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ABSTRACT

We present a new descriptor and feature matching solution for omni-
directional images. The descriptor builds on the log-polar planar de-
scriptors, but adapts to the specific geometry and non-uniform sam-
pling density of spherical images. We further propose a rotation-
invariant matching method for the proposed descriptor that is partic-
ularly interesting for mobile devices. It permits to reduce the com-
putational complexity in the detection phase by eliminating the ori-
entation assignment and moving it to the feature matching step. We
then use a criteria based on the Kullback-Leibler divergence in order
to improve the feature matching performance. Experimental results
with spherical images show that the new descriptors offer promis-
ing performance and improve on SIFT descriptors computed on the
sphere or on tangent planes.

Index Terms— Omnidirectional imaging, scale-invariant fea-
tures, polar descriptors, Kullback-Leibler divergence

1. INTRODUCTION

Omnidirectional vision sensors with their large fields of view present
many advantages for applications such as scene analysis, representa-
tion and detection and thus omnidirectional vision has been an active
research field in the related research areas. The omnidirectional cam-
eras typically consist of either a fisheye lens or a lens and a mirror
(catadioptric) system such as parabolic or hyperbolic mirrors. The
structure of the resulting images is highly dependent on the geome-
try of the mirror, which should be taken into account for appropriate
processing of the light information.

Applications such as camera calibration, object detection, recog-
nition or tracking generally rely on the localization and matching
of salient visual features in multiple images. To provide scale-
invariance, these features are generally computed by a scale-space
analysis framework. This is a very important property of these fea-
tures which provides robustness to resolution changes and camera
translations. The most popular scale invariant feature detection al-
gorithm is certainly the SIFT framework [1] for perspective camera
images. Many other methods have been proposed with different
feature detection methods and descriptors [2, 3, 4] for classical
cameras.

Descriptor computation stays an important step after definition
and localization of the visual features. The distinctiveness or charac-
ter of the feature is defined by the descriptor and plays an important
role in matching of the features. The conventional image patch cor-
relation approach is often replaced by more sophisticated descriptors
that can deal with scale, rotation and affine transformations as well
as illumination changes. Descriptors based on histogram computa-
tion provide the best robustness to these transformations. The SIFT
descriptor is based on gradient orientation histograms computed in

the region around feature points. The histograms are computed for
each spatial bin in the support region. Descriptors with different
histograms such as SURF[5] and CHoG[6] have recently been pro-
posed to improve the performance. In addition, the GLOH frame-
work [2] provides a log-polar descriptor that forms spatial bins by
radial division of the support region. All these algorithms are how-
ever designed for planar images and they assume that the sampling
is uniform along the image. For omnidirectional images, the sam-
pling density differs from region to region and it should be taken
into account in the computation of the descriptors.

Recent works such as [7, 8, 9] have proposed to process omnidi-
rectional images on the sphere after an inverse stereographic projec-
tion that preserves the geometry of the light information [10, 11]. In
these works, the scale-space representation is computed with Gaus-
sian kernels on the sphere, while the convolution is performed using
the spherical Fourier transform on a equiangular grid. Two types of
descriptors are proposed on the sphere. One approach maps the im-
age around the feature to the tangent plane to form a planar image
patch and it computes SIFT descriptors on the mapped image patch.
This simple approach implicitly deals with different sampling den-
sity, however, an extra interpolation is performed which may change
the true scale of the feature and change the gradient values. In the
second approach, the SIFT descriptor is directly computed on the
spherical surface. This approach is affected by different sampling
densities as it does not take into account different number of sam-
ples per spatial bin.

We propose in this paper a polar descriptor for scale invariant
features on sphere that builds on log-polar descriptors for planar im-
ages. The shape of the log-polar descriptor interestingly resembles
the longitude and colatitude lines around the poles of a sphere. We
describe new log-polar descriptors that exploit the geometry of the
sphere and take into account the different sampling densities caused
by an equiangular grid on the sphere. We use scale invariant fea-
ture detection based on spherical Fourier Transform in [7, 8, 9]. We
further extend the new polar descriptors by exploiting the relation
between the orientation bins and gradient orientation histograms in
order to get rid of the orientation in the descriptor computation. This
leads to a novel matching strategy that permits to relax the com-
putational complexity in the construction of the descriptors. This
is particularly interesting for mobile devices with limited computa-
tion power by sending features to a central server, which eventu-
ally performs matching operations. The matching process is finally
implemented with a criteria based on Kullback-Leibler divergence.
This permits to improve the matching performance for both oriented
and non-oriented polar descriptors. Experimental results show that
both descriptors offer better performance than SIFT based descrip-
tors computed on the sphere or on virtual tangent planes.
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2. SCALE-INVARIANT FEATURES ON THE SPHERE

Prior to computation of descriptors, one has to detect visual features.
This is usually done with a scale-space analysis of the images. We
briefly summarize here the scale-space analysis on the sphere using
spherical Fourier transform, as well as the detection of scale invariant
features discussed in [9].

Scale-space representation of planar images is obtained by
smoothing the image with a gaussian kernel with variance, σ2.
However, for a signal I lying on a sphere, the application of such
approach is not straightforward due to shift-variance on the equian-
gular grid. An alternative solution for smoothing is discussed in [9]
using heat diffusion equation and the Green’s function in terms of
spherical harmonics. The heat equation is defined as

∂I(θ, φ, t)

∂t
= ΔI(θ, φ, t) (1)

where Δ is the laplacian on the sphere and the initial condition is
I(θ, φ, 0) = I(θ, φ). The colatitude angle θ is in the range [0, π] and
the longitude angle φ is in [0, 2π). As shown in [12], the solution of
the heat diffusion equation on the sphere is

Îm
l (t) = Îm

l (0)e−l(l+1)t (2)

where Î(t) is the spectrum of the smoothed image at smoothing level
t and Î(0) is the spectrum of the original image. The spectrum of a
spherical signal is computed by a spherical Fourier transform, which
is defined as

I =
X
l∈N

X
|m|≤l

Îm
l Y m

l , Îm
l =

Z
S2

I(ν)Ȳ m
l (ν)dν (3)

where Îm
l are the spherical Fourier coefficients (spectrum) of I , and,

Y m
l is the spherical harmonics of degree l and order m [13]. Us-

ing (3) and (2), one can compute the smoothed spherical image at
the smoothing level t by first applying the forward spherical Fourier
transform, and then applying Eq. (2). Finally an inverse spherical
Fourier Transform is performed.

After scale-space images are computed for different scale levels
t, the differences of gaussian images, D(θ, φ, t) are computed by

D(θ, φ, t) = I(θ, φ, kt)− I(θ, φ, t) (4)

where k is a scale multiplication factor. The SIFT features are com-
puted on the difference images by first finding the local extrema
compared to 26 neighboring pixels in the current and adjacent dif-
ference images. The low contrast extremum points that are below
a pre-defined threshold are discarded. Edge responses that give un-
stable feature points are removed by checking the maximum ratio
between maximum and minimum principal curvature of the differ-
ence images at the pixel position. Finally, the position and scale of
the feature are refined by fitting a 3D quadratic.

3. SAMPLING-AWARE POLAR DESCRIPTORS ON THE
SPHERE

We can now propose a new descriptor inspired from log-polar de-
scriptors [2] on planar images. We tailor this descriptor by consid-
ering the specific geometry and sampling structure of spherical im-
ages. A circular support region around the feature point is computed
based on the scale of the visual features, σ. The radius of this region
is proportional to sin(σ). An orientation is first assigned to the vi-
sual feature. This orientation is computed by forming an histogram

of gradient orientations weighted by the magnitude of the gradients.
The peak of the histogram is selected as the orientation of the fea-
ture. If there are more than one peak, a new feature is added with the
same position and scale information, but with a different orientation.

For spherical images, the sampling density is not constant over
the surface and thus affects the gradient computation. On a unit-
sphere with a N × N equiangular grid, the sampling distance be-
tween two neighbor samples differing in colatitude angles θ is con-
stant and equal to π/N . The sampling distance between two neigh-
bor samples with different longitude angle φ is not constant. It
changes with respect to θ and is equal to sin(θ)2π/N . We thus adapt
the gradient computation with a multiplicative factor depending on
this distance.

Fig. 1: The log-polar descriptor and non-uniform samples inside
spatial bins (left). Radial bin divisions correspond to equal division
of θ on sphere (right).

Once an orientation is assigned to a visual feature, a support
region is formed proportionally to the number of radial divisions
and sin(σ). The samples inside the support region are grouped into
spatial bins. The log-polar descriptors divide the support region by
discretizing the polar coordinates of the regions around the feature
point. Figure 1 (left) shows such a descriptor structure with 8 ori-
entation bins and 3 radial bins. The central bin is not divided into
orientation bins in order to deal with feature localization errors. As
one may observe, the structure is similar to longitudes and latitudes
around the poles of a sphere for an equiangular grid. In addition, the
selection of increasing radius for the radial bins is achieved by di-
viding the latitude angles uniformly. Figure 1 (right) illustrates this
relation.

The samples in the support region are rotated in SO(3) such that
the feature point coincides with the north pole of the sphere. The
north pole is defined as the point where θ = 0, φ = 0. Simply, quan-
tizing the φ and θ then assigns samples to the corresponding bins.
After the spatial bins are assigned, the log-polar descriptors compute
the orientation and magnitude of the samples inside the spatial bins
and form an orientation histogram weighted by the magnitude of the
gradients similar to SIFT descriptor. Again, the sampling structure
on the sphere is taken into account while computing the gradients.
The gradients are weighted by the inverse of the sampling distance.
Another factor to consider is that the number of samples falling into
a spatial bin also depends on the position of the feature. A normal-
ization is performed by dividing the histogram values by the number
of the samples inside the spatial bin.

Finally, as in the SIFT framework, a descriptor vector is formed
by concatenating the histograms and normalizing this vector. For a
descriptor with 3 radial divisions, 8 orientation divisions and gra-
dient histograms with 8 orientation bins, the length of the vector is
8 ∗ (1 + 2 ∗ 8) = 136. For histogram-comparison based method de-
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scribed in this paper, the histograms are normalized for each spatial
bin and concatenated to the descriptor vector. The latter approach
implicitly performs normalization with respect to number of sam-
ples.

4. FEATURE MATCHING

4.1. Feature matching on oriented polar descriptors

The most common method to compare descriptors is the L2-norm
between the two descriptor vectors. It is a simple and fast method but
it is shown [14] that it does not necessarily provide the best match-
ing scores. Histogram-comparison based methods such as Kullback-
Leibler (KL) divergence [6] or Earth Mover’s distance (EMD) [15,
14] are shown to provide better matching performance at the price
of more computation. Among these methods, KL-divergence has a
good trade-off between accuracy and computation cost. The sym-
metric KL-divergence is computed as

KL(h1, h2) =

MX
n

„
h1(n)log

h1(n)

h2(n)

«
+

MX
n

„
h2(n)log

h2(n)

h1(n)

«
(5)

where M is the number of bins in the histograms.
We propose to use the KL-divergence for matching the new po-

lar descriptors on the sphere. If we denote the spatial bin of the
polar descriptor D for ith radial division and kth orientation di-
vision by Dik , the KL-divergence for descriptors Dp and Dq isP

ik
(KL(Dik

p , Dik
q ))

As in [1], after the distances are computed, the pair with the min-
imum distance that is one factor smaller than the second minimum
distance is selected as a matching pair. The comparison factor that
is called the ambiguity factor is a parameter typically set to 1.5.

4.2. Rotation invariant matching criteria for polar descriptors

We now exploit an interesting characteristic of our new descriptors
to derive an alternative descriptor that necessitates smaller computa-
tional complexity. As the central bin of the descriptor is not divided
into orientation bins, the gradient histogram in this bin captures the
orientation of the feature. In addition, for a polar descriptor, the ro-
tation of the descriptor is just the shift of the spatial orientation bin
indexes and gradient histogram bin indexes. Hence, the descriptor
can capture the distinctive characteristics of the feature even without
orienting the descriptor. Non-oriented version of the polar descriptor
is computed as if the orientation of the feature is zero. The correct
orientation is then computed by the matching algorithm. We propose
a matching algorithm to match these non-oriented descriptors.

First the approximate relative orientation is computed from the
central spatial bins. Circular shift is applied to one of the central
bin histograms, and the L1 distance between the histograms is com-
puted. The amount of shift giving the smaller distance is assigned as
the relative orientation. Formally, the shift α is expressed as

α = argmin
α

"X
n

(
˛̨
|D11

p (n)−D11
q (n + α)

˛̨
|1)

#
(6)

where D11 denotes the central spatial bin. After the shift α has been
computed, the L2 distance is computed between the descriptors by
shifting the indexes of the bins. In other words, we have

||Dp −Dq| |2 =

vuutX
ik

MX
n

(Dik
p (n)−D

i(k−α)
p (n + α)) (7)

The KL-divergence is computed similarly.

5. EXPERIMENTAL RESULTS

We test the proposed oriented and non-oriented polar descriptors on
synthetic spherical images. The depth information for each image is
available so that an homography can be computed in order to define
the groundtruth information. Figure 2 shows some of these images.
We create 3 spherical images of resolution 1024 × 1024 for 3 posi-
tions namely, 0, 2 and -4 in the same direction to test the matching
performance under translation and 5 spherical images with the same
resolution for 5 rotations, namely, 0, 30, 45, 60 and 90 degrees ro-
tated on Y axis to test the matching performance under rotation. We
compute the scale space representations on the sphere and detect
scale invariant features using the method summarized in section 2,
with the implementation from [7]. We detect 833 features in average
for translation and 910 features for rotation images. For fair compar-
isons between descriptors, we apply all the matching methods on the
same set of features. In addition, we consider multiple matches with
the same position but different orientations as one match. As we
know the homography between the images, we compute the ground
truth matches and correct matches by checking the distance and scale
of the possible matches.

We set the distance to 5 pixels and the ratio of the scales to 0.8.
We compute recall and precision for translation and rotation match
results and form recall vs 1-precision graphs by sweeping the ambi-
guity factor from 1 to 4. Note that the recall is computed as

recall =
correct matches

ground truth matches
. (8)

The 1-precision is computed as

1− precision = 1−
correct matches

all matches
. (9)

The performance measure of the 1-precision factor is described by
the proximity of points to the up-left corner of the graph.

Fig. 2: 3 of the synthetic spherical room images used in experiments

We compare the polar descriptors to two other methods namely,
virtual camera planes(VCP) [8], and local spherical SIFT descrip-
tors(LSD) [7]. The VCP method forms image patches by projecting
the spherical image to a plane tangent at the feature point and com-
putes SIFT descriptor on the image patch. The LSD scheme com-
putes the SIFT directly on the spherical image by forming a rectan-
gular support region for the descriptor.

We denote the polar descriptor as PSD and non-oriented polar
descriptor as NoOrPSD. Figure 3 shows the recall vs 1-precision
graph for the rotation. In case of rotation, polar descriptors provide
the best performance. Non-oriented descriptors perform as good as
VCP and LSD with less computation cost than the oriented descrip-
tor on the detection phase. It takes around 15% less time when the
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Fig. 3: recall vs 1-precision for rotation tests. Both polar descriptors
provide better performance for all matching criteria

orientation step is discarded. KL-divergence together with the polar
descriptors gives a clear performance increase.

Figure 4 shows the performance of different descriptors for
translation of the cameras. Polar descriptors perform better than
VCP and LSD methods. Note that translation causes only a slight
change in orientation of the feature. This favors the non-oriented de-
scriptors as there is no orientation computation. On the other hand,
extra orientations computed for the oriented descriptors increases
ambiguity which causes mismatches.
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Fig. 4: recall vs 1-precision for translation tests.

Both graphs show the potential of the non-oriented descriptors
together with rotation-invariant matching for accurate matching with
reduced computational complexity on the detection phase. The in-
crease in performance for the proposed polar descriptors are due to
better handling of the sampling without any extra interpolation and
geometry adaptiveness. It is also shown that histogram based match-
ing is more precise, similarly to what has been reported in the planar
case.

6. CONCLUSION

We have proposed two scale invariant polar descriptors inspired from
log-polar descriptors on the plane. We have built the descriptor so
that it considers non-uniform sampling density on the sphere. The

proposed descriptor is not limited to equiangular grid and can be ap-
plied to any sampling scheme on the sphere. We have also proposed
a matching method that can successfully match non-oriented polar
descriptors through the KL-divergence criteria. The complexity on
the descriptor computation phase is reduced in this case, which en-
able its use for mobile applications.
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