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Abstract
Motivated by synthesis of new antiferromagnetic compounds with weak exchange coupling,

a study of high magnetic field properties of the Heisenberg model on a square-lattice is under-
taken here. Ordered spins at zero temperature cant toward the field direction inducing coupling of
transverse and longitudinal magnon modes. Resulting interactions renormalize the ground-state
energy and the dispersion relation below a threshold field H∗ = 0.76Hsat, where one-magnon
excitations starts to become unstable and acquire finite lifetimes. Such decays originates from
Van-Hove singularities in the two-magnons density of states lying below the one-particle en-
ergy. Decay rates are computed using a Self-Consistent Born Approximation, revealing strong
magnon damping in the middle of the Brillouin’s zone quarters whereas sound and precession
modes remain well defined. Far from these modes, transverse part of the dynamical structure
factor display important broadening of the excitations peaks that might be accesible to neutron
scattering experiments.
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Chapter 1

General outline and motivations

Antiferromagnets belong to a class of materials where microscopic quantum effects are directly
related to macroscopic properties. In such compounds, magnetic atoms interact through their
spin and can display magnetic ordering. Due to increasing complexity with the number of
interacting atoms, physics of antiferromagnets is very rich. Collective excitations in such systems
can be theoretically understood with well-known models that describe coupling between spins,
such as the Heisenberg Hamiltonian. This model displays a large variety of ground-state and
low-energy excitations depending on lattice geometry, dimensionality, spin value, or nature of
the couplings. The case of spins one-half on a square lattice experienced a spectacular regain
of interest after the discovery of high-temperature superconductors by Bendorz & Müller in
1986.

Compound Jk−1
b (K) Hc(T ) J ′/J

La2CuO4
∼= 1500 4500 8.110−4

Cu(COO)24D2O 71.8 220 1.910−3

(5CAP)2CuBr4 8.5 25.3 0.26

(5CAP)2CuCl4 1.25 3.62 0.25
(5MAP)2CuCl4 0.76 2.26 0.21

Table 1.1: Experimental magnetic properties [9] of different families of S=1/2 Heisenberg antifer-
romagnets on a square lattice. J is the nearest neighbourgh exchange constant, Hc = 8JS/gμb

the saturation field and J ′ the interlayer coupling. The J ′/J ratio is obtained using extrapolation
from quantum Monte-Carlo calculations and experimental data.

Some parent compounds of the superconducting cuprates, such as La2CuO4, are believed to
be fair realizations of an Heinsenberg spin one-half square-lattice antiferromagnet with nearest
neighbor coupling. This model has been intensively studied and is now well understood. Recently,
progress in synthesis chemistry added new metal-organic compounds to the zoo of square-lattice
spin one-half antiferromagnets [9]. Some experimental studies concentrated their efforts on spe-
cific compounds such as CFTD (Copper Formate TetraDeuterate : formulae Cu(COO)24D2O)
due to significant reduction of the exchange constant J compared to La2CuO4. With reduction
of coupling strenght between spins, new experimental opportunities appeared, combined with
breaktrough in neutron scattering techniques. The study of effects of magnetic field on long-
range ordered Heisenberg antiferromagnet is now achievable. This new possibilities originates

5



from lowering of saturation field (Table 1.1) to achievable magnetic field in neutron scattering
facilities. Although common for quasi-one-dimensional antiferromagnets [3] [18] such studies
are not well developped for bi- and tri- dimensional systems. Motivation to describe properties
of square-lattice antiferromagnets under applied magnetic field is reinforced by the important
role played by Heisenberg Hamiltonian to describe spin one and spin five-half systems where
single-ion anisotropy is weak.

The study of static properties such as magnetization and suceptibility has been carried out
in [20] for a model with nearest neighbor coupling and a nice step ahead in understanding its
low-energy excitations was performed by Zhitomirsky and Chernychev in [5]. Based on this
results, and with a restriction to the bidimensional case, the objective of this work is threefold.
First, as magnetic field induces specific interactions between excitations, deviations from har-
monicity are analysed with spin-wave theory (Chapter 2). Then, as excitations are believed to
be unstable in high fields, their finite lifetime at zero-temperature is introduced (Chapter 3) and
computed whithin the self-consistent Born approximation (Chapter 4). Finally, derived quan-
tities are related to experiments in predicting possible neutron scattering dynamical structure
factors (Chapter 5). Although inspired from previous works( [20] and [5]), this study introduce
an explicit way to compute magnons decay rate which is of direct experimental releavence.
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Chapter 2

Beyond Linear Spin-Wave Theory

2.1 First results on the Heisenberg Hamiltonian in an
external magnetic field

The Heisenberg Hamiltonian on an square-lattice under applied magnetic field and with
nearest-neighbor interactions can be written:

Ĥ = J
∑

<i,j>

Si · Sj − H
∑

i

Sz0
i (2.1)

where J stands for the antiferromagnetic exchange coupling constant, < i, j > restricts the sum
to nearest-neighbor sites of the square lattice and H equals gμbh, with h the intensity of an
uniform external magnetic field directed toward axis z0.

In the bidimensional isotropic case (H → 0 and D = 2) and at zero temperature, it is
proved [15] that Hamiltonian (2.1) displays long-range order (LRO) for all spins values S ≥
3/2. Furthermore, it is now commonly accepted that this property extends to lower spin values
including ’quantum’ (S = 1/2) systems [13]. Nevertheless, for D ≤ 2 long-range order disappears
at any finite temperature and for any spin value [14]. When isotropy is explicitly broken by
external magnetic field and for D ≥ 2, evolution from the ordered state is simple [20] as spins
cant toward the field direction. Such a behavior requires an ordered ground state so that this
study concerns D = 2 models, with arbitrary spin, and at zero temperature. Tridimensional
models also displays long-range order at zero-temperature and consists of a extansion of the
results presented hereby.

2.1.1 Explicit form of the Hamiltonian

In the zero-field phase of (2.1) interactions are not frustrated and spins arrange in the well-known
Néel structure described by the ordering vector Q = (π, π). In the spins space, magnetic field
is applied perpendicularly to vector Q so that spins gradually rotate toward its direction. A
spin operator in the laboratory frame (x0, y0, z0) is related to its expression in the rotating frame
(xi, yi, zi) in the following way:⎧⎪⎪⎨⎪⎪⎩

Ŝx0
i = Ŝx

i sin θ + Ŝz
i cos θeiQ·ri

Ŝy0
i = Ŝy

i

Ŝz0
i = −Ŝx

i cos θeiQ·ri + Ŝz
i sin θ

7
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⊗ ŷ0
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where θ denotes the canting angle and ri the position of the site i on the lattice. On the contrary
to several early studies [12] [17], the system is not divided into two sub-lattices and alternatively,
the Néel ordering vector Q is used to ’flip’ spins directions (eiQ·ri = ±1 on the square lattice).
In the rotating frame the Hamiltonian reads:

Ĥ = J
∑

<i,j>

[− cos 2θ(Sx
i Sx

j + Sz
i Sz

j ) + Sy
i Sy

j − sin 2θeiQ·ri(Sx
i Sz

j − Sz
i Sx

j )
]

+ H
∑

i

[
Sx

i cos θeiQ·ri − Sz
i sin θ

] (2.2)

Spin operators can be written exactly via bosonic operators using the Holstein-Primakoff
transformation:

Sz
i = S − a†

iai , S+
i = Sx

i + iSy
i =

√
2S − a†

iaiai , S−
i = Sx

i − iSy
i = a†

i

√
2S − a†

iai (2.3)

where a†
i creates a spin deviation on the site i and ai annihilates it, provided a†

iai ≤ 2S.
The so-called Spin-Wave Theory (SWT) consists in a series expansion of the square root

involved in S+
i and S−

i while forgetting the constraints on operators so that a†
iai > 2S is al-

lowed. At the ’linear’-order, this theory produced major achievements in the understanding of
antiferromagnets [2] [12] and is believed to have good convergence toward ’exact’ results esti-
mated numerically using Monte-Carlo techniques [6]. Spin-wave theory actually corresponds to
an 1/S series expansion and is more likely to fail for small spins, where the second term of the
series is not even small (1/S = 2), than for large spins. This physically corresponds to enhanced
quantum fluctuations for small spins, creating significative deviations from the ’classical’ large-S
results. In order to understand the effect of non-linearities on Hamiltonian (2.1), square root is

expanded up to the second order as
√

2S − a†
iai =

√
2S

(
1 − a†

i ai

4S

)
and the Hamiltonian reads:

Ĥ = Ĥ0 + Ĥ1 + Ĥ2 + Ĥ2 + Ĥ4 + ... (2.4)

where Ĥn = O(S2−n/2) contains all terms with n a or a† operators. As the Hamiltonian (2.2)
contains mixed x − z terms, odd powers of the expansion (2.4) do not vanish. This originates
from the non-collinear order induced by the field an can also appear on triangular lattices at
zero field, where spins form the so called ’120◦-structure’ [1]. Combining (2.2) and (2.3), one can
derive the following expressions contributing to the ’harmonic’ part of the Hamiltonian:

ε0 = Ĥ0/N = −2JS2 cos 2θ − HS sin θ (2.5)

Ĥ1 =

√
S

2
cos θ(H − 8JS sin θ)

∑
i

eiQ·ri(ai + a†
i ) (2.6)
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Ĥ2 = H sin θ
∑

i

a†
iai +

J

2S

∑
i,j(i)

[
cos 2θ(a†

iai + a†
jaj)

+ sin2 θ(a†
iaj + a†

jai) − cos 2θ(a†
ia

†
i + a†

ja
†
j)

] (2.7)

where j(i) stands for the index of the four nearest-neighbors of lattice site i, and ε0 is the
classical energy per spin. Higher order terms introduce interactions between spins deviations in
going beyond the harmonic approximation:

Ĥ3 = J sin 2θ

√
S

2

∑
i,j(i)

(a†
i + ai)a

†
jaj + cos θ

√
S

2

(
2J sin θ − H

4S

)∑
i

eiQ·ri(a†
ini + niai) (2.8)

Ĥ4 =
J

2

∑
i,j(i)

[
− ninj cos 2θ +

1
4

cos2 θ {(ni + nj)aiaj + h.c.} − 1
4

sin2 θ
{
a†

i (ni + nj)aj + h.c.
}]

(2.9)
where h.c. stands for Hermitian conjugate and ni = a†

iai.

2.1.2 The harmonic approximation

The linear or ’harmonic’ approximation (LSWT) neglects all terms of order higher than
O(1/S0) = O(1). From a classical point of view the energy per spin:

E0(θ) = 4JS2 sin2 θ − HS sin θ − 2JS2 is minimum for sin θ0 =
H

8JS
(2.10)

which implies that spins smoothly cant toward the field direction and are all aligned for
Hsat = 8JS. In the saturated phase, the ground state aspect is similar to the ferromagnetic
case. For a classically selected canting angle, contribution Ĥ1(θ0) vanishes. Renormalized con-
tributions to the canting angle due to interactions are of higher orders in 1/S and are not
included in the LSWT. Using Fourier transformed expressions for bosonic operators defined as
ak = 1/N

∑
i ai exp (ik · ri), the quadratic Hamiltonian reads:

Ĥ2 =
∑
k

[
Aka†

kak − Bk

2

(
aka−k + a†

ka†
−k

)]
(2.11)

where Ak ≡ 4JS(1 + sin2 θ0γk), Bk ≡ 4JS cos2 θ0γk, and γk is the sum of the lattice harmonics,
γk ≡ 1/4

∑
j(i) exp (ik · rj). For bidimensional square-lattice with nearest-neighbor exchange,

γk = 1
2 (cos kx + cos ky). Hamiltonian (2.11) is said to be harmonic as one can diagonalize it

using the Bogolioubov canonical transformation:(
ak

a†
k

)
=

(
uk vk

u∗
k v∗k

)(
bk
b†−k

)
(2.12)

Due to the properties of Fourier transform, u∗
k = u−k and v∗k = v−k. Moreover b†k and bk

follows bosonic commutations rules provided matrix (2.12) is unitary with real coefficients. As
a result uk = u−k, vk = v−k and u2

k − v2
k = 1 so that the harmonic hamiltonian reads:

Ĥ2 =
∑
k

εkb†kbk +
1
2

∑
k

(εk − Ak) with εk = 4JS
√

(1 + γk)(1 − cos 2θγk). (2.13)

whereas the coefficient of the Bogolioubov transformation can be expressed as:

uk =

√
|Ak|
2εk

+ 1 and vk = sign(γk)
√

u2
k − 1 (2.14)
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First term in the Hamiltonian (2.13) is diagonal in terms of Bogolioubov operators so
that its ground-sate |0〉 is defined as bk|0〉 = 0. Quasiparticles created on the ground state by
b†k|0〉 = |k〉 are the so-called magnons. Second term in (2.13) corresponds to purely quantum
zero-point energy. The ground state energy in the LSWT is therefore E

(2)
g.s = Eo + 〈Ĥ2〉

2.2 Static properties beyond the Linear Spin-Wave Theory

2.2.1 Contribution from quartic terms

In the zeroth order in perturbation theory, Ĥ4 has a non zero expectation value on the ground
state

〈
0|Ĥ4|0

〉
. Average value can be taken directly on equation (2.9) using Wick’s theorem to

pair bosonic a-operators. Using the Hartree-Fock averages defined as:

n = 〈a†
iai〉 , m = 〈a†

iaj〉 , δ = 〈a2
i 〉 and Δ = 〈aiaj〉 (2.15)

one can easily compute the different averages, 〈ninj〉 = n2+m2+Δ2, 〈(ni+nj)aiaj〉 = 8nΔ+4mδ

and 〈a†
i (ni + nj)a

†
j〉 = 8nm + 4δΔ that yields :

δE(4)
g.s = 〈0|Ĥ4|0〉 = 2J

[
cos2 θ(2nΔ + δm) − cos 2θ(n2 + Δ2 + m2) − sin2 θ(2nm + δΔ)

]
The Hartree-Fock averages of equation (2.15) can be numerically evaluated after Bogo-

lioubov transformation. Integration in the reciprocal space is done using Simpsons integration
technique with enhanced number of points around the k = Q point where integrand as logarith-
mic singularity : some results are presented on Table (2.1).

Field 0 0.50Hsat 0.75Hsat

n =
∑
k

v2
k 0.196602 0.0936446 0.0537367

m =
∑
k

γkv2
k 0.0000000 -0.0571777 −0.0428606

δ =
∑
k

ukvk 0.0000000 -0.0834939 -0.0784327

Δ =
∑
k

γkukvk 0.275576 0.162442 0.106100

Table 2.1: Hartree-Fock averages with two-dimensional integrals computed on a 105x105

points bidimensional Brillouin zone

2.2.2 Contribution from renormalization of the canting angle

Wick’s theorem can also be fruitfully applied to 〈0|Ĥ3|0〉. The second part of equation (2.8)
vanishes at the equilibrium value of the canting angle, so that after decoupling of the form
〈(a†

i + ai)a
†
jaj = n(a†

i + ai) + (δ + m)(a†
j + aj)〉 and Fourier transform:

〈Ĥ3〉 = Ĥ(1)
3 = 4J sin 2θ

√
S

2
(n − m − Δ)(a†

Q + aQ)

Such linear Hamiltonian contributes to the ground-state energy as it renormalizes the canting
angle. Linear terms in a-operators must disappear in the expression of the ground state energy,
so that coefficients of such operators in the ’full’ linear term Ĥ1 + Ĥ(1)

3 must vanish. Such
cancellation yields the expression for the renormalized angle :

sin θ = sin θ0

[
1 +

n − m − Δ
S

]

10



This slight change in the angle contributes to the ground-state energy in two ways. First, it
shifts the classical energy of a value:

δE(0)
g.s = 4JS2(sin θ0 − sin θ)2 =

H2

16JS2
(n − m − Δ)2 ≡ O(

1
S2

)

so that it was reasonable to neglect such angle renormalization in the LSWT. Then, it shifts
the Ak and Bk coefficients in Ĥ2 by quantities δAk = − H2

8JS2 (1 − γk)(n − m − Δ) and δBk =
− H2

8JS2 γk(n−m−Δ) resulting in the following shift of the ground-state energy from the quadratic
part:

δE(2)
g.s = 〈δĤ2〉 = − H2

8JS2
(n − m − Δ)2

2.2.3 Contribution from cubic part

Contributions from cubic term at the first order in perturbation theory have already been in-
cluded through consequences of angle renormalization on the ground sate energy. However, cubic
term also contributes to the ground-state energy at the second order in perturbation theory. In
order to apply Rayleigh-Schrodinger theory it is first required to apply Bogolioubov trans-
formation to Ĥ3. Starting from the following Fourier transformed equation:

Ĥ3 = −H cos θ√
2SN

∑
k,q

γk

(
a†
k+q−Qa†

qak + a†
ka†

qak+q−Q

)
(2.16)

one can derive the following cubic terms constituting the lowest order interaction between
magnons, explicitly written in terms of creation and annihilation operators [5]:

V̂3
(1)

=
1
2!

∑
k,q

{
Γ1(k,q)

[
b†k−q+Qb†qbk

]
+ Γ∗

1(k,q)
[
b†kbqbk−q+Q

]}
V̂3

(2)
=

1
3!

∑
k,q

{
Γ2(k,q)

[
b†kb†qb†k−q+Q

]
+ Γ∗

2(k,q)
[
bkbqbk−q+Q

]} (2.17)

where the vertices Γ1(k,q) and Γ2(k,q) have the following expressions:

Γ1(k,q) = −H cos θ√
2SN

[
γk(uk + vk)(uqvk−q+Q + vquk−q+Q)

+γq(uq + vq)(ukuk−q+Q + vkvk−q+Q) + γk−q+Q(uk−q+Q + vk−q+Q)(ukuq + vkvq)
]

Γ2(k,q) = −H cos θ√
2SN

[
γk(uk + vk)(uqvk−q+Q + vquk−q+Q)

+γq(uq + vq)(ukvk−q+Q + vkuk−q+Q) + γk−q+Q(uk−q+Q + vk−q+Q)(ukvq + vkuq)
]

Such vertices correspond to interaction between one-magnon |k〉 and two-magnons |q,k − q + Q〉
states via the following events:

V
(1)
3 ≡

k q

k − q + QΓ1
and

q

k − q + Q

k

Γ∗
1 , V

(2)
3 ≡ k

q

k − q + Q

Γ2

and
k

q

k − q + Q

Γ∗
2

so that V̂
(1)
3 introduce decay processes and V̂

(2)
3 source ones. From diagrams, one can realize

that vertex Γ1 is symmetric with respect to exchange of two incoming (or outgoing) momenta.
Writing Γ1 in a symmetric form with respect to such permutation requires to divide the actual
interaction by the number of equivalent diagrams. They are 3 choices of incoming momentum

11



that yields non-equivalent diagrams on a total number of 3! diagrams. The V̂
(1)
3 is therefore

normalized by a factor 3 · 1
3! = 1

2! . On the other hand, Γ2 is fully symmetric with respect to
exchange of momenta so that V̂

(2)
3 is normalized by a factor 1

3! .
It is now easy to apply perturbation theory up to the second order and obtain contribution

to the ground-state energy:

δE(3)
g.s =

∑
p1,p2,p3

∣∣∣〈p1,p2,p3|V̂ (1)
3 + V̂

(2)
3 |0〉

∣∣∣2
E

(0)
g.s − (εp1 + εp2 + εp3)

= −3!
1

(3!)2
∑
k,q

|Γ2(k,q)|2
εk + εq + εk−q+Q

(2.18)

where V̂
(1)
3 does not contribute to the ground-state energy while the factor 3! corresponds to the

number of possible permutations giving 〈p1,p2,p3|k,q,k − q + Q〉 
= 0. Contribution (2.18) is
of order 1/S2 in the spin wave expansion so that at this order, the ground-state energy changes
and becomes:

Eg.s = δEo + 〈Ĥ2〉 + δE(0)
g.s + δE(2)

g.s + δE(3)
g.s (2.19)

2.2.4 Magnetization curve

In the LSWT, the magnetization is obtained by differentiating the ground-state energy with
respect to magnetic field and its expression is simple:

M

S
=

H

Hsat

[
1 − 1

2S

∑
k

γk

√
1 + γk

1 − γk cos 2θ

]
(2.20)

Corrections to the ground-state energy contributes to renormalize the magnetization curve but
the overall correction is small. The static properties of the Heisenberg Hamiltonian can there-
fore be understood qualitatively within the harmonic regime. The magnetization curve has
logarithmic singularity near the saturation field and the g characteristic shape [20] presented on
Figure 2.1.

Figure 2.1: Magnetization curve for S = 1/2. Field is in unit of J. Dashed and solid lines are results
at the first- and second-order in the spin-wave expansion
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2.3 Spectrum renormalization due to magnons interac-

tions

2.3.1 General properties of the excitation spectrum

In the Linear Spin-Wave Theory, low-energy excitations are the so-called magnons and can be
considered as free, bosonic-type, quasiparticles. On the contrary to other bosonic systems such
as superfluid Helium-4 or diluted Alkali atoms where coupling with Bose-Einstein condensate
fixes the number of particles, magnons can be treated in a statistical ensemble where their number
is not conserved. In zero-field, it is assumed that the system displays long-range order. This
requires the continuous SU(2) symmetry of the Hamiltonian to be spontaneously broken. As
a consequence from a well-know theorem known as the Goldstone theorem, it is possible to
create low-energy excitations so that the spectrum be gapless. This property remains true for
non-zero magnetic field. For H = 0, zero-energy modes lies in k = 0 and k = Q whereas in the
canted phase, only the k = Q mode remains gapless. This mode is rather called Goldstone
mode or sound-mode by analogy with phonon spectra in solids. The dispersion relation in the
LSWT is plotted on Figure (2.2) for different magnetic field using its analytical expression:

εk = 4JSωk with ωk =
√

(1 + γk)(1 − cos 2θγk) (2.21)
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Figure 2.2: Brillouin zone plot of dimensionless dispersion ωk in the LSWT and for different magnetic
fields.

2.3.2 Magnons Green’s function and perturbation theory

In order to understand effects of interactions on the dispersion relation it is fruitful to use the
formalism of Quantum Field Theory. As a first step, it is necesserry to introduce magnons
Green’s functions. Precise derivations for bosons in precense of a Bose condensate, in the
context of superfluid Helium 4, can be found in various textbooks [7] [8]. As discussed before,
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the case of magnons is much simpler as their number is not conserved. Starting from the harmonic
part of the Hamiltonian Ĥ2 =

∑
k

εkb†kbk and using the general definition of Green’s function

for a system with translational invariance,

G(0)(x, t) = −i
〈
0
∣∣Tb(x, t)b†(0, 0)

∣∣ 0〉
one can derive the following expression for unperturbed advanced and retarded magnon Green’s
functions:

G(0)(x, t > 0) = − i

N

∑
k

ei(k.x−εkt)
〈
0
∣∣∣bkb†k

∣∣∣ 0〉 
= 0 (2.22)

G(0)(x, t < 0) = − i

N

∑
k

ei(k.x−εkt)
〈
0
∣∣∣b†kbk

∣∣∣ 0〉 = 0 (2.23)

In (2.22) and (2.23), |0〉 stands for the unperturbed ground state of the system. As a result of
bosonic operators commutation rules, the retarded Green’s function obviously vanishes. Further-
more, it is possible by coordinate and time Fourier transform to derive the following expression
for the unperturbed Green’s function :

G(0)(k, ε) = i lim
δ→0+

∫ ∞

0

dteit(ε−εk+iδ) =
1

ε − εk + i0+
(2.24)

In the expression of the full Green’s function the projection on ground-state |0〉 is substituted
with projection on the interacting ground state. The strength of the technique is to go back to
an average value on the unperturbed ground-state using perturbative expansion in powers of the
interaction potential [8]:

G(k, t) = −i
〈
Tbk(t)b†k

〉
= −i

∞∑
m=0

(−i)m

m!

∫
dt1....dtm

〈
0
∣∣∣T V̂ (t1)...V̂ (tm)bk(t)b†k

∣∣∣ 0〉
con

(2.25)

where the sum is performed an all the connected diagrams that might appear in the expansion.
In this context, it is possible to define the self-energy in the following schematical way using
Dyson’s equation [8]:

k
=

k
+

k k
Σ (2.26)

where thin lines stands for unperturbed magnon Green’s function and double lines for full ones.
Diagram (2.26) is a fancy way to write the basic equation G (k, ε)−1 = Go (k, ε)−1 −Σ(k, ε). The
renormalized spectrum ε̃ corresponds to the poles of the perturbed Green’s function so that it
is solution of ε̃ = εk + Σ(k, ε̃), where εk corresponds to the harmonic dispersion. It is legitimate
to neglect anomalous Green’s function involving two creation or annihilation operators [6] so
that the expansion only contains normal functions.

2.3.3 Contribution from decay and source vertices

The lowest order correction to the spectrum corresponds to interaction via cubic vertices V
(1)
3

and V
(2)
3 . This non-zero corrections corresponds to the following diagrams:

k k

q

k − q + Q

Γ∗
1Γ1

,
k k

q

k − q + Q
Γ∗

2Γ2

(2.27)
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The self-energies associated with such diagrams are denoted Σ(1)
11 for the decay process and Σ(2)

11

for the source process. The ”11” index means that this corrections come from normal Green’s
functions. Using Feynman rules in momentum space [8] yields:

Σ(1)
11 (k, ε) = 2i

1
(2!)2

∑
q

∫
dε′

2π
|Γ1(k,q)|2Go (k, ε′)Go (k − q + Q, ε − ε′)

=
1
2

∑
q

|Γ1(k,q)|2
ε − εq − εk−q+Q + i0

= 4J sin2 θ cos2 θ
∑
q

|Γ̃1(k,q)|2
ω − ωq − ωk−q+Q + i0

(2.28)

Σ(2)
11 (k, ε) = 18i

1
(3!)2

∑
q

∫
dε′

2π
|Γ2(k,q)|2Go (k, ε′)Go (k − q + Q,−ε − ε′)

= −1
2

∑
q

|Γ2(k,q)|2
ε + εq + εk−q+Q − i0

= −4J sin2 θ cos2 θ
∑
q

|Γ̃2(k,q)|2
ω + ωq + ωk−q+Q − i0

(2.29)

where dimensionless expressions for dispersion and vertices are εk = 4JSωk and Γ1,(2) =
−H cos θ/

√
2SΓ̃1,(2) so that this corrections are of order O(1/S2).

2.3.4 Contribution from quartic terms and angle renormalization

Contribution from quartic term Ĥ4 to the self-energy, computed at the first order in perturbation
theory contains 6 bosonic operators. In order to compute its value on the unperturbed ground-
state, Wick’s theorem should be used. Once two operators from Ĥ4 are paired with the original
field operators, there is no freedom for the remaining pairing. Choosing this pairing before
Bogolioubov transformation simplifies the whole computation. Applied to (2.9) this trick
gives:

δĤ4 =
J

2

∑
i,j(i)

[
a†

iaia
†
jaj)

(
n cos 2θ + Δ cos2 θ − m sin2 θ

)
+ (a†

iaja
†
jai)

(
1
2
δ cos2 θ − n sin2 θ − m cos 2θ

)

+(aiaj + a†
ia

†
i )

(
n cos2 θ − Δ cos 2θ − 1

2
δ sin2 θ

)
+

1
4
(a2

i a
2
j + a2

i
†a2

i
†)

(
m cos2 θ − Δ sin2 θ

) ]

Next step is to apply Bogolioubov transformation while forgetting ”anomalous” terms that
do not contribute at the first order in perturbation theory. Finally, the quartic part of the
Hamiltonian yields the following correction to the spectrum:

δε
(1)
k =

4J

ωk

[
− n cos 2θ + Δ cos2 θ − m sin2 θ +

1
2

cos2 θγk

[
sin2 θ(Δ − 4n − m) + δ

]
+cos 2θγ2

k

[
n − Δ cos2 θ − m sin2 θ

] ] (2.30)

As discussed before, angle renormalization implies changes in constant terms of Ĥ2 by an
amount δAk and δBk resulting in:

δĤ2 = − H2

8JS2
(n − m − Δ)

∑
k

[
(1 − γk)a†

kak − 1
2
γk(aka−k + a†

ka†
−k)

]
= − H2(n − m − Δ)

8JS2

∑
k

[
(u2

k + v2
k) − γk(uk + vk)2

]
b†kbk + ”anomalous terms”

where the second line originates from substituting Bogolioubov transformation while keeping
only terms with one creation and one annihilation operator. Therefore, at the first order in
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Figure 2.3: Spin 1/2 - Brillouin zone plot of renormalized dispersion ε̃k (solid lines) with correc-
tive terms up to the 1/S2 in the spin-wave expansion compared to harmonic spectrum (dashed lines).
Computation of Hartree-Fock averages is done using a modified Simpson’s rule on a 3000x3000 grid.
Integrals in self-energy are done using a Monte-Carlo technique with 4 · 106 points.

perturbation theory, the angle renormalization yields the following correction of smallness 1/S2

to the dispersion relation:

δε
(2)
k =

H2

8JS2ωk
(Δ + m − n)(1 − γ2

k − cos2 θγk) (2.31)

2.3.5 Renormalized spectrum

If contributions from the self-energy are small [10], one can substitute ε = εk in Dyson’s equation
in order to get an explicit equation for the renormalized spectrum :

ε̃k = εk + δε
(1)
k + δε

(2)
k + Σ(1)

11 (k, εk) + Σ(2)
11 (k, εk) (2.32)

where εk is the Harmonic dispersion. A renormalized spectrum is plotted on Figure (2.3) for
spin 1/2 and for different magnetic fields. For low magnetic fields, renormalization yields an
moderate enhancement of the spectrum with |ε̃k − εk| ≤ 15%. For greater magnetic fields,
renormalization can be up to 50% so that substitution ε = εk breaks down. The correct behavior
can be recovered solving Dyson equation which implicitely define the correct spectrum [5].
Fastly growing renormalization at high field originates from growing denominator in the self-
energy Σ(1)

11 . Around H = 0.75Hsat self-energy gets singular and renormalization procedure fails.
This corresponds to instability of magnons with respect to decay processes involved in Σ(1)

11 . Next
chapter elucidates conditions for such decays to dominate other contributions.
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Chapter 3

Kinematics of Magnons Decay

Magnons decays originates from the existence of singularities in the self-energy involving three-
particles processes. These divergencies correspond to the crossing between the one-magnon
spectrum εk and the two-magnons continuum εq + εk−q+Q. In this context, this chapter aims
at elucidating the conditions required for such vicinities. Analysing the momentum and energy
conservation laws is sufficient to obtain decay conditions, this part therefore deals with decay
kinematics. Decay of bosons at zero-temperature is actually a well documented problem as such
phenomenon occurs in superfluid Helium-4. The following discussion is as a result adapted from
early textbooks on the subject, namely from Abrikosov-Gorkov-Dzyaloshinski’s [8] and
Lifshitz-Pitaevskii’s [7] textbooks.

3.1 Origin of decay

As derived in previous sections the lowest-order self-energy originating from decay processes
reads :

Σ(1)
11 (k, εk) =

1
2

∑
q

|Γ1(k,q)|2
εk − εq − εk−q+Q + i0

Finding the conditions for decay therefore corresponds to the computation of the roots of the
following equation :

εk = εq + εk−q+Q (3.1)

In the following it is assumed that equation (3.1) starts to have roots above a certain threshold
momentum kc where it becomes possible to find at least one momentum q satisfying the energy
conservation. This set of threshold momenta defines the limits of the decay region where the one-
magnon spectrum becomes unstable. On the other hand, the corresponding set of q-momenta,
solutions of (3.1) for a given k in the decay region (or on its boundaries), define a decay surface
where the two new magnons are created. For a given magnetic field, the decay region is unique
whereas the decay surfaces depend on the chosen incoming momentum within it.

One can easily understands that at the decay threshold the right-hand side of (3.1) must be
a minimum1 as a function of q. Expanding its right-hand side around q∗ yields :

εkc = εq∗ + εkc−q∗+Q + (∇q εq −∇q εk−q+Q) .δq + O(δq2) (3.2)

where δq = q − q∗. At the minimum, the linear term in the expansion must vanish so that
created magnons have equal velocities :

vq∗ = vkc−q∗+Q = v2 (3.3)

1Otherwise the incoming magnon momentum would be above the threshold i.e inside the decay region
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Two different situations arise simultaneously with equation (3.3): rather one magnon is
created with zero energy at the Goldstone mode (section 3.2), rather both created magnons
have finite energy so that the decay occurs at a given point inside the Brillouin zone (section
3.3). This classification is similar to the one found for superfluid Helium-4 where decay rather
creates two excitations or a phonon. However, the excitation spectrum of Helium-4 also contains
a local minimum where decay can create excitations with zero velocity, the so-called ’rotons’.
Such phenomenon does not exist in the present system according to the shape of its spectrum.

3.2 Decay near the Goldstone mode

It is relevant to starts investigating decay kinematics for particles around the Goldstone mode
where the spectrum is not gapped. For k → Q, decay starts when εq + εk−q+Q = εq + ε−q is
minimum. Obviously, this minimum is zero and reached for q → Q which implies that for both
k and q near the Goldstone mode the global minimum of εq + εk−q+Q is reached. As a result
if decay is possible it must starts at the Goldstone mode.

3.2.1 Curvature of the spectrum

Condition for decay to start can now be formulated in terms of spectrum curvature. Assuming
an isotropic system, one can expand the spectrum around the Goldstone mode in the following
form [8] [7] :

εQ−k̃ ≈ vk̃ + αk̃3 + O(k̃3)

where k̃ is a small quantity. Applied to equation (3.1) this expansion yields :

v(k̃ − q̃ − |k̃ − q̃|) = −α(k̃3 − q̃3 − |k̃ − q̃|3)

As both k̃ and q̃ lies next to the Goldstone mode, the angle β between their direction is small
and |k̃− q̃| ≈ − k̃q̃

k̃−q̃
(1− cosβ) with 1− cosβ > 0. From this expansion it finally turns out that :

1 − cosβ = 3α(k̃ − q̃)2 (3.4)

and as a result, decay starts at the Goldstone mode when α > 0, i.e when the harmonic
spectrum acquires a positive curvature. Even if this argument has been derived for an isotropic
spectrum, it still holds for more complex ones provided angular dependence around the sound
mode is carefully analysed.

3.2.2 Computation of the threshold field

In order to use the previous argument, one should expand the spectrum obtained with the linear
spin-wave theory around the Goldstone mode. As the actual spectrum is not isotropic correct
expansions are done in the following way :

γk ≈ −1 +
k̃2

x + k̃2
y

4
− k̃4

x + k̃4
y

48
where k̃x and k̃y are independent variables

Switching to polar coordinates defined as k̃y = k̃ cosφ and k̃y = k̃ sinφ, it is straightforward
to expand the harmonic spectrum to the third order in k̃3 and obtain :

εQ−k̃/4JS = ωQ−k̃ =
[
cos θ√

2

]
k̃ −

[
cos θ√

2

(
1 − 2 sin2 φ cos2 φ

24
+

cos 2θ

16 cos2 θ

)]
k̃3 + O(k̃3)

where θ is the classical canting angle defined as sin θ = H/Hsat. It is now clear that the curvature
of the spectrum explicitly depends on the magnetic field and one can define a threshold magnetic
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field H∗ above which α becomes positive :

H∗

Hsat
=

√
5 − 4 sin2 φ cos2 φ

8 − 4 sin2 φ cos2 φ
(3.5)

For incoming momentum sitting on the diagonal of the Brillouin zone (ΓM line) the threshold
field is minimized and its value is:

H∗ =
2√
7
Hsat ≈ 0.76Hsat (3.6)

On the other hand, above H ′ =
√

5
8Hc ≈ 0.79Hsat decay occurs for any momentum close to the

Goldstone mode without any dependence on the angle φ.
From the analytical considerations of this subsection, one can draw the general conclusion

that decay is only possible for a field above ≈ 76% of the saturation field and first appear for
magnons around the sound mode.

3.3 Decay within the Brillouin zone

Analysing the decay processes for any momentum inside of the Brillouin zone is far less straight-
forward then in the neighborhood of the Goldstone mode as the decay region bonduary is
defined as the set of solution kc to the system :

εkc = εkc−q+Q + εq and
∂

∂q
[εkc−q+Q + εq] = 0 (3.7)

The second equation in (3.7) can be written more rigorously in the form :

∂εq
∂q

∣∣∣
q
− ∂εq

∂q

∣∣∣
k−q+Q

= 0

After this transformation it is clear that the simplest way to satisfy (3.7) is to assume that
created magnons have equal quasi-momenta q∗. It is obviously a very specific case and other
solutions might arise while completely solving the system. Such a study is however useless as
next chapter will show that the case of decay with equal momenta corresponds ’by chance’ to the
largest decay region. In other words, if other solutions to equations (3.7) exist, they correspond
to momenta k already lying inside of the ’equal momenta’ decay region. Nevertheless, one should
realize that this argument is not general and a complete solving might be necessary for systems
with more complex spectrum [1].

3.3.1 Decay in magnons with equal momenta

It is now assumed that created magnons at the threshold have equal quasi-momenta q∗ and
q∗ + G, where G is a reciprocal lattice vector. It implies that kc − q∗ + Q = q∗ + G and
transform equation (3.1) in the following way :

εkc = 2ε(Q−kc)/2 (3.8)

which gives an explicit equation for the limits of the decay region. Solutions of equation (3.8)
are plotted for different magnetic fields in Figure 3.1.

As derived analytically in the previous section, decay starts at the Goldstone mode and
decay region rapidly spreads with increasing field. For a given magnetic field, all magnons with
momentum sitting within the corresponding contour are unstable. Close to saturation, one-
magnon excitations only survive next to Γ and X points of the Brillouin zone. When the system
is saturated, all one-magnon excitations become unstable.

19



Γ M

X

0.76

0.77

0.78

0.79

0.80
0.81

0.820.830.84
0.85

0.86

0.87

0.88

0.89
0.90

Figure 3.1: Decay region boundaries for different magnetic fields. Only 1/8 of the Brillouin zone
is plotted as the whole BZ can be recovered by symmetry. Red lines stands for region boundaries.
Corresponding fields are indicated on the line in fraction of the saturation field Hsat. Scan in field is
done from H∗ to Hsat by 1% steps. At Hsat the decay region is the whole Brillouin zone.

3.3.2 Decay surfaces

As defined previously, decay surfaces correspond to sets of momenta solutions of energy con-
servation for a given incoming momentum. In order to plot these surfaces, one should find, for
a given k within the decay region, momenta q satisfying equation (3.1). Such a study can be
carried out without any assumption on created magnons provided decay region is already known.
Several decay surfaces are plotted in Figure 3.2 for two different incoming momenta inside of the
decay region. One can easily notice that decay surfaces are always included inside of original
decay region.

The most important conclusion arising from decay surfaces plots concerns the stability of
created magnons. As decay surfaces remains inside the decay region, created magnons are again
unstable with respect to two-magnons decays. As a result magnons decay has to be understood
as a chain of two-magnons decay processes leading to zero-temperature finite lifetimes excitations.

3.4 Understanding decays with two-magnons density of

states

A complementary approach can be carried out to understand physical reasons for decay. It will
appear that two-magnons density of states has moving Van-Hove singularities that can cross
the one-magnon spectrum and be therefore responsible for decays. The two-magnons density of
states (DOS) for a given kin the Brillouin zone and a given energy ε is defined as follow :

D2(k, ε) =
∑
q

δ(ε − εq − εk−q+Q) =
∫

d2q
(2π)2

δ(ε − εq − εk−q+Q) (3.9)

It is well know in condensed matter physics [16] that such an expression can be transformed
in the following way :

D2(k, ε) =
1

(2π)2

∮
γ(k,ε)

d�

|∇q(εq + εk−q+Q)| (3.10)
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Figure 3.2: — Left : Decay region and two decay surfaces for H = 0.82Hsat. Decay region is filled in
light-blue. Stable region is filled in gray. Decay surfaces corresponding to k = (π/2, π/2) (respectively
to k = (π/2, 7π/8) ) are plotted in orange (respectively in red) — Right : Decay region and two
decay surfaces for H = 0.95Hsat. Decay region is filled in light-blue. Stable region is filled in gray.
Decay surfaces corresponding to k = (π/4, π/4) (respectively to k = (π/4, 3π/4) ) are plotted in orange
(respectively in red)

where γ(k, ε) is a one-dimensional contour defined in the Brillouin zone as :

γ(k, ε) = {q / εq + εk−q+Q = ε} (3.11)

3.4.1 Van-Hove singularities in the two-magnons density of states

Singularities in the two-magnon DOS appears when the integration contour defined by equation
(3.11) gets close to the divergences of the integrand in equation (3.10), corresponding to the
limit |∇q(εq − εk−q+Q)| −→ 0. Behavior of the two-magnon DOS can be classified according
to the type of extremum, i.e if the two-magnons continuum has a minimum or a saddle-point.
Assuming q∗ is an extremum of εq + εk−q+Q then it can be expanded as :

εq + εk−q+Q ≈ εq∗ + εk−q∗+Q +
Ax

2
(qx − q∗x)2 +

Ay

2
(qy − q∗y)2

On the one hand, if Ax and Ay have equal signs then the extremum is a local minimum
corresponding to εq + εk−q+Q ≈ εc + |A|

2 (q − q∗)2 and equation (3.10) reads :

D2(k, ε) ∝
∫

rdrδ(ε − εc − |A|
2

r2) =
{ 0 if ε < εc

1 if ε > εc
(3.12)

which implies a sharp jump in the two-magnons DOS while crossing this type of singular point.
On the other hand, if Ax and Ay have different signs then the extremum is a saddle-point

corresponding, for Ax < 0, to εq + εk−q+Q ≈ εc − |A|
2 (qx − q∗x)2 + |A|

2 (qy − q∗y)2 and equation
(3.10) reads :

D2(k, ε) ∝
∫ R

0

dX

(
X2 +

ε − εc

2|A|2
)−1/2

∝ ln
[

R2

|ε − εc|
]

(3.13)

where R is a cut-off in the integration. Such a local expression for the two-magnons DOS is
characteristic of symmetric logarithmic singularities.
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As a result from analytical considerations, Van-Hove singularities in the two-magnons DOS
appear rather in the form of sharp asymmetric jumps, rather in the form of symmetric logarithmic
divergences. Such behavior is represented on Figure 3.5 where the upper-part represents both the
gradient of the two-magnons continuum and the integration contour of equation (3.11) and the
lower-part the resulting shape of the two-magnons DOS. It is clear that singularities originate
from reduced distance between integration contour and gradient zeros. Therefore, number of Van-
Hove singularities can be fully understood with equation (3.10). Knowledge on their positions
arise while comparing with ε-dependent integration contours. Finally, shape of singularities
depends on nature of the two-magnons continuum near its extrema.

3.4.2 Evolution of the density of states with magnetic field

Two-magnons DOS undergoes major changes while increasing applied magnetic field. This evo-
lution concerns both peaks position and shape. Decay become possible while singularities of
the two-magnons DOS cross the one-magnon one. In this regime, two-magnons excitations have
lower energy than one-magnon ones.

Below threshold, two-magnons excitations only exist above a certain energy corresponding
to the one-magnon spectrum. Density of states linearly increase next to this point so that
singularities only lies at higher energies (Figure 3.4). With increasing magnetic field, singularities
move along the energy axis so that two-magnons DOS is non-zero on a broader range of energy
(Figure 3.5—upper-right).

When magnetic field approaches its threshold value and while incoming momentum k is fixed,
a logarithmic divergence gets closer and closer to the one-magnon energy (Figure 3.5—main). In
the meantime, as harmonic spectrum acquire a positive curvature at the decay threshold, one of
the component of ∇q(εq + εk−q+Q) changes sign. As a result, decay corresponds to logarithmic
peak of the two-magnons DOS crossing the one-magnon spectrum while transforming into a
’sharp jump’ like peak. As this singularity continue its way down in energy when magnetic
field increases from threshold to saturation, two-magnons excitations have a significative and
relatively flat density of states, below the one-magnon energy. Therefore, kinematics of decay
can be fully understood with properties of two-magnons density of states.

As a conclusion to this chapter, it is useful to emphasize its most important results. Decay
first appears at the Goldstone mode when magnetic field reaches 76% of the saturation field.
While field increases, decay region spreads in the Brillouin zone so that all one-magnon excitations
become unstable at the saturation. Moreover, decay corresponds to the existence of Van-Hove
singularties in the two-magnons continuum at lower energy than one-magnon excitations. New
magnons originating from decay are created within the original decay region so that they are
again unstable. As a result, this problem has to be treated as a multi-decay process where
excitations acquire finite lifetimes. Next chapter about decay dynamics aims at studying such
multi-decay processes.
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Chapter 4

Decay Dynamics

Previous considerations about kinematics of magnons decay led to important results. Among
them, the existence of a threshold magnetic field is of considerable experimental interest. How-
ever, singularities in the self energy does not make physical sense. Condensed-matter physicists
are used to deal with such problems, for example when computing the ground state of inter-
acting electronic gas in a solid. In this case, perturbative expansions can be made consistent
using the so-called ’Random Phase Approximation’ infinite sum. In the same spirit, divergencies
in bosonic systems with decays such as superfluid Helium-4, are removed by transformation of
simple vertices in the following ’ladder series’ [7]:

= + + + ...

where black dot stands for first-order decay vertex and white square stands for first-order two-
particule scattering vertex.

Nevertheless, as magnons resulting from decay are unstable, divergencies can be removed
in an alternative way, namely with the introduction of imaginary self-energy. In this context,
interacting magnons are believe to acquire finite lifetime, whereas their spectrum is weakly
renormalized by interactions. This chapter therefore aims at showing how magnons lifetimes
lift divergencies. Furthermore, as directly related to experimentaly accessible datas, magnons
lifetimes are calculated whithin the framework of the self-consistent Born approximation (SCBA).

4.1 A closer look at singularities

4.1.1 Analytical properties of the Self-energy near divergences

Near the decay threshold one can expand the two magnons continuum in powers of k and q like:

εq + εk−q+Q ≈ εc + v (k − kc) + αx (qx − q∗x)2 + αy

(
qy − q∗y

)2 + O(k2) + O(q2) (4.1)

As shown before, singularities appear in the self-energy when the two-magnon continuum has
rather a local minimum or a saddle-point. The singular self-energy then reads :

Σ(1)
11,±(k, ε) =

1
8π2

∫
dqxdqy |Γ1(k,q)|2

ε − εc − v (k − kc) − |αx| (qx − q∗x)2 ± |αy|
(
qy − q∗y

)2 + i0
(4.2)

where minus sign (−) in front of |αy| corresponds to minimum and plus sign (+) corresponds to
saddle-point. The analytical properties of (4.2) are only determined by its singularities so that
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the vertex part can be approximate as its average value Γ1 and finite c-numbers can be neglected
so that :

Σ(1)
11,±(k, ε) ∝ Γ2

1

∫
dq̃xdq̃y

Δε − vΔk + i0 − |αx| q̃x
2 ± |αy| q̃y

2 =
Γ2

1√|αx| |αy|
∫

dudv

z − u2 ± v2
(4.3)

where q̃x = qx − q∗x, q̃y = qy − q∗y , Δε = ε − εc, Δk = k − kc, u = q̃x

√|αx|, v = q̃y

√|αy| and
z = Δε − vΔk + i0.

The behavior of (4.3) is fully determined near the singularities by the properties of the
integrals I+(z) and I−(z) which can be defined for Re(z) > 0 as1 :

I±(z) =
∫ ∞

−∞
du

∫ ∞

−∞

dv

±v2 + [Rez − u2] + iImz
(4.4)

In the case of I+(z) The integral on v can be computed by splitting the integration domain
while carefully checking the positions of residues. If u2 > Rez then the residues are in v∗ =
±√

u2 − z, whereas if u2 < Rez the residues lies in v∗ = ±i
√

z − u2. Closing the contour in the
upper half plane yields :

I+(z) =
∫ ∞

−∞
du

2iπ

2v∗
= 2π

∫ √
Rez

0

du√
z − u2

− 2iπ

∫ ∞
√

Rez

du√
u2 − z

The first integral in (4.4) cannot be computed analytically and reads :

I+,1(z) = 2π

∫ 1

0

du′√
1 − u′2 + i Imz

Rez

whereas the second integral can be expressed analytically provided the integration on u is cut-off
at a given R :

I+,2(z) = −2iπ ln
(
u +

√
u2 − z

)R

√
Rez

→ −2iπ ln
[

2R√
Rez + e−iπ/4

√
Imz

]
When Re(z) < 0 the integration on u in (4.4) is carried out before integration on v so that the

integral I+,1(z) changes sign. However, choosing a different pole in the upper half-plane prevent
the sign of I+,2(z) to change.

With the same analysis as for I+(z), one can obtain :

I−(z) = 2π

(
ln

[√
Re2z + Im2z

R

]
− i

[
π

2
+ arctan

Rez
Imz

])

As a result, and in the limit Imz → 0+ :

Σ(1)
11,+(k, ε) ∝ Γ2

1

π

2
+ iΓ2

1 ln
[ |Δε − vcΔk|

R

]
and Σ(1)

11,−(k, ε) ∝ Γ2
1 ln

[ |Δε − vcΔk|
R

]
− iΓ2

1π (4.5)

One can conclude from this analytical considerations, that logarithmic singularities appear
in the real part of the self-energy near a local minimum whereas such divergence occurs in its
imaginary part near a saddle-point. As singularities responsible for decays always transform to
a local minimum when threshold is crossed, Σ(1)

11,−(k, ε) is the most interesting quantity.

1Im(z) is taken positive by definition of the retarded Green’s function involved in the self-energy expression
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4.1.2 Finite lifetimes remove divergences

Imaginary part of z is a priori introduced to shift poles of the Green’s function from the real
axis so as to perform Fourier transform but sent to zero in the end. However, one can check that
introducing a finite imaginary part Im(z) = Λ removes divergences in the self-energy. For this
purpose it is convenient to write z in polar coordinates as z = reiφ with φ restricted to interval
[0, π/2] (respectively [π/2, π]) by the condition Rez > 0 (respectively Rez < 0).

In the limit φ → φ̃, corresponding to small imaginary part, a straightforward Taylor expansion
for I+,1(z) gives I+,1(z) ≈ π/2 − iφ̃

∫ 1

0 du′(1 − u′)−1 which is ill-defined as the integral diverges.
Such problems in taking limits already arose in the calculation of the magnetization curve of
such a system [20]. Using Mathematica, the correct behavior can be computed as I1(z) ≈
π/2 − e−iπ/4

√
φ̃ so that in this limit the self-energy becomes :

Σ(1)
11,+(k, ε) ∝ Γ2

1

[
π/2 − e−iπ/4

√
φ + i ln

r

R

]
Going back to time dependent picture, it is well-know that finite imaginary part leads to a

factor eΛt in the expression of magnons Green’s function. As a result, the quantity Λ is physically
understood as a decay rate. In this spirit, when decay rate is non-zero, magnons acquire finite
lifetimes and self-energy becomes :

Σ(1)
11,+(k, ε) ∝ Γ2

1

(
π/2 − e−iπ/4

√
arctan

Λ
Δε − vcΔk

)
+ iΓ2

1 ln

⎡⎣
√

(Δε − vcΔk)2 + Λ2

R

⎤⎦ (4.6)

Σ11,−(k, ε) ∝ Γ2
1 ln

⎡⎣
√

(Δε − vcΔk)2 + Λ2

R

⎤⎦− iΓ2
1

(
π

2
+ arctan

Δε − vcΔk

Λ

)
(4.7)

It is clear that even small decay rates completely removes divergences in the self-energy. The
following analysis will be devoted to the explicit computation of magnons decay rates within the
self-consistent Born approximation.

4.2 Analytical expressions for magnons decay rates

4.2.1 The Self-Consistent Born Approximation

At this level of the dissertation, and in order to be aware of approximations used, it is useful to
remember the expression for Dyson’s equation:

k
=

k
+

k k
Σ (4.8)

where thin lines correspond to unperturbed Green’s functions (Go (k, ε)−1 = ε − εk + iδ) and
double ones to full Green’s functions (G (k, ε)−1 = Go (k, ε)−1 − Σ(k, ε)).

Lowest order decay processes originates from Σ(1)
11 and this study first concentrated on such

a one-loop self-energy giving explicit form of the full magnon Green’s function:

k k
Σ =

k k

q

k − q + Q

Γ∗
1Γ1

(4.9)
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Even if kinematics condition for decay were derived in such a framework it appeared that it is
necessary to go beyond this model in order to include multi-decay processes. This first order
decay model actually corresponds to approximation scheme known as the Born Approximation
(BA). In this context the self-energy is already known and reads:

ΣBA
11 (k, ε) =

i

2

∑
q

∫
dε′

2π
|Γ(k,q)|2Go (k, ε′)Go (k − q + Q, ε − ε′)

= −1
2

∑
q

|Γ1(k,q)|2
ε − εq − εk−q+Q + i0+

(4.10)

One way to go beyond this approximation consists in substituting unperturbed Green’s
function with full Green’s function in the self-energy. Dressed lines in the diagram allow multiple
decay processes and yields :

k k
Σ =

k k

q

k − q + Q

Γ∗
1Γ1

(4.11)

This method is known as the Self-Consistent Born Approximation (SCBA) [11]. Using Dyson’s
equation the self-energy yields :

ΣSCBA
11 (k, ε) =

i

2

∑
q

∫
dε′

2π
|Γ(k,q)|2G (k, ε′)G (k − q + Q, ε − ε′)

=
i

2

∑
q

∫
dε′

2π

|Γ(k,q)|2[
ε′ − εq − Σ(1)

11 (q, ε′)
] [

ε − ε′ − εk−q+Q − Σ(1)
11 (k − q + Q, ε − ε′)

]
(4.12)

The SCBA is a non-perturbative approach in the sense that it corresponds to summing up
a infinite series of self-energies. The n-th term of this series corresponds to the sum of all
topologically different self-energies with n loops of unperturbed lines. In a very schematical
point of view this method corresponds to such a series :

= + +

+ + ...

4.2.2 Magnons decay rates whithin the SCBA

Magnons with finite lifetimes have a spectrum which is solution of the following equation:

ε = εo
k + Re[Σ(k, ε)] + iΛ(k, ε)

with εo
k the harmonic spectrum and ε the renormalized one.
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Spin-wave theory within the Holstein-Primakoff framework only gives consistent results
when all the contributions to a given 1/S order are summed up. If it is not the case, the theory is
likely to fail at the Goldstone mode predicting a gapped spectrum. In the SCBA, self-energies
are combined such as the Green’s function contain terms of any order in the 1/S expansion.
On the other hand, at the 1/S1 order, decay processes only originates from Σ(1)

11 and other
contribution to the self-energy at this order are forgotten. As a result, it is hopeless to compute
a renormalized spectrum in the SCBA as expansion to all orders is only done for one chosen term.
In order to keep the spectrum gapped while computing decay rates, real part of the self-energy
has to be neglected and the harmonic spectrum used. Furthermore, higher order contributions
that might introduce other decay processes are not taken in account. Selecting the appropriate
terms yields :

ε = εo
k + iΛ(k, ε) with Λ(k, ε) =

1
S

Λ̃(1) +
1
S2

Λ̃(2) + ....

It is also necessary to restrict the study to ”on-shell” processes where energy conservation is
forced at each vertex. In this regime Λ(k, ε) = Λ(k, εo

k) ≡ Λk which is not explicitly energy-
dependent. It follows that one can carry out the integration in (4.12) with respect to ε′ by
closing the contour in the upper-half plane :

ΣSCBA
11 (k, εo

k) =
1
2

∑
q

Γ(k,q)2

εo
k − εo

q − εo
k−q+Q − i [Λq + Λk−q+Q]

(4.13)

Going to the imaginary part of equation (4.13) one can finally derive the expression for magnons
decay rates within the self-consistent Born approximation :

Λk =
1
2

∑
q

Γ(k,q)2 [Λq + Λk−q+Q][
εo
k − εo

q − εo
k−q+Q

]2

+ [Λq + Λk−q+Q]2
(4.14)

The last step is to transform this expression in a normalized one using εo
q = 4JSωq and Λq =

4JSλq where ω and λ are dimensionless. Recalling that Γ(k,q) = −Γ̃(k,q)Hc cos θ sin θ/
√

2S it
is finally possible to write :

λk =
cos2 θ sin2 θ

S

∑
q

Γ̃(k,q)
2
[λq + λk−q+Q]

[ωk − ωq − ωk−q+Q]2 + [λq + λk−q+Q]2
(4.15)

It is important to notice that dimensionless decay rate explicitly depends on the value of S. As
equation (4.15) is non linear, results for different spins are expected to change in a non-trivial
way.

4.3 Numerical integration of self-consistent equations

In order to integrate equation numerically (4.15) one should assume it converges toward a fixed
point. In this case, self-consistent equation is solved step by step, starting from an initial distri-
bution of λ’s. Initial decay rates are denoted λo and are only introduced so as to avoid division
by zero. They can be chosen arbitrary small (within the machine precision) but for the purpose
of numerical integration it is convenient to choose a value δ ≈ 10−3. Iterations to be done
corresponds to the following algorithm :⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

λ
(0)
k = δ

λ
(1)
k =

cos2 θ sin2 θ

S

∑
q

Γ̃(k,q)
2
[
λ

(0)
q + λ

(0)
k−q+Q

]
[ωk − ωq − ωk−q+Q]2 +

[
λ

(0)
q + λ

(0)
k−q+Q

]2

λ
(2)
k = ....
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Born approximation corresponds to one iteration in the previously depicted algorithm. Dis-
tribution of λ(1)’s (Figure 4.1) for H = 0.82Hsat and H = 0.95Hsat can be fruitfully compared
with previously estimated decay regions (Figure 3.2). As region where λ’s are not zero perfectly
overlaps them, initial guess on their shape was right. Largest decay regions for a given magnetic
field corresponds to decay in magnons with equal momenta. Near divergences of the two-magnons
DOS, decay rates grows fastly as guessed from analytical considerations on singularities. There-
fore, in the BA, borders between decaying and non-decaying region are well-defined : decay rates
sharply jumps from zero to a significative value. One should also notice that decay rates are
small both in the center of the Brillouin zone (k → 0) and near antiferromagnatic ordering vector
(k → Q). As collective precession of the spins around magnetic field direction are believed to
remain unchanged by quantum fluctuations [5], damping due to decay should also vanish in the
zone center. Near the Goldstone mode, one can analytically check that decay rates smoothly
go to zero due to behavior of the vertex part.
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Figure 4.1: Intensity plot in the Brillouin zone of magnons decay rates within the Born approximation.
Darkest regions correspond to largest dimensionless decay rates

Problems arise while performing self-consistent algorithm, as simple routines return rapidly
growing decay rate near the Goldstone mode. This is identified as numerical hits on singular
points of the vertex part. It is possible expand the vertex as :

Γ̃1(k,q) ∝ − 1√
k̃q̃(k̃ − q̃)

[
q̃ − k̃ + |k̃ − q̃| + μk̃q̃(k̃ − q̃)

]
(4.16)

where k̃ = k − Q , q̃ = q − Q, and μ is a c-number. Decay rates therefore goes to zero at the
Goldstone mode following a cubic power law [5] which is not consistent with first numerical
tests. One therefore needs to go beyond a ’simple-minded’ numerical procedure.

Numerical computation of decay rates is done using a gridded Brillouin zone where values of
λ are tabulated and re-computed at each iteration. On this grid, quantities k̃ and q̃ take discrete
values so that quantity q̃ − k̃ + |k̃ − q̃| do not get smoothly to zero and do not compensate
increasing values of k̃q̃(k̃− q̃). As a result values for λ’s have to be interpolated on a refined mesh.
The resulting algorithm uses a sparse k-grid where λk values are computed using integration
on a much more precise q-grid. Values of λ’s on this new grid are computed with a bicubic
interpolation. As external k remains far away from the Goldstone mode, integration can be
done on a smooth function of q and the cubic behavior is recovered.

Typical results for decay rates are presented below for S = 1/2, S = 1 and S = 5/2 (Figure
4.2 and Figure 4.3). Self-consistent procedure rapidly converges so that 10 iterations are suffi-
cient to get an good average precision : N−2

k

∑
k |λ(n)

k −λ
(n−1)
k | < 10−6 for n = 10. Introducing a
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significative imaginary part in the self-energy not only remove its divergences but spreads the de-
cay region to the whole Brillouin zone. Sharp jumps between decaying and non deaying regions,
depicted in the BA, are strongly blurred so that in the SCBA all magnons acquire finite lifetime
above threshold. As in the BA, excitations in the center of the Brillouin and at the Goldstone
mode zone remains well defined. However, for H∗ < H < 0.90Hsat magnons damping is signifi-
cant around the middle of ΓM lines whereas close to saturation and for 0.90Hsat < H < 0.99Hsat

strong damping moves to the middle of ΓX lines. Going from spin 1 to spin 5/2 non-uniformly
reduces values of decay rates by a factor ≈ 2.

As a conclusion from this chapter, one should remember that introducing significative de-
cay rates removes divergences so that all magnons start to decay above the threshold field.
Contribution from imaginary part of the self-energy are believed to be the dominant effects of
interactions so that an harmonic description of the spectrum have been used. In such an approx-
imation, magnons are strongly damped in large portions of the Brillouin. Spectrum line width
can be experimentally studied with neutron scattering techniques. It is the aim of next chapter
to relate theoretical knowledge on decay rates to observable neutron scattering cross sections.
Hopefully, as neutrons are weakly interacting probes, computation of first-order spin correlations
within the linear response theory is of reasonable accuracy.

S = 1
0.95 Hsat

M

X

k

S = 1
0.90 Hsat

M

X

k

S = 1
0.82 Hsat

M

X

k

S = 1
0.85 Hsat

M

X

k

0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14

0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14

0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14

0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14

Figure 4.2: Intensity plot in the Brillouin zone of magnons decay rates within the SCBA for spin 1.
Values for λ are computed on a 12x12 grid and interpolated on a 600x600 grid.
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Figure 4.3: Intensity plot in the Brillouin zone of magnons decay rates within the SCBA for spin 5/2.
Values for λ are computed on the same grid as for Figure 4.2.
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Figure 4.4: Intensity plot in the Brillouin zone of magnons decay rates within the SCBA for spin 1/2.
Vaues for λ are computed on the same grid as for Figure 4.2.
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Chapter 5

Neutron scattering predictions

5.1 Dynamical correlations functions

Neutron scattering partial differential cross section is proportional to spin dynamical correlation
function [19]:

d2σ

dεdΩ
∝ [Sx0x0(q, ε) + Sy0y0(q, ε) + Sz0z0(q, ε)]

where
Sαβ(q, ε) =

1
2π

∫ ∞

−∞
dteiεt

〈
Sα

q (t)Sβ
−q(0)

〉
with Sα

q the space Fourier transform of the α component of a spin operator. According to the
fluctuation-dissipation theorem [4] the imaginary part of the spin response function is propor-
tional to the corresponding spin correlations functions so that at zero temperature,

Imχαβ(x, x′|ε) =
1
2
Sαβ(x, x′|ε) (5.1)

where the response function is χαβ(x, x′|t − t′) = iθ(t − t′)
〈
[Sα(x, t), Sβ(x′, t′)]

〉
. Combining

equation (5.1) with the definition of the spin response functions yields:

Sαβ(q|ε) = 2Im
∫ ∞

−∞

dt

2π
eiεt

[
iθ(t − t′)

〈
[Sα(x, t), Sβ(x′, t′)]

〉]
= − 1

π
ImFαβ(q, ω) (5.2)

where Fαβ is the advanced spin Green’s function defined as:

Fαβ(q, ω) =
∫ ∞

0

dteiωt − i
〈
TSα

q (t)Sβ
−q

〉
(5.3)

As a result, computing dynamical correlations functions can be done through spin Green’s
function using equation (5.2).

5.2 Spin Green’s function in the canted frame

Due to the canting with magnetic field the correlations function in the laboratory frame
(x0, y0, z0) are related to those in the canted direction (x, y, x) via :

Sx0x0(q, ε) = cos2(θ)Szz(q − Q, ε) + sin2(θ)Sxx(q, ε)
+ cos(θ) sin(θ) [Sxz(q,−q + Q|ε) + Szx(q − Q,−q|ε)] (5.4)

Sz0z0(q, ε) = cos2(θ)Sxx(q − Q, ε) + sin2(θ)Szz(q, ε)
− cos (θ) sin (θ) [Sxz(q − Q,−q|ε) + Szx(q,−q + Q|ε)] (5.5)
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where Sαβ(q1,q2|ε) = 1
2π

∫ ∞

−∞
dteiεt

〈
Sα

q1
(t)Sβ

q2
(0)

〉
.

Correlations in the y0 direction remain unchanged by frame transformation so that
Sy0y0(q, ε) = Syy(q, ε). It is therefore necessary to compute several Green’s functions in the
canted frame. They rather concerns transverse (Fxx and Fyy), longitudinal (Fzz) or mode-
coupled (Fxz) fluctuations. The latter fluctuations can be neglected as they only contribute at
the second order in perturbation theory.

5.2.1 Longitudinal fluctuations

Using Holstein-Primakoff (HP) formalism it is easy to write the Fourier Transform of a spin
operator in the z direction as:

Sz
q =

δq,0√
N

(
S −

∑
k

a†
kak

)
− 1 − δq,0√

N

∑
k

a†
kak+q

The product of two different Sz operators can therefore be separated in elastic and inelastic
parts:

Sz
q1

Sz
q2

= N 〈S〉 δq1,0δq2,0︸ ︷︷ ︸
elastic

− 1
N

(1 − δq1,0)(1 − δq2,0)︸ ︷︷ ︸
inelastic

∑
k1,k2

a†
k1

ak1+q1a
†
k2

ak2+q2

where 〈S〉 corresponds to the on-site magnetization with quantum corrections at the 1/S0 order
included. Inelastic contributions to the longitudinal spin Green’s function reads:

Fzz(q1,q2|t) = − i

N

∑
k1,k2

〈
Ta†

k1
(t)ak1+q1(t)a

†
k2

ak2+q2

〉
(5.6)

In order to evaluate the ground-state average (〈...〉) it is necessary to introduce b-operators in (5.6)
with a canonical Bogolioubov transformation. This operation mixes creation and annihilation
terms so that the resulting expression contains all possible four b operators products. In a
perturbative expansion the first non-zero terms on the ground state have the following form:

Fzz ∝ −i
〈
b1b2b

†
3b

†
4

〉
−

∫
dt1

〈
b†1b

†
2b

†
3b

†
4V4(t1)

〉
+

i

2

∫
dt1dt2

〈
b1b

†
2b

†
3b

†
4V3(t1)V3(t2)

〉
+ ...

where momentum and time indices are forgotten for simplicity but should be explicitly derived
if quantitative results are needed. V4 and V 2

3 vertices correspond to the following diagrams:

V4
and

V3V3

so that V 3
3 and V4 contributes to the self-energy at orders higher than 1/S1 and can therefore

be neglected.
The spin Green’s function at this order only contains products with two creations and two

annihilations operators. Using Bogolioubov’s transformation and Wick’s theorem to pair b
operators yields:

Fzz(q, t) =
i

N

∑
k

{
[ukuq+k + vkvq+k]2 G11(k,−t)G11(q + k, t)

+
1
2

[uq−kvk + ukvq−k]2 G11(k, t)G11(q − k, t)

+
1
2

[uq+kvk + ukvq+k]2 G11(k,−t)G11(−q − k,−t)

} (5.7)
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where G11(k, t) = −i
〈
Tbk(t)b†k

〉
are normal magnons Green’s function. After time Fourier

transform, equation (5.7) involves three type of Green’s function products. Since poles of the
product G(k, ε′)G(k+q, ε+ ε′) both lies in the lower-half plane, integration with respect to ε′ can
be carried out in the upper-half plane as integrated product vanishes so that. The two remaining
contributions reads:

Fzz(q, ε) =
i

2N

∑
k

∫ ∞

−∞

dε′

2π

{
(ukvk−q + uk−qvk)2

[ε′ − εk − Σ11(k, ε)] [ε − ε′ − εq−k − Σ11(k − q, ε − ε′)]

+
(ukvk+q + uk+qvk)2

[ε′ − εk − Σ11(k, ε)] [−ε − ε′ − ε−q−k − Σ11(−k − q,−ε − ε′)]

} (5.8)

5.2.2 Transverse fluctuations

In the HP formalism up to the 1/S1 order, spin operators in the x and y directions and in lattice
space reads :

Sx
i =

1
2
(
S+

i + S−
i

) ≈ √
S

2

[
a†

i + ai − 1
4S

{
a†

ia
†
iai + a†

iaiai

}]
Sy

i =
1
2i

(
S+

i − S−
i

) ≈ −i

√
S

2

[
ai − a†

i −
1
4S

{
a†

iaiai − a†
ia

†
iai

}] (5.9)

Using mean-field decoupling with n ≡
〈
a†

iai

〉
and δ ≡

〈
a†

ia
†
i

〉
, Fourier transform of spin

operators yields :

Sx
q = Sx

q,1 + Sx
q,2 =

√
S

2

[(
a†
−q + aq

)(
1 − 2n + δ

4S

)]
− 1

4
√

2S

1
N

∑
k1,k2

:
[
a†
k1

a†
k2

ak1+k2−q + a†
k1+k2−qak2ak1

]

Sy
q = Sx

−q,1 + Sx
−q,2 = −i

√
S

2

[(
aq − a†

−q

)(
1 − 2n − δ

4S

)]
+

i

4
√

2S

1
N

∑
k1,k2

:
[
a†
k1

a†
k2

ak1+k2−q − a†
k1+k2−qak2ak1

]
:

(5.10)

where : ... : denotes the fluctuating part of the three operators product i.e the restriction to
operators with three differents momenta.

In order to be consistent with expressions for the longitudinal part, expansion of Fxx and
Fyy should be limited to contributions up to the 1/S0 order. As a result S

x(y)
q,2 S

x(y)
−q,2 products,

of order 1/S1, can be straightforwardly neglected. Remaining terms are of order S and 1/S0.
After Bogolioubov transformation, S

x(y)
q,1 S

x(y)
−q,2 terms sum up all different products of magnons

creation and annihilation operators of the form
〈
b
(†)
1 : b

(†)
2 b

(†)
3 b

(†)
4 :

〉
. However, on the contrary

to the longitudinal case, restriction to
〈
b1 : b2b

†
3b

†
4 :

〉
pairings also vanishes on the ground state

as at least three momenta are different. It is therefore necessary to go to the first order in V4

(or second order in V3) to have non-zero contributions on the ground-state. Such terms have
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smallness beyond O(1/S1) and can be neglected. The resulting non-zero contributions reads:〈
Sx

q(t)Sx
−q(0)

〉 ≈ 〈
Sx

q,1(t)S
x
−q,1(0)

〉
+ O(1)

=
S

2

(
1 − 2n + δ

4S

)2 〈[
a†
−q(t) + aq(t)

] [
a†
−q(0) + aq(0)

]〉
〈
Sy

q(t)Sy
−q(0)

〉 ≈ 〈
Sy

q,1(t)S
y
−q,1(0)

〉
+ O(1)

= −S

2

(
1 − 2n − δ

4S

)2 〈[
aq(t) − a†

−q(t)
] [

aq(0) − a†
−q(0)

]〉
(5.11)

Performing Bogolioubov and Fourier transformation, one can easily obtain the following
spin Green’s function :

Fxx(q, ε) =
S

2

(
1 − 2n + δ

4S

)2

(uq +vq)2 [G11(q, ε) + G11(−q,−ε) + G12(q, ε) + G21(q, ε)] (5.12)

Fyy(q, ε) =
S

2

(
1 − 2n− δ

4S

)2

(uq − vq)2 [G11(q, ε) + G11(−q,−ε) − G12(q, ε) − G21(q, ε] (5.13)

where G12(q, t) = −i 〈Tbq(t)bq〉 and G21(q, t) = −i
〈
Tb†q(t)b†q

〉
are anomalous Green’s function.

Dyson equation slightly change in precense of anomalous Green’s function. This problem
is already know in other bosonic systems where the Bose condensate provides a source and sink
for particles out of the condensate []. The three different Green’s function involved:

G11(q, t) =
q

G12(q, t) =
−q

q
G21(q, t) =

q

−q

are linked together by the so-called Beliaev’s equations:

q
=

q
+

q q
Σ11 +

q q

−q
Σ12

−q

q
=

q

−q−q
Σ11 +

q

−q
Σ21

q

−q
=

q

−q

q
Σ11 +

q

−q
Σ12

In the lowest order, singular self-energies involve one-loops diagrams with rather decay (Γ1) or
source (Γ2) vertices (equation 5.14). As the vertices are real then Γ1Γ∗

2 = Γ2Γ∗
1 resulting in

Σ12 = Σ21 and therefore G12 = G21.

Σ(1)
12 :

Γ∗
2Γ1

Σ(1)
21 :

Γ∗
1Γ2

(5.14)

As a result from Beliaev’s equation the normal and anomalous Green’s function reads:

G11(q, ε) =
ε + εq + Σ11(−q,−ε)

[ε − εq − Σ11(q, ε)] [ε + εq + Σ11(−q,−ε)] + Σ2
12(q, ε)

(5.15)

G12(q, ε) =
−Σ12(q, ε)

[ε − εq − Σ11(q, ε)] [ε + εq + Σ11(−q,−ε)] + Σ2
12(q, ε)

(5.16)
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In the expression for longitudinal fluctuations, contribution from product of anomalous
Green’s function have been neglected. It is therefore consistent to neglect Σ2

12 and write:

Fxx(q, ε) =
S

2

(
1 − 2n + δ

4S

)2

(uq + vq)2
[

1
ε − εq − Σ11(q, ε)

+
1

−ε − ε−q − Σ11(−q,−ε)

+
2Σ12(q, ε)

[ε − εq − Σ11(q, ε)] [ε + ε−q + Σ11(−q,−ε)]

]

Fyy(q, ε) =
S

2

(
1 − 2n − δ

4S

)2

(uq − vq)2
[

1
ε − εq − Σ11(q, ε)

+
1

−ε − ε−q − Σ11(−q,−ε)

− 2Σ12(q, ε)
[ε − εq − Σ11(q, ε)] [ε + ε−q + Σ11(−q,−ε)]

]
(5.17)

5.3 Measurable Spin Correlations

5.3.1 Correlations functions within the SCBA

In the Self-consistent Born approximation presented before, anomalous contribution to self-
energies are forgotten and:

Σ(q, ε) = Σ(1)
11 (q, ε) = iΛq (5.18)

For longitudinal Green’s function (equation 5.8) one can substitute the latter self-energy
expression and perform integration on ε′ in the upper-half plane finally to get:

Fzz(q, ε) =
1

2N

∑
k

{
(ukvk−q + uk−qvk)2

[ε − εk − εq−k − i(Λk + Λq−k)]
+

(ukvk+q + uk+qvk)2

[ε + εk + ε−k−q + i(Λk + Λ−q−k)]

}

It follows that the corresponding correlation function can be computed as :

Szz(q, ε) =
1

2πN

∑
k

{
(ukvk−q + uk−qvk)2 [Λk + Λq−k]
[ε − εk − εq+k]2 + [Λk + Λq−k]2

+
(ukvk+q + uk+qvk)2 [Λk + Λq+k]
[ε + εk + εk+q]2 + [Λk + Λq+k]2

}

For transversal Green’s function (equation 5.17) the same substitution yields:

Sxx(q, ε) =
S

2π

(
1 − 2n + δ

4S

)2

(uq + vq)2
[

Λq

[ε − εq]2 + Λ2
q

+
Λq

[ε + εq]2 + Λ2
q

]

Syy(q, ε) =
S

2π

(
1 − 2n − δ

4S

)2

(uq − vq)2
[

Λq

[ε − εq]2 + Λ2
q

+
Λq

[ε + εq]2 + Λ2
q

]

Plots of Sxx(q, ε) and Szz(q + Q, ε) are presented on Figure (5.1) for spin one-half and
H = 0.85Hsat. In the longitudinal part, one can realize how the broadening due to finitie lifetimes
changes the one-magnon spectrum. Sharp delta peaks at the Goldstone and k = 0 modes are
transformed in lorentzian shapped peaks in the center part of the reciprocal space quarter. In
the transverse component, corresponding to the two-magnons continuum, correlation function
is reduced by a factor ≈ 100. As a result, going to the laboratory frame, results are expected
to be dominated by contribution from the transverse part in the canted frame corresponding to
one-magnon spectrum with enhanced linewidth.

37



Sxx(q,ω) S = 1/2 0.85 Hsat

ω 

/2 3/4/40 Q
q = (x,x)

x =
 0

 1

 2

 3

 4

 5

 6

 7

 8

0

 0.5

 1

 1.5  2

 2.5  3

1.5

2

2.5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 

 0.5

 1

 1.5

 

2

 2.5

 3

Szz(q+Q,ω) S = 1/2 0.85 Hsat

ω 

/2 3/4/40 Q
q = (x,x)

x =

Figure 5.1: Intensity plots of Normalized Dynamical Structure Factor Sxx(q, ω) and Szz(q+Q, ω).
Momenta are choosen on the diagonal of the Brillouin zone. The longitudinal part corresponds
to one-magnons excitations whereas the transverse part corresponds to two-magnons continuum.
Decay rates used are calculated on a 400x400 grid using the SCBA method

5.3.2 Back to the laboratory

With the help of equations (5.4) and (5.5), one can compute the following shape for spin dynam-
ical correlation functions in the laboratory frame (remebering Syy is unchanged):

Sx0x0(q, ω) =
S sin2 θ

2π

(
1 − 2n + δ

4S

)2

(uq + vq)2
{

Λq

[ε − εq]2 + Λ2
q

+
Λq

[ε + εq]2 + Λ2
q

}

+
cos2 θ

2πN

∑
k

{
(ukvk−q−Q + uk−q−Qvk)2 [Λk + Λq−Q−k]

[ε − εk − εq−Q+k]2 + [Λk + Λq−Q−k]2

+
(ukvk+q−Q + uk+q−Qvk)2 [Λk + Λq−Q+k]

[ε + εk + εk+q−Q]2 + [Λk + Λq−Q+k]2

}

Sz0z0(q, ω) =
S cos2 θ

2π

(
1 − 2n + δ

4S

)2

(uq−Q + vq−Q)2
{

Λq−Q

[ε − εq−Q]2 + Λ2
q−Q

+
Λq−Q

[ε + εq−Q]2 + Λ2
q−Q

}

+
sin2 θ

2πN

∑
k

{
(ukvk−q + uk−qvk)2 [Λk + Λq−k]
[ε − εk − εq+k]2 + [Λk + Λq−k]2

+
(ukvk+q + uk+qvk)2 [Λk + Λq+k]

[ε + εk + εk+q]2 + [Λk + Λq+k]2

}
(5.20)

A set of results for transverse mode is presented on Figure (5.2). As in the canted frame,
evolution of linewidth for momenta from Goldstone mode to k = 0 mode is clear. Given the
large extension of lorentzian peaks in the middle of ΓM line, neutron scattering techniques can
be expected to measure effects of decay.
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.

39



Chapter 6

Conclusion

The present work extended knowledge on the Heisenberg model in studying his behavior un-
der strong magnetic field inducing canted spin structure. Although limited to a bi-dimensional
model with nearest-neighbor coupling only, the concepts presented here are believed to be quite
general for long-range ordered spin systems with non-collinear structure. Coupling between
transverse and longitudinal magnons modes introduce cubic vertices that are the principal inter-
actions of the problem. While combined with quadric terms, these decay and source processes
help renormalizing the ground-state energy and the dispersion relation with respect to simple
linear spin-wave theory. However, the contribution from decay processes becomes singular above
a threshold field H∗ = 0.76Hsat where one-magnon excitations become unstable. Instabilities
originates from the existence of Van-Hove singularities in the two-magnons density of state
below the one-magnon energy and one-particle excitations acquire finite lifetime at zero tem-
perature. As concluded from the analysis of kinematic conditions, created magnons are again
unstable with respect to spontaneous decay. As a result their decay rate is computed using a
Self-Consistent Born approximation. Near the sound- (k = Q) and precession- (k = 0) mode
one-particle excitations remain well defined whereas strong damping is observed in the middle of
the ΓM line. Resulting dynamical structure factor yields significative broadening of excitation
peaks that might be within neutron scattering technique resolution.

Concepts introduced here are quite general and can be extended to tri-dimensional and frus-
trated systems. More precisely, it is believed that frustration could help lowering the threshold
field and therefore provide compounds displaying experimental evidence of such magnons insta-
bilities.
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