estimate is used
in the controller validation of Proposition 4.1, the reliability of the
test increases as the number of experiments increases. Since r(t) is
periodic, ∆(e−jωk) can be estimated only on a finite frequency grid
and the inter-frequency error needs to be taken into account. If the
bound δN is formulated similar to the bounds of Section 3.5, the
conservatism decreases as the number of experiments increases.
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If a burst excitation is used, where r(t) = 0, ∀t 6= [1, Tb] and
the output is measured until the transient is zero, ∆(e−jω) can be
estimated for all frequencies ω and not just on a finite frequency grid
ωk. This estimate is statistically less efficient than an estimate based
on a periodic input, when only one experiment is available. If data
of different experiments are combined, the estimate δ̂ converges to δ
and, asymptotically as nc → ∞, a validated controller is guaranteed
to stabilize the plant.

4.5 Numerical example

Consider the plant given by the discrete-time model G(q−1):

G(q−1) =
0.7893q−3

1 − 1.418q−1 + 1.59q−2 − 1.316q−3 + 0.886q−4

This corresponds to a stable minimum-phase model of the flexible
transmission system proposed as a benchmark for digital control de-
sign in [49]. This example is also used in Section 3.6.2. Eight different
controllers are available, out of which four stabilize the plant and four
destabilize it. All controllers have the same structure and contain an
integrator:

K =
k0 + k1q

−1 + k2q
−2 + k3q

−3 + k4q
−4 + k5q

−5

1 − q−1
.

The parameters of the controllers are given in Table 4.1: K1 to K4

stabilize the plant, K5 to K8 do not.
An open-loop experiment on G is simulated. The plant is excited

by a periodic pseudo-randon binary signal (PRBS) with period Np =
127, length N = 4Np = 508 and amplitude 1. The output is periodic
and disturbed by a zero-mean white noise, such that the signal-to-
noise ratio on the output of the plant is about 10 in terms of variance.
Since r(t) is periodic, δ̂(ρ) is calculated according to (3.15). The
bound is fixed to δN = 0.9 to compensate for the finite frequency
grid and the estimation error due to noise.

The filterX(q−1, ρ) is defined as an FIR filter of order (nρ−1). An
additional linear constraint

∑

ρ = 1 is added to ensure unity static
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Table 4.1. Controllers used in the illustrative example

k0 k1 k2 k3 k4 k5

K1 0.17 −0.18 0.17 −0.12 0.07 0.05
K2 0.27 −0.43 0.50 −0.45 0.32 −0.05
K3 0.21 −0.28 0.29 −0.24 0.16 0.01
K4 0.17 −0.18 0.17 −0.11 0.07 0.05
K5 −2.77 7.76 −11.01 11.19 −8.07 3.06
K6 −1.23 3.56 −5.01 5.07 −3.68 1.45
K7 −0.96 2.87 −4.10 4.23 −3.12 1.26
K8 0.88 −2.10 2.81 −2.74 1.97 −0.67

gain, which is required since the controllers contain an integrator. A
Monte-Carlo simulation with 100 experiments is performed, using a
different noise realization for each experiment.

For nρ = 4, all four destabilizing controllers fail the validation
test, for all 100 experiments. The stabilizing controllers K1 and K4

are validated in 98 experiments, K2 is validated in 91 experiments,
K3 in 97. If nρ is increased to 8, K1,K3 and K4 are validated in all
100 experiments and K2 in 96. If nρ is increased further, K2 is also
validated in all 100 experiments. When the order of X is increased
to 20, all destabilizing controllers are still discarded correctly.

Due to the system gain, a signal-to-noise ratio of about 10 with
respect to the output signal corresponds to a ratio of r/v ≈ 1.3 in
terms of variance. The stable controllers are rejected as a result of
the bias in the estimate due to noise. The effect of noise can be
reduced by increasing the number of periods in the reference signal.
When the same experiment is performed with a reference signal of
length N = 8Np = 1016, all stabilizing controllers are validated for
all 100 experiments for nρ = 3.

4.6 Conclusions

In all stability tests, detailed information regarding the plant is
needed to guarantee closed-loop stability. If only partial informa-
tion is available, stability can be guaranteed only if bounds on the
lacking information can be formulated. Definition of such bounds
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often introduces conservatism, but without these bounds the test is
not reliable. The test proposed in this chapter is no exception, and
stability is guaranteed as the number of data tends to infinity. For
a finite number of data, the estimation error needs to be taken into
account, and error bounds are in general conservative. However, the
proposed approach offers an intuitive trade-off between conservatism
and reliability, if tight error bounds cannot be formulated.

In the proposed test, the bound δN and the number of basis
functions in X need to be chosen by the user. The trade-off be-
tween conservatism and reliability introduced by these parameters
is clear. Since the optimization is convex, the conservatism of the
test decreases if more basis functions are added to X . If the bound
δN is increased, the conservatism also decreases, but the reliability
decreases since smaller estimation errors are accounted for. If data
are available from closed-loop experiments with different controllers
in the loop, the data can be combined to improve the quality of the
estimate and reduce the conservatism.



5

Accuracy of non-iterative model reference

control

One of the main features of the non-iterative data-driven controller
tuning approach treated in this thesis is the possibility to fix the
order of the controller and minimize the control criterion for this
class of controllers. In common terms of system identification, this
situation leads to undermodeling of the controller. In the case of
undermodeling, bias shaping is essential for the control performance
that can be achieved [20]. This bias shaping is complicated by the
way the noise enters the controller identification problem. In Chapter
2, the use of the correlation approach has been proposed to deal with
the noise.

The problems encountered in non-iterative data-driven controller
tuning have been treated in several publications, [9, 71]. In Section
5.1, the accuracy of the solutions proposed in the literature as well
as that of the correlation approach is studied. For the case of no
undermodeling, variance expressions for the different approaches are
derived. For the case of undermodeling, convergence to the optimal
solution is investigated. In addition to these approaches, application
of the method presented in [73] to the controller tuning problem is
presented. This method is developed for errors-in-variables problems
and uses periodicity of the data. It is shown that this method can
also be used in the case of undermodeling. The performance of the
different approaches is compared in Section 5.2 for the cases with un-
dermodeling and without undermodeling. The results are illustrated
by a simulation example.
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According to [29], non-iterative data-driven model reference con-
trol can be interpreted as the identification of a plant model that is
parameterized directly in terms of the controller parameters. In this
case the resulting controller tuning approach is direct. The results
of Section 5.1 are therefore also applicable for identification using a
direct parameterization.

The advantage of directly minimizing the control objective with
respect to the controller parameters is that undermodeling is circum-
vented that might occur in an intermediate modeling step. However,
this leads to a non-standard identification problem. Furthermore,
the lack of a plant model complicates the robustness analysis of the
resulting controller. A legitimate question is therefore: why would
one prefer such a direct approach over an indirect (model-based)
method? If an intermediate model is used, results from system iden-
tification apply directly to the plant model, and robustness can be
analyzed using well-known methods.

Clearly, many different model-based approaches have been devel-
oped. In many model-based approaches, the controller order depends
on the model order. Such approaches cannot be compared directly to
the data-driven approach presented in this thesis. Furthermore, the
achieved performance depends on the identification procedure used
to identify the plant model. In order to provide a fair comparison
between an indirect approach and the proposed direct (data-driven)
solution, the results of Section 5.1 are compared to an asymptotically
efficient indirect method, based on results from system identification.

It is argued in [29] that, in the context of system identification, the
problem of undermodeling can be avoided when a full-order model
is estimated using a statistically efficient estimator. This full-order
model can then be used for further calculations, without the loss of
statistical accuracy. In Section 5.3, a model-based approach is pre-
sented that uses this idea to solve the approximate model reference
problem for a fixed-order controller. The accuracy of this approach
is compared to direct (data-driven) solutions. The results are illus-
trated by a simulation example.

In the approximate model reference control problem, the main
objective is to minimize the approximate model reference criterion.
However, in this chapter the asymptotic variance of the controller
parameters is studied. Since the approximate model reference crite-
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rion is a quadratic function of these controller parameters, the per-
formance is directly related to the accuracy of the parameters and
smaller parameter variance implies better performance.

5.1 Accuracy of data-driven approaches

In the following, only stable systems and open-loop measurements are
considered. The filter F = 1 and L = 1−M are chosen as in Section
2.3. Assume that A1 and A2 are satisfied and that A7 is satisfied
in Case C1 and A8 in Case C2. Consistency and accuracy of the
different estimates is analyzed for Case C1. Asymptotic convergence
is analyzed for Case C2.

5.1.1 Prediction error methods

In Section 2.3, the controller identification problem was analyzed
in the prediction error framework. It was shown that, in Case
C1, a tailor-made noise model is required. If such a tailor-made
parametrization is used, where H(η, ρ) = K(ρ)Hp(η), the estimation

error is asymptotically Gaussian distributed [54], i.e.
√
N(ρ̂−ρ0)

dist→
N (0, Pp). The variance of the parameters, which is equal to the
Cramér-Rao bound, is given by:

Pp = σ2C−1
1 , (5.1)

where

C1 = lim
N→∞

1

N

N
∑

t=1

[

1

H∗
φ0(t)

][

1

H∗
φ0(t)

]T

. (5.2)

φ0(t) is defined in (2.20) and

H∗ = K∗Hỹ. (5.3)

In Case C2, the estimate does not converge to the optimal con-
troller K(ρ0).
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5.1.2 Instrumental variables

In [9], the use of instrumental variables (IV) is proposed to deal with
the measurement noise. The IV solution is given by:

ρ̂ =

[

1

N

N
∑

t=1

ζ(t)φ(t)T

]−1

1

N

N
∑

t=1

ζ(t)s(t), (5.4)

where ζ(t) is a vector of length nρ that is not correlated with ỹc(t).
The regression vector φ(t) is defined in (2.20).

Case C1, K∗ ∈ {K(ρ)}

Two different choices for the instruments ζ(t) are discussed in [9] .
Repeated experiment: Perform a second experiment with the

same input r(t). The instrumental variable vector is then defined as:

ζ(t) = β(q−1)yk2(t) = φ2(t) , φ0(t) + φ̃2(t).

where β(q−1) is defined in (2.8). The noise in the second experiment
is not correlated with the noise in the first experiment, therefore

lim
N→∞

(ρ̂− ρ0) =

lim
N→∞

[

1

N

N
∑

t=1

φ2(t)φ(t)T

]−1

lim
N→∞

1

N

N
∑

t=1

φ̃2(t)K(ρ0)ỹc(t) = 0

This estimate is thus consistent.
Identification of the plant: Identify a model of the plant Ĝ,

generate the simulated output ŷ(t) = Ĝr(t) and define the instru-
ments as ζ(t) = β(1 −M)2ŷ(t). The estimate is consistent, but the
variance depends on the quality of the model [75].

The instruments generated by a second experiment are analyzed
in [73]. The estimation error

√
N(ρ̂−ρ0) is asymptotically Gaussian

distributed and the asymptotic covariance matrix is given by:

PIV = σ2R−1
0 (C2 + C3)R

−1
0 , (5.5)

where
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R0 = lim
N→∞

1

N

N
∑

t=1

φ0(t)φ
T
0 (t)

C2 = lim
N→∞

1

N

N
∑

t=1

[H∗φ0(t)][H
∗φ0(t)]

T

C3 = E
{

[H∗φ̃2(t)][H
∗φ̃2(t)]

T
}

(5.6)

and H∗ is defined in (5.3).
Using a second experiment, 2N data points are needed for an

estimate with a covariance matrix of approximately 1
N PIV . Theo-

retically, optimal variance can be achieved by using an optimal in-
strumental variable [75]. Such optimal instruments depend on the
unknown controller parameters. An iterative algorithm can be used
to improve the accuracy: in the first iteration, a controller is identi-
fied with a non-optimal IV, then, in the second iteration, a better IV
is constructed based on the controller from the first iteration. This
procedure can be continued to improve the accuracy of the estimates.

Case C2, K∗ /∈ {K(ρ)}

In contrast to prediction error methods, no identification criterion is
minimized in an instrumental variable approach. The parameter esti-
mate is defined directly as (5.4). However, for the specific choice of IV
suggested in [9], where the instrumental variables are generated by a
second experiment, a corresponding quadratic identification criterion
exists asymptotically. This specific choice of instrumental variables
can therefore be used for bias shaping and 2-norm minimization as
shown next. Assume that the instruments are generated using a
second experiment. The IV solution is then given by:

ρ̂ =

[

1

N

N
∑

t=1

φ2(t)φ(t)T

]−1

1

N

N
∑

t=1

φ2(t)s(t). (5.7)

Since the noise in the second experiment is not correlated with the
noise in the first experiment, the estimate converges to

lim
N→∞

ρ̂ = lim
N→∞

[

1

N

N
∑

t=1

φ0(t)φ0(t)
T

]−1

lim
N→∞

1

N

N
∑

t=1

φ0(t)s(t).
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This is the least squares minimum of:

JIV (ρ) = lim
N→∞

1

N

N
∑

t=1

[s(t) − φ0(t)ρ]
2

= lim
N→∞

1

N

N
∑

t=1

[(

(1 −M)M − (1 −M)2GK(ρ)
)

r(t)
]2
. (5.8)

Since r(t) is white, the frequency domain equivalent by Parseval’s
theorem is given by:

JIV (ρ) =
1

2π

∫ π

−π

∣

∣

∣
(1 −M)M − (1 −M)2GK(ρ)

∣

∣

∣

2

dω, (5.9)

where, for the ease of notation, e−jω has been omitted from the
arguments of M , G and K(ρ). It is clear that JIV (ρ) is equivalent
to J(ρ) in (2.6).

If the instruments are generated using a second experiment, the
estimate is consistent. However, the variance of this estimate is rela-
tively large. In order to reduce the variance, it is suggested in [9] to
generate the instruments by simulating an identified model. In case
C1, this does not affect the consistency. In case C2 it does affect
convergence. The IV solution in (5.7) is the minimizer of JIV (ρ) only
if the model is identified correctly, i.e. Ĝ = G. If this is not the case,
the resulting estimate does not converge to ρ0.

5.1.3 Identifying the inverse of the controller using PEM

Since the output s(t) is not affected by noise, identification of the in-
verse of the controller, K−1(ρ), is a standard identification problem.
In [71], the use of PEM methods to identify K−1(ρ) is proposed. The
error is constructed using the VRFT scheme and given by:

εi(t, ρ) =
Li

M(1 −M)

(

K−1(ρ)s(t) − yc(t)
)

= Li

(

K−1(ρ) − (K∗)−1
)

r(t) − Li

M(1 −M)
ỹc(t), (5.10)

where Li is an appropriate filter. The noise filter is thus given by
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H∗
i =

Li

M(1 −M)
Hỹ (5.11)

Case C1, K∗ ∈ {K(ρ)}

The gradient of εi(t, ρ) is given by:

ψ(t) =
dεi(t, ρ)

dρ
= −Liβ(q−1)

K(ρ)2
r(t), (5.12)

where β(q−1) is defined in (2.8). If a model structure is used that
identifies a noise model H(η) such that H∗

i ∈ {H(η)}, the covariance
matrix is given by [54]:

Pi = σ2

[

lim
N→∞

1

N

N
∑

t=1

[

1

H∗
i

ψ(t)

][

1

H∗
i

ψ(t)

]T
]−1

(5.13)

Replacing H∗
i and ψ(t) by the expressions of (5.11) and (5.12) gives:

Pi = σ2C−1
1 = Pp (5.14)

where Pp defined in (5.1) corresponds to the Cramér-Rao bound.
Remarks:

• The linear controller structure defined in (2.7) now leads to a
non-convex optimization problem.

• The inverse of the controller K−1(ρ) needs to be stable.

Case C2, K∗ /∈ {K(ρ)}

In this case, bias shaping is again essential for the quality of the
controller. The following analysis follows the analysis of Section 2.3.
Let the identification criterion for estimation of the inverse of the
controller be defined as

Ji(ρ) =
1

N

N
∑

t=1

[H−1(η, ρ)εi(t, ρ)]
2, (5.15)

where εi(t, ρ) is defined as (5.10) and H(η, ρ) is the noise model. If
no measurement noise is present, the identification criterion is given
by:
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Ji(ρ) =
1

N

N
∑

t=1

[

H−1(η, ρ)Li

(

1

K(ρ)
− 1

K∗

)

r(t)

]2

. (5.16)

This corresponds to the transfer function in J(ρ) of (2.6) if

H(η, ρ)−1Li = K(ρ)M(1 −M).

However, if the measurements are affected by noise, substitution of
H(η, ρ)−1Li by K(ρ)M(1 −M) gives

Ji(ρ) =

1

N

N
∑

t=1

[

K(ρ)M(1−M)

(

1

K(ρ)
− 1

K∗

)

r(t)−K(ρ)(1−M)2v(t)
]2
.

In this case, the controller parameters appear in the noise term, as
was the case for the PEM in Section 2.3 and limN→∞ ρ̂ 6= ρ0.

In [71], the use of a different filter Li = M2/G that depends on
the unknown plant G is proposed. Clearly Li is unknown and only
an estimate can be used. The resulting criterion, if G is available,
would be

Ji(ρ) =

∥

∥

∥

∥

(1 −M)M

[

K∗

K(ρ)
− 1

]∥

∥

∥

∥

2

2

.

This criterion does not correspond to J(ρ). In [9], the quality of the
approximation J(ρ) is established, the quality of Ji(ρ) remains an
open question.

Remark: According to [29], VRFT can be interpreted as identi-
fication of a directly parameterized plant model using a prefiltering
approach. In this direct parameterization, the plant model is param-
eterized as

G(ρ) =
M

(1 −M)K(ρ)
.

The corresponding prediction error is given by

εg(t, ρ) = Lg

(

M

(1 −M)K(ρ)
r(t) − y(t)

)

=
Lg

(1 −M)2
(

K−1(ρ)s(t) − yc(t)
)

.
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If this error is compared to εi(t, ρ) in (5.10), it is easily seen that
both errors are equivalent if

Lg = Li
1 −M

M
.

Estimating a directly parameterized plant model is thus equivalent to
estimating the inverse of the controller. Consequently, the Cramér-
Rao bound can be reached in Case C1. If, in Case C2, the param-
eters are estimated using a PEM, the estimates do not converge to
the optimal parameters.

5.1.4 Correlation approach

The use of the correlation approach to deal with the effect of noise has
been proposed in Chapter 2. It is shown that the correlation criterion
JN,l1(ρ) of (2.31) converges asymptotically to J(ρ). The estimate is
therefore consistent in Case C1 and converges asymptotically to ρ0

in Case C2.
In Case C1, the accuracy of the estimate follows from standard

results for extended instrumental variable methods [75]. The covari-
ance matrix for the correlation approach is given by:

Pc = σ2(QTQ)−1QTSQ(QTQ)−1 (5.17)

where

Q = lim
N→∞

1

N

N
∑

t=1

E{ζ(t)φT (t)} = lim
N→∞

1

N

N
∑

t=1

ζ(t)φT
0 (t)

S = lim
N→∞

1

N

N
∑

t=1

[H∗ζ(t)][H∗ζ(t)]T .

The estimate is consistent, but a bias exists when a finite number of
data is used for the estimate, as shown in Section 2.4.3. The bias is
given by (2.44). For a finite number of data, the design variable l1
leads to a trade-off between the bias due to noise and the difference
J̃N,l1(ρ) − J(ρ).
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5.1.5 Periodic errors-in-variables approach

The identification problem shown in Figure 2.4 can be seen as a
specific case of an errors-in-variables problem. There is no funda-
mental identifiability problem, and the identification is a lot simpler
than the standard errors-in-variables (EIV) problem, but techniques
developed for EIV problems can be applied to deal with the measure-
ment noise. In particular, the method proposed in [73] is considered,
which takes advantage of the periodicity of the reference signal. The
method uses an extended IV method.

Assume that r(t) satisfies A5. The regression vector φj(t) in
period j is defined as :

φj(t) = φ0(t) + φ̃j(t), t = 1, . . . , Np, (5.18)

where 1 6 j 6 np and φ̃j(t) is the noise contribution to the regression
vector in period j. ζj(t) denotes the instrumental vector for period
j, defined as:

ζ1(t) = [φT
2 (t) . . . φT

np
(t)]T

ζ2(t) = [φT
3 (t) . . . φT

np
(t)φT

1 (t)]T

...

ζj(t) = [φT
j+1(t) . . . φ

T
np

(t)φT
1 (t) . . . φT

j−1(t)]
T

(5.19)

Define the matrices:

ζ̄(t) = [ζ1(t) . . . ζnp
(t)]

φ̄(t) = [φ1(t) . . . φnp
(t)]

(5.20)

and the vector
s̄(t) = [s1(t) . . . snp

(t)]T (5.21)

where sj(t) is the output of K∗ at time t within period j:

sj(t) = s(t+ (j − 1)Np).

The solution of the extended IV method proposed in [73] is then
given by:

ρ̂ = (R̂T R̂)−1R̂T r̂ (5.22)
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where

R̂ =
1

N

Np
∑

t=1

ζ̄(t)φ̄T (t) =
1

N

np
∑

j=1

Np
∑

t=1

ζj(t)φ
T
j (t)

r̂ =
1

N

Np
∑

t=1

ζ̄(t)s̄T (t) =
1

N

np
∑

j=1

Np
∑

t=1

ζj(t)sj(t)

(5.23)

Case C1, K∗ ∈ {K(ρ)}

In [73], it is assumed that the measurement noise within different
periods is uncorrelated. If the scheme of Figure 2.4 is used to generate
s(t) and φ(t), if the input is periodic and A1-A2 are valid, then this
assumption is not met. Even if the measurement noise v(t) is white,
i.e. Hv = 1, ỹc(t) is not white sinceHỹ = (1−M)2Hv. Consequently,
the measurement noise within different periods is correlated. The
following theorem is an extension of the results of [73].

Theorem 5.1 Assume that A1,A2 and A5 are satisfied and that
r(t) is persistently exciting of order nρ. Then, the estimate ρ̂ of
(5.22) converges w.p.1 to ρ0 as Np → ∞ and the asymptotic covari-

ance matrix of the estimation error
√
N(ρ̂ − ρ0) for (5.22) is given

by:

Peiv = σ2R−1
0

(

C2 +
C3

np − 1

)

R−1
0 , (5.24)

where C2 is defined as in (5.6) and

C3 = E
{

[H∗φ̃j(t)][H
∗φ̃j(t)]

T
}

. (5.25)

Proof: The main idea of the proof is that, as Np → ∞, the
noise within different periods is uncorrelated. The proof is given in
Appendix A.5.

Note that the definition of C3 corresponds to the definition in (5.6),
with φ̃2 replaced by φ̃j and, if the characteristics of the noise are
the same, these matrices are equivalent. It is shown in [73] that the
achieved variance Peiv is optimal in the class of extended IV methods.
As the number of periods np → ∞, Peiv → σ2R−1

0 C2R
−1
0 . This
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variance corresponds to the optimal variance that can be achieved
when no noise model is identified, Popt = σ2R−1

0 C2R
−1
0 . Note that

in standard identification problems, if the input is noise free and the
output is affected by white noise filtered by H∗ defined in (5.3), this
variance would be achieved for the output error structure [54]. As
the number of periods np → ∞, the variance thus converges to this
optimal variance, Peiv → Popt.

Case C2, K∗ /∈ {K(ρ)}

The estimate in (5.22) is the optimum of

Jeiv(ρ) = ‖r̂ − R̂ρ‖2
2. (5.26)

Define

r0 = lim
Np→∞

1

Np

Np
∑

t=1

φ0(t)s(t), (5.27)

and note that, for periodic data, R0 is equivalent to

R0 = lim
Np→∞

1

Np

Np
∑

t=1

φ0(t)φ
T
0 (t). (5.28)

The matrix R̂ converges to

lim
Np→∞

R̂ = [R0 . . . R0]
T . (5.29)

Equivalently
lim

Np→∞
r̂ = [r0 . . . r0]

T
, (5.30)

and

lim
Np→∞

Jeiv(ρ) =

∥

∥

∥

∥

∥

∥

∥







r0
...
r0






−







R0

...
R0






ρ

∥

∥

∥

∥

∥

∥

∥

2

2

= (np − 1) ‖r0 −R0ρ‖2
2 .

(5.31)
Assume A1, A2, A5 and Φr(ωk) = 1 for ωk = 2πk/Np and k =
0, . . . , Np −1. Note that this signal can be generated as a multi-sine,
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or as a PRBS signal with an offset. Since R0 is square and has full
rank, the optimum of this criterion is given by

lim
Np→∞

ρ̂ = R−1
0 r0. (5.32)

This is the solution of the following least-squares criterion

R−1
0 r0 = arg min

ρ∈DK

lim
Np→∞

1

Np

Np
∑

t=1

(s(t) − φ0(t)ρ)
2.

It then follows from (5.8) and (5.9) that the minimizer of Jeiv(ρ)
converges to ρ0 in case C2.

5.2 Comparison of data-driven approaches

5.2.1 Asymptotic accuracy

Case C1, K∗ ∈ {K(ρ)}

Under assumption C1, the following can be concluded:

• The Cramér-Rao bound can be achieved with a PEM when a
tailor-made parameterization is used. The noise-model needs to
be identified correctly for consistency, in contrast to the standard
identification problem.

• The Cramér-Rao bound can also be achieved when identifying
the inverse of the controller. In this case, the noise-model does
not affect consistency.

• The Cramér-Rao bound can also be achieved by using optimal
instrumental variables.

These methods lead to a non-convex optimization problem (also for
a linearly parameterized controller). Convergence to the global op-
timum cannot in general be guaranteed. Furthermore, the inverse of
the controller needs to be stable.

The correlation approach and the errors-in-variables approach
lead to a convex optimization when the controller is parameterized
as in (2.7). No noise model is identified.
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• The errors-in-variables approach is optimal, as the number of
periods np → ∞, i.e. Peiv → Popt.

• The variance expression for the correlation method is difficult to
analyze. It can be shown, under some specific hypotheses, that
the variance of an extended IV tends to the optimal variance [75],
but this is not the case for the general identification problem.
The design parameter l1 affects the bias with respect to noise for
a finite number of data.

To conclude, under assumption C1, the Cramér-Rao bound can be
achieved. Since the noise model does not affect consistency when
the inverse of the controller is identified, identifying the inverse of
the controller should be prefered over the use of a PEM approach
to identify the controller itself. If the inverse of the controller is
unstable, the best variance achievable, Popt, is achieved using the
errors-in-variables approach, when np → ∞.

Case C2, K∗ /∈ {K(ρ)}

Assumption C1 is not compatible with one of the main motivations
for direct controller tuning, namely the tuning of controllers of lim-
ited order. If the order of the controller is fixed beforehand, and the
controller minimizing a 2-norm is sought, C1 is violated per defini-
tion and case C2 needs to be considered. It is shown in Section 2.3
that, in this case, the estimate by PEM does not converge asymp-
totically to ρ0. In Section 5.1.3, it is shown that identification of the
inverse of the controller also does not converge to the optimal solu-
tion. It is thus necessary to resort to the statistically less efficient
methods using (extended) instrumental variables.

In Case C2, frequency weighting is essential. Since the identi-
fication of a noise model affects the frequency weighting, no noise
model can be used when bias shaping is required. If the reference
signal r(t) can be chosen, a periodic signal with many periods can be
applied and the EIV method of the correlation approach can be used
to identify the controller parameters. If the reference signal cannot
be chosen arbitrarily and non-periodic data or only a few periods of
periodic data are available, the correlation approach can be used.

To conclude, in case C2, the price to pay for convergence is the
use of statistically less efficient methods, since no noise model can be
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used to improve the estimate. The achieved control objective J(ρ̂)
depends on both the variance and the bias error, and this mean-
square-error of the criterion depends strongly on the nature of the
problem, i.e. the reference signal r(t), the noise spectrum and the
distance between K∗ and K(ρ).

5.2.2 Numerical example

The different methods discussed above are tested in simulation on the
flexible transmission system proposed as benchmark in [49]. This ex-
ample was used in [9,71] to illustrate the direct data-driven controller
tuning approach. In Section 3.6.2, a minimum-phase model of this
same plant was used.

The plant is given by the discrete-time model G(q−1)

G(q−1) =
0.283q−3 + 0.507q−4

1 − 1.418q−1 + 1.589q−2 − 1.316q−3 + 0.886q−4
.

The controller structure is given as

K(ρ) =
ρ1 + ρ2q

−1 + ρ3q
−2 + ρ4q

−3 + ρ5q
−4 + ρ6q

−5

1 − q−1

PRBS signals with unity amplitude are used as input to the
system, r(t). The output of the plant is disturbed by zero-mean
white noise. The first periods, i.e. from zero initial state, are
used in the PEM method and when identifying the inverse of the
controller. For the correlation approach and the errors-in-variables
method, a periodic signal of the same length is used. Since r(t) is
a PRBS signal, the extended instruments of (2.29) can be taken as
ζ(t) = [r(t), r(t − 1), . . . , r(t − l1)]

T . In the following, l1 = 25, for
which J̃N,l1(ρ) is a good approximation of J(ρ).

Results are given for different period lengths Np and an increasing
number of periods np. A Monte-Carlo simulation with 100 experi-
ments is performed, using a different noise realization for each ex-
periment, for a signal-to-noise ratio (SNR) of 100 and of 10 in terms
of variance. The noise realizations are the same for all methods.
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Table 5.1. Mean values for the achieved performance J(ρ), for M1, dif-
ferent period lengths Np and different number of periods np.

Np = 63, np = 16 Np = 127, np = 8 Np = 127, np = 12
SNR 100 10 100 10 100 10

PEM 0.01240 0.3008 0.00730 0.2629 0.00729 0.2645
Inv 0.00466 0.2929 0.00324 0.0255 0.00227 0.0110
CbT 0.00784 0.0295 0.00643 0.0244 0.00545 0.0202
EIV 0.00676 0.0643 0.00558 0.0499 0.00472 0.0405

Case C1, K∗ ∈ {K(ρ)}

The reference model is defined as

M1(q
−1) =

K(ρ0)G

1 +K(ρ0)G
(5.33)

with

ρ0 = [0.2045 − 0.2715 0.2931 − 0.2396 0.1643 0.0084]T

The optimal controller K(ρ0) ∈ {K(ρ)} and the objective can be
achieved. The PEM approach with a tailor-made parameterization
has not been implemented. Instead, the Box-Jenkins structure is
used, which should theoretically be consistent if the order of the noise
model is sufficiently large. The inverse of the controller is identified
using the Box-Jenkins structure (Inv).

The results are given in Table 5.1. For a SNR of 100 and N >
1000, the asymptotic variance expressions of Sections 5.1.1-5.1.5 are
assumed to be applicable. For this SNR, estimation of the inverse is
efficient, as expected. The error for the correlation approach (CbT)
and the periodic errors-in-variables approach (EIV) is about 2 times
larger than that of the identification of the inverse of the controller.
However, the PEM does not perform as expected. The estimate
of the noise model is not accurate, therefore the estimate of the
controller is biased. Although this method is consistent, it is not
efficient for a finite number of data. A tailor-made parameterization
would probably perform better. The EIV approach is more efficient
than the correlation approach.
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For a smaller SNR of 10, estimation of the inverse of the controller
is not as efficient as expected. For such an important noise level,
the non-convex optimization does not always converge to the global
optimum. CbT is more efficient than EIV, which was not the case
for a SNR of 100. For a finite number of data, both the CbT and the
EIV estimates are biased. The bias depends on the signal-to-noise
ratio and, for CbT, on l1 as shown in (2.44). It can be shown that
the bias of the EIV estimate depends on the number of periods np.
In this example, EIV is more efficient for low noise levels. For a SNR
of 10, the bias of the EIV estimate is larger than the bias of the CbT
estimate and CbT is more efficient.

Case C2, K∗ /∈ {K(ρ)}

The control objective is defined by the closed-loop reference model

M2(q
−1) =

q−3(1 − α)2

(1 − αq−1)2
,

with α = 0.606. In this case K∗ /∈ {K(ρ)} and the objective can-
not be achieved. However, this problem can be considered well-
defined. Even though the optimal controller cannot be found, the
error M −K(ρ)G(1−M) can be made small, and the optimal fixed-
order controller K(ρ0) achieves good closed-loop performance. The
results are given in Table 5.2.

The results for the estimation of the inverse are not acceptable,
even though the distance between K(ρ) and K∗ can be made rela-
tively small. It seems that using standard PEM algorithms a local
optimum is found for this specific problem. The estimate of the con-
troller using PEM does not converge asymptotically to the optimal
controller, and the performance of the converging estimates CbT and
EIV is better. CbT and EIV give again similar performance.

5.3 Model-based versus data-driven model

reference control

In Section 1.2, model-based approaches are defined as a controller
design approach where two optimizations are used, one in the iden-
tification step and a second one in the controller design. According



112 5 Accuracy of non-iterative model reference control

Table 5.2. Mean values for the achieved performance J(ρ), for M2.

Np = 63, np = 16 Np = 127, np = 8 Np = 127, np = 12
SNR 100 10 100 10 100 10

PEM 0.1587 0.2948 0.0791 0.2807 0.0793 0.2808
Inv 30.96 61.74 32.97 17.98 32.08 20.27
CbT 0.0754 0.0940 0.0744 0.0852 0.0742 0.0817
EIV 0.0748 0.1493 0.0743 0.1280 0.0741 0.1129

to this definition such techniques can be regarded as indirect. Data-
driven approaches are defined in Section 1.2 as techniques where the
data is used to directly minimize a control criterion. Such approaches
thus use only one optimization.

The use of only one optimization is expected to be advantageous
firstly because no information of the plant is lost in the interme-
diate optimization. Secondly, a direct estimate is expected to be
more accurate for a finite number of data. Assume that a parameter
estimator is available, which achieves the Cramér-Rao bound for a
finite number of data. If this estimator is used to directly estimate
the controller, the accuracy of the controller parameters is equal to
the Cramér-Rao bound. If this same estimator is used to estimate
a plant model, the accuracy of the model parameters is equal to
the Cramér-Rao bound. The controller parameters calculated using
this model will achieve the Cramér-Rao bound asymptotically, but
the finite-data-length estimate achieves this bound only if the map-
ping from the model to the controller is linear. Examples where the
indirect approach is not optimal are easily constructed, see for ex-
ample [45]. A model-based approach can thus at best achieve the
same performance as an optimal direct approach.

Clearly, this result holds only if the data-driven approach is op-
timal for finite data length, and none of the methods discussed in
this thesis is claimed to be optimal for a finite number of data. In
this section, non-iterative data-driven controller tuning is compared
to an indirect method. The characteristics of the data-driven ap-
proaches as presented in Section 5.1 and Section 5.2 are compared
to a model-based approach that uses two distinct optimization steps.
Unfortunately, analysis for finite data length is not possible with the
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existing tools, and the accuracy analysis presented in this chapter is
asymptotic.

Many different model-based techniques have been developed. If
a parametric model is used, the order of the controller depends in
general on the order of this model. Furthermore, the achieved per-
formance depends strongly on the identification approach that is
used and the resulting characteristics and amount of undermodeling.
In this section, a model-based solution for fixed-order controllers is
proposed, which is directly comparable to the data-driven approach
treated in this thesis. The proposed approach is based on the invari-
ance principle for maximum-likelihood estimators. Undermodeling
is avoided by identifying a full-order model, which is then used for
controller design. It has been shown that this specific indirect ap-
proach is optimal in the context of system identification [80]. Note
that this approach, which is not a standard model-based approach,
is based on the results of Chapters 2 and 3.

It is shown that the model-based approach achieves the same
asymptotic accuracy as some of the data-driven methods described
in Section 5.1. It is also shown that, even though the data-driven
approaches are not optimal for a finite number of data, the achieved
accuracy for finite data length can be better than the accuracy of an
optimal model-based approach. A numerical example is included to
illustrate these finite-sample properties.

5.3.1 Model-based model reference control

If a model Ĝ of the plant G is available, the approximate model
reference problem with guaranteed stability, as defined in Definition
3.1, can be approximated using this model. If, for example, the plant
G is stable and minimum phase, (3.5) can be approximated by:

ρ̂ = arg min
ρ

∥

∥F (1 −M)[M−K(ρ)(1 −M)Ĝ
∥

∥

subject to

‖M −K(ρ)(1 −M)Ĝ‖∞ 6 δN

(5.34)

As with the data-driven case, stability can be guaranteed only if the
modeling errors are taken into account.
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In the following, accuracy of the unconstrained problem is stud-
ied. Assume that the plant G is stable. The user-defined filter is
fixed as F = 1 and the structure of the controller is fixed as K(ρ),
according to (2.7).

In many standard techniques for model reference control, the or-
der of the controller depends on the order of the model and these
techniques can therefore not be used to calculate a fixed-order con-
troller with a predefined structure. For the design of fixed-order
controllers, the use of non-parametric frequency models has been
proposed, for example in [34]. If a parametric model is available, a
simulated output sequence can be generated. This sequence can then
be used to approximate J(ρ). This approach has also been used in
model reduction [79, 80].

In the following, a high-order parametric model with an FIR
structure is used and an output sequence is simulated to calculate
the optimal controller. The data is assumed to be periodic. In this
case an FIR model of order Np can be considered as a full-order
model. It will be shown that the resulting estimate of the controller
parameters is indeed consistent. Furthermore, an FIR estimator is
a maximum-likelihood estimator if the noise is white and, accord-
ing to [29], the use of this model in further calculations does not
jeopardize the statistical efficiency.

5.3.2 Controller tuning using a full-order FIR model

Assume that the plant G is stable and that an open-loop experiment
has been performed, where the data satisfies A1-A2 and A5-A6.
The signals r(t) and y(t) = Gr(t) + v(t) are available (note that the
exact same signals are used in the data-driven approach for stable
system, see Section 2.4.1). Define the response of the plant G to a
periodic signal with a period of length Np as

gper(t) = g(t) +

∞
∑

i=1

g(t+ iNp), t = [0, . . . , Np − 1].

where g(t) is the impulse response of G. Define

θ0 = [gper(0) . . . gper(Np − 1)]T
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and note that y(t) = ψT
θ (t)θ0 + v(t), where

ψθ(t) = [r(t) . . . r(t−Np + 1)]T .

An FIR estimate of G of length Np is given by:

θ̂ =

[

1

N

N
∑

t=1

ψθ(t)ψ
T
θ (t)

]−1

1

N

N
∑

t=1

ψθ(t)y(t)

=

[

1

N

N
∑

t=1

ψθ(t)ψ
T
θ (t)

]−1

1

N

N
∑

t=1

ψθ(t)
(

ψT
θ (t)θ0(k) + v(t)

)

= θ0 +

[

1

N

N
∑

t=1

ψθ(t)ψ
T
θ (t)

]−1

1

N

N
∑

t=1

ψθ(t)v(t)

(5.35)

Note that due to periodicity

θ̂ = θ0 +

[

1

N

N
∑

t=1

ψθ(t)ψ
T
θ (t)

]−1
1

N

N
∑

t=1

ψθ(t)v(t)

= θ0 +

[

1

Np

Np
∑

t=1

ψθ(t)ψ
T
θ (t)

]−1

1

Np

Np
∑

t=1

ψθ(t)
v(t) + v(t+Np) · · · + v(t+ (p− 1)Np)

np

(5.36)

Define

vm(t) =
v(t) + v(t+Np) · · · + v(t+ (p− 1)Np)

np
. (5.37)

Clearly vm(t) → 0 as np → ∞, and as the number of periods tends
to infinity, limnp→∞ θ̂ = θ0.

The excitation signal r(t) and the model Ĝ are now used to gen-
erate a simulated output sequence, ŷ(t) = Ĝr(t):
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ŷθ(t) = ψθ(t)
T θ̂

= ψθ(t)
T θ0 + ψT

θ (t)





1

Np

Np
∑

t=1

ψθ(t)ψ
T
θ (t)





−1

1

Np

Np
∑

t=1

ψθ(t)vm(t)

= Gr(t) + ỹθ(t) (5.38)

Define the following vectors

ỹθ = [ỹθ(1) . . . ỹθ(Np)]
T ,

v = [vm(1) . . . vm(Np)]
T

(5.39)

and the matrix
Ψ = [ψθ(1) . . . ψθ(Np)]. (5.40)

The noise contribution of the simulated output ŷθ(t) can then be
written as

ỹθ = ΨT
[

ΨΨT
]−1

Ψv (5.41)

If Assumption A6 is satisfied, Ψ is a square invertible matrix and
consequently

ỹθ = ΨTΨ−TΨ−1Ψv = v (5.42)

This simulated output can be used to minimize the approximate
model reference criterion:

ρ̂θ = arg min
ρ

1

Np

Np
∑

t=1

(

s(t) −K(ρ)(1 −M)2ŷθ(t)
)2

= argmin
ρ
Jm(ρ) (5.43)

Note that the sum over only one period is taken. Since the model is
defined on Np FIR coefficients, the simulated output of consecutive
periods is identical. The error can be written as:

s(t) −K(ρ)(1 −M)2ŷθ(t) = s(t) − φT
θ (t)ρ, (5.44)

where the regression vector φθ(t) is given by:

φθ(t) = β(1 −M)2ŷθ(t) = β(1 −M)2Gr(t) + β(1 −M)2vm(t)

, φ0(t) + φ̃θ(t). (5.45)
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The minimizer of (5.43) is given by

ρ̂θ =

[

1

Np

Np
∑

t=1

φθ(t)φ
T
θ (t)

]−1
1

Np

Np
∑

t=1

φθ(t)s(t) (5.46)

Theorem 5.2 Assume that A1, A5 and A6 are satisfied, that
Np > nρ, the number of controller parameters, and that (1 −M)2G

has no zero on the imaginary axis. Then, if θ̂ is estimated according
to (5.35) and ρ̂θ according to (5.46),

lim
np→∞

ρ̂θ = ρ0,w.p.1

Proof: In Case C1, the noise-free signal s(t) can be written as
s(t) = φT

θ (t)ρ0 − φ̃θ(t)ρ0 and the estimation error is given by

ρ̂θ − ρ0 = −
[

1

Np

Np
∑

t=1

φθ(t)φ
T
θ (t)

]−1
1

Np

Np
∑

t=1

φθ(t)φ̃
T
θ (t)ρ0 (5.47)

It follows from (5.36) that limnp→∞ θ̂ = θ0, w.p.1 [54]. A continuous
function of this variable f(θ̂) converges w.p.1 to f(θ0) ( [63], page
450). Consequently

lim
np→∞

φ̃θ(t) = 0, w.p.1,

the regressor converges to the noise-free regressor,

lim
np→∞

φθ(t) = φ0(t), w.p.1,

and

lim
np→∞

1

Np

Np
∑

t=1

φθ(t)φ
T
θ (t) = R0, w.p.1, (5.48)

with R0 defined as in (5.28). This matrix has full rank since A6 is
satisfied and Np > nρ. It follows that limnp→∞(ρ̂θ − ρ0) = 0,w.p.1.,
which completes the proof.

Theorem 5.2 states that the model-based estimate ρ̂θ is consistent.
However, for a finite number of data, E{ρ̂θ − ρ0} 6= 0, i.e. the
estimate based on a finite number of data is biased. Note that this
is also the case for the data-driven EIV and CbT estimates.
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5.3.3 Asymptotic accuracy

The accuracy of the model-based estimate ρ̂θ of (5.46) clearly de-
pends on the accuracy of the estimate θ̂ defined in (5.35). According
to the invariance principle of maximum-likelihood estimation, see
Section 1.2, ρ̂θ is a maximum likelihood estimator of ρ0 if θ̂ is a
maximum likelihood estimator of θ0. In the following, it is therefore
assumed that the measurement noise satisfies:

A9 The measurement noise v(t) is white, i.e. Hv = 1.

If the measurement noise satisfies A9, the FIR estimate θ̂ is a
maximum likelihood estimator, whose variance corresponds to the
Cramér-Rao bound.

The estimate ρ̂θ is thus a ML estimate if A9 is satisfied. This esti-
mate achieves asymptotically the Cramér-Rao bound. The Cramér-
Rao bound for the function g(θ) of the ML estimate θ is given by

∂g(θ)

∂θ
Pθ
∂g(θ)

∂θ
,

where Pθ is the Cramér-Rao bound for the estimate θ̂ [45]. The
best variance that can be achieved thus depends on the function
g(θ). Results from asymptotic analysis in system identification can
be used to calculate the Cramér-Rao bound for the function g(θ) as
defined in (5.43).

Proposition 5.1 Assume that A1, A2, A5, A6 and A9 are satis-
fied, that Np > nρ and that (1−M)2G has no zero on the imaginary

axis. Then, if θ̂ is estimated according to (5.35) and ρ̂θ according
to (5.46),

√
N(ρ̂θ − ρ0) is asymptotically normally distributed with

covariance matrix Pm:

Pm = σ2R−1
0 C2R

−1
0 , (5.49)

where C2 is defined in (5.6).

Proof: In Appendix A.6 it is shown that the estimate ρ̂θ satisfies
the assumptions of theorem 9.1 of [54]. The asymptotic variance is
then calculated according to theorem 9.1 of [54].



5.3 Model-based versus data-driven model reference control 119

The function g(θ) as defined in (5.43) corresponds to the filtering
of the error by a unity noise filter, which is comparable to the EIV
and CbT estimates minimizing this same criterion. The asymptotic
variance of the model-based method is equal to the optimal variance
Popt if no noise model is estimated. The asymptotic accuracy of the
estimate using a full-order FIR model is thus equal to the variance
achieved by a data-driven method, if, for example, the errors-in-
variables method of Section 5.1.5 is used and the number of periods
np → ∞.

If another function g(θ) is used, which corresponds to minimizing
Ji(ρ) of (5.16), the Cramér-Rao bound changes accordingly. In this
case the optimization is non-convex and the variance is given by Pi

(5.14). The model-based approach is again asymptotically equivalent
to the data-driven approach.

5.3.4 Numerical example

In the previous section it is shown that the asymptotic accuracy of
the proposed model-based approach is equivalent to that of data-
driven approaches, if the assumptions in Theorem 5.1 are satisfied.
In practice, only a finite number of data is available and expressions
for asymptotic variance are not necessarily accurate for finite data
length. Analysis of the accuracy of estimators for a finite number
of data remains a challenging topic for research. Interesting results
have appeared recently [12, 17], but these results cannot be used to
compare the estimators considered here. A numerical example is
therefore used to compare the different approaches.

In practice, not only a finite number of data, but also Case C2
should be considered, where K∗ /∈ {K(ρ)}. However, in Theorem 5.1
Case C1 is assumed, and asymptotic equivalence has been shown in
this case. Case C1 is therefore considered in this numerical example
as well. The model-based estimate of (5.46) is compared to the EIV
and CbT estimates. Asymptotically, these estimates minimize the
same criterion and are therefore comparable. The example of the
flexible transmission system of Section 5.2.2 is used. The model,
reference model and data sets are described in Section 5.2.2. The
results are given in Table 5.3.
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Table 5.3. Mean values for the achieved performance J(ρ), for M1.

Np = 63, np = 16 Np = 127, np = 8 Np = 127, np = 12
SNR 100 10 100 10 100 10

CbT 0.00784 0.0295 0.00643 0.0244 0.00545 0.0202
EIV 0.00676 0.0643 0.00558 0.0499 0.00472 0.0405
MB 0.01042 0.0407 0.01069 0.0438 0.00828 0.0364

For a SNR of 100, the EIV estimate is the most accurate. For a
SNR of 10, CbT is the most efficient. CbT performs better than the
model-based approach (MB) for both noise levels.

In this numerical example, the accuracy achieved with a data-
driven approach is higher than that achieved with the model-based
approach. This result is specific for this example, the plant con-
sidered, the noise levels and the choice of input signal. For other
examples the result might be different. This example simply shows
that a data-driven solution can outperform an optimal model-based
solution.

5.4 Conclusions

Different identification methods that have been proposed for non-
iterative data-driven controller tuning are compared. Two distinc-
tive cases are considered. In the first case, it is assumed that perfect
matching of the reference model is possible, i.e. there is no under-
modeling of the controller. In this case, the Cramér-Rao bound can
be attained when the inverse of the controller is identified. In prac-
tice, however, perfect matching of the reference model is not possible
and undermodeling of the controller needs to be considered. In this
case, only less efficient instrumental variable approaches guarantee
convergence of the estimate to the optimal controller parameters.

The data-driven approach is compared to a model-based approach
that uses two distinct optimizations. A model-based solution for
fixed-order controllers is proposed for comparison. A high-order FIR
model is identified to avoid undermodeling. This model is then used
to calculate the controller. This approach is asymptotically efficient.
In the case without undermodeling, the asymptotic accuracy that
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can be achieved by data-driven approaches is the same as that of
this model-based solution. However, in practice, undermodeling of
the controller should be considered, and the properties of the esti-
mate should be compared for a finite number of data. Unfortunately,
analysis is not possible in this situation. A numerical example shows
that, for finite data length, a data-driven approach can achieve bet-
ter performance than an asymptotically efficient model-based ap-
proach.





6

Conclusions

Summary

This thesis has investigated a non-iterative data-driven model ref-
erence control approach, which is extended with a constraint that
guarantees closed-loop stability. A set of measured open-loop or
closed-loop data is used directly to minimize an approximation of
the model-reference criterion. Straighforward tuning schemes are
proposed that generate an error signal that can be used to identify
the optimal, fixed-order controller. In the resulting identification
problem, the noise affects the input of the controller to be identified
rather than the output as in standard identification problems. The
use of the correlation approach is proposed to deal with the effect of
noise.

Other identification approaches have been proposed in literature
to deal with noise in this specific controller identification problem.
The accuracy of these methods is compared to that of the correlation
approach. It is shown that, if the order of the controller is fixed and a
bias exists between the ideal controller and the optimal controller in
the controller set, (extended) instrumental variable methods provide
convergence to the optimal solution. For comparison, a statistically
efficient indirect model-based approach for fixed-order controllers is
presented. In this method, an optimization is used to identify a plant
model. The controller is then designed using a second optimization
step. The asymptotic properties of this approach are equivalent to
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those of data-driven solutions, which use only one optimization. In
a numerical example, it is shown that a data-driven approach can
achieve better performance than the model-based solution for finite
data length.

Closed-loop stability is guaranteed through the addition of a set
of constraints based on a sufficient condition for stability. These
constraints use an estimate of the infinity norm of an error function.
Stability is guaranteed as the number of data tends to infinity. For
a finite number of data, the estimation error needs to be taken into
account. A non-conservative a posteriori data-driven stability test
is proposed based on similar stability conditions. Again, the infinity
norm of an error function is estimated from the data. If it is not pos-
sible to formulate a bound on the estimation error, the test provides
a clear trade-of between reliability and conservatism.

Conclusions

The method presented in this thesis provides a stabilizing solution for
data-driven controller tuning, thereby eliminating one of the main
drawbacks of such techniques. The proposed stability condition is
applied to correlation-based controller tuning. Note that the stability
condition can be used in model-based model reference control as well
and it can be added to other data-driven approaches, as illustrated
in the example in Chapter 3, where the constraints are integrated in
VRFT.

The proposed constrained optimization guarantees a stabilizing
solution as the number of data tends to infinity. In practice, the num-
ber of available data will be limited, and stability can be guaranteed
only if the estimation error is taken into account. This might seem
restrictive, but the result is equivalent to model-based approaches.
In robust control, stability can be guaranteed only if the plant dy-
namics are contained in the uncertainty set. Clearly, quantification
of the estimation error of the stability constraints remains a chal-
lenging problem. The bounds proposed in Section 3.5 use a priori
information on the noise and on the quantity that is estimated, and
these hypotheses need to be validated.

Data-driven controller tuning approaches have been developed
to avoid the problem of undermodeling encountered in practice in
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model-based approaches. It is expected that a data-driven approach
can achieve better performance than a model-based approach, if only
a finite number of data is available. However, most of the data-driven
approaches proposed in literature only consider consistency. The
analysis in this thesis shows that asymptotically optimal variance can
be achieved in a data-driven approach. As expected, this asymptotic
accuracy is equivalent to the asymptotic accuracy achieved by an
optimal model-based approach. However, for finite data length data-
driven approaches can achieve better performance than an optimal
model-based approach. This has been demonstrated by a simulation
example.

One can argue whether the proposed data-driven approach is
model-free or not. One can for example argue that the proposed
constraints for stability use an implicit frequency-domain model of
the plant. One can also argue whether frequency-domain methods
can be considered data-driven or not. The terms model-based and
data-driven are ambiguous. The definitions used throughout this the-
sis distinguish data-driven methods, which use one optimization to
calculate the optimal controller parameters directly from data, from
model-based methods, which are indirect. This distinction between
direct and indirect approaches might be more valuable than the dis-
tinction between data-driven and model-based methods, even though
the terms direct and indirect can also be considered ambiguous. Un-
der certain hypotheses, optimal direct and indirect approaches are
asymptotically equivalent. However, a direct approach can outper-
form an indirect approach if only a finite number of data is available.

This thesis has only considered the accuracy of the control cri-
terion. However, for stability, the accuracy of the estimate of the
stability condition should be optimized. In the proposed direct data-
driven approach, the different requirements for performance and sta-
bility appear naturally. Both the control criterion and the stability
condition are a function of the control parameters and the accuracy
of each of these estimates can be optimized separately. In practice,
other control criteria or constraints can be of interest. In a direct
approach, the quality of the estimate needed for each objective can
be optimized separately, directly with respect to the controller pa-
rameters.
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Perspectives

Model-based approaches have been developed for years, and solu-
tions exist for many different control objectives, physical constraints
and robustness issues. This is not the case for data-driven ap-
proaches. The stability constraints proposed in this thesis are a
first and necessary step towards the development of reliable data-
driven approaches. Solutions that can deal with input constraints,
robustness issues or performance guarantees would be valuable.

The comparison between model-based (indirect) and data-driven
(direct) approaches in this thesis considers a simple case and this
comparison is obviously limited. A more complete comparison re-
quires accurate expressions for variance and bias, also for a finite
number of data. Progress has been made in this field, but many
questions remain unanswered.

Recently, much attention has been given to the design of ex-
periments in the context of system identification. It is shown that
the control performance can be improved when the experiment for
system identification is designed specifically for the intended con-
trol objective. An identification objective is defined to estimate the
model parameters, but this intermediate objective is linked to the
end objective, which is control performance. Study of the design of
experiments in a direct setting would be interesting.

The approach presented in this thesis is compatible with fre-
quency-domain methods. The constraints proposed in [39] can for
example be used to impose robustness margins in a data-driven ap-
proach. Only linear SISO systems are treated in this thesis. Exten-
sions to MIMO systems can be considered. The stability constraint
for closed-loop experiments in Chapter 3 remains valid for MIMO
systems.
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Appendix

A.1 Bias in correlation approach for finite data

length

Equation (2.44) can be derived as follows: eDs
(t) can be written as

eDs
(t) =

∞
∑

k=0

dke(t− k),

with dk the impulse response of Ds. The vector of random variables:

XN =
1√
N

N
∑

t=1

ζ(t)eDs
(t)

converges in distribution to a normal distribution with zero mean
and variance P [54]:

P = lim
N→∞

E
{

XNX
T
N

}

= σ2 lim
N→∞

1

N

N
∑

t=1

E
{

ζ̃(t)ζ̃T (t)
}

,

where

ζ̃(t) =

∞
∑

k=0

dkζ(t+ k)

= Ds(q)[r(t + l1), r(t+ l1 − 1), . . . r(t), r(t − 1), . . . , r(t − l1)]
T
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The diagonal elements of P are equal to σ2RrDs
(0), where RrDs

(τ)
is the auto-correlation function of Ds(q)r(t). The expected value
E {JN,l1(ρ)} can then be expressed as:

E {JN,l1(ρ)} =

E

{

1

N2

N
∑

t=1

ζT (t)[rDd
(t) − eDs

(t)]

N
∑

s=1

ζ(s)[rDd
(s) − eDs

(s)]

}

= E

{

1

N2

N
∑

t=1

ζT (t)rDd
(t)

N
∑

s=1

ζ(s)rDd
(s)

}

− 2E

{

1

N2

N
∑

t=1

ζT (t)rDd
(t)

N
∑

s=1

ζ(s)eDs
(s)

}

+ E

{

1

N2

N
∑

t=1

ζT (t)eDs
(t)

N
∑

s=1

ζ(s)eDs
(s)

}

= J̃N,l1(ρ) − 0 +
1

N
E
{

XT
NXN

}

For large N , the distribution of XN is well approximated by P , and
E {JN,l1(ρ)} can be approximated using this asymptotic distribution:

E {JN,l1(ρ)} = J̃N,l1(ρ) +
1

N
E
{

XT
NXN

}

≈ J̃N,l1(ρ) +
1

N
trace(P ) = J̃N,l1(ρ) +

2l1 + 1

N
σ2RrDs

(0)

Using Parseval’s theorem, this can be expressed as:

E {JN,l1(ρ)} ≈ J̃N,l1(ρ) +
2l1 + 1

N
σ2 1

2π

∫ π

−π

ΦrDs
(ω)dω

= J̃N,l1(ρ) +
σ2(2l1 + 1)

2πN

∫ π

−π

|Ds(e
−jω)|2Φr(ω)dω

Replacing Ds by L(1 −M)K(ρ)Hv and L by (2.33) gives (2.44).

A.2 Proof of Theorem 3.6

The estimation error is given by
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max
ωk

∣

∣

∣

∣

∣

Φ̂rεs
(ωk, ρ)

Φr(ωk)

∣

∣

∣

∣

∣

− δ(ρ)

= max
ωk

∣

∣

∣

∣

∣

Φ̂rεs
(ωk, ρ)

Φr(ωk)

∣

∣

∣

∣

∣

− max
ωk

|∆(e−jωk , ρ)| + max
ωk

|∆(e−jωk , ρ)| − δ(ρ)

6

∣

∣

∣

∣

∣

max
ωk

∣

∣

∣

∣

∣

Φ̂rεs
(ωk, ρ)

Φr(ωk)

∣

∣

∣

∣

∣

− max
ωk

|∆(e−jωk , ρ)|
∣

∣

∣

∣

∣

+

∣

∣

∣

∣

max
ωk

|∆(e−jωk , ρ)| − δ(ρ)

∣

∣

∣

∣

The second part of this error is due to the finite frequency grid, the
first part is due to measurement noise.

Error due to finite frequency grid

The error due to the finite frequency grid can be bounded by
∣

∣

∣

∣

max
ωk

|∆(e−jωk , ρ)| − δ(ρ)

∣

∣

∣

∣

6 max
ω

d|∆(e−jω , ρ)|
dω

ωk+1 − ωk

2

6 max
ω

∣

∣

∣

∣

d∆(e−jω , ρ)

dω

∣

∣

∣

∣

ωk+1 − ωk

2
,

i.e. the error is smaller than the maximal value of the derivative
times half of the distance between two frequency points.

The derivative of ∆ can be bounded as follows, using series con-
vergence results:

∥

∥

∥

∥

d∆(e−jω)

dω

∥

∥

∥

∥

∞

6
Aγ

(1 − γ)2

and

|max
ωk

|∆(e−jωk )| − δ0| 6
Aγ

(1 − γ)2
π

Np
.

Estimation error due to measurement noise

If assumption A5 and A6 are satisfied, the spectral estimate of (3.15)
is equivalent to the empirical transfer function estimate (ETFE):
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∆̂(ωk, ρ) =
Φ̂rεs

(ωk, ρ)

Φr(ωk)
=

∑Np−1
τ=0

1
N

∑N
t=1 r(t − τ)εs(t, ρ)e

−jτωk

∑Np−1
τ=0

1
N

∑N
t=1 r(t − τ)r(t)e−jτωk

(due to periodicity)

=
1
N

∑N
t=1(∆r(t) + (1 −M)K(ρ)v(t))e−jtωk

1
N

∑N
t=1 r(t)e

−jtωk

=
∞
∑

n=0

d(n)e−jnωk +

∑N
t=1(1 −M)K(ρ)v(t)e−jtωk

∑N
t=1 r(t)e

−jtωk

Well known results for the ETFE are therefore applicable to the
estimate ∆̂(ωk, ρ) [54]:

• The estimate ∆̂(ωk, ρ) is consistent at the frequencies ωk =
2πk/Np, k = 0, . . . , Np − 1.

• Asymptotically the variance of ∆̂(ωk, ρ) is given by

σ2
∆ = E

∣

∣

∣
∆̂(ωk, ρ) − E∆̂(ωk, ρ)

∣

∣

∣

2

=
|(1 −M(e−jωk))K(e−jωk , ρ)|2Φv(ωk)

npΦr(ωk)
(A.1)

• The estimatesRe∆̂(ωk, ρ) and Im∆̂(ωk, ρ) are asymptotically un-
correlated.

• The estimates Re∆̂(ωk, ρ) and Im∆̂(ωk, ρ) are asymptotically
jointly normally distributed with variance equal to half of that in
(A.1)

The variance of (A.1) can be bounded as:

σ2
∆ 6

‖(1 −M)K(ρ)‖2
∞ Φv,max

npΦr,min
(A.2)

The estimate ∆̂(ωk, ρ) = Re∆̂(ωk, ρ) + jIm∆̂(ωk, ρ) is unbiased.
However, the constraint in (3.16) is based on its absolute value
|∆̂(ωk, ρ)|. According to [61], page 194,

∣

∣

∣
∆̂(ωk, ρ)

∣

∣

∣
∼ Rice(

1√
2
σ∆, |∆(ωk, ρ)|).
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Unlike the estimate of ∆, the estimate of its absolute value |∆(ωk, ρ)|
is biased. The distribution function of the Rice distribution depends
on the unknown |∆(ωk, ρ)|, and cannot be implemented in the convex
stability constraints. However, a (conservative) result can be used
based on a bound on the error |∆̂(ωk, ρ)−∆(ωk, ρ)|: Re∆̂(ωk, ρ) and
Im∆̂(ωk, ρ) are asymptotically uncorrelated, therefore |∆̂(ωk, ρ) −
∆(ωk, ρ)| has a Rayleigh distribution. The cumulative distribution
function of the Rayleigh distribution of two uncorrelated normally
distributed variables with variance 1

2σ
2
∆ is given by:

F(x) = 1 − e
− x2

2 1
2

σ2
∆ = 1 − e

− x2

σ2
∆

With probability F(x), the error |∆̂(ωk, ρ)−∆(ωk, ρ)| < x and there-
fore |∆(ωk, ρ)| < |∆̂(ωk, ρ)|+x with probability p > F(x). Note that
this last step is conservative.

|∆(ωk, ρ)| < |∆̂(ωk, ρ)| + x < 1 → |∆̂(ωk, ρ)| < 1 − x

Define Φv,max as the maximal value of the spectrum Φv(ωk) at the
frequencies ωk, which can be bounded as Φv,max 6 ‖Hv‖2

∞ σ2. In
order to assure that the constraint is satisfied with probability p,

1 − p = e
− x2

σ2
∆

x =
√

− ln(1 − p)σ2
∆

=

√

− ln(1 − p)
‖(1 −M)K(ρ)‖2

∞ Φv,max

npΦr,min

6 ‖(1 −M)K(ρ)‖∞

√

− ln(1 − p)
‖Hv‖2

∞ σ2

npΦr,min

(A.3)

This completes the proof.

A.3 Proof of Theorem 3.7

The FIR estimation is given by (3.31):
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θ̂ = [ΨΨT ]−1Ψε̄s

Define

v̄∆ = [(1 −M)K(ρ)v(t) . . . (1 −M)K(ρ)v(t+N)]T .

θ̂ can then be written as

θ̂ = d̄per + [ΨΨT ]−1Ψv̄∆

The error in the estimation the H∞ norm is given by

‖∆̂‖∞ − ‖∆‖∞ 6‖∆̂−∆‖∞ = max
ω

|∆̂(e−jω) −∆(e−jω)|

= max
ω

∣

∣

∣

∣

∣

Np−1
∑

t=0

dper(t)e
−jωt + Γ T (e−jω)[ΨΨT ]−1Ψv̄∆ −

∞
∑

t=0

d(t)e−jωt

∣

∣

∣

∣

∣

6max
ω

∣

∣

∣

∣

∣

∣

Np−1
∑

t=0

dper(t)e
−jωt −

∞
∑

t=0

d(t)e−jωt

∣

∣

∣

∣

∣

∣

+ max
ω

∣

∣Γ T (e−jω)[ΨΨT ]−1Ψv̄∆

∣

∣

(A.4)

The last term in this inequality is the error due to measurement
noise. The first part is due to undermodeling.

Estimation error due to undermodeling

The error due to undermodeling can be bounded by

max
ω

∣

∣

∣

∣

∣

∣

Np−1
∑

t=0

dper(t)e
−jωt −

∞
∑

t=0

d(t)e−jωt

∣

∣

∣

∣

∣

∣

= max
ω

∣

∣

∣

∣

∣

∣

Np−1
∑

t=0

(d(t) +

∞
∑

i=1

d(t+ iNp))e
−jωt −

∞
∑

t=0

d(t)e−jωt

∣

∣

∣

∣

∣

∣

= max
ω

∣

∣

∣

∣

∣

∣

Np−1
∑

t=0

∞
∑

i=1

d(t+ iNp))e
−jωt −

∞
∑

m=Np

d(m)e−jωm

∣

∣

∣

∣

∣

∣

(A.5)
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This error can be bounded using series convergence results:

max
ω

∣

∣

∣

∣

∣

∣

Np−1
∑

t=0

∞
∑

i=1

d(t+ iNp))e
−jωt −

∞
∑

m=Np

d(m)e−jωm

∣

∣

∣

∣

∣

∣

6 2

∞
∑

t=Np

|d(t)| 6 2

(

AγNp

1 − γ

)

(A.6)

Error due to measurement noise

In the following, the equivalence of the ETFE and the FIR estimate
will be exploited. First of all, a bound is established for the DFT fre-
quencies. It is then shown that the maximal error over all frequencies
is achieved at one of these DFT frequencies, and that consequently
the bound is valid for all frequencies.

In Appendix A.2, it was established that for the frequencies ωk,
with probability p, the estimation error due to noise error is smaller
than x, where x is defined in (A.3):

At intermediate frequencies the error is given by

∆̂(e−jω) − E{∆̂(e−jω)} = Γ T (e−jω)[ΨΨT ]−1Ψv̄∆.

This is a linear (complex) function of the estimation error θ̂ − d̄per.
Following the reasoning of [32], the variance of the frequency response
function is given by:

V ar{∆̂(e−jω)} =
σ2

N
Γ T (e−jω)PΓ (ejω), (A.7)

where P is the covariance of the estimate θ̂. The FIR estimate is
normally distributed, with zero mean and variance P , where P is
given by [54]

P = [ΨΨT ]−1Sθ[ΨΨ
T ]−1,

where

Sθ = (1 −M(q))K(q, ρ)Hv(q)Ψ(1 −M(q−1))K(q−1, ρ)Hv(q
−1)ΨT .
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Evaluation of this expression requires the noise model Hv to be
known and bounds that use this expression will be difficult to calcu-
late in practice. In the following, a simpler upper bound is defined,
which requires only ‖Hv‖∞ to be known.

A closer look at the variance expression (A.7) shows that the
variance for a specific frequency ω depends on the gain of the matrix
P is the direction of Γ (e−jω), and the 2-norm of this Γ (e−jω). This 2-
norm of Γ (e−jω) is the same for all ω. The variance of the estimate is
thus bounded by the maximal gain of the matrix P , i.e. its maximum
singular value.

The expression for P for periodic signals and an FIR estimate
of length Np is highly structured. The matrices [ΨΨT ] and Sθ are
circulant matrices. This is easily verified. Consider for example a
periodic signal with period length Np = 3. Ψ is then given by:

Ψ =





r(1) r(2) r(3)
r(0) r(1) r(2)
r(−1) r(0) r(1)





Due to periodicity r(0) = r(3), r(−1) = r(2), and

Ψ =





r(1) r(2) r(3)
r(3) r(1) r(2)
r(2) r(3) r(1)





It follows from the characteristic of circulant matrices that, since
Ψ is circulant [ΨΨT ] is circulant, and that [ΨΨT ]−1 and P are also
circulant, see Section 3.4.

The eigenvalues and eigenvectors of the circulant matrix P are
given by (3.22) and (3.23) respectively, see Section 3.4. Further-
more, since multiplications of circulant matrices are also circulant,
the eigenvectors of PTP are also given by (3.23). Since the eigen-
vectors of PTP and P are the same, the maximal gain of P is
achieved in the direction of one of the eigenvectors, which are
the DFT vectors. Note that the DFT vectors are equivalent to
Γ (e−jωk), ωk = 2πk/Np, k = 0, . . . , Np − 1. The singular values
are thus achieved at the frequencies ωk. The maximal gain is thus
achieved at one of these frequencies:
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max
ω

V ar{∆̂(e−jω)} = max
ω

σ2

N
Γ T (e−jω)PΓ (ejω)

= max
ωk

σ2

N
Γ T (e−jωk)PΓ (ejωk) (A.8)

A value for this bound is known through the ETFE and given by
(A.2). The rest of the proof then follows from Appendix A.2.

Remark: According to [14], section 5.4.3, the estimateRe∆̂(ω, ρ)
is correlated with the estimate Im∆̂(ω, ρ), when calculated using the
FIR approach. If these two estimates are correlated, the distribution
of the absolute value does not follow the Rayleigh distribution, used
in the probabilistic bound of (A.3). However, (A.3) is based on the
asymptotic result, which states that the two estimates are asymp-
totically uncorrelated. The use of the Rayleigh distribution thus
introduces an approximation.

A.4 Proof of Theorem 4.3

The proof uses the following lemma.

Lemma A.1 ( [77] p. 253) Let X(n) be an independent random
sequence with constant mean µx and variance σ2

x(n), defined for n 6
1. Then, if

∞
∑

n=1

σ2
x(n)

n2
<∞,

1

n

n
∑

k=1

X(k) → µx, as n→ ∞, w.p.1

The estimate
Φ̂rεs

(ωk, ρ)

Φr(ωk)

can be written as a combination of the spectral estimates of the nc

experiments.
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Φ̂rεs
(ωk, ρ)

Φr(ωk)
=

∑Np−1
τ=0

1
N

∑N
t=1 r(t− τ)εs(t, ρ)e

−jτωk

Φr(ωk)

=

∑Np−1
τ=0

1
N

∑N
t=1 r(t− τ)εs1(t, ρ)e

−jτωk

ncΦr(ωk)
+ . . .

+

∑Np−1
τ=0

1
N

∑N
t=1 r(t − τ)εsnc

(t, ρ)e−jτωk

ncΦr(ωk)

=
1

nc

(

Φ̂rεs1
(ωk, ρ)

Φr(ωk)
+
Φ̂rεs2

(ωk, ρ)

Φr(ωk)
+ · · · + Φ̂rεsnc

(ωk, ρ)

Φr(ωk)

)

Since the noise within different experiments is independent, the es-
timates

Φ̂rεs1
(ωk, ρ)

Φr(ωk)
, . . . ,

Φ̂rεsnc
(ωk, ρ)

Φr(ωk)

are also independent. If Assumptions A1 and A2 are satisfied,

E

{

Φ̂rεs1
(ωk, ρ)

Φr(ωk)

}

= · · · = E

{

Φ̂rεsnc
(ωk, ρ)

Φr(ωk)

}

= ∆(e−jωk)

and the variance of the estimate from each experiment n out of the
nc experiments is bounded and given by (see (A.1)),

σ2
∆(n) = E

∣

∣

∣

∣

∣

Φ̂rεsn
(ωk, ρ)

Φr(ωk)
−∆(e−jωk )

∣

∣

∣

∣

∣

2

=

(

X(ρ)Mn

G −X(ρ)K(1 −Mn)
)2

Φvn
(ωk)

Φr(ωk)
.

Define
σ̄2

∆ , max(σ2
∆(1), σ2

∆(2), . . . , σ2
∆(nc)).

Then,

∞
∑

n=1

σ2
∆(n)

n2
6

∞
∑

n=1

σ̄2
∆

n2
= σ̄2

∆

∞
∑

n=1

1

n2
= σ̄2

∆

π

6
<∞,

and according to Lemma A.1, the estimate Φ̂rεs (ωk,ρ)
Φr(ωk) converges w.p.

1 to its expected value, ∆(e−jωk). This completes the proof.
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A.5 Proof of Theorem 5.1

The estimate of equation (5.22) is consistent if limNp→∞ ρ̂ = ρ0,
w.p.1, where K(ρ0) = K∗. Using (2.19) and (2.20), s(t) can be
written as

s(t) = φT (t)ρ0 −K(ρ0)ỹc(t),

where ỹc(t) is defined in (2.18). Define

q̂ = − 1

Npnp

np
∑

j=1

Np
∑

t=1

ζj(t)K(ρ0)ỹcj
(t),

where ζj(t) is defined in (5.19). The error ρ̂− ρ0 is then given by:

ρ̂− ρ0 = (R̂T R̂)−1R̂T q̂

Consistency is guaranteed if limNp→∞ q̂ = 0 and limNp→∞ R̂ =
enp−1 ⊗R0, where enp−1 = (1 . . . 1)T has dimension (np − 1)× 1 and
⊗ denotes Kronecker product [73]. Convergence of limNp→∞ q̂ →
0,w.p.1 is shown next. Substituting ζj(t) by (5.19) gives:

lim
Np→∞

q̂

= lim
Np→∞

(

− 1

Npnp

np
∑

j=1

Np
∑

t=1

[φT
j+1(t) . . . φ

T
np

(t)φT
1 (t)

. . . φT
j−1(t)]

TK(ρ0)ỹcj
(t)

)

= lim
Np→∞

(

− 1

Npnp

np
∑

j=1

Np
∑

t=1

[φ̃T
j+1(t) . . . φ̃

T
np

(t) φ̃T
1 (t)

. . . φ̃T
j−1(t)]

TK(ρ0)ỹcj
(t)

)

= lim
Np→∞

(

− 1

Npnp

np
∑

j=1

Np
∑

t=1

[(βỹc(j+1)(t))
T . . . (βỹcnp

(t))T (βỹ1(t))
T

. . . (βỹc(j−1)(t))
T ]TK(ρ0)ỹcj

(t)

)

. (A.9)
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According to (A.9), q̂ consists of cross-correlations between βỹc(t)
and K(ρ0)ỹc(t− τ), with τ = Np(j −n), n = [1 . . . j − 1, j+ 1 . . . np].
Note that, if j = 1, n = [j + 1 . . . np] = [2 . . . np] and if j = np,
n = [1 . . . np − 1]. The minimal value for τ that appears in q̂ is thus
τ = Np. Under assumption A2,

lim
Np→∞

1

Np

Np
∑

t=1

β(q−1)ỹc(t)K(q−1, ρ0)ỹc(t− τ)

= β(q−1)Hỹ(q−1)K(q, ρ0)Hỹ(q)Xe(τ), w.p.1, (A.10)

where

Xe(τ) = lim
Np→∞

1

Np

Np
∑

t=1

e(t)e(t− τ) = E{e(t)e(t− τ)},

the autocorrelation of e(t). Note that, throughout this thesis, the
backward shift operator q−1 is used and omitted for convenience. In
(A.10), the shift operator is mentioned explicitly, because both q−1

and q appear. Under assumption A2, Xe(τ) = σ2, for τ = 0 and
Xe(τ) = 0, for τ 6= 0. By definition, K(q−1, ρ0) and K(q, ρ0) are
stable. Hỹ(q), Hỹ(q−1) and β(q−1) are also stable, therefore

lim
Np→∞

1

Np

Np
∑

t=1

βỹc(t)K(ρ0)ỹ
T
c (t− τ) → 0, |τ | → ∞, w.p.1.

Consequently, limNp→∞ q̂ → 0, w.p.1.
Convergence of limNp→∞ R̂ can be shown using similar reasoning

and is omitted here. Validity of (5.24) follows from applying the
proof above to the results of [73], i.e. asymptotically the results
of [73] hold.

A.6 Proof of Proposition 5.1

K(ρ) is linear and uniformly stable on DK and the data set satisfies
condition D1 of [54], p. 249.
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Define J ′
m(ρ) and J ′′

m(ρ) as the first and second derivative with
respect to ρ of Jm(ρ) defined in (5.43). Using (5.43) and (5.44), the
derivatives of Jm(ρ) can be written as

J ′
m(ρ) = − 1

Np

Np
∑

t=1

φθ(t)(s(t) − φT
θ (t)ρ)

J ′′
m(ρ) =

1

Np

Np
∑

t=1

φθ(t)φ
T
θ (t).

According to [54] theorem 9.1, if the estimate ρ̂θ is consistent, if
limN→∞E{J ′′

m(ρ0)} is positive definite, and if

lim
N→∞

√
NE

{

1

Np

Np
∑

t=1

[

φθ(t)(s(t) − φT
θ (t)ρ0)

− lim
N→∞

1

Np

Np
∑

t=1

E{φθ(t)(s(t) − φT
θ (t)ρ0))}

]

}

= 0, (A.11)

then √
N(ρ̂θ − ρ0) ∈ AsN(0, Pm),

with
Pm = [ lim

N→∞
E{J ′′

m(ρ0)}]−1Q[ lim
N→∞

E{J ′′
m(ρ0)}]−1,

where Q is defined as

Q = lim
N→∞

N · E{[J ′
m(ρ0)][J

′
m(ρ0)]

T }.

The estimate ρ̂θ is consistent according to Theorem 5.2.
It follows from (5.48) that limN→∞E{J ′′

m(ρ0)} = R0 > 0. Con-
dition (A.11) remains to be verified.
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lim
N→∞

√
NE

{

1

Np

Np
∑

t=1

[

φθ(t)(s(t) − φT
θ (t)ρ0)

− lim
N→∞

1

Np

Np
∑

t=1

E{φθ(t)(s(t) − φT
θ (t)ρ0))}

]

}

= lim
N→∞

√
NE

{

1

Np

Np
∑

t=1

φθ(t)(s(t) − φT
θ (t)ρ0)

}

(A.12)

Equality follows since the second term in (A.11) is zero by definition,
that is limN→∞ J ′

m(ρ0) = 0. The limit can then be written as:

lim
N→∞

√
NE

{

1

Np

Np
∑

t=1

φθ(t)(s(t) − φT
θ (t)ρ0)

}

= lim
N→∞

√
NE

{

1

Np

Np
∑

t=1

(φ0(t) + φ̃θ(t))
(

s(t) − (φ0(t) + φ̃θ(t))
T ρ0

)

}

= lim
N→∞

√
NE

{

1

Np

Np
∑

t=1

φ̃θ(t)φ̃
T
θ (t)ρ0

}

= lim
np→∞

√

NpnpE

{

1

Np

Np
∑

t=1

β(1 −M)2vm(t)K(ρ0)(1 −M)2vm(t)

}

.

(A.13)

According to (5.37) and A9, vm(t) is a white noise signal with vari-
ance σ2/np and it follows that

lim
np→∞

√

NpnpE

{

1

Np

Np
∑

t=1

β(1 −M)2vm(t)K(ρ0)(1 −M)2vm(t)

}

= lim
np→∞

√

Npnp

np
Rvβ

(0) = 0,

where Rvβ
(0) is the cross-correlation between β(1 −M)2v(t) and

K(ρ0)(1 − M)2v(t) at lag τ = 0. Convergence follows since this
value is bounded as Rvβ

(0) < Cσ2, where C is a constant.
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The asymptotic variance of the estimate is thus given by Pm.
Using some of the simplifications introduced in (A.13), Q is given by

Q = lim
N→∞

N · E
{

[

1

Np

Np
∑

t=1

(φ0(t) + φ̃θ(t))φ̃
T
θ (t)ρ0

]

[

1

Np

Np
∑

s=1

(φ0(s) + φ̃θ(s))φ̃
T
θ (s)ρ0

]T
}

= lim
N→∞

N · E
{

[

1

Np

Np
∑

t=1

φ0(t)φ̃
T
θ (t)ρ0

][

1

Np

Np
∑

s=1

φ0(s)φ̃
T
θ (s)ρ0

]T
}

= lim
N→∞

N · E
{

[

1

Np

Np
∑

t=1

H∗φ0(t)vm(t)

][

1

Np

Np
∑

s=1

H∗φ0(s)vm(s)

]T
}

= lim
np→∞

Npnp

N2
p

Np
∑

t=1

H∗φ0(t)E{vm(t)vm(t)}H∗φT
0 (t)

= lim
np→∞

Npnp

N2
p

Npσ
2

np
C2 = σ2C2

C2 is defined in (5.6), H∗ in (5.3). The first equality follows from
condition (A.11), which implies that the other terms of Q tend to
zero as np → ∞. The fourth equality follows from the variance of
the white noise signal vm(t), which is given by σ2/np. Pm is thus
given by Pm = σ2R−1

0 C2R
−1
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