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Abstract

This paper presents COMBINE, a directory-based consistency protocol for shared objects, designed
for large-scale distributed systems with unreliable links. Directory-based consistency protocols support
move requests, allowing to write the object locally, as well as lookup requests, providing a read-only
copy of the object. They have been used in distributed shared memory implementations and are a
key element of data-flow implementations of distributed software transactional memory in large-scale
systems.

The protocol runs on an overlay tree, whose leaves are the nodes of the system, and its main novelty is
in combining requests that overtake each other as they pass through the same node. Combining requests
on a simple tree structure allows the protocol to tolerate non-fifo links and handle concurrent requests.
Combining also avoids race conditions and ensures that the cost of serving a request is proportional
to the cost of the shortest path between the requesting node and the serving node, in the overlay tree.
Using an overlay tree with a good stretch factor yields an efficient protocol.
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1 Introduction

Distributed applications in large-scale systems aim for good scalability, offering proportionally bet-
ter performance as the number of processing nodes increases, by exploiting communication to access
nearby data items [15]. An important example is provided by a directory-based ownership consistency
protocol [3]: To write an object, a node first acquires the object locally (move); to read an object, a
node only has to get a read-only copy of the object (lookup).

A directory-based consistency protocol is better tailored for large-scale distributed systems than
broadcast-based consistency protocols, which have been deployed in cluster-base systems. Directory
protocols for maintaining consistency have been presented in the literature [1, 3, 6].

Consistency protocols play a key role in data-flow distributed implementations of software trans-
actional memory (DSTM) in large-scale distributed memory systems [8]. In these systems, remote
accesses require expensive communication, several orders of magnitude slower than local ones, and
reducing the cost of communication with the objects and the number of remote operations is crucial for
achieving good performance in transactional memory implementations. This stands in contrast with
smaller-scale hardware shared-memory systems, providing faster access to local or remote addresses,
where the critical factor seems to be the single-processor overhead induced by bookkeeping [7]. It is
also different from the main concerns in cluster-based systems, where some form of broadcasting is
used to maintain consistency, and the cost of communication is uniform across all pairs of nodes [2,5].

Several directory-based consistency protocols were presented in the context of DSTM implementa-
tion [8, 18]. As described below, these protocols do not accommodate non-fifo links. This makes them
ill-suited for unreliable overlay networks, where a logical link is supported over several physical paths,
increasing the possibility of message reordering. Moreover, these protocols do not perform well in the
presence of concurrent requests for the same object.

This paper presents a new directory-based consistency protocol, COMBINE, tolerating non-fifo mes-
sage delivery and concurrent requests for the same object. It tolerates physical link failures, provided
that no partitions occur and failures are detected. COMBINE is designed to work in large-scale systems,
where the cost of communication is not uniform, namely, some nodes are “closer” than others.

Scalability in COMBINE is achieved by communicating on an overlay tree and ensuring that the cost
of performing a lookup or a move is proportional to the cost of the shortest path between the requesting
node and the serving node, in the overlay tree. Specifically, the cost of a lookup request by node p that
is served by node q is proportional to the shortest tree path between p and q; the cost of a move request
by node p is similar, with q being the previous node holding the object.

The key idea for handling requests that overtake each other is to combine multiple requests that
pass through the same node. Originally used to reduce contention in multistage interconnection net-
works [11, 16], combining means piggybacking information of distinct requests in the same message.
Besides handling message reordering, combining also reduces the communication cost.

Overlay trees with good stretch. The cost of serving a request in COMBINE is proportional to the
stretch of the overlay tree. To define this notion more precisely, we assume that the cost of communi-
cation over single links forms a metric, that is, there is a symmetric positive distance between nodes,
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denoted d(., .), which satisfies the triangle inequality. The stretch of a tree is the worst case ratio be-
tween the cost of direct communication between two nodes p and q in the network, i.e., their distance
in the metric space, and the cost of communicating along the shortest tree path between p and q (i.e.,
the sum of the distances from p and q to their lowest common ancestor).

In COMBINE, the communication cost of a request by node p that is served by node q is proportional
to the cost of the shortest tree path between p and q, namely, to d(p, q) times the stretch of the tree.
Thus, the performance of COMBINE improves as the stretch of the overlay tree decreases.

An overlay tree with small stretch can be built by recursively computing maximal independent sets,
one for each level of the tree, similarly to [8]. There are distributed algorithms to compute maximal
independent sets in constant-doubling metric networks1 in O(log ∆ log∗ n) time, where ∆ is the diam-
eter of the graph [12]. Using these constructions yields lookup and move with communication cost that
is only a constant times the optimal.

2 Motivating Examples

We describe three prior directory protocols, ARROW, RELAY and BALLISTIC, and show how they
misbehave in the presence of non-fifo links or concurrent requests.

2.1 Prior Distributed Directory Protocols

For presentation simplicity, we consider the case where there is a single object in the system; the
extension to multiple objects is straightforward.

ARROW [6] is a distributed directory protocol, based on path reversal [14]. The algorithm assumes
a spanning tree, where every node has a pointer set to one of its neighbors in the tree, indicating the
direction towards the node owning the object. To obtain exclusive access, a node sends a move message
towards the object location and sets its pointer to itself. If the receiver points to itself, this means it
owns the object. In this case, the receiver sends directly the object back to the requester as soon as it
does no longer need it. Otherwise, the receiver sends a move message to pointer in turn and flips its
pointer setting it to the sender of the message. Hence the path formed by all the pointers indicates the
location of a sink node either owning the object or about to own the object.

RELAY [18] also assumes a spanning tree, initialized with all pointers pointing towards the object
location, similarly to the ARROW protocol. Upon reception of a move message, however, the receiver
does not flip its pointer towards the sender yet. Instead, the move request piggybacks the path it travels
so that when the sink receives the request, it simply sends a message back following the reversed path
to flip the pointers of the intermediate nodes. Here the requester does not always wait for the sink to
release the object, but may force the sink to release the object.

BALLISTIC [8] assumes a hierarchical overlay tree structure, whose leaves are the physical nodes,
enriched with some shortcuts. Each node at some level ` has a single parent but can also access a parent

1A graph is constant-doubling if every neighborhood of radius 2r can be covered by at most C neighborhoods of radius
r, for a fixed constant C.
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set of nodes at level ` + 1. Initially, the tree part looks similar to other protocol initialization, except
that no upward pointers are set. Indeed, only nodes on the path from the root to the object owner have
pointers set—all pointers are directed downward.

Each request proceeds in two subsequent phases: in the up phase the request message is sent upward
in the tree until it reaches a node with a downward pointer set, in the down phase the request message
follows the downward pointers to the object owner. During the up phase, the node probes all nodes
of its parent set to detect if the pointer of one of them is oriented downward in the tree. If no such
pointer is detected, then the request is simply forwarded through the parent p and the pointer of p is
set downward. If such a pointer is detected, then the down phase starts and the request message is
sent following this pointer as it indicates a shortcut towards the destination. In the down phase, the
message follows the path of downward pointers to the destination leaf node, unsetting those pointers.
Then the leaf sends the object to the requester as soon as it releases it.

BALLISTIC differentiates move and lookup requests, the former providing exclusive access while
the later providing shared access to the object. The lookup does not modify any pointer and at the end
of its down phase, only a read-only copy of the object is sent to the requester.

We present execution examples showing that BALLISTIC and RELAY may not terminate or may route
an object request inadequately if the object is being moved concurrently or if messages are re-ordered.

2.2 Concurrent Moves

The move(x) operation modifies the orientation of the tree links by setting pointers indicating the
new location of object x, thus, it may impact performance of concurrent operations targeting x. Since
no move(x) can happen before the publish(x) terminates, it can only affect a concurrent lookup(x) or
another concurrent move(x).

In BALLISTIC, the communication performance of both operations may degrade if executed con-
currently with another move(x). This problem stems from the additional shortcuts of the BALLISTIC

tree structure: during the up-phase of an operation, each node at level ` probes multiple nodes at level
` + 1, its parent-set , using these shortcuts to locate a potential downward link. During this probe, a
node probes its father in the tree last, before the node issuing the move sets a downward pointer from
its father to itself. There can be two nodes i and j at the same level `, each of their fathers belonging
to the parent-set of the other. This is illustrated in Figure 1, where the father of i is in the parent-set
of j and vice-versa, as depicted by the dashed links. If i is executing the up-phase of a move while j
is executing the up-phase of its operation, j may miss the downward pointer to i that is being set. The
same scenario may occur at higher levels between the father of i that sets the pointer to itself and the
father of j.

Consequently, even though i and j have one common ancestor among their respective ancestors at
level `+ 1, the operation of j may traverse higher levels before reaching i. Sun’s thesis [17] discusses
this problem and suggests a variant that integrates a mutual exclusion protocol in each level; however,
this version is blocking and introduces further delay.
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Figure 1. The concurrent move problem in BALLISTIC. The lookup issued by j misses
the pointer set by i during a concurrent move. Dashed links indicate shortcuts of the
BALLISTIC tree structure, solid black arrows indicate in-transit messages while the white
arrows are the pointers towards the next object owner.

2.3 Message Reordering

BALLISTIC may get stuck in the face of message reordering while RELAY may send unnecessary
messages in this situation.

Consider the behavior of BALLISTIC when a lookup and a move concurrently follow the downward
pointers towards the node that owns the object. Assume that node i sends first the lookup message to j
before sending the move message to j. If the move message reaches j before the lookup message, then
the move will discard the pointer from j towards the destination before j can send a lookup message to
the destination. The result is that the lookup gets stuck and will not terminate because j has become a
sink node without outgoing pointers when the lookup reaches it.
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Figure 2. Left. The loop problem in RELAY. Nodes i and j continuously exchange lookup
messages as long as the move message (the black arrow) remains in-transit. Right. Long
traversal to reach a close-by node in RELAY. (1) Node s′ sends a move message that
follows the lookup message sent by s up to node i. (2) Messages are re-ordered between
i and j and the lookup message follows the move message up to the close-by node s′.
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In RELAY, the move request brings back the object to the initiator by setting all intermediary node
pointers, however, transmitting the object and setting the pointer towards this object cannot be done
atomically. As depicted on the top-left part of Figure 2 (where white arrows represent the pointers)
the object travels from the destination node d while s issues a concurrent lookup. When receiving the
move message, node i sets the pointer towards j and sends a message (denoted by a solid black arrow)
with the object towards j. When receiving this message, j redirects the pointer that was pointing to i.
If the concurrent lookup message is sent by i to j right after the object was sent to j, it may reach j
before the object reach j and the pointer towards i be redirected. The state in which the system is when
the lookup message is received by j is depicted at the bottom-left of Figure 2. In this scenario, j will
simply sends back the lookup message to i, because the pointer still points to i at the time this message
is received. Again the lookup message will be sent from i to j following the pointer and hopefully the
move will catch up so that the lookup will stop looping.

A second problem in RELAY, described in Figure 2 (right) is similar to the problem with concurrent
moves in BALLISTIC. If two close-by nodes s and s′ issue concurrent lookup and move, respectively,
then the move message may follow the lookup message in the tree up to the node i right before the
destination j. If i forwards the move message after the lookup message but j receives the move message
first, then the lookup messages will simply follow the move messages up to the close-by node s′ where
the object finally ends up. Hence the communication cost of the lookup can be proportional to the
diameter of the tree, regardless of the distance from s to s′.

3 The COMBINE Directory Protocol

Our COMBINE protocol improves on prior protocols by using a combination mechanism that piggy-
backs distinct requests in common messages. It uses a simple overlay tree whose leaves are the physical
nodes participating in the protocol; this structure is similar to the one used by BALLISTIC, but simpler
without its additional shortcuts, yet it achieves better routing performance. Additionally, it tolerates
concurrent requests, message re-ordering and message loss.

In this section, we describe COMBINE and explain how it supports publish, move and lookup re-
quests.

3.1 Overview

The core novelty of the COMBINE directory protocol lies in combining multiple requests, by piggy-
backing information of distinct requests in the same message.

When a lookup traverses its path to the object, it stores its identifier in all the nodes it visited. This
allows an overtaking move to embed the lookup and hence ensures request termination of concurrent
requests even when messages are reordered. Since the downward path to the object may be changing
while a lookup (or a move) is trying to locate the object, the lookup may remain blocked at some
intermediate node p in the path towards the object. As described in Section 2.3, one move request may
overtake another request and remove the path of pointers preventing it from terminating.

5



The information that is stored at the nodes traversed by a request is reused to ensure reliable commu-
nication. To this end, we simply implement reliable communication using the traditional retransmission
technique based on timeout and acknowledgements (see Appendix A).

Information stored at the nodes is also used to ensure that a lookup is not processed multiple times.
The first time that the lookup request is received and then processed by any of the nodes in the path
towards the object, say p, the identifier of the request is stored at p, possibly overwriting previous
lookup by q. This together with the reliable communication protocol ensure that the lookup request is
processed exactly once at each node in its path to the leaf.

While originally designed to ensure termination, the combining technique also yield improvements
in the performance of the protocol, as shown by the complexity analysis.

All communication is done using the reliable communication primitives described in Appendix A.

3.2 Detailed Pseudocode

Let I be the set of node identifiers, each node being assigned a unique identifier. We assume a given
overlay tree of depth L where leaves represent physical nodes. Starting from the leaf nodes (` = 0), we
elect recursively parent nodes at the immediate higher level `+1 so that their descendants are all nodes
at most at distance 2` from them. This overlay tree is used and described in BALLISTIC [8] where it
is enriched with shortcut links so that a node has multiple parents. Note that we do not have shortcuts
here, hence our overlay is a simple tree. Building such an overlay can be efficiently done by recursively
computing maximal independent sets using algorithms from [12, 13]. In addition, we assume that a
node is able to receive a message, compute some local task and send a message in a single atomic step.

For each node q ∈ I and for any k = 0, 1 . . . , L, we denote qk the ancestor of node q at level k.
Thus, q0 = q and qL is the root of the tree. We now present COMBINE for a single object, the extension
to multiple objects being straightforward.

Algorithm 1 State
1: State of a node u at level `:
2: pointer ∈ N ∪ {⊥}, initially ⊥
3: timeout ∈ N, initially 0, increases as time elapses
4: message a record with fields:
5: type ∈ {move, lookup}
6: phase ∈ {up, down}
7: ts ∈ N
8: id ∈ N× N
9: lookups

10: lookups a record with fields:
11: q ∈ N, the identifier of the node initiating the request, initially ⊥
12: ts ∈ N, the version number of the request, initially 0
13: status ∈ {not served, served, passed}, the request status, initially not served
14: moves a record with fields:
15: q ∈ N, the identifier of the node initiating the request, initially ⊥
16: ts ∈ N, the version number of the request, initially 0
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publish() operation. Each node owns a pointer field (Line 2 of Algorithm 1) that, when set, indicates
the direction towards a leaf node that is the current object location or will be the next object location.
Indeed and as explained later, pointers are changed during a move execution prior to effectively moving
the object. In the remainder, we refer to the pointed leaf node as the sink because a pointer points to it
while it has no pointer set.

The code for the publish request is simple so we omit its pseudocode here. A leaf node owning a
new object can publish it by sending a publish message traversing all its ancestors up to the root of the
tree. Each ancestor u receiving this message simply sets its u.pointer field to the child v that forwarded
them the publish message. At the end of this process, there exists a path of downward pointers from
the root to the sink.

lookup() operation. A lookup request s issued by q carries a unique identifier 〈q, ts〉 including its
sequence number ts and its initiator q. Its pseudocode appears in Algorithm 2. A lookup can be in
three distinct states: it is either running and no move overtook it (not served), it is running and a move
request overtook and embedded it (passed), or it is over (served).

The lookup request proceeds in two subsequent phases. First, its initiator node sends a message that
traverses its ancestors up to the first ancestor whose pointer indicates the direction towards the sink—
this is the up phase (Lines 1–10). Second, the lookup message follows successively all the downward
pointers down to the sink—this is the down phase (Lines 11–20). The protocol guarantees that if the
object has been published, then there is a downward path of pointers from the root to the sink, hence,
the lookup finds it.

Each node keeps track of the lookups that visited them by recording their identifier in the field
lookups , at Line 10 of Algorithm 1, containing some lookup identifiers (i.e., their initiator identifier q
and their sequence number ts) and their status. The information stored by the lookup at each visited
node is both to ensure reliable communication and to support the embedding process. When a new
lookup is received by some node u, then u records the request identifier of this freshly discovered
lookup. If u had already stored a previous lookup from the same initiator, then it simply overwrites it
by the more recent lookup (Lines 4–6). Keeping track of lookups helps distinguishing between an old
and a recent lookup message upon reception—old lookup messages being simply discarded.

Algorithm 2 Lookup s = 〈q, ts〉 at node u = q`

1: Receiving 〈up, lookup, q, ts〉 from v = q`−1:
2: send(acks) to v
3: if @〈q, ts ′, ∗〉 ∈ lookups : ts ′ ≥ ts then
4: if ∃sq = 〈q, τ, ∗〉 ∈ u.lookups : τ < ts then
5: u.lookups ← u.lookups\
6: {sq} ∪ {〈q, ts, not served〉}
7: else u.lookups ← u.lookups∪{〈q, ts, not served〉}
8: if u.pointer = ⊥ then
9: RSend(u, q`+1, 〈up, lookup, q, ts〉)

10: else RSend(u, u.pointer , 〈down, lookup, q, ts〉)

11: Receiving s = 〈down, lookup, q, ts〉 from v:
12: send(acks) to v
13: if @〈q, ts ′, ∗〉 ∈ u.lookups : ts ′ ≥ ts then
14: if ∃sq = 〈q, τ, ∗〉 ∈ u.lookups : τ < ts then
15: u.lookups ← u.lookups\
16: {sq} ∪ {〈q, ts, not served〉}
17: else u.lookups ← u.lookups∪{〈q, ts, not served〉}
18: if u is a leaf then
19: RSend(u, q, xread only)
20: else RSend(u, pointer , 〈down, lookup, q, ts〉)
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Because of the combining technique, the lookup may reach the sink either by itself or as embedded in
a move request. If the lookup s arrives at the sink by itself and this node does not store any information
about s, then the lookup sends a read-only copy of the object to the requesting node q using the reliable
communication primitive RSend(), Line 19 of Algorithm 2.

Note that a lookup may not arrive at the sink because a concurrent move request overtook it and
embeds it, i.e., at some time t the lookup s found at a node u that u.pointer equals v and at some time
t′ > t a move m follows the same downward pointer to v, but arrives at v before s. As illustrated at
Line 24 of Algorithm 3, and Line 13 of Algorithm 2, the lookup detects the overtaking by m and stops
once at node v.

Finally, and as described at Lines 36, 37 (Algorithm 3) and Lines 5, 6 (Algorithm 4), the move m
embeds the lookup s and will serve it once it reaches the sink.

Algorithm 3 Move at node u = q`

1: Receiving m = 〈up,move, q, ts〉 from v = q`−1:
2: send(ack) to v
3: if @〈q, ts ′〉 ∈ u.moves : ts ′ ≥ ts then
4: if ∃〈q, τ〉 ∈ u.moves : τ < ts then
5: u.moves ← u.moves \ {〈q, τ〉} ∪ {〈q, ts〉}
6: else u.moves ← u.moves ∪ {〈q, ts〉}
7: clean(m)
8: for all τa = 〈a, ts, not served〉 ∈ u.lookups do
9: if @〈a, ts ′, ∗〉 ∈ m.lookups : ts ′ ≥ ts then

10: m.lookups ← m.lookups ∪ {τa}
11: u.lookups ← u.lookups \{τa}∪ 〈a, ts, served〉
12: oldpointer ← u.pointer
13: u.pointer ← v
14: if oldpointer = ⊥ then
15: RSend(u, q`+1 , 〈up,move, q, ts,m.lookups〉)
16: else RSend(u, oldpointer ,
17: 〈down,move, q, ts,m.lookups〉)

18: Receiving m = 〈down,move, q, ts, lookups〉 from v:
19: send(ack,move, q, ts) to v
20: if @〈q, ts ′〉 ∈ u.moves : ts ′ ≥ ts then
21: if ∃〈q, τ〉 ∈ u.moves : τ < ts then
22: u.moves ← u.moves \ {〈q, τ〉} ∪ {〈q, ts〉}
23: else u.moves ← u.moves ∪ {〈q, ts〉}
24: clean(m)
25: if u not a leaf then
26: oldpointer ← u.pointer
27: u.pointer ← ⊥
28: for all τa = 〈a, ts, not served〉 ∈ u.lookups do
29: if @〈a, ts ′, ∗〉 ∈ m.lookups : ts ′ ≥ ts then
30: m.lookups ← m.lookups ∪ {τa}
31: u.lookups ← u.lookups\
32: {τa} ∪ {〈a, ts, served〉}
33: RSend(u, oldpointer ,m)
34: else
35: for (〈a, ts, status〉 ∈ m.lookups : @
36: 〈a, ts ′, ∗〉 ∈ u.lookups with ts ′ ≥ ts) do
37: RSend(v, a, 〈ts, xread only〉)
38: RSend(v, q, 〈ts, x 〉)
39: delete(x)

move() operation. The move request is described in Algorithm 3 and proceeds in two phases to rout
towards the sink as for the lookup. In the up phase (Lines 1–17), the message goes up in the tree up to
the first node whose downward pointer is set. In the down phase (Lines 18–39), it follows the pointers
down to the sink. The difference in the up phase lies in the fact that an intermediary node u receiving
the move message from its child v sets its u.pointer down to v (Line 13). The difference in the down
phase is that each intermediary node u receiving the message from its father v resets its u.pointer to⊥
(Line 27).
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As for the lookup, each move request is processed at most once at any node on its path to the object,
by Lines 4–6 and Lines 20–23 of Algorithm 3.

For each visited node u, the move request embeds all the lookups stored at u that need to be served
(Lines 8–11, 28–32 of Algorithm 3).

Along its path, the move may discover that either some lookup s it embeds has been already served
or that it overtakes some embedded lookup s′ (Line 3 or Line 5, respectively, of Algorithm 4). In the
first case, the move just erases s from the lookup it embeds, while in the second case the move marks,
both in the tuple it carries and locally at the node, that the lookup s′ has been passed (Line 4 or Lines
6–7, respectively, of Algorithm 4).

Algorithm 4 Clean procedure of message m at node u
1: clean(m):
2: for all 〈a, ts, not served〉 ∈ m.lookups do
3: if ∃τa = 〈a, ts ′, status〉 ∈ u.lookups : (status = served ∧ ts ′ = ts) ∨ (ts ′ > ts) then
4: m.lookups ← m.lookups \ {〈a, ts, not served〉}
5: if 〈a, ts, ∗〉 /∈ u.lookups then
6: m.lookups ← m.lookups \ {〈a, ts, not served〉} ∪ {〈a, ts, passed〉}
7: u.lookups ← u.lookups ∪ {〈a, ts, passed〉}

As shown in Algorithm 3, once at the sink, the move request first serves all the lookups that it embeds
(Lines 36, 37), then sends the object to the node that issued the move (Line 38) and finally deletes the
object at the current node (Line 39). Sending reliably at Lines 37 and 38 ensures that the object is
received remotely before being locally deleted.

If the object is not at the sink when some requests arrive, then requests are enqueued and will receive
the object as soon as the sink releases the object after having obtained it. Thus, requests are treated in
the order of their arrival. Observe that no multiple move requests can arrive at the same sink, as a move
follows a path of pointers that it immediately removes. Similarly, no lookup arrives at a sink where
a move already arrived, unless embedded. Finally, observe that no move is issued from a node that is
waiting for the object or that stores the object.

4 Correctness of the Algorithm

Each request message sent from a node p to a node q is eventually received by q (see Algorithm
5). Moreover, when a request message s is received by a node p, if s has been already processed at
p, it is just not processed again (Lines 3–6 and 20–23 of Algorithm 3, Lines 3–7, and Lines 13–17 of
Algorithm 2). Thus, we can assume that each request message is received exactly once by each node
visited during the up and the down phases.

A request completes when the node that issued the request receives a copy of the requested object,
which is read-only in case of a lookup request. In the following, we provide the upper bound for a
request to complete.

In the proof, let T denote the tree structure, DT is the depth of the tree T , ∆T is the diameter of the
tree T , and dT (p, q) is the distance between node p and node q in tree T .
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Let TC be the upper bound on the time it takes for a request to successfully travel a link, including
retransmission and link delay; we assume the time to execute a request at a node is negligible. Since
each request never backtracks, each request executes at most 2DT communication steps.

Let TE be the maximum time to reach a leaf node and then for a move request to reach its predecessor
in the queue of requests for the same object. Note that TE = 2DT · TC .

Let TO be the maximum time for an object to travel directly from one requester to its successor.

The algorithm defines the order according to which move requests are served by implementing a
distributed queue. A request is enqueued once it reaches a leaf node. Once served, a move request is
removed from the queue. We show that each move request takes a finite time to be enqueued and then
to obtain the object.

In Appendix B, Theorem 5 proves that a move request is served within TE +(n−1) ·TO time, while
Theorem 8 proves that a lookup request is served within 2TE + n · TO time.

Theorem 9 (in the appendix) shows that COMBINE provides linearizability [10].

5 Communication Cost

In this section, we analyze the communication cost of each operation, namely, the total cost of
messages sent on behalf of the request, weighted by their distance. For a lookup or move request that
starts at a leaf node q, we measure the communication cost to reach the leaf node p from which a copy
of the object is sent to q; we say that the operation completes at p.

It is simple to see that for a move request the communication cost is proportional to dT (p, q), since it
probes its ancestor nodes for a downward pointer. A downward pointer is found at the lowest common
ancestor of the initiator q and the sink p.

Theorem 1 The communication cost of COMBINE for a move request that starts at a node q and
completes at a node p is O(dT (p, q)).

Theorem 2 The communication cost of COMBINE for a lookup request that starts at a node q and
completes at a node p is O(dT (p, q)).

Theorem 3 The communication cost of COMBINE for a publish request is O(∆T ).

6 Discussion

We have presented COMBINE, a directory-based consistency protocol for sharing items in a large-
scale distributed system. The protocol supports both exclusive and shared access to items, by providing
move and lookup, respectively. COMBINE tolerates reordering of messages, while BALLISTIC may
starve a request, and RELAY may send an unbounded number of messages.
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To compare COMBINE with other protocols on equal ground, we assume messages are not reordered.
Analyzing the behavior of ARROW has been the subject of several papers, e.g., [4,9], but its communi-
cation cost is, at best, proportional to the stretch of the spanning tree used; this stretch can be quite high
in common networks like rings and grids. RELAY also uses a spanning tree, but, there are situations,
similar to the one described in Section 2.2, where nodes will go to the root of the tree, despite being
close. Thus, its communication cost is proportional to the diameter of the tree.

Both COMBINE and BALLISTIC use an overlay tree, but the latter augments the tree with shortcuts.
When there are concurrent requests, BALLISTIC can either ignore the shortcuts or employ mutual
exclusion when probing the parent set nodes (Section 2.2). In the former case, the communication
costs of BALLISTIC and COMBINE are similar and they are proportional to the stretch of the overlay
tree. In the latter case, the cost depends on the mutual exclusion algorithm chosen, but it can be quite
high since many nodes may participate in a level.2

We leave to future work the intriguing and important question of integrating the directory protocol
into a full-fledged distributed software transactional memory.
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A Reliable Communication

The combination mechanism of COMBINE helps handling message losses as it annihilates the effects
of message reordering on the directory protocol. Building on this technique, a simple protocol can
be used to cope with message losses. We implement reliable communication using the traditional
retransmission technique based on timeout and acknowledgements as depicted in Algorithm 5.

Algorithm 5 Reliable communication of request message m
1: RSend(v, u,m):
2: mnotacked ← true
3: timeout ← 0
4: while mnotacked do
5: if timeout = 0 then
6: if m.type = lookup ∧ 〈m.id , served〉 ∈ v.lookups then
7: exit()
8: else
9: send(m) to u

10: set a timeout

11: Upon reception of v, u, ackm:
12: mnotacked ← false

Here a timeout is set to some positive constant (Line 10), and the message is periodically resent to the
destination if not acknowledged. In asynchronous systems, where a node cannot distinguish between a
message loss and a failure, the sender may unnecessarily resend the same message over and over. These
simple reliable communication primitives are enough in our case as COMBINE will discard duplicated
messages. More precisely, nodes keep track of previously received messages to avoid polluting the
network with stale messages but the storage space n‘eeded at some node u remains bounded because
a new lookup/move request from v overwrites the former lookup/move request from v as previously
explained.
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Note that the RSend primitive differs from a traditional reliable point-to-point communication prim-
itive in the fact that the request message of a lookup, say s, is not retransmitted if a move request
embedded the lookup in the meanwhile (Line 6 of Algorithm 5), even if the previous retransmitted
message of s have been acknowledged. This is because the move request embedding s will take care
of answering the initiator of the lookup.

B Proofs of Correctness

Simple analysis of the algorithm shows the next lemma.

Lemma 4 There is no sequence of requests R = {r1, r2, . . . , rs} that contains a cycle, that is, there is
a request ri in R which is both a successor and a predecessor of a request rj in R.

Theorem 5 A move request is satisfied within TE + (n− 1) · TO time.

Proof. Let s be a move request issued by a node q at time t. The latest at time t + TE , the request
s is enqueued. When s is enqueued at time t′, at most n − 1 requests are enqueued before s. This
is because each node does not issue a new request before its previous one is completed and because
there are no cycles in the sequence of enqueued requests (Lemma 4). Moreover, a request enqueued
after time t′ cannot be a predecessor of s in the queue, since new requests are enqueued after the
ones already enqueued, and the requests already enqueued do never change their order. Thus, by time
t′ + (n− 1) · TO = t+ TE + (n− 1) · TO, the object is at q. �

A lookup s may stop at a node p that is not a leaf, because it is overtaken by a concurrent move
request; that is, the lookup enters the downward link to p and later a move request enters the same link,
but the move arrives at p before s.

Below, we say that a lookup request s reaches a leaf node p, if the original request s arrived at p.

Lemma 6 A lookup request arrives at a leaf node (either by itself or embedded in a move) through a
path in the tree whose length is at most 2DT .

Proof. By Algorithm 2 and since the tree structure is static, it is simple to see that a lookup request
never backtrack, that is, during the up phase once it has visited level ` it does not visit any node at level
`
′ ≤ ` (analogously for the down phase). During its down phase, the lookup may stop at a node p,

because it is overtaken by a move request. In this case, the lookup continues its down phase embedded
in the move request, and since the move request never backtracks, it is as if the lookup just continues
to execute its down phase. Thus, the lookup arrives at a leaf node through a tree path whose lenght is
at most 2DT . �

Lemma 7 A lookup request that reaches a leaf node is satisfied within time 2TE + n · TO after it is
generated.
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Proof. Let s be a lookup request issued by a node q at time t. Assume the lookup s = (q, ts) reaches a
leaf node p by itself. Let p′ be the node where s finds the downward link to p. Once at p, the lookup s
triggers the send of a read-only copy of the object unless the tuple 〈q, ts′ , ∗〉 with ts

′ ≥ ts is stored at p
(Lines 13, 19 of Algorithm 2). This means that either a more recent lookup by q reached the leaf node
p or a move requestm passed the lookup s at the last downward link and stored the tuple 〈q, ts, passed〉
at p (Line 7 of Algorithm 4 and Line 24 of Algorithm 3).

In the first case, s is served because a node does not issue a new lookup request on the same object
if the previous one is not yet completed. In the second case, the lookup is embedded into the move
request m, by Lines 2, 5 and 7 of Algorithm 4. By Lines 37, 38, the move request will trigger the
reliable send of a read-only copy of the object to q. Note that if the lookup is embedded in a move, both
the move request and the original lookup request will arrive at the same leaf node. In both case, it is just
as the lookup arrives by itself. Thus, the lookup request s reaches a leaf node by time τ = t+ 2D · TC

Once at the leaf node, as above proved the request will trigger the send of the read-only copy of the
object to q.

It may happen that the object is not at node pwhen the lookup request arrives at p at time τ . However,
by Theorem 5, a copy of the object will be in p by time τ + TE + n · TO = t+ 2TE + n · TO, and the
claim follows. �

Theorem 8 A lookup request is satisfied within 2TE + n · TO time.

Proof. Let s be a lookup request issued by a node q at time t. If the lookup request s reaches a leaf
node, the claim follows from Lemma 7.

So assume that the lookup request s = 〈q, ts〉 does not reach a leaf node p by itself. This means that
there is a node p′ where the lookup has been overtaken by a move, i.e., the lookup was sent on the link
to p′ from p′′ and later a move was sent on the same link but the move arrived at p′ before s.

Before the lookup entered the link to p′, it stored at p′′ the tuple 〈q, ts, not served〉. Let m be the
first move request to visit p′′ after s; m has to be the move that overtakes the lookup in the link from
p′′ to p′, because once a move visits a link either it redirects the link or erases it. Thus, m finds and
embeds the information 〈q, ts, not served〉 stored by s. Since no other lookup is issued by q before s
completes, we observe that either s completed before the move m arrives at a leaf node, or m does not
find in its downward path the information of a more recent lookup by q.

Now we prove that the lookup s is still embedded in the move once this latter arrives at a leaf node.
By the above observation, m will erase the tuple about s from the information it embeds, only if there
is a node q′ visited by m after visiting node p′′, such that the tuple 〈q, ts, served〉 is stored at q′. But, if
a node q′ stores the information 〈q, ts, ∗〉 at the time τ the move request m visits this node, there is an
earlier time τ− < τ such that the lookup s visited q′ at time τ−. This contradicts our assumption that
s stopped at p′ and that it reaches p′ after m.

Then, the move request m arrives at a leaf node p while still embedding the lookup s. If a lookup
s
′

= 〈q, ts ′, ∗〉 with ts ′ > ts is not stored at p, m will send a read-only copy of the object to q (Line 36
and Line 37 of Algorithm 3).
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The lookup arrives at a leaf node p′ through a move request by time τ = t + 2D · TC , where t is
the time at which the lookup was invoked by q. If the object is not yet at p′, Theorem 5 implies it will
arrive by time τ + TE + n− 1 · TO = t+ 2TE + (n− 1) · TO. The claim follows because a read-only
copy of the object is sent from p′ to q within time TO. �

Theorem 9 COMBINE implements linearizability.

Proof. Because of the locality property of linearizability, we just prove that the result of the operations
on a single object executed by different concurrent processes is the same as the operations where
executed in some sequential order where the real-time order among operations is preserved. Remember
that read and write operations are respectively implemented with a lookup and move request.

It is simple to see that the COMBINE algorithm guarantees a sequential order in the writing accesses
to the object, because it implements a distributed queue. So this may be abstracted as having a single
writer.

Since there is only a copy of the object in the system, it is simple to see that consistency is preserved
also for read operations. In particular, when a process requests to read an object, it obtains either the last
current version of the object (w.r.t. the time the read operation has been invoked) or a value written by
a concurrent write operation. Once a read operation has read a given value, a successive read operation
cannot return an older value. �

C Proofs of Communication Cost

To bound the communication complexity of a lookup, we first need to prove that the lookup request
follows the path to the object at most twice. We start with the following Lemma 10, stating that the
lookup is embedded in at most one move request for each step towards the object.

Lemma 10 Consider a lookup request s issued by a node q. Let h be the peak level reached by s. For
every level l ∈ 0 . . . h, there is at most one move request that embeds the lookup s when at level l.

Proof. Let S = p0, p1, p2, . . . , ps be the sequence of nodes visited by the lookup s, where p0 = q. The
lookup writes the tuple 〈q, ts, not served〉 at each node in S, at the time it visited it.

Let h be the peak level reached by the lookup at time τ , and pj be the node visited by s at h. pj is
the first node in the down phase of the lookup s.

Since the lookup finds the first downward link at pj , there was no downward link at p1, . . . pj−1

when the lookup wrote in these nodes the tuple 〈q, ts, not served〉.

Since the overlay is a tree, the first move request that visits any node in p1, . . . pj−1, after the lookup
and that does not overtakes the lookup, will find its first downward link at pj . Then this move follows
the same downward path of the lookup, unless another move redirected some of these links. Note that
each time that a move visits a node, it sets as served all the lookups locally stored.
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Let m be the first move that visited some node ph immediately after the lookup, for the largest
h ∈ {1, . . . s}. From the above argument, another move m

′
which embeds s will eventually visit a

node which stores the tuple 〈q, ts, served〉. In the worst case, this node is ph. Thus, by Lines 3, 4 of
Algorithm 4, m

′
will erase the tuple 〈q, ts, not served〉 from the lookups it embeds. �

Corollary 11 At most one move request m embeds a lookup request when reaching a leaf node.

Theorem 2 (repeated) The communication cost of COMBINE for a lookup request that starts at a
node q and completes at a node p is O(dT (p, q)).

Proof. By Lemma 10, a lookup request s arrives at a leaf node at most twice, once by itself and once
because embedded in a move request m. It is simple to see that the leaf node reaches by s and m
is the same. Note that the lookup may be embedded by more than one move requests. But in the
worst case the lookup visits twice the sequence of nodes from node q (where it started) to the leaf node
where it arrives, p. This is because once a move request embedding s visits a node v where the tuple
〈q, ts, served〉 is stored, it just stops to embed s. But this means that another move embedded s starting
from node v. The total work done by the move requests that carry the lookup is 2dT (q, p). �

For a publish operation issued by a leaf node q, the communication cost is the cost of of going from
q to the root node via the shortest path in the tree, i.e., at each step the path visits the ancestor node.
Since a publish operation sets a downward link from a node qi+1 to a node qi, for i = 0, . . . , L − 1
where q0 = q and qL is the root. So the work done by a publish is proportional to

∑L−1
i=0 dT (qi, qi+1).

Theorem 3 (repeated) The communication cost of COMBINE for a publish request is O(∆T ).
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