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Zusammenfassung

Ein Model bestehend aus magnetischen Momenten gekoppelt alleine durch
die schwachen aber grundlegenden Dipol-Dipol Wechselwirkungen ist zwei-
fellos der Archetypus eines magnetischen Festkörpers. Die Isolatoren LiReF4,
wobeiRe für ein Element der seltenen Erde steht, stellen einzigartige, nahezu
ideale Realisierungen eines solchen Systems dar. Obwohl die ersten Studien
zurückreichen bis an die Anfänge der Diskussion von Phasenübergangen im
Rahmen der Renormalisierungsgruppentheorie, blieb das Interesse an diesen
Materialen bis heute ungebrochen, da sie bestens geeignet sind zur Unter-
suchung einer Vielzahl von Kollektiven Phänomenen, einschlielich Quan-
tenkritikalität und Spin Glasser, die relevant sind für viele Hauptgebiete
zeitgenössischer Festkörperphysik. Hier wird eine umfassende experimentelle
Studie vorgelegt mit Hauptaugenmerk auf Neutronenstreungen an LiHoF4,
LiHoYF4 und dem bisher beinahe unerforschten LiErF4. Zusätzlich wurde
eine Charakterisierung des Kristallfeld in diversen LiReF4 durchgeführt. –
Der Ferromagnet LiHoF4 wird als Paradebeispiel des transversal Feld Ising
Models angesehen. Aufgrund des transversalen Feldes werden in einem an
sich klassischen System Quantenfluktuationen induziert und in Folge des-
sen ein Quantenphasenübergang evoziert. Die schwache hyperfine Wechsel-
wirkung stört allerdings in LiHoF4 das kritische Verhalten, u.a. existiert
kein Softmode am kritischen Punkt. Ein erhöhen der Temperatur reduziert
die Koppelung an das Spin Bad und damit auch die besagten Effekte. In
LiHoYF4 erinnert sich das System, wie es in der Vergangenheit präpariert
wurde, d.h. entweder im Feld gekühlt oder nicht. Die Glas Phase manifestiert
sich entweder dann als lang reichweitig geeordneter oder als ungeordneter
aber korrelierter Zustand. Die althergebrachte Vorhersage über Antiferro-
magnetismus hervorgerufen durch Dipol-Wechselwirkung fand im planeren,
schichtweise geordneten System LiErF4 ein eindrückliche Bestätigung. Be-
reits bei einem geringen Feld erfolgt ein Quantenphasenübergang einherge-
hend mit einem dem weich werden der charakteristischen Moden am kriti-
schen Punkt. Im weiteren wurden die Spektren in beiden Phasen bestimmt.
Aufgrund der gemessen kritischen Exponenten wird der thermische Pha-
senübergang der Universalitätsklasse eines 2-dimensionalen XY/h4 Models
zugeordnet, LiErF4 zeigt folglich reduzierte Dimensionalitat. Die Symmetrie
Brechung geht zurück auf den Mechanismus von order-by-disorder.
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Abstract

Certainly the most fundamental model of an archetypical magnetic solid is
constituted by an array of spins interacting with each other only by the
weak but elementary dipolar forces. The insulators of the family LiReF4,
where Re stands for a rare earth element, represent an exceptionally clean
and well characterized physical realization of such a system. Although the
first extensive investigations were motivated by the advent of renormaliza-
tion group theory decades ago, a broad interest in these compounds still
continuous, because they host an ideal arena to study a variety of collec-
tive phenomena, including quantum criticality and spin glasses, which are
relevant in several major fields in contemporary solid state physics. Here,
a comprehensive neutron scattering investigation is presented, which was
mainly focused on LiHoF4, its dilution series LiHoYF4 and the so far unex-
plored LiErF4. Additionally, a full characterization of the crystal fields in
various compounds was performed, that is inventible for all further studies
on collective phenomena. – LiHoF4 is refereed as the textbook realization of
the transverse field Ising Model. Applying a transversal field is the natural
way to introduce quantum fluctuations to an in fact classical system and
evoke a quantum phase transition. However in LiHoF4 quantum criticality
is affected by the marginal hyperfine interaction with the nuclear moments,
leading for example to an incomplete softening of the characteristic exci-
tations at the critical point. The coupling to spin bath and the associates
effects are governed by temperature. One of the most remarkable further re-
sults was the discovery of new aspects of a history dependent behavior in the
random field magnet LiHoYF4. In the low temperature spin glass like phase
the system can prepared either in a short range correlated but disordered or
long range ferromagnetic ordered state by choosing the appropriate anneal-
ing protocol, i.e. field cooling or zero field cooling, respectively. The studies
on LiErF4 directly address a longstanding prediction of antiferromagnetism
induced by dipolar interactions. It could be demonstrated that the system
is a realization of a planar antiferromagnet that exhibits layered ordering
and undergoes a quantum phase transition in decent magnetic field. The
excitation spectra was mapped out in the ordered phase as well as in the
high-field phase. Remarkably the system exhibits a complete softening of
the characteristic excitations when approaching the critical field, regarded
as one of the hallmarks of a quantum phase transition. Furthermore, as a
conclusion drawn from the critical exponents, the thermal phase transition
falls into the 2D universality class XY/h4, implying that dimensional reduc-
tion takes place. The emergence of symmetry breaking is interpreted as a
consequence of the effect refereed as “order-by-disorder”.
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Chapter 1

Introduction

The phenomena of magnetism in condensed matter, although fascinating
matter of natural philosophy and science since ancient times, remained mys-
terious and an unsolved problem until a century ago, the advent of quantum
mechanics just provides the foundation of the theoretical description. This
time was also the hour of birth of magnetic model systems, like the Ising,
XY and Heisenberg models. Despite of the fact that they are useless to
describe common metals like iron or nickel and only address the question of
magnetism in rather exotic materials, these model systems have been thor-
oughly investigated in theory as well as experiment and played an important
role in the development of fundamental concepts in statistical physics, like
the theory of critical phenomena. Most aspects of conventional long range
ordered magnets are nowadays well understood. However magnetism is still
a vivid topic and omnipresent in applied science and technology. In contem-
porary fundamental solid-state physics research the focus of interest changed
towards order parameter free magnets, where frustration, low dimensional-
ity or dimerization cause novel exotic effects. Nevertheless, there is still an
appeal in the traditional model systems, like the Ising model, and because
of their simplicity and stringency they provide an ideal arena to elucidate
fundamental concepts.

1.1 Quantum Phase Transitions

The discussion of critical phenomena has a long tradition in solid state
physics and statistical physics in general. Currently the particular class of
quantum phase transitions is attracting interest in various fields of strongly
correlated systems ranging from quantum magnetism to heavy fermion and
high-temperature superconductivity. To explain the term “quantum phase
transition” in particular the meaning of ’quantum’ one could relate to the
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Introduction 2

following definition [1, 2, 3].

Definition A quantum phase transition is a phase transition at T = 0 K
between different quantum ground states as a non-thermal control pa-
rameter g entering in the Hamiltonian H(g) is varied.

Examples for such a tuning parameter g are applied pressure, magnetic fields
or the variation of doping concentration. As a corollary to the above defini-
tion all finite temperature transition are classical. This does not mean that
the system itself is classical, quantum mechanics may still play an inevitable
role, but in the vicinity of the phase transition, at the length and timescales
associated to criticality, the behavior is classical in the sense that the tran-
sition is govern by thermal fluctuations. Often it is said that in contrast to
this quantum phase transitions are driven by so called quantum fluctuations,
which are a consequence of Heisenberg’s principle and therefore exist even
at T = 0 K. The textbook example for a model showing a quantum phase
transition is the ferromagnetically coupled Ising model in a transversal field
(TFIM). In view of LiHoF4, which can be regarded as a physical realization
of this model, a detailed discussion follows in a subsequent chapter.

HTFIM = −J

(∑
i

σzi σ
z
i+1 + g · σxi

)
. (1.1.1)

A schematic phase diagram for quantum critical system either with without
occurrence of an ordered phase is shown in figure 1.1. The transition point
g = gc and T = 0 K is called the critical point QCP. At this point the
conventional quasi-particle picture valid for g < gc or g > gc breaks down
and the system is characterized by a quantum critical ground state. The cone
spreading out at T > 0 above the QCP is called the critical region, where the
behavior is dominated by thermal fluctuations out of the quantum critical
state. This manifests in unusual power laws of physical quantities. Critical
behavior is associated with a typical timescale τc ∝ ξz and spatial correlation
length ξ ∝ |g − gc|−ν of the long distance order parameter fluctuations
which diverges at the continuous transition. Therefore, the crossover to the
quantum critical region is dictated by the thermal energy,

kBT ' ~ω ∝ |g − gc|zν . (1.1.2)

Towards higher temperatures the quantum critical region is bounded, if kBT
approach certain microscopic energy scales of the problem the system crosses
over to an non-universal region. In the case of an ordinary transition to an
ordered state already at finite temperatures, where Tc(g) is suppressed by



3 Spin Glass Physics

g and finally terminates at the QCP, there exists around the phase bound-
ary line also a classical critical region which is only dominated by classical
fluctuations.

Thermally 
Disordered

Quantum   
Disordered

Quantum 
Critical

Ordered T=0
QCP

g
c

g0

T

Thermally 
Disordered

Quantum   
Disordered

Quantum 
Critical

Ordered

Classical
Critical 

QCP

g
c

g0

T

Figure 1.1: Schematic phase diagrams of two generic quantum critical sys-
tems. Either the ordered phase exists only at T = 0 (left) or persists towards
finite nonzero temperatures (right).

The essential features of a quantum phase transition manifest in the mapping
of the d-dimensional problem to a d + z classical analogue [2, 3]. Here
the extra dimensions are related formally to the imaginary time direction
τ ∈ [0, ~β]. Hence temperature introduces a finite size Lτ = ~β of the system
and if τc exceeds Lτ a quantum-classical crossover from d+z to d-dimensions
is taking place. This is referred as finite-size scaling. Furthermore, in the
vicinity of the phase transition the singular part of the free energy density
can be expressed in form of a homogeneity law [3, 2]. This implies directly
various universal scaling relations for static and dynamic observable, like for
example the generalized susceptibility.

O(t, k, ω, T ) = T−dO/z · Φ
(
kT−1/z,

ω

T
, Tξz

)
. (1.1.3)

Here Φ is a scaling function associated to the observable O, dO the scal-
ing dimension and k, ω denote wavevector and frequency, respectively. In
particular at g = gc the correlation length diverges and considering the par-
ticular case k = 0 the function Φ depends on its second argument only and
hence the observable fulfills a ω/T scaling relation.

1.2 Spin Glass Physics

Ordinary magnetic systems manifest themselves in various phases ranging
from classical or quantum disordered to ordered. In a regular magnetic
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system the evolution form disorder to order is associated with a phase tran-
sition which can be characterized by an ordering parameter and symmetry
breaking. For spin glass systems there is no sharp transition but instead a
freezing crossover to a state where the spins are aligned in a random manner
(quenched disorder). Approaching the crossover temperature T → T+

f is ac-
companied by increasing relaxation times and spin-spin correlation lengths,
although there is still no clear evidence if there is a true divergence as known
for critical systems [4]. The Edwards Anderson parameter qEA = [〈Si〉2T ]av
is then often refereed as kind of a spin glass order parameter, where 〈.〉T de-
notes the thermodynamic average and [.]av the configurational average. The
physics of phase transitions is particularly well understood in the framework
of Ginzburg-Landau and renormalization group theory, whereas the spin
glass problem is still ambiguous in contemporary statistical physics. How-
ever, there are two general key ingredients that are characteristic for spin
glass systems, namely randomness and frustration. In an intuitive picture a
spin glass system may be identified by a complex free energy landscape. The
system contains many energetically equally preferable configurations sepa-
rated by large energy barriers. These energy barriers govern the relaxation
dynamics and slow down the exploration of the free energy manifold such
that the system is within the relevant time scale effectively trapped in small
part of configuration space. This broken ergodicity and the resulting history
dependent effects are further characteristics of spin glasses.

From an experimentalist point of view for the term spin glass can be defined
according to three main criteria [4].

Definition A system is called a Spin Glass if there is

• Frozen-in magnetic moments below some freezing temperature
Tf and hence a peak in the frequency-dependent susceptibility.

• Lack of periodic long-range magnetic order

• Remanence and magnetic relaxation on macroscopic time scales
below Tf as response to a changing magnetic field.

A particular class of spin glasses form the so called quantum spin glasses.
The defining property of these systems is that not only thermal fluctuations
but also more important quantum fluctuations are able to drive the crossover
from the frozen state to the non-glassy disordered phase. One can imagine
two different scenarios either a quantum vector-spin-glass or starting from
a classical spin glass and adding in the Hamiltonian as a perturbation a
tunable quantum tunneling term. The simplest model for a quantum spin
glass is the transverse field Ising spin glass (TFISG).

One topic is of particular interest in many investigation of quantum spin
glasses: Quantum Annealing. However this term is not only related to spin



5 The LiReF4 System - Review of Research
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Figure 1.2: Quantum versus classical annealing in the transverse field Ising
model. Schematic illustration of classical relaxation and quantum tunneling
paths to find the optimal configuration with minimal free energy.

glasses and there is an affinity to other so called hard problems, like protein
folding or the traveling sales problem.

Definition Quantum Annealing is a general optimization method to find
the ground state of a complex system, i.e. the global minimum of the
free energy functional. By adiabatically switching off an appropriate
source of quantum fluctuations the initially complete disordered sys-
tem settles into a local minimum, that should be comparable to the
ground state.

In the transverse field Ising model two annealing protocols can be real-
ized: classical annealing (CA) while decreasing adiabatically T at Ht = 0
or quantum annealing (QA) while decreasing Ht at T = 0. The route of
relaxation to the optimal state involves either a thermally activated jumps
over or quantum tunneling under the energy barriers in the complex energy
configuration landscape, as depicted schematically in figure 1.2.

1.3 The LiReF4 System - Review of Research

The compounds of the LiReF4-series (Re=rare-earth) host a remarkably
rich variety of collective quantum phenomena. Since the magnetic proper-
ties can be thoroughly characterized, these simple insulating materials offer
ideal model systems, where experimental observations can be tested quanti-
tatively by theory. The Hamiltonian is well established and it is possible to
refine all parameters by experiments. The localized magnetic moments are
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essentially affected by crystal field anisotropy and dominant long ranging
and dipole-dipole interaction.

So far the research was mainly focused on the compound LiHoF4 and its
dilution series LiHoxY1−xF4, the host for a wide variety of phenomena,
ranging from tunneling of single moments and domain walls to quantum
annealing, entanglement and coherently oscillating spin clusters [5, 6, 7, 8].
The pure system is a physical realization of the famous transverse field Ising
model, with ferromagnetic ordering below Tc = 1.53 K and a quantum crit-
ical point at Hc = 5 T [9]. As a function of dilution with nonmagnetic
Yttrium the system evolves from a ferromagnet (x = 1) to a long range or-
dered ferromagnetic state with strong history dependent effects (x = 0.44),
to a spin glass (x = 0.1 − 0.3) and to a spin liquid like phase (x < 0.1),
which in literature is often refereed as ”antiglass”-state. Although the theo-
rists still argue about several aspects of the understanding of the spin-glass
compounds, it is agreed that the positional randomness introduced by the
dilution through the dipole coupling and the transverse field lead to random
fields along the Ising direction. The system can be considered as an almost
perfect realization of the random field Ising model [10].

Although the effective Transverse field Ising model provides in the case of
LiHoF4 a good approximative description of the real system, inelastic neu-
tron scattering [11] and susceptibility investigations [9] have demonstrated
that the relatively weak hyperfine interaction to the nuclear spins, which
acts as a spin bath, i.e. a bath of local degrees of freedom, in fact has dra-
matic effects on the phase diagram and the excitation spectrum around the
quantum phase transition. The softening of the electronic mode remains
incomplete, which can be regarded as a quantum decoherence effect, and
the phase transition is shifted towards higher critical fields. This discovery
makes LiHoF4 an ideal system to study in a controlled way the robustness
of quantum criticality in non-perfect (hence realistic) systems [12].

1.4 Outline of this Work

In the previous paragraph the concepts, terms and definitions relevant to the
scientific case of LiReF4 have be shortly introduced followed by a short ex-
position to the actual status of research, without the claim of completeness.
The present work aims to continue the long-standing studies on Li(HoY)F4,
pure as well as diluted compounds, and provide a complementary insight by
means of an extended neutron scattering investigation. The topics addressed
here are quantum criticality and the physics of random field magnets. As
second main emphasis here the first extensive study of the compound LiErF4

is presented, ranging from the discovery of a quantum phase transition and
determination of the phase diagram to an investigation of the dynamics.
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Further studies on crystal fields in several LiReF4 compounds will be pre-
sented as well as a first study of mixed compounds Li(HoEr)F4.

In the chapter ‘materials and methods’, the general properties of the com-
pounds are listed, an introduction to the neutron scattering technic is given
and the details of the experiments and sample preparation are remarked.

In the chapter ‘theoretical aspects’, model systems are discussed, the Hamil-
tonian of the LiReF4 is derived and meanfield/RPA calculations are ex-
plained.

The structure of the main part of this thesis is then divided according to
the particular compounds and the associated effects. The results achieved
during this thesis are discussed in comparison with previous studies refereed
in literature. To end up with a consistent story certain concepts and further
detailed review of research will be introduced in this context, when they are
thematically required.



Chapter 2

Materials and Methods

2.1 The Compound LiReF4

The lithium rare earth tetrafluorides LiReF4 crystalize in a tetragonal scheel-
ite structure with space group I41/a. The Re-ion, four per unit cell, occupy
positions with point symmetry S4. In figure 2.1 the unit cell is depicted.
Further crystallographic specifications and the lattice constants for various
compounds are listed in the appendix A.

Re

Li

F

Figure 2.1: Unit cell of LiReF4. To enhance visibility of the illustration the
fluorine ions are only drawn around the (a/2, a/2, c/2) Re position.

LiReF4 is an ideal system to investigate an entire chemical series of com-
pound, because it crystalizes for almost every element Re of the rare earth
family without any significant structural change. The replacement only
slightly affects the position of the fluorine ions and the lattice constants.

8



9 Neutron scattering

Another major advantage of the LiReF4 family is the existence of an isostruc-
tural dilution series with non-magnetic Yttrium or Lutetium randomly sub-
stituted for the rare earth atoms, making available for experiments the full
cross-over from isolated dipoles, through disordered interacting dipoles, to
the pure limit. All compounds are optically transparent, electronically in-
sulating, thermally stable and chemically inert under usual laboratory con-
ditions. Further relevance with regard to intended magneto-optical exper-
iments comes from the fact that LiYF4 doped with up to a few percent
magnetic Re-ions are widely used in laser technology [13].

2.2 Neutron scattering

2.2.1 Theory of Neutron Scattering

Neutron scattering is one of the most powerful methods to investigate a
magnetic system, since in contrast to several other methods it provides direct
information on static as well as dynamic properties of matter. Consider a
monochromatic collimated neutron beam with flux Ψ0 hitting a target, then
the scattering intensity I detected in a angular sector ∆Ω and an energy
interval ∆E′ is expressed via the scattering cross section:

I = Ψ0
d2σ

dΩdE′
∆Ω∆E′. (2.2.1)

Since the interaction between neutron and target is weak, the transition
probability from initial state λ to final state λ′ of the systems, due to scat-
tering of a neutron, can be derived from Fermi’s Golden Rule. Incident and
scattered neutrons will be described in the 1. Born Approximation as plane
waves with wave vectors k and k′, respectively. The scattering process is
characterized by the energy gain/loss ~ω = E−E′ and the scattering vector
Q = k − k′. The general expression for the differential scattering cross sec-
tion follows from summation over all transitions λ→ λ′ under consideration
of momentum and energy conservation.

d2σ

dΩdE′
=
k′

k

( m

2π~2

)2∑
λλ′

pλ

∣∣∣〈k′λ′|Û |kλ〉∣∣∣2 δ(~ω + Eλ − Eλ′). (2.2.2)

Here Û denotes the interaction potential, m the mass of the neutron and pλ
the occupation probability for the state λ.

In the case of pure nuclear scattering the interaction Û between a neutron at
position r and the nuclei at positions Rj can be described approximatively
by the so called Fermi pseudo potential.
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Û(r) =
2π~2

m

∑
j

bjδ(r −Rj). (2.2.3)

The scattering length bj varies from isotope to isotope and are dependent
from the relative orientation of the neutron spin compare to nuclear spins,
if there is a nuclear spin present at all. The master formula for nuclear
scattering follows from (2.2.2) und (2.2.3) by writing the delta function in
form of an integral and the operators in Heisenberg picture:

d2σ

dΩdE′
=
k′

k

1
2π~

∑
jj′

bjbj′

∫ 〈
e−iQR′j(0)eiQRj(t)

〉
e−iωtdt. (2.2.4)

Here the 〈 . 〉 denotes the thermal expectation value. If there is no correla-
tion neither considering the isotopic distribution nor the nuclear spin con-
figuration between the positions j and j′, the product bjbj′ of the scattering
lengths can be replaced by the average values b̄j b̄j′ in the case of j 6= j′ or
b̄2j in the case of j = j′. The scattering cross section then separates in two
parts: coherent scattering originating from b̄j b̄j′ and incoherent scattering
originating from b̄2j − b̄j b̄j′ respectively. In the elastic case the incoherent
part only contributes to the background. The coherent elastic part can be
rewritten by doing an explicit fourier transformation.(

dσ

dΩ

)
coh, el

= N0
(2π)3

v0

∑
τ

|Fτ |2δ(Q− τ ). (2.2.5)

Here v0 denotes the volume of the unit cell, N0 the number of unit cells and
the sum in τ is running over the whole reciprocal lattice. The δ-function
explicitly highlights the quasimomentum conservation, whereas the nuclear
structure factor

Fτ =
∑
d

bde
iτd. (2.2.6)

is a reference of the order inside the unit cell. The Laue condition Q = τ
is noting else as another form of Bragg’s law, which connects the scattering
angle 2·ϑ and the wavelength with the distance dhkl between crystallographic
planes.

λ = 2d sinϑ, dhkl =
2π
|τ hkl|

. (2.2.7)

Since the neutron incorporates a spin, it is able to interact also with the
magnetic moments in a solid and can therefore be regarded as an ideal
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microscopic magnetic probe. The interaction potential is given as

Û = −µH = −µ
[
rot
(
µe ×R
|R|3

)
− e

mec

pe ×R
|R|3

]
, (2.2.8)

where the magnetic moment of the neutron is µ = −γµNσ with the gyro-
magnetic factor γ = 1.913. The first term in (2.2.8) describes the spin-spin
interaction with the intrinsic electronic moments µe and the second with
the orbital moments. Since the second term causes some difficulties the
formalism will here be further developed for the spin term only. However,
the orbital moments can be considered in the dipole approximation accord-
ing to Johnston [14] by replacing subsequently the spin operators Sα in
the resulting formulas with the total angular momentum 1

2gLJ
α. Starting

with expression (2.2.2) and (2.2.8) finally the master formula for magnetic
scattering is obtained.

d2σ

dΩdω
= (γr0)2k

′

k
F 2(Q)e−2W (Q)

∑
αβ

(
δαβ −

QαQβ
Q2

)
Sαβ(Q, ω). (2.2.9)

Here r0 denotes the classic electron radius and the magnetic fromfactor F
describes the localized magnetic spin density. In the derivation of (2.2.9)
magneto-elastic interference terms are neglected. Instead the fluctuations
Rj are incorporated in form of the Debye-Waller factor exp(−2W (Q)). The
magnetic scattering function is in fact nothing else than the fourier trans-
formed time dependent spin-spin-paircorrelation function. According to the
fluctuation-dissipation theorem this observable related to the imaginary part
χ′′(Q, ω) of the general susceptibility. This relation can be used also as the
starting point to write down the inelastic cross-section, since from theoret-
ical calculation often χ is obtained explicitly, as for example within linear
response theory.

Sαβ(Q, ω) =
∑
jj′

eiQ(Rj−Rj′ )
∑
λλ′

pλ 〈λ|Sαj |λ′〉〈λ′|S
β
j′ |λ〉 δ(~ω + Eλ − Eλ′).

(2.2.10)

S(Q, ω) =
1
π

1
1− e−β~ωχ

′′(Q, ω). (2.2.11)

The cross section investigated in a neutron diffraction experiment is usually
dominated by the elastic or quasielastic processes and can be related to the
instantaneous structure factor S(Q) obtained form (2.2.10) integrated over
ω.
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Sαβ(Q) =
1

2π

∫ ∞
−∞

dωSαβ(Q, ω) =
∑
jj′

eiQ(Rj−Rj′ )〈Sαj S
β
j′〉 (2.2.12)

=
∑
jj′

eiQ(Rj−Rj′ )〈Sαj 〉〈S
β
j′〉 +

∑
jj′

eiQ(Rj−Rj′ )Cαβ(j, j′). (2.2.13)

Here Cαβ(j, j′) =
〈

(Sαj − 〈Sαj 〉)(S
β
j′ − 〈S

β
j′〉)
〉

denotes the spin correlations
of the system and its fourier transformed is the Q-dependent susceptibility
χαβ(Q). The first term in S(Q) describes Bragg scattering, the second
the diffuse scattering contribution, originating for example form finite size
clusters or critical scattering close to a phase transition. Furthermore, the
correlation length ξ of the system is proportional to the inverse width of the
intensity distribution in reciprocal space.

The cross section for elastic scattering on long range ordered magnetic struc-
tures can be written in the most general form as follow.

(
dσ

dΩ

)
mag, el

= N

(
1
2
gγr0

)2

F 2(Q)
∑
αβ

(δαβ − qαqβ)

×
∑
lrs

exp (iq(l+ ds − dr)) 〈Jα0r〉〈J
β
ls〉.

(2.2.14)

Here the indices l denotes the unit cells of the lattice and s, respectively r,
the ions within the cell. In a static structure associated with an ordering
wave vector κ, the moments of the particular ions are given by

〈Jαls〉 =
1
2
(
〈Jαs 〉 eiκRls + 〈Jαs 〉∗ e−iκRls

)
. (2.2.15)

By substituting this expression in formula (2.2.14) and taking the lattice
sum it becomes obvious that magnetic Bragg scattering occurs if Q = τ ±κ
is satisfied, where τ denotes a reciprocal lattice vector. Certainly the mag-
netic lattice can be different from the structural lattice. Furthermore in the
non-Bravais case the scattering cross section is proportional to the absolute
square of the magnetic structure factor, which reflects the orientation of the
moments inside the unit cell.

Fα(τ ) = |〈Jα〉|−1
n∑
s=1

〈Jαs 〉 e−iτds . (2.2.16)

Inelastic neutron scattering is the method of choice in crystal field spec-
troscopy. In the approximation of systems with N noninteracting ions ac-
cording to the master formula (2.2.9) the cross section for the transition
between the crystal field states Γn → Γm can be written as follows:
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d2σ

dΩdω
= N

(gγr0

2

)2 k′

k
F 2(Q) e−2W (Q) pn |〈Γm|J⊥|Γn〉|2 δ(En − Em + ~ω),

(2.2.17)

|〈Γm|J⊥|Γn〉|2 =
∑
α,β

(
δαβ −

QαQβ
Q2

)
〈Γm|Jα|Γn〉〈Γm|Jβ|Γn〉. (2.2.18)

Here pn denotes the occupation probability of the initial state and J⊥ the
projection of the momentum operator perpendicular to q. For a powder
sample the average over Q can be performed and the final cross section only
depends on three diagonal matrix elements.

d2σ

dΩdω

∣∣∣∣
p

= N
(gγr0

2

)2 k′

k
F 2(Q) e−2W

∑
n,α

2pn
3
|〈Γm|Jα|Γn〉|2 δ(En−Em+~ω).

(2.2.19)

In any real neutron scattering experiment there are always imperfections like
a finite spectral width, beam divergence, mosaicity of samples, non ideal
transmission of filters and collimators and many other factors. All this
effects lead to finite resolution. The experimental measured intensity at a
point (Q, ω) is therefore the cross section folded by a resolution function R,
which can be modeled in good approximation by a gaussian.

I(Q0, ω0) =
∫
dωdQ R(Q−Q0, ω − ω0) · d

2σ

dΩdω
(Q, ω). (2.2.20)

2.2.2 Neutron Scattering Techniques

In the here presented work the following neutron scattering technics have
been used.

Three Axis Spectroscopy As the name suggests the three axis spectrom-
eter (TAS) contains three essential blocks: Monochromator, Sample,
and Analyzer. A schematic outline for a typical instrument is shown
in figure 2.2. According to the required energy range of interest the
existing spectrometers subdivide essentially in two categories either
cold Ei ≈ 2− 15 meV or thermal Ei ≈ 15− 100 meV. From the white
incident neutron beam in the crystal monochromator a wavevector
ki is selected by bragg reflection. The monochromatic beam is fo-
cused or collimated on the sample and the crystal analyzer selects from
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the scattered neutrons again by Bragg reflection a particular wavevec-
tor kf . Finally, the neutrons are counted in the detector. Since the
neutron source fluctuates, the number of counts is measured usually
not per time but instead is refereed to the incident flux recorded by
the monitor. Collimators, diaphragms, and filters (often Beryllium or
Graphite) can be installed at several positions of the scattering path to
shape the beam, tailor the spectral and angular spread and optimize
signal to noise ratio. The choice of a particular ki, kf corresponds to
certain position and orientation of the three components monochro-
mator, sample and analyzer, represented by six angles labeled as A1
to A6. The advantage of the three axis method is selectivity in (Q, ω).

ki − kf = Q. (2.2.21)

~2k2
i

2mn
−

~2k2
f

2mn
= ~ω. (2.2.22)

Since these relations contain only three constraints but ki and kf rep-
resent four degree of freedoms in the scattering plane there are several
instrumental configuration associated to the same (Q, ω). In the ex-
periment a particular choice is made that optimizes the resolution and
intensity requirements. Two configurations are standard, either fixed
ki or fixed kf . The overall merit of the TAS is its high versatility and
the possibility the extend the setup for example towards polarized neu-
tron scattering or neutron spin echo techniques and advanced sample
environments including large pressure, high magnetic fields and low
temperature.

Collimators Collimator

Diaphragm
Analyzer

Detector

MonochromatorSample

Figure 2.2: Schematic outline of a three axis instrument. (Reproduced from
[15]).
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Time of Flight Spectroscopy In the time of flight method the neutron
beam is chopped in pulses and the incident energy is selected by pass-
ing several consecutive choppers sometimes in combination with a sin-
gle crystal monochromator. Measuring the arrival time of the pulses
at the detector at certain scattering angles provides the energy gain
or loss and momentum transfer due to the scattering process. Com-
pare to the TAS solution the TOF is not selective, a particular set
~ω and Q cannot be chosen independently. On the other hand the
advantage is a fast and parallel data collection, since the spectra of an
entire reciprocal space submanifold is recorded simultaneously by the
multidetector array.

Neutron Diffraction Most of the here presented neutron scattering ex-
periments have been performed on so called two axis instrument de-
signed for the purpose of single crystal diffraction. The outline of
the instrument is similar to the three axis instrument, except that
the third axis (the analyzer) is omitted and therefore all the neutrons
which are scattered under a selected angle 2θ are collected in the de-
tector. Nevertheless sometimes when signal to noise matters, the TAS
is the instrument of choice to measure weak elastic signals, because
the energy analyzer strongly reduces the background as compared to
a diffractometer.

SANS Small Angle Neutron Scattering is a neutron diffraction technic to
explore objects at nm scale and covers the range Q = 10−6 nm−1 up
to 10−3 nm−1. The white beam from the neutron source first passes
a pure mechanical velocity selector acting as a monochromator and
an adjustable collimator that controls the divergence of the beam.
Neutrons scattered by the sample then enter an air evacuated flight
tube, they spread out according to the transferred momentum Q while
passing a flight path of typically 3− 50 m and are collected finally by
the position sensitive area detector. Before the sample the beam has
to be cut down laterally by means of several masks, typical cadmium,
tailored to fit the sample size. The reason is twofold, on one hand
obviously to reduce the background originating from scattering from
the sample environment, on the other hand to prevent reflections from
the edges and side surfaces of the sample which are very intense and
could lead to a severe damage of the detector.
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2.3 Complementary Methods

Macroscopic methods measuring bulk properties like magnetization, suscep-
tibility and specific heat are wildly used in fundamental condensed matter
research on magnetic systems as well as in applied physics. Since this lab-
oratory based techniques are available fast and require only small samples,
a first material characterization precedes almost every of the costly syn-
chrotron or neutron scattering investigations. Although these techniques
provide microscopic insight but the information obtained by elaborated
macroscopic measurements are complementary and therefore inevitable to
achieve a comprehensive understanding. Furthermore, bulk methods in con-
junction with a tailored sample environment and using high quality samples
are for example very convenient for high accuracy determination of phase
transitions and critical exponents, whereas neutron scattering is often prac-
tically limited due to statistics and resolution.

Two techniques gained importance to study LiReF4: ac-suscebtibility and
specific heat. The heat capacity is defined as the amount of heat δQ trans-
ferred to the system per infinitesimal change in temperature dT . At low
temperatures the relaxation method is used. There a heat pulse is applied
to the sample for certain time period and while the system relax back to
equilibrium the temperature is recorded as a function of time. From the
measured relaxation cp can be determined. The technical details of the ex-
perimental setup and data evaluation procedure used in case of the here
presented cp measurement in LiErF4 are described in [16, 17]. The appeal
of specific heat, in particular with regard to phase transitions, is its direct
relation to the entropy. AC-Susceptibility measures the frequency depen-
dent magnetic response of a system to an external excitation in form of an
ac-field. This can be at any DC field including zero field. Since susceptibility
is a complex quantity two quantities are measured, first the magnitude and
second the phase shift between the measured and the drive signal. Tech-
nically the susceptometer is usually designed in a gradiometer setup. The
outermost coil, the so called primary coil, is generating an excitation field.
In the two secondary coils then a current is induced. The two secondary
coils are designed and connected in such a way that their total signal is
exactly canceled out when no sample is present. Since the filling factor, the
fraction of the volume of the secondary coil which is filled by the sample
is different for the two coils, the induced currents are also different. The
net signal then corresponds to the flux generated by the sample only. The
strength of the signal and the phase shift relative to the excitation can be
detected by means of a lock-in amplifier. AC-susceptibility is particularly
suitable to investigate spin glasses like compounds, recording the frequency
dependence of susceptibility allows to probe the relaxation dynamics of the
system.
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2.4 Generic Models for Excitations, Correlation
and Relaxation

Since often an applicable theoretical prediction of spectra and line shapes
is missing to calculate the cross section, neutron scattering data can be
evaluated instead by using generic model functions, which guarantee at least
the minimal formal requirements as for example complexity and causality.

Excitations and Line Shapes The generalized susceptibility appearing
in the cross section for neutron scattering can be related to the retarded
Green’s function of the system via a proportionality factor χ′′(q, ω) =
Zq ·G′′(q, ω). In the limit of sharp excitations ωq with infinite lifetime
one obtains

G0(q, ω) = lim
ε→0+

[
1

ω − ωq + iε
− 1
ω + ωq + iε

]
. (2.4.1)

G′′0(q, ω) = lim
ε→0+

π [δ(ω + ωq)− δ(ω − ωq)] . (2.4.2)

The Dyson Equations state that the general Green’s function can be
written in the following form introducing the self energy Σ(q, ω) =
∆q(ω) + iΓq(ω).

G(q, ω) =
G0(q, ω)

1−G0q, ω)Σ(q, ω)
. (2.4.3)

The selfenergy term can be derived for example by means of diagram-
matic methods. The real part leads to a shift in the excitation energy,
whereas the imaginary part introduces a damping and is directly re-
lated to the inverse of the finite excitation lifetime. Starting from
this formula several line shape models can be derived by making as-
sumptions on particular parametrizations for Σ. One example is the
damped harmonic oscillator model DHO.

G′′(q, ω) =
4ωqωΓq

(ω2 − Ω2)2 − 4ω2Γ2
q

Ω2
q = ω2

q + 2ωq∆q. (2.4.4)

As a shortfall generic models such as the DHO can produce unphysical
behavior in a certain regime, because they are based obviously on
more or less crude approximations. However, there is another simple
formula to construct useful generic model functions that are at least
fully consistent with Kramers Kronig relation and causality.
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χ(ω) =
χ(0)

2

(
A1

B1 − ω
+

A2

B2 − ω

)
. (2.4.5)

The restrictions on the poles to fulfill causality are = Bi < 0. For the
two in this work considered models the parameters A and B are given
as follows.

Lorentzian: Bi = ±ωq − iγ Ai = ±
ω2
q + γ2

ω0
. (2.4.6)

DHO: Bi = ±
√
ω2
q −

γ2

4
− i

γ

2
Ai = ±

ω2
q√

ω2
q −

γ2

4

. (2.4.7)

Correlations In real space correlations can be approximatively described
by means of an exponential model with one parameter ξ, the correla-
tion length.

C(i, j) = f(ri − rj)e−|ri−rj |/ξ. (2.4.8)

With the prefactor f(r) = 1 one obtains in reciprocal space by Fourier
transform a Lorentzian function for χ(q), in analogy to Ornstein Zernike
theory.

χ(q) ∼ 1
1 + ξ2q2

. (2.4.9)

Relaxations Describing AC-susceptibility spectra theoretically by an ana-
lytical model based on first principles is often impossible, because this
problem involves the long range and low energy dynamic of the sys-
tem. Therefore, experimental results are often discussed within phe-
nomenological models. In the Debye model an exponential relaxation
is assumed, where the response of the system is associated to a single
relaxation time τ . By means of fourier transformation the following
formula for frequency dependent complex susceptibility is obtained.

χ(ω) =
χ0

1− iωτ
. (2.4.10)

A glassy system is not characterized by a single relaxation time only
but instead there is a distribution ρ(E) of different energy barriers,
hence

χ(ω) = χ0

∫ ∞
0

dE
ρ(E)

1− iωτ(E)
. (2.4.11)
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A common feature is that the energy dependence of the relaxation
times τ(E) fulfills the Arrhenius law.

τ(E) = τ0 eE/kBT . (2.4.12)

The measured χ(ω) allows then to draw conclusions about the under-
lying ρ(E) of the system. For example in the compound LiHoxY1−xF4,
x = 0.167 it turned out that the barriers are gaussian distributed, i.e.
the relaxation times log-normal [18].

2.5 Sample Setup and Experimental Remarks

Samples Since LiReF4, also called as Re:YLF, is widely used in Laser tech-
nology, growth of single crystal in excellent qualities is well established
and therefore large sample well adapted for neutron scattering have
been available either from the laboratories of academic collaborators,
namely K. W. Kraemer of the University Bern, or commercial sup-
pliers. To reduce the neutron absorbtion, all compounds were syn-
thesized from isotopic pure lithium 7Li. For purpose of crystal field
time of flight spectroscopy and powder diffraction powder samples are
measured in standardized aluminum or at low temperatures in copper
sample containers. To thermalize the sample the container was filled
with He gas under 1 − 5 bar pressure. Nevertheless most of the neu-
tron experiments have been performed on single crystals mounted on
a sample holder from oxygen free copper. To guarantee a sufficient
thermalization of the nonconducting samples at temperatures below
1 K a particular effort was accomplished. Often the simple mechani-
cal contact to a clean copper surface was not sufficient to have enough
thermal conductivity. One working solution was to put the whole sam-
ple in a container filled with He exchange gas. However in the case
of the huge single crystals with dimensions in order of 1 × 1 × 3 cm3

thermalizing the crystal as a whole by cooling its surface would never
be possible due the vanishing thermal conductivity of LiReF4 at low
temperatures. The only practical solution was to cut the crystal in
slices of 1− 2 mm and reassemble them into a multi-sample, i.e. mak-
ing a stack alternating the crystal with thin copper foil that ensure
the thermal contact. In the most sophisticated version a thin gold
film of a few µm thickness was sputtered directly on the crystal slices.
The orientation of the samples was usually performed by means of
X-Ray Laue diffraction and on the single crystal neutron diffractome-
ter MORPHEUS at the Swiss Spallation Neutron Source (SINQ) at
Paul Scherrer Institut (PSI). An accuracy of the alinement preferably
within less than one degree was crucial in all experiments in which a
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Figure 2.3: Selection of investigated samples. From left to
right: LiHo0.045Y0.955F4 together with insitu-susceptibility-SANS setup,
Li(Ho,Er)F4 and insitu-susceptibility-diffraction setup, LiErF4 mesured by
means of inelastic neutron spectroscopy, LiErF4 ingot.

magnetic field has to be applied along a predefined crystal axis. Al-
ready a small miss-orientation would cause a systematic error and may
change the physics completely as for example in the transverse field
Ising model.

Sample Environment The neutron experiments performed in LiReF4 re-
quires low temperatures below 1 K and decent magnetic fields in the
range of 1−6 Tesla. As typical sample environment a dilution refriger-
ator together with cryo-magnet was used providing temperatures down
to T ≈ 50 mK. The common magnet field direction is perpendicular to
the scattering plane, however in the case of the planar antiferromagnet
LiErF4 for a few experiments a horizontal magnet was used instead.

Single Crystal Diffraction The single diffraction experiments have been
performed on the instruments E4 at Helmholtz-Zentrum Berlin (HZB),
D23 at Institut Laue-Langevin (ILL) in Grenoble, MORPHEUS, RI-
TAII and TRICS on SINQ PSI. In these investigations mainly the field
and temperature dependence of the magnetic signal, Bragg reflections
as well as broad diffuse scattering, were mapped out by means of ei-
ther field or temperature scans. One possibility are stepwise scans, at
each field/temperature point a whole rocking curve or another recip-
rocal space scan is performed. This way is rather time consuming but
allows to determine integrated intensities, provides the whole infor-
mation about changes in the distribution of magnetic signal over the
reciprocal space and allows to sperate the different contributions for
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Bragg and diffuse scattering. The other possibility is to count at fixed
points in reciprocal space and ramping the field or temperature. This
has the advantage of fast data collection and since the instrument has
not to move, systematic errors arising form positioning inaccuracies
are circumvented. But on the other hand from a experimental point
of view any disturbance in positioning and orientation of the sample
that may occur during the scan is not under control.

Three Axis Spectroscopy The inelastic neutron scattering investigations
have been performed on the cold three-axis instruments TASP at SINQ
PSI, PANDA at Forschungsneutronenquelle Heinz Maier-Leibnitz (FR-
MII) in Munich, 4F-2 at Laboratoire Léon Brillouin in Saclay and V2
at HZB Berlin. As instrumental configuration (double) focusing mode
and no collimators have been used. A Beryllium filter mounted in
front of the analyzer removed contributions from higher harmonics.
The investigation of the spectra was carried out by means of energy
scans in fixed kf mode. Because the typical energy scale in LiReF4 is
far below 1 meV the achievable instrumental resolution on a three axis
is the main limiting factor for the inelastic experiments, it was only
in particular cases possible to resolve and distinguish discrete modes
in the spectra. This required to measure at unusual low kf ≤ 1.2 Å.
The corresponding drop in intensity could only be afforded by the fact
that rare earth ions provide a strong scattering signal due to their large
moments. For example on TASP a resolution of 95 µeV of the elastic
line was obtained at fixed kf = 1.2 Å and on PANDA at kf = 1.079 Å
a resolution of 37 µeV respectively. It has to be mentioned that a low
kf also reduce the accessible range in Q-space. In LiHoYF4 it was for
example desirable to be able to reach Q = (200). For this purpose on
V2 kf = 1.25 Å was the best compromise. But it turned out that the
required resolution could be regained even at this relative large kf by
reducing the horizontal opening of the mask just before the detector
to 1 cm approximatively. The resulting resolution of the elastic line
was 74 µeV.

Time-of-Flight Spectroscopy The time-of-flight method was used for
the purpose of crystal-field spectroscopy. The experiments have been
performed at the cold-neutron instruments FOCUS at SINQ PSI, TOFTOF at
FRMII in Munich and the thermal-neutron instrument LRMCS at the
Intense Pulsed Neutron Source (IPNS) at Argonne National Labora-
tory. To be able to separate the spectral lines form each others, a
good energy resolution was crucial. But on the other hand a large ac-
cessible energy window was necessary too, which required a sufficient
large incident energy Ei. The optimal instrumental configuration was
a compromise of the two requirements. On FOCUS the unique op-
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portunity was used to measure on the higher order reflections of the
monochromator, i.e. PG400 instead of PG200. In the case of the
copper-spectrometer TOFTOF the disks-copper windows could be re-
duced to half-width opening. Due to the large rare earth moments,
the scattering intensity was not a limiting factor. Therefore, on could
gain around a factor of two in resolution using these non-standard
monocromator settings on TOFTOF and FOCUS.

SANS with insitu Susceptibility As sample environment the unique
11 Tesla horizontal field cryomagnet was used at SANSI SINQ. The
orientation of the field can be chosen either parallel or perpendicular
to the beam. For magnetic scattering this results either in a symmet-
ric or asymmetric scattering due to the polarization factor in the cross
section. For the AC-pumping, we built a coil setup (figure 2.3) with 4
split excitation coils and 2 counter-wound pick-up coils. Since the ex-
periment has to be performed in the subkelvin temperature range, the
crucial point was to achieve high enough magnetic fields without in-
ducing to much heating power to the sample. A further difficulty arose
from the limited available space for the sample in a dilution cryostat.
In our setup the coil system was thermally connected to the IVC and
disconnected from the sample. The build insitu susceptometer was
able to achieve high enough excitation fields as well as a high sensitiv-
ity without any disturbance in the cooling performance of the dilution
cryostat. Since this measurements were not at all standard in terms of
sample environment, preparation and built up the setup was the most
demanding and time consuming part of the whole experiment.

c)a) b)

FOCUS

d)

Figure 2.4: Neutron instruments and ample environment: a) Schematic
view of TOF-spectrometer FOCUS at SINQ, b) TASP at SINQ, c) 11 Tesla
magnet MA11 at SINQ, d) Dilution crysostat.



Chapter 3

Aspects of Theory

3.1 Hamiltonian

For the magnetic properties in rare earth compounds the 4f electrons play
a crucial role. In contrast to the 6s and 5d electrons, which contribute to
the conduction band in form of delocalized Bloch states, the 4f electrons
maintain their character as localized moments. According to the Russel-
Saunders scheme the particular spins si and angular momenta lj combines
to a total spin S and total orbital momentum L. This is a consequence of
the dominance of exchange interaction and coulomb repulsion compared to
spin orbit coupling. As a further perturbation spin-orbit coupling can then
be included using the Wigner-Eckart Theorem.

HSO = ±ζ(LS)S · L, (3.1.1)

Here the coupling constant ζ is only dependent from L and S and the sign
is given, either if the shell is more or less than half filled. The total angular
momentum J = L+S together with S and L are therefore the suitable quan-
tum numbers to diagonalize this term. The ground state multiplet 2S+1LJ
is then given by Hund’s rules. In contrast to transition metal compounds
in the rare earth the effect of spin-orbit coupling is dominant compared to
the crystal field splitting. Therefore the Hamiltonian relevant for the mag-
netic and low temperature thermodynamic properties can be written in the
subspace of the ground state multiplet.

The complete Hamiltonian operator to describe the LiReF4 system includes
first a single ion part containing crystal fields, Zeeman term, hyperfine in-
teraction and second a part covering the coupling between the spins. The
different terms are discussed in the following.

23
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H =
∑
i

[HCF (J i) +AJ i · Ii − gµBJ i ·H]− 1
2

∑
ij

∑
αβ

JDDαβ(ij)JiαJjβ

− 1
2

∑
ij, n.n.

J12J i · J j . (3.1.2)

The magnetic field is from an experimental point of view in the LiReF4

system the main control parameter apart from temperature. Recall Wigner-
Eckart theorem that the matrix elements of L + 2S is proportional to the
matrix elements of J within the multiplet and the Zeeman term can be
written as

HZ = −µB gH · J , (3.1.3)

where
g =

3
2

+
S(S + 1)− L(L+ 1)

2J(J + 1)
(3.1.4)

denotes the Lande factor.

The hyperfine interaction between the 4f moments and the nuclear spins

Hhf = A
∑
i

Ii · J i, (3.1.5)

can often be neglected in rare earth magnetism, since the typical order of
magnitude of A is in the range of a few µeV. Nevertheless in the considered
case of LiHoYF4 AHo = 3.36 µeV this marginal coupling affects decisively
critical behavior and dynamics around the quantum phase transition.

3.1.1 Crystal Field

Embedded in a crystal the Re-ion is affected by the electrical potential
induced by the neighboring ions, the so called crystal field. This breaks the
J(J + 1) degeneracy of 2S+1LJ and the splitting is given by the symmetry
of the particular site inside the crystal. The potential can be developed in
form of a multipole expansion.

vcf (r, θ, φ) =
∑
lm

Aml r
lYlm(θ, φ). (3.1.6)

The matrix elements of vcf evaluated within the sub-Hilbertspace of a par-
ticular J are according to Stevens [19] proportional to the matrix elements
of operator equivalents build up from products of the momentum operators.
The crystal field Hamiltonian is now written in terms of these operator
equivalents.
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Hcf =
∑
i

∑
lm

Aml αl 〈rl〉
(

2l + 1
4π

)1/2

Õlm(Ji). (3.1.7)

Hereby the αl denotes the Stevens factors and the Racah operators Õlm(Ji)
are the operators associated to the spherical harmonics. Instead of the Racah
operators it is appropriate to use the so called Stevens operators Oml (J),
which are equivalent to the tesseral harmonics, the real linear combinations
of the spherical harmonics.

Hcf =
∑
i

∑
lm

Bm
l O

m
l (Ji). (3.1.8)

In the case of f electrons there are only multipoles up to the order l = 6 rel-
evant and from the remaining crystal field parameters Bm

l all except seven
are vanishing due to symmetry arguments. Not only crystal symmetry mat-
ters but also time reversal symmetry, because the nature of the crystal field
is purely electronic. The remaining crystal field parameters can hardly be
calculated from first principles in a sufficient accuracy and therefore usually
an experimental determination is indicated.

In LiReF4 the crystal field Hamiltonian is given explicitly as follows:

H =
∑
l=2,4,6

B0
l O

0
l +

∑
l=4,6

B4
l (c)O4

l (c) +B0
l (s)O4

6(s). (3.1.9)

Hereby the x-axis was chosen by rotation of the coordinate system around
the crystal symmetry axis z, such that the parameter B4

4(s) is zero. Other-
wise the additional term O4

6(s) has to be considered. The Stevens operators
(3.1.10) are written here according to the convention of Hutchings [20]. To
make the formulas clearer the abbreviation X ≡ J(J + 1) is introduced.

O0
2 = 3J2

z −X
O0

4 = 35J4
z − (30X − 25)J2

z + 3X2 − 6X

O4
4 =

1
2

(J4
+ + J4

−)

O0
6 = 231J6

z − (315X − 735)J4
z + (105X2 − 525X + 294)J2

z (3.1.10)

− 5X3 + 40X2 − 60X

O4
6(c) =

1
4

[(11J2
z −X − 38)(J4

+ + J4
−) + (J4

+ + J4
−)(11J2

z −X − 38)]

O4
6(s) =

1
4i

[(11J2
z −X − 38)(J4

+ − J4
−) + (J4

+ − J4
−)(11J2

z −X − 38)].
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As it has been already mentioned, an accurate theoretical calculation of
crystal field parameters is often difficult. However, as a first approximation
a simple point charge model could provide an illustrative insight. Thereby
at each crystal site Rj a charge qj of the corresponding ion is placed and
the potential at place of the Re-ions is calculated. The formula used for this
calculation can be written as:

Vpointcharge(r, θ, φ) =
∞∑
n=0

n∑
α=−n

rnγnαZnα(θ, φ). (3.1.11)

γnα =
k∑
j=1

4π
2n+ 1

qj
Znα(θj , φj)
Rn+1
j

. (3.1.12)

In the formula (3.1.12) Znα denotes the tesseral harmonics and the γnα
correspond up to a tabulated prefactor (see for example [20]) to the crystal
field parameters Bα

n .

3.1.2 Magnetic Interactions

Responsible for magnetic ordering in LiReF4 is first and foremost the long
range and anisotropic dipole-dipole coupling between the Re-ions.

Hdipol = −1
2

∑
ij

∑
αβ

JDDαβ(ij)JiαJjβ, (3.1.13)

with the classical dipole tensor

Dαβ(ij) =
3(riα − rjα)(riβ − rjβ)− |ri − rj |2 δαβ

N |ri − rj |2
. (3.1.14)

The dipole coupling parameter is given as JD = (gµB)2N , where N is the
number of ions per unit volume. Furthermore there should also be considered
a nearest neighbor exchange coupling in form of an isotropic Heisenberg
term.

Hex = −1
2

∑
ij, n.n.

J12J i · J j . (3.1.15)

It can be experimentally verified that the exchange interaction is weak com-
pare to the dipolar coupling in the case of LiReF4. Nevertheless J12 is one of
the few unknown parameters in the model and if not otherwise determined
often used as a tuning parameter to match the calculated and measured
phase diagram.
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In the meanfield/RPA treatment of the system it was required to perform
the fourier transformation of the coupling tensor ¯̄J . Numerically the dipolar
sum has been calculated with the method of Bowden and Clark [21] for q 6= 0
and with direct summation in the case of q = 0. Not to forget, in the limit
of q = 0 the long range nature of the dipolar interaction is crucial and leads
to the additional so called Lorentz term. To derive this term the summation
can be split up in two parts a discrete finite sum over the range of a sphere
and a continuous integral incorporating the couplings outside this sphere up
the sample margins.

D̃αβ(0) =
∑
j

Dαβ(ij) =
∑

j∈sphere

Dαβ(ij) +
1
V

∫ ∂sample

∂sphere

3rαrβ − δαβr2

r5
dr.

(3.1.16)

Here V denotes the volume per ion inside the crystal. The integral vanishes
for α 6= β. Explicitly, one can show that the diagonal elements of the integral
term are equal to the Lorentz term 4π/3 minus the demagnetization factor
of the sample Nα.

3.2 Transverse Field Ising Model - RPA/MF

The transversal field Ising model (TFIM) describes a general system of par-
ticles sitting each in a double well shaped potential, a coupled together via
Jij and able to tunnel with a probability Γ between the two possible states.
In order to generalize the discussion of the following meanfield treatment,
the Hamilton operator considered contains, additional to the TFIM part,
also a longitudinal random field term.

H = −1
2

∑
ij

Jijσ
z
i σ

z
j − Γ

∑
i

σxi −
∑
i

hiσ
z
i . (3.2.1)

Here σα stands for the Pauli matrices. The first simplification made is to
replace the hi by their averaged value h = h̄. Write

σzi σ
z
j = −〈σzi 〉 〈σzi 〉+ σzi

〈
σzj
〉

+ 〈σzi 〉σzj + (σzi − 〈σzi 〉)(σzj −
〈
σzj
〉
), (3.2.2)

where
〈
σzj

〉
denotes the thermal expectation value. Neglecting the correla-

tion term, i.e. the term quadratic in the fluctuations, and the constant that
anyway drops out in the calculation of the partition sum, the many body
Hamiltonian can be decoupled and reduced to a single ion problem.
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Hi = −hiσzi − Γσxi − σzi
∑
j

Jij
〈
σzj
〉
. (3.2.3)

HMF =
∑
j

Hj = −
∑
j

γj · σj . (3.2.4)

Hereby it was further assumed that the expectation value 〈σzj 〉 is identical
for all spins equal 〈σz〉. γ denotes an effective field and by the following
definition there is obviously γ > Γ.

γ =
(
Γ, 0, J0 〈σz〉+ h̄

)
= γ(sin θ, 0, cos θ). (3.2.5)

Here J0 =
∑

j Jij . Digitalizing (3.2.3) leads to the eigenvalues ±γ and the
following thermal expectation value for of the spins.

〈σ〉 = (sin θ, 0, cos θ) · tanh(βγ). (3.2.6)

To fulfill selfconsistency this expression must be in accordance to the relation
in (3.2.5):

〈σz〉 =
γ cos θ − h̄

J0
= cos θ tanh(βγ). (3.2.7)

For the disordered phase, but only if h = 0 there is γ = Γ because of 〈σ〉 = 0.
In all other cases the selfconsistency relation can written explicitly in the
following form.

√
γ2 − Γ2 · |γ − J0 tanh(βγ)| − |h|γ = 0. (3.2.8)

Consider now the special case of h = 0. In the ferromagnetic phase the
cos θ 6= 0 can be canceled out on both side of the equation and it follows

γ = J0 tanh(βγ). (3.2.9)

The resulting expectation values for sx, sz and the phase diagram are shown
in figure 3.1. Especially for T = 0 K there is tanh(βγ) = 1 and the magne-
tization as a function of Γ can be written explicitly as

〈σz〉 =
√

1− Γ2/J2
0 for h = 0, T = 0 K, Γ 5 Γc. (3.2.10)

The critical field value, where the quantum phase transition takes place, is
Γc = J0. Furthermore the critical temperature in zero field is Tc = J0k

−1
B

and the phase boundary as a function of temperature is given by the relation
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Figure 3.1: Meanfield expectation values of 〈σz〉, 〈σx〉 and phase diagram
as a function of transversal field Γ and temperature.

Γc(T ) = J0 tanh (βΓc(T )) . (3.2.11)

Considering the presence of longitudinal field h 6= 0, there is no sharp tran-
sition anymore but instead a cross-over, see figure 3.2. The magnetization
decays continuously and the susceptibility χzz is rounded and vanishes with
increasing field h. Furthermore the position of the peak in χzz is shifted
towards higher Γ. Already this simple meanfield calculation highlights the
fact that quantum criticality is not preserved under the presence of even
small longitudinal (random) fields [10].

The simplest approach to discuss the dynamics of the system is a random
phase approximation RPA. The generalized susceptibility in a generic system
is given by the following RPA-selfconsistency relation [22]:

¯̄χ(ij, ω) = ¯̄χ0
i (ω)

δij +
∑
j′

¯̄J (ij′) ¯̄χ(j′j, ω)

 . (3.2.12)

Here the double bar denotes a tensorial quantities and ¯̄χ0 the single ion sus-
ceptibility calculated within the meanfield states, ¯̄J (ij′) the total interaction
between the ions, dipolar as well as exchange coupling.
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Figure 3.2: The meanfield calculated magnetization (a) and susceptibility
χzz (a) of the TFIM in presence of a longitudinal field. Even a small per-
turbation h leads to a crossover instead of a sharp transition. The marginal
field Γ∗ for the crossover, defined as the point where χzz reach its maximum,
increases with h (Inset).

χ0,αβ
i (ω) = lim

ε→0+

∑
nm

〈n|σαi |m〉 〈m|σ
β
i |n〉

Em − En − ω − iε
(nn − nm) (3.2.13)

= lim
ε→0+

4γ<{cαβ}+ 2i(ω + iε)={cαβ}
4γ2 − (ω + iε)2

tanh(
γ

kBT
).

The population factors nm respectively nn are derived from the energy levels
of the mean field Hamiltonian. To further simplify the notation the abbre-
viation cαβ = 〈1|σα |2〉 〈2|σβ |1〉 was used, where |1〉, |2〉 denotes the two
eigenstates of the single ion meanfield Hamiltonian. The infinitesimal pa-
rameter ε is introduced to guarantee the correct analyticity of the formulas
with real ω. The physical meaning of this is that the perturbation of the
system is switched on adiabatically. The sign of ε is chosen to reproduce
the correct asymptotic behavior and fulfill causality. In the limit ε → 0 a
delta function results, meaning that in the framework of RPA the spectral
lines are infinitely sharp. However in numerical calculations the parameter
epsilon is often set to a sufficient small value to circumvent performing the
limit explicitly.

The above set of formulas (3.2.12) can be further decoupled by means of
Fourier transforms. In the here considered case of an Ising Model only one
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component of the coupling tensor ¯̄J(q) is nonzero, namely ¯̄Jzz(q) further de-
noted as Jq. The final RPA equation is then given explicitly by the following
expression.

¯̄χαβ(ω, q) =
(
id− ¯̄χ0

¯̄Jq
)−1

¯̄χ0

=


χxx0 + Jqχxz0 χzx0

1−Jqχzz0
χxy0 + Jqχxz0 χzy0

1−Jqχzz0
Jqχzz0 χxz0
1−Jqχzz0

+ χxz0

χyx0 + Jqχ
yz
0 χzx0

1−Jqχzz0
χyy0 + Jqχ

yz
0 χzy0

1−Jqχzz0
Jqχzz0 χyz0
1−Jqχzz0

+ χyz0
χzx0

1−Jqχzz0
χzy0

1−Jqχzz0
χzz0

1−Jqχzz0

 .

(3.2.14)

If Jqχzz0 = 1 there is a singularity in χ. This corresponds to a collective exci-
tation of the system. Considering (3.2.13) and recalling from the meanfield
calculation that czz = sin2 θ = Γ2/γ2 the dispersion relation results.

ω2
q = 4γ2 − 4JqΓ2 tanhβγ

γ
. (3.2.15)

As an illustrative example the dispersion as a function of momentum q and
transversal field in the simplest case of a Ising chain with nearest neighbor
interaction is depicted in figure 3.3. There is a characteristic softmode in the
spectra, the excitation corresponding to the ferromagnetic ordering vector
q = 0 soften at the quantum critical point Γ = Γc.

Γ
c

Γ0

ω

q = 0

q ≠ 0

q

ω

0

Γ = Γ
c

Γ > Γ
c

Γ = 0

Figure 3.3: Schematic illustration of the RPA-dispersion relation for the
TFIM. The characteristic excitations ω(q = 0) soften at the quantum critical
point.

A perturbation in form of a longitudinal (random) field h leads to a gapped
spectra instead of a soft mode at the quantum phase transition. The RPA
formula derived above has not to be modified, only the inserted meanfield
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parameter γ is affected by the additional longitudinal term. The excitation
energy at zone center q = 0 as function of transversal field Γ for various
strength of the perturbation h is shown in figure 3.4. Numerically it can
be demonstrated that the gap follows in a good approximation a power law
ω∗ ∼ hµ with µ ≈ 0.36.
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Figure 3.4: RPA calculations for the TFIM with longitudinal perturbation
field h. (a) Excitation spectra ω(q = 0) as a function of the transversal field
Γ. The true soft mode at the quantum critical point is revealed only in the
limit of h = 0, whereas the dependence of the gap ω∗ from perturbation h
at the cross over point is descried effectively by a power law (b).

The aim of the following section is to develop the meanfield/RPA formulas
for the real LiReF4 system. Nevertheless an assignment of LiHoF4 to the
effective TFIM is an efficient break down in complexity and leads to a rea-
sonable and illustrative approximation to reproduce for example the phase
diagram [9, 23]. In this mapping, the parameter Γ is essentially proportional
to half of the splitting between the two lowest energy levels. Of course there
is also a slightly field dependent renormalization of the absolute value of the
moments. The energy splitting induced by the Zeeman term is linear to the
real magnetic field Ht only in the limit of large fields, because of g⊥ = 0 for
the ground state doublet. For small fields the lowest non-vanishing term in
perturbation theory is of second order, hence Γ ∝ H2

t .

3.3 LiReF4 System RPA/MF

In LiReF4 the unit cell contains four magnetic ions with equivalent crystal
field environments. In the ferromagnetic case, for example LiHoF4, each site
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can be considered equivalently and the effective coupling between them is
given by

J̃ (0) = JDD̃cc(0) + 4J12. (3.3.1)

Here, J̃ and D̃ denotes the Fourier transformed quantities. In the particular
example of LiHoF4 an exchange coupling constant of J12 = −0.1 µeV is
reported [24] and the dipolar contribution D̃αα(0) equals to

JDD̃aa(0) = (µBg)2N

(
4π
3
− 0.83225

)
= 3.912 µeV (3.3.2)

JDD̃cc(0) = (µBg)2N

(
4π
3

+ 1.66451
)

= 6.821 µeV,

where the first term originates from numerical lattice sum whereas the sec-
ond term 4π

3 represents the Lorentzfactor. The number of Re-ions per unit
volume is N = 1.389 · 1022 cm−3.

The cases where it is required to incorporate also the hyperfine interactions
involve a diagonalization of the MF-Hamiltonian in the full (2J+1) ·(2I+1)
dimensional subspace instead of (2J + 1). However in some compounds like
for example LiErF4 this leads to a marginal influence on the final result and
counts anyway only in the temperature region which is hardly accessible
by experiments. This is contrary to LiHoF4, where the effect not can be
neglected. The meanfield phase diagram obtained in calculations with and
without considering hyperfine coupling are shown in figure 3.5.

In the meanfield calculation for an antiferromagnet for each sublattices ι
an expectation value 〈Sι〉 has to be assigned. The generic choice was four
sublattices, one for each ion in the unit cell. This approach enabled to
predict the experimentally confirmed magnetic structure. An attempt to
improve the approximation was to perform a meanfield calculation based
on clusters of spins rather than separate ions and treat the cluster itself by
means of exact diagnoalization. However from a practical point of view this
was only possible for sizes up to a few spins and lead only to neglectable
changes in the calculated Hc and Tc.

For multi composite systems like LiReAReBF4 where A and B stand for
different rare earth ions the virtual crystal approximation (VCA) can be
used to formulate a simple meanfield approach. The momentum operators
at site j can be written as

JV Cj = njJ
A
j

⊕
(1− nj)JBj , (3.3.3)
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Figure 3.5: Contour plot of the mean field expectation values Sz and phase
diagram as function of temperature and transversal field for the compound
LiHoF4. The points are the experimentally determined values according to
[9]. The meanfield calculation is shown for the case in which hyperfine in-
teraction is considered (a) or neglected (b). The calculated Tc and Hc is
sensitive to the assumed exchange coupling J12. Here the in the literature
generally accepted value form [24] was used, although a larger (antiferro-
magnetic) J12 would be able to reproduce at least Tc [9].

where nj = 1 for an ion A and nj = 0 for an ion B. The approximation is
now to replace nj by the doping concentration nj ∼ xA assuming a homoge-
nous distribution of the ions. This decouples the problem into two separate
meanfield Hamilton operators for A and B connected only by an induced
field. In the algorithm iteratively both Hamiltonian are diagonalized and
the meanfields are updated until selfconsistency is reached. In the special
case of dilution with nonmagnetic ions, like for example in LiHoxY1−xF4,
the virtual crystal approximation is trivial and equivalent to the treatment
of the pure system but with a scaling of the interaction J̃ (0) proportional to
the concentration x. Hence also Tc and Hc are scaled by this factor, because
of their linear relation to J̃ (0).

To calculate the generalized susceptibilities in RPA the starting point is
again the general relation 3.2.12 in real space.

¯̄χ(ij, ω) = ¯̄χ0
i (ω)

δij +
∑
j′

¯̄J (ij′) ¯̄χ(j′j, ω)

 . (3.3.4)

Here the non-bravais lattice has to be considered in the decoupling by means
of Fourier transform. Finally the following expression is obtained.
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¯̄χ(q, ω) =
1
4

∑
rs

¯̄χrs(q, ω) =
1
4

∑
rs

[
¯̄M−1(q, ω)

]
rs
· ¯̄χ0

r . (3.3.5)

[
¯̄M(q, ω)

]
rs

= δrs
¯̄1 − ¯̄χ0

r(ω) · ¯̄Jrs(q). (3.3.6)

In expression (3.3.6) the (12 × 12) matrix ¯̄M is defined block wise, where
[.]rs labels the (3 × 3) block that corresponds to the indices r and s. ¯̄1
stands for the identity matrix. Furthermore, ¯̄Jrs(q) denotes the Fourier
transformed coupling tensor with respect to the ions of sublattice r and s.
The transformation for ¯̄χrs(q, ω) are defined similarly.

J αβrs (q) =
1
N

∑
j∈r

∑
j′∈s
J αβ(j, j′)e−iq(Rj−Rj′ ). (3.3.7)

The single-ion susceptibilities ¯̄χ0
r of an ion in the sublattice r are calculated

within the meanfield eigenstates |n〉 and energies En

¯̄χ0,αβ
r (ω) = lim

ε→0+

∑
nm

〈n| Jαr |m〉 〈m| J
β
r |n〉

Em − En − ω − iε
(nn − nm). (3.3.8)

Although the meanfield/RPA treatment leads to a qualitatively correct de-
scription of the LiReF4 system there are some shortfalls with regards to
systematic overestimations of the critical fields and temperatures as well
as partly underestimation of the energies of the collective excitations. The
deeper reason for this is the fact that fluctuations are neglected in the ap-
proximation already by definition. Therefore it is also understandable that
in case of the Ising ferromagnet LiHoF4 meanfield treatment leads to accept-
able results and fits better compare to the case of the planar antiferromagnet
LiErF4. There are a few attempts reported for a more sophisticated the-
oretical modeling of the LiHoYF4, like classical and quantum monte carlo
[25, 23] or exact diagonalization [10]. Furthermore there is also a more
analytical approach, an improvement towards the next higher order in the
Dyson relation of the Greensfunction in form of a 1/z expansion [24]. In
this framework RPA would be the zero order result. Nevertheless also this
method has its own limitations, among others it is applying only to trun-
cated effective Hamiltonians with reduced complexity. Hence a sophisticated
theoretical description beyond meanfield is still missing.



Aspects of Theory 36

3.4 Random Field Model Systems

Random field magnets provide an arena to address the question how im-
perfection and disorder affect the magnetic properties in real magnets in
comparison to the clean ideal system. In this models there is a perturbation
field that varies from site to site in magnitude and polarization, whereas the
overall mean equals zero. Experiments have demonstrated that the presence
of random field is able to change significantly critical exponents [26].

nondiluted

Aharony−Fishman Model

diluted nondiluted

Off−Diagonal Dipol Coupling

diluted

Figure 3.6: Two methods to realize a random-field model: Site diluted
antiferromagnet (Aharony-Fishman) or via off-diagonal coupling terms in a
diluted Ising ferromagnet. The interactions (red) are drawn schematically
in the pure and diluted compounds to emphasis that in the nondiluted case
random fields cancel out by symmetry. Figure reproduced from [27].

A tunable random field can be realized for example in the two different
models as shown in figure 3.6. The first proposition according to Aharony
and Fishman [28], is a site-diluted antiferromagnet in an external magnetic
field. The second model is a diluted Ising ferromagnet where longitudinal
random fields are induced by an applied transversal field via off-diagonal in-
teractions. This is exactly the situation in LiHoxY1−xF4 where off-diagonal
terms are an intrinsic feature of dipolar coupling [29, 30, 10, 31]. As a second
perturbation theory results the random field at site j is given as

hj =
2SHt

Ω0

∑
i

J zxji , (3.4.1)

where Ω0 denotes the splitting between the doublet ground state and the
first excited singlet. The magnitude of the random field is governed by the
grade of dilution and can be tuned in each particular compound via the
applied transversal field. For any x < 1 and a decent Ht > 0 the system can
be regarded as an almost perfect realization of a classical Random Field Ising
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Model (RFIM). Although this picture and the manifestation of random fields
due to dipolar interactions is generally accepted, some theoretical details and
the consequences are controversially debated [29, 30, 10, 31].

It was argued [10] that for LiHoxY1−xF4 a true spin glass state can exist in
the limit of Ht = 0 only, whereas for any Ht > 0 the random fields limit
the correlation length. Instead of a quantum critical spin glass transition a
‘quasi’-spin glass to paramagnet cross-over takes place as a function of the
transversal field. Hence it is assumed that the presence of dipolar interac-
tions circumvent the formation of a quantum spin glass and the TFISG is
questioned as an adequate model for LiHoxY1−xF4. Nevertheless, there is
so far neither a strict theoretical nor experimental verification or falsifica-
tion of the emergence of a spin glass in its quantum limit and it seems that
the subtle interplay between the counteracting random fields and quantum
fluctuations may be decisive. In the less diluted LiHoxY1−xF4 compounds,
which are ferromagnetically ordered, the consequences of the random fields
are suppressed values for the critical fields and the appearance of Griffith
singularities [27].



Chapter 4

Experimental Results and
Discussion

The structure of this chapter is subdivided according to the particular com-
pounds and the associated effects. An exception is the next section, in which
the characterization of the crystal fields for various compounds is summa-
rized. For the understanding of the investigations presented later on in this
thesis only the crystal field properties of LiErF4 and LiHoF4 are relevant,
whereas the other compounds are listed only for completeness. The section
4.2 is assigned to aspects of spin glass physics and random field magnets in
the compounds of the dilution series Li(HoY)F4. In section 4.3 the quan-
tum phase transition in LiHoF4, in particular the effect of coupling to a
spin bath, will be discussed. The sections 4.4 and 4.5 are devoted to the
antiferromagnet LiErF4. The discussions of the general magnetic properties
of the system, the phase diagram and the thermal and quantum criticality
are covered in 4.4, whereas in 4.5 the dynamical properties of the system
are considered. Finally, as an outlook some preliminary results of the mixed
crystals Li(HoEr)F4 are presented in the last section.

4.1 Crystal Fields

The local magnetic properties of the ion, like the effective magnetic moment
or the anisotropy, i.e. whether Ising or planar is defined by the crystal field.
An accurate characterization of the local single ion behavior is inevitable for
all further experimental investigations and attempts to theoretical modeling
of the collective effects, which are in the focus of interest. The intention is
therefore to refine the 6 crystal field parameters experimentally. The method
of choice is inelastic neutron spectroscopy, since this provides directly the
energy levels and via the transition matrix elements information on the cor-

38
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responding wave functions. The crystal field levels are non dispersive and
the general advantage in selectivity of three axis instruments is less impor-
tant compare to the total required beam time. A time of flight spectrometer
on the other hand has a high data acquisition rate for several wave vectors
in parallel and gives the full spectra in a particular energy window. In the
following a time of flight neutron spectroscopy crystal field investigation on
the compounds LiReF4, Re=Ho, Er, Tm, Yb is presented. Symmetry argu-
ments are not only helpful in the data interpretation and refinement of the
crystal field parameters but also has general direct consequences to the spin
anisotropy and the level splitting in LiReF4.

4.1.1 Symmetry Arguments and General Considerations

The symmetry at the position of the rare earth ions in LiReF4 is given by
the S4 group. In a crystal field the 2J + 1 degenerated multiplet is splitting
up according to four irreducible representations, hence the digitalization of
Hcf can be done blockwise in the following subspaces.

Vα = span{|m = α〉 , |α± 4〉 , |α± 8〉 , ...} . (4.1.1)

α = 0, ±1, 2 for J integer.

α = ±1
2
, ±3

2
for J half integer.

Since the crystal field splitting are induced by electrical fields of the neigh-
boring ions only, i.e. has a nonmagnetic origin, the time reversal is symmetry
of the Hamiltonian. The time reversal operator maps the states from |m〉
to |−m〉 and therefore acts in the following way on the subspaces Vα.

T = e−iπJyK : Vα → V−α . (4.1.2)

Here K denotes the complex conjugate. Since T |ψ〉 of an eigenstate |ψ〉
is itself an eigenstate to the same energy one obtains the following level
splitting schema.

• J integer singlet A : {V0} B : {V2}
doublet E : {V±1}

• J half integer doublet E′: {V±1/2} E′′: {V±3/2}

A, B, E is the notation often used in representation tables. Obviously the
doublet degeneracy in the half integer case is a consequence of Kramers
Theorem.
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Furthermore from the breakdown in terms of the subspace Vα it is evident
that g⊥ = 0 for all doublets belonging to E in the case of J integer and for
all singlets g⊥/‖ = 0, obviously. Therefore the doublet states E represent
Ising spins along the z-axis and usually large g‖ factors. On the other side
for J half integer a realization of almost planar effective spin anisotropy is
within the realms of possibility.

In the neutron scattering cross-section the matrix elements of J between
two states are involved. In each transition between two different types of
representation, for example from E′ to E′′, the matrix elements involving
Jz are zero. Furthermore in the J integer case for the transitions between
A and B or within the sets A, B and E the matrix elements involving Jx,
Jy are zero. Therefore there is a momentum dependent anisotropy in the
scattering intensity. From an experimental point of view this provides fur-
ther directly assignable information from the measured spectra. Hence, in
some cases one can afford to choose a powder sample instead of a single
crystal without causing restrictions in the data evaluation and crystal field
parameter refinement.

4.1.2 LiErF4

In LiErF4 the 2J + 1 = 16 dimensional ground state multiplet is split into
8 doublets of E′ and E′′ in each case. The neutron measurements have been
performed on a single crystal sample in two different orientations, the low
energy part on the FOCUS (SINQ, PSI) spectrometer with Ei = 12 meV as
well as the high energy part on the LRMCS (IPNS, Argonne) spectrometer
with Ei = 80 meV. Although the instrument is not Q-selective the sample
alignment has been optimized such that the covered reciprocal space region is
centered either aroundQ = (ξ, 0, 0) orQ = (0, 0, ξ). The crystal was oriented
with one a-axis pointing perpendicular to the scattering plane, therefore a
90◦ rotation of the sample around this axis allowed to change between the
two different configurations under otherwise fixed conditions. Collecting
data sets at different temperatures, here 2 K and 20 K for the experiment
in the low energy sector (figure 4.1) respectively 11 K and 100 K for the
high energy part (figure 4.2), has the advantage of determining ground state
transitions as well as transitions from a few of the next lowest excited states.
This provides additional as well as redundant information than measuring
at only one particular temperature and therefore enhances the consistency
of the determined quantities.

The anisotropy visible from the spectra and the above mentioned symmetry
considerations anticipate already qualitatively the level splitting. However
from the quantitative analysis it is known that the ground state belongs
to the representation E′′. In the transition to second excited state E =
3.52 meV there is little intensity in the configuration Q ∼ (0, 0, ξ) compared
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to the pronounced peak visible in the case of Q ∼ (ξ, 0, 0). Hence the Jz
matrix element is nonzero, leading to the conclusion that the second excited
state must belong to the same representation E′′ as the ground state. The
same argument holds for the E = 43.4 meV state. On the other side there is
slightly more intensity in the c-axis orientation for the transition to the first
and third state but less for the transition between these two. Considering
these ratios and the fact that each representation has four doublets the only
possible conclusion is that the first and third excited state must belong to
the other representation E′.

The limited data published on the magnetic properties of LiErF4 to date
include susceptibility, specific heat, EPR and optical measurements of crys-
tal field levels [32, 33, 34, 35], agreeing on planar XY anisotropy g⊥ '
8.09 − 8.105 � g‖ ' 3.14 − 3.32, although lacking a globally consistent
set of parameters allowing detailed prediction of low-temperature proper-
ties. Based only on the neutron data here a more reliable full refinement
of the crystal field Hamiltonian is presented. The determined crystal field
parameters are compared with the values reported from literature in table
4.1. Furthermore as a consistency check the bulk susceptibility, measured
on a SQUID magnetometer, can be reproduced well by the calculation using
the actual parameter set (figure 4.3). The resulting level schema, measured
and calculated, is given in table 4.2. As a conclusions the crystal field yield
a ground state doublet with ∆ = 2.25 meV to the next excited Kramers
doublet. Within the ground-state doublet, an effective system for the low-
temperature magnetic properties that can be derived, suitable for future
theoretical work. Inside this subspace the effective spin operators can be
written as Sα = Cασ

α, where Cx = Cy = 3.480 and Cz = 0.940, which
directly feature the pronounced XY-anisotropy of the system. Furthermore
with the refined crystal field parameters the values g‖ = 2.25 and g⊥ = 8.35
are calculated.

103B0
2 103B0

4 103B4
4(c) 103B4

4(s) 106B0
6(c) 106B4

6(c) 106B4
6(s)

Refinement 63.0±5.9 -0.55±0.03 -5.54±0.07 0.47±0.01 -0.006±0.006 -108.2±1.2 -14.6±0.5

Pointcharge 26.9 -0.12 -1.74 -0.040 -11.5 -2.4

Ref. [36] 67.7 -0.68 -6.82 -0.080 -133.0 -24.3

Table 4.1: Crystal-field parameters in meV for LiErF4. The present refine-
ment is compared with values reported in [36] and a point charge calculation.



Experimental Results and Discussion 42

Neutron spectr. calculated EPR [34] Opt. spectr. [35] Ref. [36]

2.23 ± 0.01 2.23 2.26 2.23 2.33
3.52 ± 0.01 3.52 2.90 2.48 3.79
7.00 ± 0.01 7.01 7.44 8.19

31.3 ± 0.2 31.9 39.0
35.8 ± 0.2 36.7 44.6

40.1 49.3
43.4 ± 0.3 43.2 52.9

Table 4.2: Crystal-field level energies for LiErF4 in meV, relative to the
ground state. All states are Kramers degenerate doublets. The results ob-
tained from neutron spectroscopy in comparison with the calculated energies
(refined parameters) and with the values reported in literature.
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Figure 4.1: Time-of-flight spectra for LiErF4 measured on the FOCUS
spectrometer at two different temperatures and two different crystal orien-
tations . a) Q ≈ along the ’c-axis’, b) Q ≈ along the ’a-axis’. In the insets
the considered region in reciprocal space is visualized. The red line shows
calculated intensity with the refined set of the crystal field parameters.
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Figure 4.2: High energy part of the LiErF4 crystal field spectrum measured
on LRMCS for two different crystal orientations. The red line represents a
fit with gaussian curves, used to extract the transition energies. The black
curves show the spectra obtained form a calculation based on the refined set
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Figure 4.3: Bulk susceptibility of LiErF4 obtained from SQUID magne-
tometry with a field of 1 kOe. The calculation based on the crystal field
Hamiltonian is able to reproduce well the experimental results, without any
scaling parameter (red curve). The dashed curve shows the c-axis suscepti-
bility enhanced about 7.5%.
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4.1.3 LiHoF4

In LiHoF4 the 2J + 1 = 17 dimensional ground state multiplet is split into
4 doublets and 9 singlets. Although no neutron data exist in literature,
already an quite accurate crystal field parameter set is reported, based on a
refinement of the data from several independent bulk investigations [36]. The
here presented neutron measurements has been performed with a powder
sample at the TOFTOF time-of-flight spectrometer at FRMII in Munich.
For the instrument configuration an incident wavelength of 2.8 Å has been
chosen, which allows to collect data on the crystal field transitions up to an
energy around 9 meV. The use of a powder sample circumvents in the data
evaluation the uncertainties arising of an improper orientation of a single
crystal. On the other hand in the powder cross-section the information of
anisotropy in the matrix elements is averaged out. Three data sets have
been collected at temperatures of 4, 25 and 70 K, see Fig 4.4. The measured
transition energies are summarized in table 4.3.

−8 −6 −4 −2 0 2 4 6 8

0

0.2

0.4

0.6

E     [meV]

S
(ω

) 
 a

rb
. u

.

T = 4 K

0

0.2

0.4

0.6

S
(ω

) 
 a

rb
. u

.

T = 25 K

0

0.2

0.4

0.6

S
(ω

) 
 a

rb
. u

.

T = 70 K

Figure 4.4: Time of flight spectra for LiHoF4 measured at three different
temperatures. The red line shows calculated intensity with the refined set
of the crystal field parameters. The sample contained traces of HoF3 from
incomplete synthesis. In the data evaluation this contribution to the spectra
was considered, shown as black line.



45 Crystal Fields

Based on this data a full refinement of the crystal field Hamiltonian was
possible and the crystal field parameters are compared with the values re-
ported from literature in Table 4.4. The resulting level schema is given in
Table. 4.3. The ground state doublet is separated ≈ 11 K from the next
higher state, which is a singlet. All doublets belong to the representation
E and g⊥ = 0 is a direct consequence of the symmetry. Therefore at low
temperatures LiHoF4 is a prefect realization of an Ising system.

neutron spectr. calc. [24] [36] [34] [35] [37]

0.90 ± 0.01 0.92 0.95 0.78 0.90 0.99
2.90 ± 0.01 2.89 2.76 3.36 2.87 3.22
5.94 ± 0.01 5.90 6.20 6.38 6.08
7.08 ± 0.01 7.02 7.24 7.93 7.56 7.33
9.06 ± 0.01 8.98† 9.39 10.69 9.67 8.79

25.7 28.3 34.3
31.7 34.8 42.4
32.0 † 35.3 42.8 35.1
32.9 36.2 44.0
35.2 37.7 46.1
35.9 † 38.2 47.1 39.0
37.8 40.4 49.6

Table 4.3: Crystal-field level energies in meV, relative to the ground state
doublet, for LiHoF4. The results obtained from neutron spectroscopy in
comparison with the calculated energies based on the refined crystal field
parameters and with the values reported in literature, i.a. experimental
results from previous EPR [34] and optical spectroscopy [35]. The doublets
are indicated by †.

103B0
2 103B0

4 103B4
4(c) 106B0

6(c) 106B4
6(c) 106B4

6(s)

refinement -63.2±4.8 0.318±0.016 3.42±0.04 0.55±0.01 60.1±0.1 18.9±0.1

Ref. [24] -60.0 0.350 3.60 0.40 70.0 9.8

Ref. [36] -65.0 0.426 4.53 0.10 85.5 16.9

Ref. [38] -52.0 0.281 3.70 0.70 70.4

Ref. [39] -56.0 0.325 3.61 0.20 75.8

Table 4.4: Crystal-field parameters in meV for LiHoF4 from the present
refinement compared with values reported in literature.
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4.1.4 LiHoxY1−xF4 and the Effect of Dilution

The method, which was far mostly used to determine crystal field param-
eters in LiRexY1−xF4 was optical spectroscopy on very dilute isolated Re-
ions. Nevertheless it has not been tested, whether crystal field parameters
determined in very dilute systems remain valid in the Re-rich system and
vise versa. Two compounds have been chosen, LiHoF4 and LiHoxY1−xF4

with x = 4.5%, to measure both under exactly the same experimental con-
figuration on the TOFTOF spectrometer. Since there is much less scattering
from the diluted compound, not the same settings could be used as presented
in the previous paragraph for LiHoYF4. A high resolution configuration is
mandatory to distinguish accurately the small differences between the two
samples. This, on the other hand, causes a reduction of the instrumental
accessible energy window. In the present window only the first three lines
are observable, which is unfortunately not sufficient information for a full
refinement of the crystal parameters. The main result of the measurement
is that a there is a significant shift in the crystal level energy between the
diluted and pure compound (Fig. 4.5, 4.6).
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Figure 4.5: Comparison of the time of flight spectra for LiHoF4 and
LiHoxY1−xF4, x = 4.5%. The shift in the energy levels between the two
compounds is visualized by the green vertical lines, which indicate the po-
sitions of the spectral lines according to the fit (red curve).

Additionally, also the crystal field transition from the ground state doublet
to the first excited singlet state was measured with enhanced resolution (fig-
ure 4.6). The line width in the pure compound is approximately five times
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Figure 4.6: High resolution neutron time of flight spectra of the first spectral
line in LiHoxY1−xF4, x = 4.5% compared with LiHoF4. The FWHM is
indicated through the bars on the bottom of the graph, where the black
one corresponds to the resolution of the elastic line. The broadening is
enhanced in the pure compound compare to the diluted (a), whereas in the
latter splitting is visible in the peak shape(b).

broader than the instrumental resolution and in the spectra of the diluted
compound a double-peak shape was observed. The obvious interpretation
would be that this originates from the zeeman-splitting in the ground state
doublet due to the magnetic interaction between the ions. Hence the broad-
ening is related to the statistical distribution of the different interactions.
The splitting observed in the diluted compound is in the order of the en-
ergy expected from the dipolar coupling between two neighbouring ions.
Therefore, this interpretation seems plausible. Furthermore, the splitting
due to the rather strong hyperfine interaction in Holmium will contribute
to a smearing out of the spectra too.

4.1.5 LiTmF4

In LiTmF4 the 2J + 1 = 13 dimensional multiplet is split into 3 doublets
and 7 singlets. The low energy part of the spectrum has been measured
on a powder sample at the FOCUS spectrometer with Ei = 7 meV and
the high energy part at the LRMECS spectrometer with Ei = 80 meV.
At base temperature there are two clearly identifiable spectral lines one
at E = (3.77 ± 0.01) meV and the other at E = (34.6 ± 0.1) meV, see
figure 4.7&4.8. From optical spectroscopy [40, 41] it is reported that the
ground state is a singlet and the first excited state a doublet at 3.84 meV.
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Since the available information from the neutron data is far from sufficient
for a full determination of the six crystal field parameters also the optical
determined energy levels [41] are considered in the refinement. Recently
reported data on bulk magnetization [42] show that the inplane magneti-
zation M⊥(001) is highly anisotropic in high fields and at low temperatures
around 4.2 K. The maximal value of the magnetization is reached at an an-
gle φ = 12.5o between applied field and crystallographic a-axis. For a field
of H⊥(001) ≈ 50 kOe the anisotropy M⊥(φmax) −M⊥(φmin) is 1.11 Bohr
magneton per ion or 32% of the mean value. The low field susceptibility
χ⊥(T = 4.2 K) = 0.071 µB/kOe is isotropic according to first order pertur-
bation theory. By a rotation in the xy-coordinate frame the obtained crystal
field parameters B4

4(c), B4
4(s) and B4

6(c), B4
6(s) have been transformed to

match the calculated with the experimental determined orientation of max-
ima and minima of the inplane magnetization. Such a coordinate transfor-
mation from old parameters B to new B̃ is given as follows, where the rest
of the parameters remains the same.

B̃4
4(c) = B4

4(c) cos(4α) +B4
4(s) sin(4α)

B̃4
4(s) = B4

4(s) cos(4α)−B4
4(c) sin(4α)

B̃4
6(c) = B4

6(c) cos(4α) +B4
6(s) sin(4α)

B̃4
6(s) = B4

6(s) cos(4α)−B4
6(c) sin(4α). (4.1.3)

Here α denotes the rotation angle between the old and new coordinate frame.
If the reported data is scaled by a consistent factor of 0.88, the magneti-
zation calculated using the new refined crystal field parameters coincides
well with the experimental values, except that the anisotropy is underesti-
mated, similar as in the model of [42]. It was not possible to circumvent this
scaling factor by a different choice of the crystal field parameters, without
disturbing significantly the energy level schema. The needed scaling factor
is maybe due to some incorrectness in the treatment of the demagnetization
in the reported data from [42]. Nevertheless the agreement in regards of the
the bulk magnetization data is as good as in the model of [42], but here in
contrast to their reorganization also the correct energy levels are taken into
account.

103B0
2 103B0

4 103B4
4(c) 103B4

4(s) 106B0
6(c) 106B4

6(c) 106B4
6(s)

Refinement 224.3±8.2 -1.85±0.06 -11.7±0.4 -15.2±0.5 2.0±1.9 264.5±27.4 137.7±26.5

Ref. [40] 224.6 -1.54 -17.9 7.5 306.8

Table 4.5: Crystal-field parameters for LiTmF4 in meV. The parameters
from the present refinement are compared with values reported in [40].
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Neutron spectr. calculated Ref. [41]

3.77 ± 0.01 3.77† 3.84
7.69 7.69

34.6 35.6
39.2 39.2

34.6 ± 0.1 45.3 45.3
47.4 † 47.4
50.8 † 50.8
52.2 52.2
54.1 54.1

Table 4.6: Crystal-field level energies of LiTmF4 in units of meV relative
to the ground state singlet. The doublets are indicated by †. The results
obtained from neutron spectroscopy in comparison with the values reported
from previous optical spectroscopy investigations and the calculated energies
using refined parameters.
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Figure 4.7: (a) Spectral line at E = (34.6± 0.1) meV measured with time
of flight on a LiTmF4 powder sample. (b) Temperature of the parallel and
perpendicular component of the magnetization. M⊥ is measured for a field
along the direction with minimal in plane magnetization. (b) Anisotropy
of in plane magnetization at 4.2 K, field dependence in maximal direction
(blue) and minimal direction (green). The data points in (b,c) are taken
from [42]. The lines (b,c) showing the calculated curves according to the
presented crystal field parameters.
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As a difference to the majority of cases observed in LiReF4, where the
spectral lines are nearly resolution limited, in LiTmF4 the line width of
the 3.8 meV transition increases enormous at increasing temperatures (fig-
ure 4.8 & 4.9). Further contribution of other crystal field transition due to
thermal population can be ruled out as origin of the broadening, since they
are located at much higher energies. Therefore we conclude that the broad-
ening is due to magnetic interactions and coupling to collective, nonlocal
degree of freedoms. In a metal for example the magnetic interactions with
conduction electrons induce a temperature dependent finite life time of an
excited CEF state leading to the line width linear in temperature, which is
known as Korringa law. Furthermore giant, strong anisotropy magnetostric-
tion effects are reported for LiTmF4 [43], therefore the damping could be
a consequence of a magneto-phononic hybridization with the crystal field
states.
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Figure 4.8: Crystal field neutron scattering spectrum measured in LiTmF4.
Panel (b) and (c) are zoomed in illustration on energy gain and loss side
respectively to visualize the temperature dependence of the peak shape.
The line width dramatically increase with temperature (figure 4.9). The
lines correspond to a fit using a detailed balance Lorentzian model function.
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Figure 4.9: Line width (a) and intensity (b) of the E = 3.77 meV transition
in LiTmF4 determined from the fits to data as shown in figure 4.8. The
intensity for the gain and loss processes are related to each other by the
detailed balance condition. Solid lines in (b) are showing the population
factors according to the crystal field level splitting, i.e. the expected tem-
perature dependence of the scattering intensities in the isolated ion picture
cross section.

4.1.6 LiYbF4

In LiYbF4 the 2J + 1 = 8 dimensional multiplet is split up into 4 Kramers
degenerate doublets. All transitions from the ground state to the 3 excited
doublets were measurable on the LRMCS spectrometer with Ei = 80 meV
using a powder sample (Fig. 4.10). The determined energy levels are similar
to the values reported from optical spectroscopy [44], see Tab. 4.7 for com-
parison. The refined crystal field parameters are listed in table 4.8. In the
refinement the parameter B4

4(s) was kept zero, because the available data is
insensitive to the orientation of the xy-coordinate frame. Furthermore, also
the parameter B4

6(s) was set to zero, since the fit was almost insensitive to
this value. For the sample used in the neutron spectroscopy also the bulk
susceptibility was measured with a PPMS. Based on the new adjusted pa-
rameters the calculation is able to describe the susceptibility as well as the
neutron data (Fig. 4.10).
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Neutron spectr. calculated Optical spectr. [44]

29.0 ± 0.2 28.9 29.4
46.3 ± 0.4 45.9 46.5
55.2 ± 0.3 55.2 59.1

Table 4.7: Crystal-field level energies of LiYbF4 in units of meV relative to
the ground state. All states are Kramers degenerate doublets. Comparison
of neutron spectroscopy results with the values reported from previous opti-
cal spectroscopy investigations and the energies calculated using the refined
parameter set.

103B0
2 103B0

4 103B4
4(c) 103B0

6(c) 103B4
6(c) 103B4

6(s)

663±80 12.5±4.5 102±41 -0.62±0.73 -16.0±1.7 0

Table 4.8: Crystal-field parameters for LiYbF4 from the present refinement
in meV.
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Figure 4.10: (a) Time of flight spectra of LiYbF4 (powder sample). (b)
Susceptibility of the same sample, measured with PPMS. The red curves
in both panels are the results obtained from calculation using the refined
crystal field parameters.
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Summary 4.1:
A crystal field investigation and by means of neutron spectroscopy and
a comprehensive crystal field parameter refinement was presented for
the compounds LiReF4 with Re=Er, Ho, Yb and Tm. Furthermore the
following results and conclusions have been obtained:

• Based on symmetry considerations a derivation of the energy level
schema is given.

• LiErF4 is within its ground-state doublet a realization of an XY
model.

• LiHoF4 is within its ground-state doublet a perfect realization of
an Ising Model with g⊥ = 0 fulfilled exactly.

• In the diluted compound LiHoxY1−x4F4, x = 0.045, the crystal
field energy levels are slightly shifted ( < 0.1 meV) compare to the
values found for the pure compound. The Line width of the first
crystal field transition line is significantly broadened in the case of
the pure compound.

• In LiTmF4 the line width exhibit a linear increase as a function of
temperature.
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4.2 LiHoxY1−xF4

The dilutions series LiHoYF4 are without question so far the most celebrated
representative of the LiReF4 compounds because of their model charac-
ter and numerous collective quantum phenomena. The main experimental
method of almost all investigations was ac-susceptibility. The here presented
neutron diffraction results are complementary to the reported macroscopi-
cal measurements and provide a new inevitable insight into the microscopic
picture. This section is subdivided in three parts. In the first part (4.2.1),
the evolution of the phase diagram as function of dilution x and particular
aspects of the measured compounds are discussed. However, the reentrant
spin glass systems x = 0.33 and x = 0.46 and quantum annealing are pre-
sented in a self-contained paragraph, i.e. in the second part (4.2.2) of this
section. Finally, the third part (4.2.3) is devoted to the coherent oscillations
of spin clusters in the so called anti glass phase of LiHo0.045Y0.955F4.

Annealing Protocols

Since the compounds show in their spin glass like phase history dependent
phenomena the path in temperature and transversal field space was crucial
during all experiments. The terms and definitions of the annealing protocols
are mentioned here in the introduction, because they will be used in the
following discussions in various contexts. The different paths of the two
annealing protocols are defined schematically in figure 4.11.

0 1
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T / T
c

H
t / 

H
c

PMFM
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ZFC

(Quantum Annealing)

(Classical Annealing)

Figure 4.11: Two different annealing protocols shown in the phase diagram:
field cooling (FC) and zero field cooling (ZFC)
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4.2.1 Ising Ferromagnet, Random Field Magnet, Spin Glass

Phase Diagram

By replacing Holmium with nonmagnetic Yttrium the LiHoxY1−xF4 com-
pound evolves from a an Ising ferromagnet towards a random field mag-
net and a spin glass like system. The phase diagram as a function of
Holmium concentration x is depicted in figure 4.12. The critical temper-
atures determined by means of neutron scattering are in agreement with
the susceptibility results [18]. Under light doping LiHoxY1−xF4 remains
ferromagnetically ordered but the Curie temperature is linearly suppressed
Tc(x) = x · Tc(x = 1) as it would be expected from a meanfield calcula-
tion. Nevertheless, a recent classical Monte Carlo calculation [25] calls in
question that the linear decrease in Tc has its origin in the mean field be-
havior of the system. The authors dispute that instead the phase diagram
results from the combination of fluctuations and the effect of exchange cou-
pling in the dipolar interaction dominated system. Below a marginal con-
centration around x ≈ 0.2 ferromagnetic ordering is circumvented by the
interplay of disorder and frustration arising form the anisotropy of dipo-
lar interaction. Instead the system behaves as a spin glass. On further
dilution the cross over temperature decreases to zero and for concentra-
tion around x = 0.05 there is no spin freezing at all. This phase is re-
ferred in literature as spin liquid “anti-glass” or “decoupled cluster glass”,
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Figure 4.12: Phase diagram of LiHoxY1−xF4 . The measured Tc by means
of neutron scattering is in accordance with the susceptibility data from [18].
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according to its unusual behavior [7, 18, 8].

The temperature versus transverse field phase diagram of the different com-
pounds investigated by means of diffraction are summarized in figure 4.13.
From a mean-field point of view Hc(x) = x · Hc(x = 1) is expected. Nor-
malizing the field and temperature in the phase diagram by the associated
predicted meanfield values visualize the scaling of Hc and Tc. In contrast
to Tc which is proportional to the dilution x, the critical transversal field
Hc(x) of the quantum critical point is suppressed faster than linear.
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Figure 4.13: Summary of the transverse field versus temperature phase
diagrams of the measured LiHoxY1−xF4 compounds (a). The curves are
guides to the eye. In (b) the curves are normalized with the meanfield
values TMF

c = x · Tc(x = 1) and HMF
c = x ·Hc(x = 1). Tc(x) is linear in x,

whereas the critical fields are suppressed stronger than meanfield predicts.

x = 0.83

For this concentration the phenomenology is similar to the pure compound,
resolution limited Bragg peaks indicates true long range ferromagnetic or-
dering below Tc = (1.31 ± 0.01) K. A critical transversal field of Hc =
(3.74 ± 0.01) T was determined at a base temperature of around 50 mK.
In figure 4.14 the measured integrated intensity as a function of field and
temperature is shown.
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Figure 4.14: LiHoxY1−xF4 , x = 83%. (a) Pseudocolormap visualizing the
field and temperature dependence of the (200) Bragg peak. (b) Integrated
intensity as function of applied transversal field. Each value was determined
by means of a rocking curve through the selected magnetic Bragg peaks.

x = 0.67 - Emergence of Hysteretic Effects

Below the critical temperature of Tc = (1.05±0.01) K ferromagnetic ordering
appears and the critical transversal field is Hc = (2.42±0.01) T, determined
at base temperature of around 100 mK. The magnetic Bragg peaks appear
resolution limited in the ordered phase for all tested annealing protocols, i.e.
field cooled FC and zero field cooled ZFC. Although the Brillouin zone was
effectively mapped out, no diffuse magnetic scattering signal was detected
which would be an indication for the presence of short range correlations.
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Figure 4.15: Pseudocolormaps visualizing the field and temperature depen-
dence of the (200) Bragg peak intensity for LiHoxY1−xF4 , x = 67%. (a)
Absolute signal measured in sweeps in direction from low to high fields. (b)
Difference from scans performed in increasing respectively decreasing field
direction.
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The system shows history dependent behavior. While sitting at the posi-
tion of the magnetic Bragg peak at fixed temperature the field and ramping
the field from zero to a value strictly above the critical field and back to
zero again, then the final scattering intensity is decreased compared to its
initial value, although the start and end position in the field-temperature
diagram are identical. In figure 4.15 the field and temperature dependence
of a magnetic Bragg peak is shown, the absolute value as well as the differ-
ence obtained by ramping the field either up or down. Beyond the phase
boundary line the state of the system is independent from the annealing his-
tory. At intermediate temperatures of around 0.5 K the effect is maximal.
Furthermore changing the polarity of the transversal field has a dramatic
effect. In figure 4.16 a full hysteresis loop is depicted. The full scattering
signal is recovered already at decent fields after crossing the zero point.
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Figure 4.16: Hysteresis of the (200) Bragg peak intensity in LiHoxY1−xF4 ,
x = 67% measured at T = 120 mK. In the inset the entire scans are shown.
Changing the polarity of the field relive the full scattering signal.

As an interpretation one could argue by means of the longitudinal random
field induced by the transversal field via off-diagonal dipolar interactions. At
high transversal fields the random fields are large and preset the formation
of the clusters. The spins tend to align along the direction predefined by
the local random fields.

As the transversal field is switched off at low enough temperatures the sys-
tem may remain partly trapped in the clustered structure. The barriers in
the energy landscape are to large to overcome and to establish the more ho-
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mogenous ordered ferromagnetic state as obtained by the first cooling down
in zero applied field. By changing the polarity of the applied transversal
field, the local longitudinal fields also switch in direction and therefore the
potential landscape is inverted. Due to this provided activation energy, the
system then is able to leave the trapped state and relax back to the optimal
ground state as indicated by the increase in scattering intensity.

x = 0.25

The LiHoxY1−xF4 , x = 0.25% compound can be considered as a spin glass
like system. The nature of the low temperature phase is associated with the
cooling down procedure and the glassy state demonstrates history dependent
behavior. Zero field cooling (ZFC) lead to long range ferromagnetic ordered
state below Tc = (237± 5) mK, as indicated by the appearance of magnetic
scattering in from of a sharp Bragg peak. At base temperature of T = 40 mK
a critical transversal field of Hc = (0.61± 0.01) T was determined. On the
contrary if the system was cooled down in a field H > Hc before the field was
set to zero again, i.e. field cooled (FC), there is no magnetic contribution
to the Bragg peaks. The same state results by ramping up the field above
Hc and down again, even if the compound was previously ZFC annealed.
The Bragg peak intensity obtained in a measurement according to the FC
and ZFC protocol respectively is shown in figure 4.17. Furthermore the field
and temperature dependence of the signal in the ZFC phase indicates the
phase diagram. As far as investigated in the present experiment the history
dependent behavior range over the entire temperature region up to Tc in
contrast to the less diluted compounds like LiHoxY1−xF4 , x ≈ 45%, which
resembles in its phase diagram a reentrant spin glass.
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Figure 4.17: LiHoxY1−xF4 , x = 25%. (a) Pseudocolormap visualizing
the field and temperature dependence of the (200) Bragg peak intensity
measured in the state obtained via zero field cooling. (b) Difference between
field cooling (FC) and zerofield cooling protocols.
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In the FC state the magnetic scattering intensity has a broad distribution
in reciprocal space. In the short scans across the Bragg peak position this
becomes manifest effectively only in form of a decent changing background.
A further characterization of the magnetic scattering in terms of shape and
width in reciprocal space was experimentally impracticable, due to the un-
favorable signal to noise ratio.

x = 0.20 - The Marginal Concentration

In early investigations of LiHoxY1−xF4 the focus of interest was on one side
in the less diluted compounds around x = 0.5 or on the other hand on the
very diluted. The concentration around x = 20% is marginal since this
is the region in the phase diagram, where the line Tc(x) hits the dome of
the spin glass phase. Recently an investigation of the phase diagram in
LiHoxY(1−x)F4, x = 19.8% by means of AC-susceptibility [45] has been re-
ported. The authors discussed the crossover from random field dominated
behavior in the 19.8% sample to entanglement dominated behavior in the
16.7% sample. One possibility to define the transition to a spin glass is the
emergence of a flat spectral response at low frequency ω in χ′′, which corre-
sponds to a logarithmic divergence in χ′ ∼ log(ω/ω0). In the region above
the spin glass transition, the authors fitted the low frequency tail χ′′(ω) to a
power law form, ωα. The critical field for the transition Tg(Ht) is defined as
α → 0. In their interpretation the characteristic frequency ω0 is related to
the fastest relaxation process available to the system and characterizes the
quantum tunneling rate. They have shown that the dynamically-determined
phase boundary coincides with that derived from the maxima of the nonlin-
ear susceptibility coefficient χ3 [45]. Since the susceptibility provides as a
bulk technique only indirect information about the system, the microscopic
picture remained an open issue.

The main outcome from the here presented neutron experiment is that there
is no long range ordered state down to 40 mK. Rocking curves through the
ferromagnetic Bragg peak (200) has been performed as function of field and
temperature. No change in the integrated intensity was found, and therefore
there is no magnetic contribution to the Bragg peaks. Nevertheless, the field
scans with higher statistic while sitting in center of the Bragg peak instead
of performing ω-scans, show a weak field dependence of the signal. But it
has to take into account that the background as well may change with field.
In scans over an extended range in reciprocal space, i.e. extended over the
range of more than half of a Brillouin zone, a broad magnetic signal around
the position of the ferromagnetic Bragg peak (200) has been found. To map
out the field and temperature dependence of these short range correlations
scans sitting slightly off the Bragg peak has been performed (figure 4.18).
There is no indication of a phase transition at any field up to 3 T and down to
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40 mK in contradiction to the suggestions from the dynamical susceptibility
measurements. Instead of a sharp transition the change in signal is cross
over like. In particulary the temperature dependence can be fitted in good
approximation to a Tα power law. This clearly marks a difference to the
only slightly higher doped x = 0.25 compound with its sharp transition, see
figure 4.18.

Since it was known from former experiments on less diluted compounds that
hysteresis effects could play a role, taking care to follow a strict annealing
protocol was indicated. Each scan has be done first in a ZFC way at increas-
ing field, then again decreasing after the field was risen to a high enough
field value of 3 T to get in the state which is regarded as equivalent to a FC
one. To judge if there is an hysteresis or not in the x = 20% compounds is
not as obvious as in the less diluted compounds. Remarkably the difference
at base temperature is less pronounced than at intermediate temperature
> 100 mK. But the fact that the up and down ramping curves do not coin-
cide exactly, could also be explained by magneto caloric effect. Considering
the temperature scan it is reasonable that the difference in the scattered
signal could originate from a slight shift in temperature.

How the peak shape of the magnetic scattering signal evolves as a function
of field was elucidated in a series of high statistic reciprocal space scans
(figure 4.19). Also here FC and ZFC protocols turned out to be equivalent.
The data was fitted with a Lorentzian model folded with the experimental
resolution in form of a gaussian. As a function of field the intrinsic line
increases but the integrated intensity remains constant. At H = 0 T the
system is indeed dominated by magnetic correlations ranging only over a
short distance in the order of a few unit cells.
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Figure 4.18: LiHoxY1−xF4 , x = 20%. (a) Pseudocolormaps visualizing
the field and temperature dependence of the intensity measured slightly
of the Bragg peak at Q = (20δ). The white dots represent the results
from susceptibility measurements [45]. (b) The measured neutron scattering
intensity shows a power low like temperature dependence, in contrast to the
sharp transition found in LiHoxY1−xF4 , x = 25%
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Figure 4.19: LiHoxY1−xF4 , x = 20% field dependence of the short range
magnetic correlations (a). The width is increasing with field (b), whereas
the integrated intensity remains almost constant (c).
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4.2.2 LiHoxY1−xF4 , x = 1/3 −1/2

The phase diagram and magnetic correlations in LiHoxY1−xF4 , x = 0.46
and x = 0.33 have been investigated on the 2-axis neutron diffractometer
E4 at HMI and at the three-axis spectrometer 4F-2 at LLB Saclay. As
configuration in each case the a-axis of the crystal as well as the magnetic
field directions have been chosen perpendicular to the scattering plane. For
LiHoxY1−xF4 , x = 0.33 the history dependent effects have even more pro-
nounced signature in neutron scattering as in the case of x = 0.46, as it will
be shown in the next paragraphs. But the experiments have been performed
first on the basis of x = 0.46 and this is the reason why the majority of the
here presented data was available for this concentration. Furthermore, the
similarity of our x = 0.46 with the x = 0.44 compound widely investigated
by means of ac-suceptibility in T. F. Rosenbaums group in Chicago [6, 5, 27]
is supposed in the following discussion. There is no significate change in the
phase diagram around this concentration and from an experimental point of
view only nominal values for the exact concentration are known anyway.

Re-Entrant Spin Glass

In LiHoxY1−xF4 , x = 0.46 long range ferromagnetic ordering appears below
the critical temperature of Tc = (0.675±0.005) K. By applying a transversal
field, the system undergoes a quantum phase transition, whereas a critical
field of Hc = (1.21± 0.01) T was measured at a temperature of 30 mK. The
critical exponents β for both regions has been exterminated from the onset
of the magnetic Bragg peak intensity (figure 4.20). The critical scattering
strongly contributes to the neutron scattering signal and was subtracted in
the final analysis. A question of interest is whether or not dilution may
affect the critical behavior. Famous examples are so called Griffith singular-
ities [46]. These anomalies in the magnetization are theoretically expected
in randomly diluted ferromagnetic Ising systems below the critical tempera-
ture of the pure compound. An experimental indication of such an effect in
LiHoxY1−xF4 , x = 0.44 was reported recently [27]. Nevertheless, the critical
exponents β determined from the neutron data are identical for the diluted
and pure compounds. For the quantum phase transition βH = 0.47 ± 0.02
is close to the meanfield exponent βMF = 0.5, whereas βT = 0.32± 0.02 for
the thermal phase transition at Tc is lower and corresponds to the renor-
malization group result βRG = 1/3 for the 3D-Ising model.

Below temperatures of around 250 mK there is a crossover to a phase with
history dependent behavior depending on a chosen annealing protocol. By
entering this phase from the high field state above Hc the magnetic scat-
tering signal appears in form of a broad Lorentzian-like peak shape instead
of a resolution limited gaussian. This is the signature of short range corre-
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Figure 4.20: Intensity of the magnetic Bragg peak (200) around the phase
transition in LiHoxY1−xF4, x = 0.46 compared with x = 1. The signal
originating from critical scattering is indicated by the black curve in (a,d)
and was subtracted for the further analysis (b,c,e,f). The critical exponents
β of the magnetization in the diluted and pure compound are identical.

lated states instead of a long range ordered phase. This low temperature
phase characterized by lack of true ordering and history dependent behav-
ior can therefore be regarded as spin glass like state. The phase diagram
of LiHo0.46Y0.54F4 therefore resembles that of a ’Reentrant Spin Glass’, see
figure 4.21.

The phase boundary was determined by means of field scans at a fixed
Q = (2, 0, 0.04) slightly off the magnetic Bragg peak position as indicated
in figure 4.21 d). Experimentally this was achieved by rotating the crystal
by 0.6◦ and keeping the scattering angle fixed. Since the signal is broad
compare to the instrumental resolution almost the full amplitude of the
diffuse magnetic scattering is measurable without any significant contribu-
tion from nuclear Bragg scattering. In this particular measurement the spin
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Figure 4.21: The phase diagram of LiHo0.46Y0.54F4 resembles that of a
reentrant Spin Glass (a,b). The field and temperature dependent intensity
of the diffuse magnetic scattering (c) was measured via field scans (e) at fixed
Q = (2, 0, 0.04) slightly off the magnetic Bragg peak (d). This highlights the
spin glass region as well as the ferromagnetic phase boundary via critical
scattering.

glass phase is mapped out. Because of the appearance of critical scattering,
which manifests itself by a broad diffuse scattering around the Bragg peak,
this method is not only sensitive to detect the spin glass region but also
the frontier between paramagnetic and long range ordered ferromagnetic
phases (figure 4.21 c).

LiHoxY1−xF4 , x = 0.33 is in its behavior, to our current understanding,
comparable to the x = 0.46 compound. The determined critical temperature
is Tc = (0.430 ± 0.005) K and the critical field measured at 50 mK is
Hc = (0.844± 0.004) T.
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Magnetic Correlations and Critical Scattering

To further elucidate the fine structure in the momentum dependence of the
magnetic correlations the diffuse scattering was mapped out in reciprocal
space over the entire Brioullin zone (figure 4.22). For this purpose the re-
quired Q-resolution and a proper signal to noise ratio could only be achieved
in a three-axis experiment, although already in the diffraction data the char-
acteristic anisotropy was indicated. The measurement was performed close
to the critical region at H = 1 T and a nominal temperature of T = 180 mK.
The diffuse magnetic signal considered here is therefore the critical scatter-
ing outside the spin glass phase, but nevertheless the peak shape deep in
the spin glass region is identical as far as investigated.
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Figure 4.22: Magnetic scattering intensity distribution in reciprocal space
plane Q = (η, 0, ζ) in LiHo0.46Y0.54F4. (a) Pseudocolor map from measured
intensities at H = 1 T and T = 180 mK. The data was symmetrized around
the Q = (η, 0, 0) mirroraxis. (b) Calculated correlation function using the
parameters estimated from the data.

The constant intensity contour of the magnetic diffuse scattering has in re-
ciprocal space a characteristic ”butterfly” or ”bow-tie” shape with a pinch
along the crystallographic c-axis, i.e. the Ising axis. In real space this cor-
responds to clusters of parallel aligned spins. These clusters are extended
along the c-axis, where the dipolar interaction is ferromagnetic, and they
are shrunken towards the middle in transversal direction due to the antifer-
romagnetic in-plane coupling.

The cross-section for scattering from an Ising sytem in the quasielastic limit
can be described with the following formulas [47].

dσ
dΩ
∝
(

1− Q2
z

Q2

)
· f2(Q)

χ(Q, T )
χ0(T )

. (4.2.1)
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Here f denotes the magnetic formfactor for Ho3+ and χ0(T ) the single ion
susceptibility of the system. In the simple meanfield expression the wave
vector dependent susceptibility is given by the correlation length ξ in plane
perpendicular to the Ising axis and a parameter describing the anisotropy.

1
χ(Q, T )

∝ 1 + ξ2

(
q2 + g

q2
z

q2

)
, (4.2.2)

Here q = Q − τ∗ is the momentum vector reduced by the reciprocal space
vector τ∗ according to the ordering. Expression 4.2.2 is characteristic for
dipolar coupled uniaxial systems, as pointed out by Aharony [48]. This
model was previous applied to describe the diffuse scattering in the spin
glass compound LiHo0.167Y0.833F4 [18] and the critical scattering in the fer-
romagnet LiTbF4 [49]. The parameter g reflects the different effective cor-
relation length in plane ξ and along the Ising axis ξ‖. The latter can be
defined as the inverse of the maximal half width half maximum along the
c-axis, i.e. the lateral extension of the butterfly shaped half height contour.
It then follows from expression 4.2.2 formally ξ‖ = 1

2g
1/2ξ2. The anisotropy

can be explained as follows. Because the in plane dipolar interaction is an-
tiferromagnetic, the in plane ferromagnetic correlations are only indirect,
i.e. they are mediated trough neighboring out-off-plane spins. For a diluted
compound therefore an increase in g is expected.

The neutron scattering data, elastic scans in transversal and longitudinal
directions, are fitted using the previously described model, see figure 4.23.
A consistent parameter set ξ and g was determined. The correlation length
of ξ = (121± 4) Å reflects that the system was measured close to the phase
transition. More relevant is the anisotropy parameter g = (1.34±0.33) Å−2,
because it is supposed that its value can be considered as constant over a
large temperature and field range and has a characteristic value for the
particular compound. The experimentally determined g is reasonable if one
considers the typical values reported in literature. In LiTbF4 experimentally
g = (1.3±0.1) Å−2 was found close to Tc, whereas the theoretically expected
high-temperature meanfield value is g = 1.56 Å−2 [49]. For the spin glass
compound LiHo0.167Y0.833F4 the anisotropy is slightly enhanced with g =
(2.0± 0.2) Å−2 [18].

Quantum Annealing - Susceptibility Results

In an Ising spin glass a preparation of the system in a minimal energy
energy configuration can be achieved by adiabatically lowering of the tem-
perature. The optimization process driven by thermal fluctuations, is the
so called classical annealing (CA). In the experiment with LiHoxY1−xF4

the CA protocol corresponds to cooling down the compound in zero applied
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Figure 4.23: Neutron scattering intensities as function of momentum Q.
The trajectories in reciprocal space for the transversal and longitudinal
elastic scans are illustrated in the insets. The red lines correspond to fits
according to the model described in the text.

field (ZFC). But in the transversal field Ising model the transversal field
term induces a relaxation path by quantum mechanical tunneling effect.
The field cooling protocol (FC), i.e. cooling down the compound in a high
transversal field above Hc and adiabatically ramping down the field once the
base temperature is reached, is refereed as quantum annealing. The com-
pound LiHoxY1−xF4 , x=0.44, therefore allows to realize an experimental
comparison of quantum annealing versus classical annealing.

Brooke et al. [6] have used ac-susceptibility spectroscopy to probe the re-
laxation times for spin reorientation in the glass phase depending on the
annealing path chosen (figure 4.24). In the high-temperature paramagnetic
and the high- field quantum-paramagnetic phase the data coincide. But
once entering the spin glass regime both spectra deviate, in the QA case
there is more spectral weight towards higher frequencies. On the low fre-
quency side there is a logarithmic divergence χ′(f) = C log(f/f0), where
C is a constant. The states prepared via quantum and classical cooling
respectively show different characteristic frequencies f0. Quantum cooling



69 LiHoxY1−xF4

yield to a state for which relaxation times are up to a factor of 30 faster
than those produced by classical cooling. The interpretation was that quan-
tum tunneling is more effective than thermal fluctuations to explore the
configuration space, hence quantum annealing forces the convergence to the
optimum ground state [6].

a) c)

b)

Figure 4.24: Ac-susceptibility spectroscopy of LiHo0.44Y0.56F4 at thepoints
A to D, indicated in (a), for both quantum and classical annealing protocol
as reported in [6]. The cooling history previous to the measurements is
shown in panel (b). Although the spectra begin together (A) in the classical
ferromagnet, they start to diverge as temperature is lowered (B), until deep
in the glassy phase (C) they exhibit widely different time scales and an
unusual logarithmic dependence on frequency f. Crossing back into the
quantum paramagnet (D) restores independence to the annealing history.
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Quantum Annealing - Neutron Diffraction Results

By means of neutron diffraction the evolution of the magnetic correlation
along the two different cooling protocols (fig. 4.11) was investigated in
LiHoxY1−xF4 , x = 0.46 and x = 0.33. Below the cross over temperature to
the spin glass region in the phase diagram, the system either persists in the
long range ordered state in the case of a zero field cooling path (ZFC) or
evolves to a phase with glass like behavior in the case of cooling in an applied
transversal field (FC). The two different phases become manifest in a narrow,
resolution limited gaussian (ZFC), respectively a broad Lorentzian-like peak
shape (FC) in the magnetic scattering signal (fig. 4.25). This reflects either
true long range or short range ordering, respectively correlations. In the
more diluted compound x = 0.33 the width is enhanced compare to x = 0.46,
i.e. the correlation length decreases as a function of concentration.

−0.1 0 0.1

0

2

4

6

8

10

(20ξ)   r.l.u

In
te

ns
ity

 a
rb

. u
.

x = 46 %
T = 55 mK
H = 0 T

 

 
FC
ZFC

−0.2 −0.1 0 0.1 0.2

0

2

4

6

8

10

(20ξ)   r.l.u

In
te

ns
ity

 a
rb

. u
.

x = 33 %
T = 45 mK
H = 0 T

 

 
FC
ZFC

a) b)

Figure 4.25: Scans trough the Bragg peak (200) in the low temperature spin
glass phase of LiHoxY1−xF4 , x=0.33 and x=0.46, as a result of the field
cooling respectively zero field cooling annealing path. The curves represent
fits to a Gaussian-Lorentzian model as indicated in the text. The black curve
is the magnetic only FC intensity, i.e. the nuclear scattering contribution
is subtracted. The second peak in (b) originates from a misaligned grain of
the multi crystal sample.

Rising the transversal field above Hc, the system enters the quantum para-
magnetic phase where no difference between the two annealing protocols
exists and the history dependence is canceled, as it was also reported from
the susceptibility experiments [6]. Cooling in zero field then increasing the
field above the critical field leads to the identical state as cooling down in
the same field. Lowering the field later on again to zero the system always
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ended up in the spin glass state with the Lorenzian-like peak shape, even
if the system was prepared by zero field cooling before. The question was
also if the short range correlated state prepared by field cooling show any
relaxation towards the long range ordered state. Even over time spans of up
to a day there was no significant change observable. The disordered corre-
lated state is quasi stable and turned out to be fully reproducible in all the
independent attempts during the experiment.
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Figure 4.26: Magnetic correlations as a function of transversal field mea-
sured at T = 55 mK, for field cooling (FC) and zero-field cooling (ZFC).
(a) Gaussian, (b) Lorentzian contribution determined from the determined
from the fits to the neutron scans performed transversal through Q = (200).

The evolution of the magnetic correlations and order parameter as a func-
tion of transversal field at base temperature is shown in figure 4.26 and
4.27, for x = 0.46 and x = 0.33, respectively. The transversal scans through
Q = (200) at each field point was extended in reciprocal space such that the
diffuse part as well as the Bragg scattering was covered. As a model to fit
the data a Gaussian plus a Lorentzian, folded by a gaussian corresponding
to the finite instrumental resolution, is considered. An example is depicted
in figure 4.25. In the ZFC case, starting deep in the glassy phase at H = 0 T,
the Lorentzian part is zero and all the magnetic scattering is concentrated in
the magnetic Bragg peak. By rising the transversal field the intensity of the
gaussian decreases and vanishes at Hc. The Lorentzian part first remains
zero, then increases rapidly and reaches its maximum at the critical field
before vanishing again in the high field limit. This is exactly the signature
as one would expect in the ferromagnetic phase, a power law in Bragg peak
intensity, i.e. the order parameter at QPT accompanied by critical scat-
tering. For the FC path, starting in the quantum paramagnetic high field
phase, the diffuse magnetic scattering signal continuously increases as the
field is reduced and reaches its maximum at H = 0 T. On the other hand
the gaussian part remains constant over the whole range and is only con-
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Figure 4.27: Magnetic correlations as a function of transversal field mea-
sured at T = 50 mK, for field cooling (FC) and zero-field cooling (ZFC).
(a) Gaussian, (b) Lorentzian contribution determined from the fits to the
neutron scans performed transversal through Q = (200).

taining the contribution from the nuclear Bragg scattering. Remarkably the
full magnetic intensity appears in form of diffuse scattering, no long range
order at all can be established. In the inset of the figures 4.26 and 4.27 also
the intrinsic width of the Lorentzian contribution for SG phase is indicated
as a function of field. The width is slightly increasing with field reflecting
that the length scale over which the spins are correlated is further reduced.
But one has to mention that the determined length can not be converted
directly to the correlation length, a certain proportionality constant has to
be considered. This related to the way how the data was collected, the
area detector of the E4-diffractometer integrates over a large window of the
2θ scattering angle. A readout of the particular pixel was made in several
attempt to the data analysis. Nevertheless it does not lead to a further
improvement because then also the intensity is reduced and the bad signal
to noise ratio matters as well as the poor instrumental resolution. As shown
in the previous paragraph the magnetic correlation has a butterfly like peak
shape in reciprocal space. To fit the true correlation length this fine struc-
ture should be clearly resolved by the instrument. Therefore due to the
available data quality the analysis of the 2θ-integrated signal with a generic
Lorentzian model must be regarded as more trustworthily and meaningful.

Inelastic neutron spectroscopy instead of diffraction may provide further
evidence in the difference of the two annealing protocols. The spectra of
both cases FC as well as ZFC, measured at a temperature of around 200
mK and different field values close to the critical field Hc(T ) = 1 T, are
shown in figure 4.28. Below Hc at H = 0.8 T the inelastic intensity at zone
center is doubled for the FC annealed system compared to the ZFC. But at
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Figure 4.28: Spectra of LiHo0.46Y0.54F4 measured below and at critical
field for field cooled and zero field cooled annealing protocol. At zone center
(a) the inelastic intensity is enhanced in the FC spin glass state, whereas
at zone boundary there is no difference (c). In the quantum paramagnetic
phase there spectra does not dependent on the annealing protocol (b).

and above the critical field the spectra of both protocol coincides with each
other. Remarkably the effect is only present at zone center, whereas at zone
boundary there is no difference visible in the spectra at any field as far as
considered.

Conclusions

Based only on the neutron scattering data one would conclude that the ZFC
annealing path is more efficient than FC to prepare the system in the ener-
getically optimal state, since the long range ordered ferromagnetic state is
considered as the true ground state. Conversely via field cooling the system
gets trapped in a non-equilibrium steady state, a side minima of the man-
ifold energy landscape. This is exactly the contradiction to the conclusion
drawn from the susceptibility data [6]. How can this discrepancy be solved?
From the available information a definitive judgement is not appropriate
and a further understanding is required to assemble all the aspect to obtain
a consistent theoretical picture of the system.

First of all possible systematic sources that may cause a different result
should be ruled out. One might be the timescale of the annealing protocol.
Obviously in a large scale facility experiment it is not possible to achieve
this with the same meticulousness as in the laboratory, it is a simple mat-
ter of available beam time. In the neutron experiment the consistency of
the data recorded over days was checked carefully and there is no evidence
that transient behavior is the source of the discrepancy. Nevertheless the
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way of ruling out this systematic uncertainties would be to combine both
experiments in an insitu neutron scattering ac-susceptibility experiment.

The common sense in the general discussion of quantum annealing is that
this method is more efficient than the classical annealing [50]. There is var-
ious theoretical activity on this topic, in the investigation of toy-models, in
particular the transverse field Ising model [51], for example using monte-
carlo methods. But with regards to interpret the experimental findings in
LiHoxY1−xF4 on should be aware that the system is oversimplified by the
transverse field Ising model. This neglected complexity may be a crucial
point. At least to interpret the neutron scattering data, here the following
mechanism is suggested, similar to that proposed to explain the hysteresis
effect in LiHoxY1−xF4 , x = 0.67. The random longitudinal fields induced
via diagonal dipolar coupling are proportional to the transversal field. By
following the field cooling path this local random potential predefines the
preferred alignment of the spins to clusters as the system enters the glassy
state. Switching of the field, the system is not able to establish the ho-
mogenous ordered ferromagnetic ground state out of this previously formed
trapped state where ordering or correlation is limited over the dimensions
of certain clusters. The presence of longitudinal random field outperforms
the quantum annealing process by cluster formation. On the other hand
cooling down along the zero field route there are initially no random fields,
because no symmetry is broken [10]. Therefore the system persists in the
ferromagnetic state until the order will be destroyed by a field risen above
its critical value.
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4.2.3 LiHoxY1−xF4 , x = 0.045

The probably most exotic and one of least understood phenomena in
LiHoxY1−xF4 is the ”anti-glass” state. In the following the term is ex-
plained and a short reference to the susceptibility investigation of coherent
spin oscillations is given. Then the results from the time resolved small an-
gle neutron scattering experiment with insitu ac-susceptibility investigation
are presented. The appeal of the system are oscillating clusters with long
lifetimes and addressable by frequency, hence it is supporting the vision to
realize fourier indexed Qbits.

The Anti-Glass

In the very diluted limit of LiHoxY1−xF4 around x = 0.045 there is no
freezing to a spin glass down to the lowest temperatures experimentally
accessible. Instead the system condensed in a spin liquid like state often
referred as ”Decoupled Cluster Glass” [52, 18] or ”Anti-Glass” [8]. The
term anti-glass is motivated by the characteristic spectral behavior which is
contrary to that approved for common spin glasses.

In the case of a true spin glass, for example LiHo0.167Y0.833F4, the spectral
response χ′′(f) is shifted towards lower frequencies and broadens as the tem-
perature is lowered. This is related figuratively to a growing of the barriers
in the energy landscape and a slowing down of the relaxation. Formally an
exponential relaxation exp(−t/τ) with a relaxation time τ is assumed, cor-
responding to the so called Debye form for χ in frequency space (paragraph
2.4). The spin glass system is characterized by a distribution of different
relaxation times and the total response is finally obtained by superposition
principle. The spectral change as a function of temperature is therefore
obvious considering the way how the distribution is affected.

In contrast to the spectral behavior in glasses, in the case of LiHo0.045Y0.955F4

the ac-susceptibility spectra sharpen with decreasing temperatures and is
gapped on the low frequency side (figure 4.29). As model for the system a
superposition of oscillators is proposed instead of relaxation dynamics with
distribution of relaxation times [18, 8].

Recently a group from Waterloo (Ca) reported new susceptibility and spe-
cific heat investigations on various LiHoxY1−xF4 compounds, also for x =
0.045, [53, 54]. Therein, the existence of the anti-glass and the widely refer-
eed experimental results from the Chicago group [52, 8, 7] are questioned and
instead they found as contradiction common spin glass behavior. However it
is not clear which of the two reports are more trustworthy and what the ex-
perimental subtleties are. A final judgement requires a further independent
investigation.
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Figure 4.29: Susceptibility spectra of LiHo0.045Y0.955F4 anti-glass at differ-
ent temperatures [8]. The line width decreases with temperature and the
spectra becomes gapped in the low temperature limit. The inset shows the
deviation from classical Arrhenius behavior for the peak frequency.

Coherent Oscillations of Spin Clusters

The anti-glass state forms the host of probably one of the most exciting phe-
nomena so far reported in the LiReF4 compounds: In dilute LiHoxY1−xF4 ,
x = 4.5% it was discovered that ac-pumping can produce long-lived ’holes’ in
the ac-susceptibility spectrum [8]. The authors cooled down a single crystal
sample to subkelvin temperatures in a susceptometer setup that allows si-
multaneously applying a high-amplitude pump and a small-amplitude probe
along the Ising axis.

As depicted in figure 4.30 the f = 5 Hz pump burns a sharp hole in χ′′(f)
at exactly this frequency. The phenomenology is therefore similar to optical
hole burning in a solid state laser, the selective bleaching of the inhomo-
geneously broadened absorption spectrum. This effect in LiHo0.045Y0.955F4

further indicates that the susceptibility spectra indeed originate from a set
of oscillators rather than a distribution of relaxation times.

The response to the pump, i.e. the deepness of the hole burned in the
spectra, saturates as a function of applied field hac and the associated phase
shift tends to zero. The measured magnetization oscillation M , as it is called
in [8], describe a Brillouin function M = Ng‖µB tanh(ng‖µBshac/kBT ),
where s = 1/2 for Ising spins. From the fits to the data a value of n = 260
as a number of spins per cluster can be estimated. This corresponds to
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a cluster size of ξ = 148 Å in diameter. Most remarkably the oscillation
elapses almost dissipationless. Switching of the pump the oscillation persists
for lifetimes up to the order of 10 seconds (figure 4.30).

Figure 4.30: Hole burning effect LiHo0.045Y0.955F4. To the left: Spectra
with (red) and without (black) applying a pump signal of 5 Hz. To the right:
Persistent magnetization oscillations after switching of the pump signal.

Time-Resolved SANS

By means of combining ac-susceptibility technics with time-resolved Small
Angle Neutron Scattering there should be a possibility to gain further insight
into the microscopic picture of the assumed spin clusters. In particular it
could be investigated, how the size of the clusters and the lifetime of the os-
cillations are correlated to the specific pump-frequency and how the clusters
can be manipulated by varying temperature and applying a transversal field.
For this purpose three experiments have been performed at SANSI SINQ,
with consecutively improved setups. The technical details to the experiment
and in particular to the final setup are described in paragraph 2.5.

The first attempt was without any ac-susceptibility setup, a simple SANS
experiment to localize the signal and to investigate its field and tempera-
ture dependence. From rough estimates only a weak signal compared to the
usual background noise was previously expected. At length scales in range
of the assumed cluster sizes no measurable signal could be detected. Instead
the signal turned out to be broader in q, hence the objects of interest must
belong to smaller length scales in the order of only a few lattice spacings.
The magnetic origin of the scattering signal could be verified by its tem-
perature and field dependence. Several Tesla and a change of about 1 K is
required to cause only a marginal effect. The momentum dependence of the
radial averaged signal I(q) measured with the finally optimized instrumental
configuration is depicted in figure 4.31.
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Figure 4.31: Time resolved SANS measurement at 200 mK while insitu
ac-pumping at a frequency of 20 Hz. (a) Intensity as function of time bins,
where the static time average has been subtracted. (b) Radial average of
the static signal.

In case of the insitu susceptibility-SANS investigation several attempts have
been made to detect a time resolved signal. A pump signal of 5, 10 and
20 Hz was applied at a sample temperature of 200 mK. Even with counting
times in the range of a day there was no significant signal above the noise
level visible. In figure 4.31 the intensity summed over a large sector of the
detector is plotted as function of the collected time bins. Several choices
of sectors have been analyzed but it was impossible to localize a q-range
with a distinct signal. Subtracting the time-average from the time binned
scattering intensity should lead to a signal with twice the frequency of the
ac-pump. Twice the frequency because scattering is proportional to the
moments squared. However although in many cases a harmonic function
with the correct frequency fit the data slightly better than a straight line
through zero, none were definitive (figure 4.31).

As a conclusion it was successfully demonstrated that such an experiment is
from technically point of view feasible. Nevertheless statistical significance
is one limiting factor. In a present state-of-the-art experiment, as it was here
performed, there is neither a definitive proof nor disproof or the coherent
oscillating spin cluster. What would be needed to get a conclusive answer?
Presumably several weeks of beam time on a conventional neutron source
like SINQ or a gain in neutron flux, which could be provided by the new
next generation neutron sources like the planned ESS.
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Summary 4.2:
In this chapter a neutron diffraction investigation of the compounds
LiHoxY1−xF4, with x = 0.83, 0.67, 0.25, 0.2, 0.045 was presented. Below
a short summary of the main results:

• Long rang ferromagnetic order could be observed for all compounds
with x ≥ 0.25. The ordering temperature Tc is suppressed propor-
tionally to the concentration x.

• Below x ≤ 0.67 the glassiness of the system is indicated by the
appearance of history depended effects.

• In LiHoxY1−xF4, x = 0.33 and x = 0.46, following a zero field cool-
ing protocol one can prepare the system in the ferromagnetic state,
whereas field cooling leads to a short range correlated state. In
contrast to that, in an earlier dynamic susceptibility spectroscopy
study the field cooling path, referred as quantum annealing, was
interpreted as more efficient in establishing the ground state.

• From the hole burning effect in the susceptibility spectra of
LiHo0.045Y0.955F4 in the anti-glass phase the existence of coher-
ently oscillating spin clusters was predicted. However, in a time
resolved SANS investigation no conclusive evidence for such clus-
ters could be achieved, because of statistical insignificance.
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4.3 LiHoF4 - Quantum Magnet in a Spin Bath

In LiHoF4 quantum criticality can be studied in a system where the quantum
phase transition is strongly affected by the interplay of the electronic spins
with a nuclear spin bath. Although the effective transverse field Ising model
provides in the case of LiHoF4 a good approximative description of the
real system, inelastic neutron scattering investigations have demonstrated
that the innocently weak hyperfine interaction to the nuclear spins in fact
has dramatic effects on the excitation spectrum around the quantum phase
transition [11]. As a general hallmark a quantum critical point should be
accompanied by a softmode in the characteristic excitations and a divergence
in the coherence length. This even is a prediction from the meanfield/RPA
calculation of the simplest version of the transverse field Ising model (ses
chapter 3.2). Instead Rønnow et al. [11] discovered that the softening of
the electronic excitation in LiHoF4 is forestalled by entanglement to the
nuclear spins. The key results of this study is summarized in figure 4.32.
At H = Hc there remains a gap of around 0.25 meV at q = (200), which
is equivalent to the wavevector q = (000) corresponding to a ferromagnetic
ordering. Nevertheless, based on the present knowledge, the existence of a
quantum phase transition in LiHoF4 is regarded as indisputable. Therefore
the question arises whether or not there exists a soft mode and if so which
elementary excitations rather than the previously considered electronic mode
are related to the quantum criticality. This question and an interpretation
of the results will be addressed in more details in the next paragraphs.

The here presented work is a continuation of the inelastic neutron scattering
investigation reported in [11, 24]. Experiments have been performed at the
tree-axis spectrometers PANDA FRMII in Munich and V2 FLEX at HZB in
Berlin. The same sample as in [11, 24] was used. As a first result the above
motioned incomplete electronic soft mode can be confirmed, see figure 4.34.
Furthermore the aim was to verify experimentally the predictions from [11],
in particular the role of finite temperature on the critical dynamics.

4.3.1 Spin Bath and Decoherence

Development of novel solid state quantum devices is one of the most popular
topics of contemporary applied physics. The challenge for preparation and
manipulation of qbits in such devices is to preserve the entangled quantum
states for a long enough time against decoherence effects. The origin for
decoherence is coupling to a background environment, either delocalized
excitations, an oscillator bath, or localized states, a spin bath. Examples
are phonons in the first and nuclear spin in the second case. Coupling to
an environment like phonons can be circumvented by freezing out, while
for example the hyperfine interaction is intrinsically present in most of the
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materials and can hardly be controlled from outside, except in special cases
for which particular isotopes have no nuclear spin.

A theory of the spin bath has been developed in the work of N. V. Prokof’ev
and P.C.E Stamp [55]. They addressed the role of coupling to nuclear spin
originally in view of decoherence in localized magnetic clusters and single
magnetic molecules. Ronnow et al. had the idea to adapt this notion of
the spin bath to their system LiHoF4 and show its importance for quantum
phase transitions, that can be considered as an excellent arena for looking at
fundamental quantum properties of strongly interacting spins [11]. The use
of the term ’bath’ may cause confusion, if one associates with the common
definition of a bath as a reservoir. Here the term is considered in the sense
of [55]: A spin bath is an environment constituted form localized, secondary
degrees of freedom. Instead of considering the LiHoF4 system as one unit,
one can divided it in a subsystem of interacting electronic spins and the nu-
clear moments forming an environment. The main channel of the inelastic

Figure 4.32: . Summarized results reported in [11]. (a) Pseudocolor repre-
sentation of the inelastic neutron scattering intensity above at and below the
critical field. (b) Incomplete softening of the electronic mode. (c) Intensities
of the excitations along q = (h00) at the same values of the field as in panel
(a).



Experimental Results and Discussion 82

neutron scattering cross section is probing only the electronic spins. For-
mally this corresponds to a partial trace over the nuclear spin states. But
tracing out the environment degrees of freedom in the density matrix of the
joint system can be regarded as the mechanism leading to quantum decoher-
ence. The hyperfine coupling of the electronic subsystem to the nuclear spin
bath not only causes a gap in the energy spectrum at QCP but also modifies
the form of the wave functions itself. The neutron scattering intensities of
the excitations contain additional information because they are proportional
to spatial Fourier transformed matrix elements of the momentum operators.
The momentum dependence provides the real-space dynamical coherence
length ξc of the excited state. In a clean system without hyperfine coupling
there is ξc → ∞ by approaching the quantum critical point. Therefore at
H = Hc the scattering intensities should diverge at reciprocal space points
like q = (200) equivalent to the ferromagnetic ordering wave vector. But in
the real system only a broad maximum is found, with a ξc in the order of
the spacing between the Holmium ions [11], see figure 4.32c. This means
that the electronic subsystem remains subcritical. Furthermore Rønnow et
al. remarked that these results imply that the hyperfine interaction limits
the distance over which the electronic wave functions can be entangled and
thus this is a direct demonstration of the limitation of quantum coherence
in space via coupling to a nuclear spin bath [11]. But one has to be aware
that what is probed with neutrons is a spin-spin-correlationfunction and
not a proper entanglement measure. Therefore on should be cautious with
conclusive statements about entanglement and decoherence. Furthermore,
the calculations as RPA and 1/z may pretend to provide some insight, but
clearly they are suitable to address this question only to certain extend. As a
remark, the here mentioned 1/z calculation is a special diagrammatic series
expansion method performed by J. Jensen to reproduce the phase diagram
and excitation spectra in LiHoF4 [11, 24]. To refine the theory of the spin
bath and the decoherence effects in the particular case of LiHoF4 is desir-
able and might also promote new interesting ideas for further experimental
projects.

4.3.2 Nuclear-Electronic Criticality

The elementary excitations associated with the quantum phase transition in
LiHoF4 are considered to have entangled nuclear/electronic character and
a much lower energy range of about 10-meV compare to the magnetic ex-
citation of electronic origin [11]. Sufficiently low temperatures would reveal
these modes as propagating and softening to zero at the QCP, but at the
temperatures reachable in the experiments there is dephasing of the compos-
ite modes as consequence of thermalization [11]. As experimental evidence
is the appearance of strong quasi-elastic scattering around q = (200) at the
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critical field has mentioned [11], visible in figure 4.32.

Although the resolution limitations of neutron scattering techniques do not
allow elucidating the details of these low energy excitations, it is nevertheless
possible to investigate field and temperature dependence of the quasielastic
signal and map out its localization in reciprocal space (Figure 4.33). In-
deed the intensity reaches its maximal value at critical field and around
the ferromagnetic wave vector q = (200). In contrast to the observation
of the previous investigation [11] only a weak signal could be detected at
low temperatures, i.e. closest to the QCP. But in [11] they assume to have
a temperature T = 310 mK, if one considers the measured critical field
Hc(T ) and the reported phase diagram of LiHoF4 [9]. In the new experi-
ment the thermalization was improved and therefore a lower temperature
could be reached. Furthermore, the investigation of the quasielastic signal
has been investigated for a series of temperatures in the whole range up to
Tc = 1.53 K. The scattering is strongly increasing for increasing tempera-
tures. The different temperatures in the two experiments could explain the
difference in signal strength. Obviously the larger intensity at high temper-
atures has not its origin in scattering from the assumed quantum critical
excitations. The system enters the classical critical region with the scat-
tering related to thermal fluctuations. Therefore, we may speculate that
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Figure 4.33: . Field and momentum dependence of the quasi elastic scat-
tering associated with the critical excitation close to the QCP (a) and for
increased temperatures (b). The strong signal enhanced temperatures must
be considered as scattering from thermal fluctuations related to the classical
critical region.
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the weak signal observed at low temperatures is in fact also only a tail
from this contribution. Nevertheless, one should not forget that the channel
in the cross section describing scattering from the expected entangled nu-
clear/electronic modes is order of magnitudes lower than that of the usual
considered channels. Therefore, one could conclude from the presented re-
sults that if these states are really visible in neutron scattering, then the
signal is probably close to the noise level.

4.3.3 Temperature Effects

The theory of the spin bath applied to nanomagnets [55, 56] states that
decoherence due to hyperfine interactions can be reduced by rising the tem-
perature. The thermal fluctuations effectively decouple the system from the
nuclear moments. Of course entering the oscillator bath dominated region
has then an effect in the opposite direction. Therefore at intermediate tem-
perature there should exist a window with minimal decoherence. In the
case of LiHoF4 the magnetic excitations constitute an oscillator bath and
therefore similar behavior is suggested [11]. Rønnow et al. proposed as
quantitative measure the ratio ∆/δ, where ∆ denotes the gap at QCP and
δ the field induced single ion splitting, which plays the role of a normal-
ization. The decoherence window for the electronic subsystem is achieved
if the ratio ∆/δ is minimal. The counterintuitive prediction for quantum
critical systems is therefore that maximum (electronic) criticality is reached
not as expected at T = 0 K, but rather at an intermediate temperature
0 < T < Tc. From the (1/z) calculation a minimum of the ratio ∆/δ at
T = 1 K is reported [11]. The RPA calculations based on the full Hamilto-
nian as well as on reduced models are not able to reproduce this result, the
ratio is not approaching a distinct minimum. But RPA is of course only the
zero order approximation in the (1/z) expansion.

To test the predictions about enhanced electronic criticality by decoupling
from the spin bath at temperatures above T = 0 K neutron scattering
spectra have been measured for a series of temperatures at the critical fields
Hc(T ) and selected points in reciprocal space. In the experiment previous
to the inelastic scans the critical fields Hc(T ) for each temperature was
determined measuring the onset of the ordering parameter observable in the
field dependence of a magnetic Bragg peak. The phase diagram is depicted in
figure 4.36c. In the V2 experiment the gap of the characteristic excitation
as well as the zone boundary energy was measured in an energy scan at
q = (2 − ε, 0, 0) and q = (1, 0, 0) respectively and for temperatures ranging
from about 50 mK up to 1.5 K. In the experiment on the PANDA instrument
the neighborhood of (200) position was not in the accessible q-range given
by the chosen configuration. Therefore the investigation was performed
around q = (101), which is also equivalent to the ferromagnetic point. The
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two different experiments in the end provided comparable results but the
analysis is concentrated on the V2 data set, because it is more complete
and has the better resolution. In figure 4.34 the full field dependence of the
gap at high and low temperature is shown for the reciprocal space point
q = (1 + ε, 0, 1). Furthermore for selected temperatures at critical field
Hc(T ) the full dispersion relation along the high symmetry direction (h00)
was mapped out (figure 4.34). Already from these color maps it is clearly
visible that the gap, i.e. the excitation energy at zone center, weakens with
increasing temperatures as predicted.
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Figure 4.34: Dispersion relation (a) and field dependence (b) of the gap
measured in the high and low temperature region.

In the analysis of the energy scans at the zone center and zone boundary
a damped harmonic oscillator model is used to fit the data (Figure 4.35).
Reminding the formula obtained for the dispersion in the Ising model and
taking for the single ion splitting energy δ the mean value of both excitation
energies may be a good choice. According to J. Jensen, the author of the
(1/z) calculation [24], one should instead consider more precisely the excita-
tion energy at q = (0.658, 0, 0). Therefore also scans at this point has been
performed for selected temperatures and in following δ is obtained from this
excitation energy. Nevertheless in the results this only implies a marginal
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change, since δ acts as an arbitrary chosen normalization factor. The exper-
imental data show that the dispersion along (h00) can be very well modeled
with a cosine function. To obtain the gap ∆ the data for q = (1.9, 0, 0) has
been extrapolated to q = (2, 0, 0) , which cannot be direct experimentally
determined due to the vicinity of the Bragg peak. The measured values for
the three mentioned q-vectors are depicted in figure 4.36 plotted as function
of the field. The excitation energy at zone boundary and δ are linear over
the whole range, in particular δ ∝ Hc(T ) is fulfilled. One of the final results
from the experiment is that the determined ratio ∆/δ is indeed increasing
with temperature (figure 4.36), but does not establish a distinct minimum
at intermediate temperature and it deviates significantly from the predicted
curve in [11].
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Figure 4.35: Examples of energy scans performed along the phase boundary
and different temperatures in the range from 50 mK up to 1.5 K. The red
lines represent the fits to a damped harmonic oscillator model as described
in the text.

One further observation is the broadening of the spectral lines at increas-
ing temperatures, directly visible in the scans (figure 4.35) and in the half
width half maximum (figure 4.36d) determined form the damped harmonic
oscillator line shape fitted to the data. The broadening at zone center and
boundary are identical and can be described by the following phenomeno-
logical model:

ΓDHO,HWHM ∼ e−δ(H,T )/kBT . (4.3.1)

The common interpretation for the increased line width would be at the first
glance that the life time of the excitation is reduced due thermal fluctua-
tions increasing in temperature. Surprisingly the broadening is independent
of momentum. Here another explanation is suggested. In analogy to the ter-
minology of optical systems the idea is that the broadening of the spectra is
inhomogeneous rather than homogenous. The broadening is the result over
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Figure 4.36: (a) Critical ratio ∆/δ determined along the phase boundary
line. The red curve in (a) shows the result from the (1/z) calculation in
[11]. The measured excitation energies are depicted in panel (b) for q =
(1.9, 0, 0) in blue, q = (1.0, 0, 0) in green and q = (0.658, 0, 0) in red. (c)
Phase boundary line. The half width half maximum of the spectral lines is
increasing with temperature, as depicted in panel (d). Details are described
in the text.

an incoherent sum of excitations different in energy due to local longitudinal
fields caused by the thermally randomized nuclear moments. This idea will
be highlighted in the following paragraph.

4.3.4 Effective model

Quantum criticality in LiHoF4 is a rather complex problem due to the in-
terplay between nuclear and electronic spins. It is not obvious how the
full Hamiltonian could be truncated to a model only containing the crucial
parts. But since the electronic excitations observed in the experiments are
ineffective for quantum criticality one can argue that on the other hand a
description of the latter may not require the details of the quantum phase
transition of the system. The electronic subsystem, the incomplete softening
of the modes and the temperature effects may be explained with a simpler
effective model. This also circumvents hand waving arguments that stress
the notion of entanglement and decoherence.

Due to the strong Ising character of the moments in LiHoF4, only the inter-
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actions involving the z-component of the spins are considered to obtain the
effective Hamiltonian in leading order.

H = −1
2

∑
ij

Jijσ
z
i σ

z
j − Γ

∑
i

σxi +
∑
i

AIzi σ
z
i . (4.3.2)

This problem can be solved by states separable in an electronic and nuclear
part.

|ψIn〉 = |φn〉 ⊗ |I〉 . (4.3.3)

I = (ι1, ..., ιN ), ιi ∈ {−I,−I + 1, ..., I − 1, I}
|I〉 = ⊗N1=1 |ιi〉 , Izi |ιi〉 = ιi |ιi〉 .

(4.3.4)

H |ψIn〉 = Hs(hI) |φn〉 ⊗ |I〉 = EnI |ψIn〉 . (4.3.5)

Hence the effective Hamiltonian is equivalent to the longitudinal random
field Ising model in a transversal field,

Hs(h) = −1
2

∑
ij

Jijσ
z
i σ

z
j − Γ

∑
i

σxi +
∑
i

hiσ
z
i , (4.3.6)

where the random field hI = (h1, ..., hN ) = A · (ι1, ..., ιN ) is induced by the
nuclear moments.

The meanfield/RPA solution of this problem is discussed in chapter 3.2. For
zero longitudinal field there is soft mode for q = 0 at the quantum phase
transition. For a nonzero h the system undergoes a cross over instead of a
sharp transition, there remains a gap in the excitation spectra and the sharp
onset of the order parameter is smeared out.

The scattering function, i.e. the cross section, for inelastic neutron scattering
is given by the following expression.
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S(q, ω) ∼
∑
I,I′

∑
n,m

e−βEnI

Z
〈ψI′m′|Sαi S

β
j |ψIn〉 δ(EnI − EmI′ ± ~ω)

=
∑
I,I′

∑
n,m

e−βEnI

Z
〈φm|Sαi S

β
j |φn〉 ·

〈
I ′ |I〉 δ(EnI − EmI′ ± ~ω)

=
∑
I

ZI
Z

∑
n,m

e−βEnI

ZI
〈φm|Sαi S

β
j |φn〉 δ(EnI − EmI ± ~ω).

(4.3.7)

Here Z =
∑
ZI and ZI =

∑
n exp(−βEnI) denotes the partition sum over

the complete system and the electronic subsystem respectively. In the con-
sidered channel of the cross section the nuclear spin states are formally
traced out and therefore unaffected by the scattering process. The cross
section can be written as incoherent sum over the scattering functions SI of
the corresponding random field Ising system.

S(q, ω) =
∑
I

ZI
Z
SI(q, ω). (4.3.8)

The relation 4.3.8 is an exact expression, but approximations can hardly be
circumvented in evaluating the functions SI as well as the partition sum. In
the following this will be done using the results from meanfield calculations.
In this approximation all nuclear spin configurations with h̄I = h leading to
identical expressions.

Smeanfield(q, ω) =
∑
h

w(h) · Sh(q, ω), w(h) =
∑

{I|h̄I=h}

ZI
Z
. (4.3.9)

The scattering function Sh is obtained via RPA and fluctuation dissipation
theorem. The partition sum in meanfield approximation is given as follows.

Zmeanfield(hI) =
∑

ni∈{±1}

e−βγni =
N∑
m=0

N !
(N −m)!m!

e−mβγe(N−m)βγ

=
eNβγ

1 + e−2βγ
. (4.3.10)

The degeneracy g(h), i.e. the number of nuclear spin arrangements I with
identical h̄I = h is for large system sizes N approximatively proportional to
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Figure 4.37: Effective longitudinal field h∗ as minimum of f(h)

a normal distribution.

g(h) = a(N) · e−
h2

2σ(N)2 (4.3.11)

a(N) =
1√

2πNσ0

· elog(2I+1)N

σ(N) =
σ0√
N

= A

√
I(4I + 1)

3
− I2 · 1√

N
.

Therefore it follows in the meanfield approximation for the weights in the
functions w(h) the following expression:

w(h) = g(h) · Z(h)
Z
∼ e

N ·
(
βγ− h2

2σ2
0

+log(2I+1)

)
. (4.3.12)

Evaluating the sum in the formula of the total scattering function in the
thermodynamic limit N →∞ only the leading weight function survives, i.e.
that with maximal exponent.

S(q, ω) ∝ Sh∗(q, ω) with f(h∗) = min{f(h) | − I ≤ h ≤ I }. (4.3.13)

f(h) :=
h2

2σ2
0

− β (γ(h)− Γ) . (4.3.14)

The function f(h) is plotted schematically in figure 4.37, for a fixed beta
and Γ according to the meanfield-expression (3.2.8) for γ. The minimum of
f(h) is given by the root h∗ of its derivative.
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Obviously at zero temperature, i.e. β =∞, the longitudinal field is h∗ = ±I
and therefore the gap maximal. For increasing temperatures the value h∗

and as a consequence also the gap diminish. This meanfield like treatment
of the model provides an explanation for the incomplete softening of the
excitation and the temperature dependence of the gap. On the other hand
the line width is infinitively sharp for all temperatures. This is most likely
a shortfall due to the approximation made in calculating the partition sums
Z(hI) and identifying all configurations hI with equal averaged longitudinal
field h̄I as identical. But the broadening of the line width can be understood
qualitatively from expression (4.3.8). The total scattering function is an
incoherent sum of the scattering functions for all the different nuclear spin
configurations. Each of them shows a gap according to the particular hI . Of
course each of these may have damped rather than sharp excitations. But
presumably the main contribution to the broadening observed in the total
cross-section is due to the weighted sum over differently shifted modes. The
experimental fact for LiHoF4 that the line width is showing a temperature
difference independent of the wave vector q would be conform with this
assumption. A more sophisticated treatment of the proposed model could
provide a further insight.

The here presented evaluation of the proposed model so far provides similar
results as if the full system, electronic and nuclear, is treated from begin in
an RPA or more sophisticated in a 1/z calculation. But the advantage here
is that the problematic steps in the approximation are done at a later stage
in the treatment. Looking at the problem in this way leads to a further
gain in understanding, at least qualitatively. Furthermore, the complexity
of the system is cut down to a more abstract stage where a theoretical
treatment is more feasible. The impractical task of solving LiHoF4 with all
its complications, of which most of them may be irrelevant, is shifted to the
task of solving the transverse field Ising model in a random field. This would
be then also the suitable frame to discuss decoherence and entanglement in
the system.

4.3.5 Conclusion and Outlook

Quantum criticality in the compound LiHoF4 turns out to be more compli-
cated than in its simplest description in form of the transverse field Ising
model. This provides an insight into the robustness of quantum criticality
in non-perfect, hence realistic systems. Neutron scattering investigations
demonstrate that the electronic excitations are gaped, instead of a softening
at QCP, due to coupling to the nuclear moments. By increasing temperature
thermal fluctuations reduce the influence of the spin bath, the gap dimin-
ishes and the electronic subsystem move closer to criticality. On the other
hand the line with and quasielastic scattering increase. It has been demon-
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strated that the essential experimental results obtained for the excitation
spectra can be described effectively by the random longitudinal field Ising
model in a transversal field. This is therefore also the suggested toy-model
for further theoretical investigations.

With regards towards further experiments on can ask the questions, if there
are ways for controlled external manipulation such that the quantum system
can be decoupled from the spin bath and pure electronically criticality will
be reestablished, similar as the thermal fluctuations do in an uncontrolled
manner? The idea is to perform so called pump probe experiments, more
precisely activation of the nuclear spins by irradiation with electromagnetic
waves at NMR frequencies. The region of interest is located in the phase
diagram where the phase boundary and excitations are highly affected by
the hyperfine coupling. Without change in temperature and transverse field,
but by allowing induced perturbations in the nuclear spins it should be
possible to move the system across the quantum phase transition in the
equivalent of a ”super-cooled” state. Nevertheless the realization of such in-
situ experiments is more complicated than it seems on the first glance and is
from a technical point of view demanding, because it involves non-standard
NMR techniques at very low temperatures and rather high fields.
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Summary 4.3:
In this chapter a neutron spectroscopy investigation of the critical dy-
namics in the compound LiHoF4 was presented. Below a short summary
of the main results:

• At the quantum critical point there is no softmode in the char-
acteristic (electronic) excitations due to the influence of hyperfine
interactions to the nuclear momenta. Thereby LiHoF4 offering an
ideal system to study in a controlled way the robustness of quan-
tum criticality in non-perfect (hence realistic) systems.

• The gap in the excitation spectra and the non-diverging coherence
length of the electronic subsystem was interpreted as a decoherence
effect induced by the coupling to the nuclear spin bath, i.e. a local
environment of secondary degrees of freedom.

• It was demonstrated that thermal fluctuations tends to decouple
the electronic subsystem from the spin bath. Hence the coher-
ence window or maximal criticality of the electronic subsystem is
reached at a nonzero temperature. However, by further increas-
ing the temperature the system finally crosses over to the thermal
critical regime, where the excitations spectra exhibit a significant
damping.

• As an alternative to the spin bath interpretation it was proposed
that LiHoF4 can be considered effectively as a transverse field Ising
model in a longitudinal random field.
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4.4 LiErF4 - QPT in a dipolar XY-Antiferromagnet

Notwithstanding the many possibilities of all LiReF4 materials, great activ-
ity has centered on just two members of the family, LiTbF4 and LiHoF4,
and their respective dilution series. The experiments described in the fol-
lowing paragraphs represent a major step forward in that they provide the
first look at the magnetic order and both the quantum and thermal phase
transitions for an antiferromagnetic member of the LiReF4 family. The sce-
nario of either ferromagnetic or antiferromagnetic order as a result of the
subtle interplay between dipolar interaction and geometrical arrangements
is subject of a longstanding discussion and pointed out already 60 years ago
by Luttinger and Tisza [57].

The limited data published on the low temperature magnetic properties of
LiErF4 to date include susceptibility[32] and specific heat[33] measurements
showing a transition around 380 mK. From the susceptibility measurements,
first ferromagnetic then antiferromagnetic ordering were proposed, but up
to date no neutron diffraction results exist such that the magnetic structure
remained as an open question. Furthermore the low-temperature properties
in an applied magnetic field and the phase diagram were unknown. Here,
in this work a comprehensive neutron scattering investigation and specific
heat study will be presented [58, 59].

Recall from paragraph 4.1.2 about crystal fields that one can derive within
the ground-state doublet a minimal effective Hamiltonian that is suitable
to describe the low-temperature magnetic properties of the system and also
provides the starting point for future theoretical work. The effective spin
operators can be written as Sα = Cασ

α, where Cx = Cy = 3.480 and
Cz = 0.940, leading to the following Hamiltonian,

Heff =
∑
ijαβ

J αβij σ
α
i σ

β
j + g⊥(σyiB

y + σxi B
x) + g‖σ

z
iB

z, (4.4.1)

where σ denotes the Pauli operators and J αβij = (µBgL)2CαCβD
αβ
ij the mag-

netic coupling tensor between the effective S = 1/2 spins. In this model only
the dipole-dipole interaction Dαβ

ij is considered, whereas the exchange inter-
action Jex is ignored. The refinement of Jex (section 4.5) states that the
exchange coupling is close to zero and can therefore be neglected.

4.4.1 Phase Diagram and Magnetic Structure

The magnetic structure was determined from single-crystal measurements
(E4 HZB) and verified by powder (DMC SINQ) neutron diffraction. At
low temperatures, magnetic scattering appeared at Bragg positions (h+k+
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l =odd) different from those of the structural peaks (h+k+l =even), proving
directly that the magnetic structure is antiferromagnetic. Simple intensity
inspection rule out antiferromagnetic orientation of the moments in the ab-
plane, since that would give zero intensity at (100) and (010), which we
observe to be among the strongest magnetic peaks, and the magnetic struc-
ture most consistent with the data is a bilayered antiferromagnetic ordering
(BLAFM), as depicted in figure 4.38. The refinement powder diffraction
yielded an ordered moment 〈Jx〉 = 2.2 ± 0.1, which is reduced from the
value 〈Jx〉MF = 3.0 predicted by a mean-field calculation.

c

ba

Figure 4.38: a) Magnetic structures of LiReF4: ferromagnetic order (green)
as in the case of LiHoF4, nearest neighbour antiferromagnetic order (blue)
and bi-layered antiferromagnetic order (red). In the case of LiErF4 the
bi-layered antiferromagnetic (BLAFM) structure is preferred due to planar
crystal field anisotropy and dominance of dipole interactions over exchange
coupling between the magnetic moments.

For the BLAFM structure, two crystallographic-equivalent configurations
exist, one with moments along the a-axis and one with moments along the
b-axis. In reality the crystal will either divide into several domains of each or
the configurations might superpose coherently. From the zero-field neutron
diffraction data, it is not possible to conclude which scenario takes place. A
very small field of 300 Oe along the crystallographic b-axis causes the (100)-
type reflections to vanish (see fig. 4.39). This crossover like behavior is not
interpreted as a phase transition but as a redistribution of domains. Since in
neutron scattering moments along the scattering vector do not contribute to
the intensity, the (100) reflection is associate with the configuration, where
the moments point along the b-axis. Momenta parallel to the field are en-
ergetically less preferable than those lying perpendicular, because the latter
can tilt towards the field with little cost of interaction energy. Hence we
conclude that the zero-field structure is a distribution of spatially separated
domains with moments along a and b, respectively, and that above 300 Oe
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a single domain is populated.

For the magnetic ordering temperature a value of TN = 373 ± 5 mK was
found, in good agreement with previous reports. The field dependence of the
characteristic magnetic Bragg peaks measured at a temperature T=100 mK
is shown in fig. 4.39d), for magnetic fields applied along the crystallographic
c- and b-axes. For a field along the c-axis, the intensity of the (010) peak,
which corresponds to the order parameter squared, decreases and disappears
at a sharp quantum phase transition with Hc|| = 4.03 ± 0.02 kOe. For a
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Figure 4.39: a-c) Field–temperature phase-diagrams with color-
representation of the neutron scattering intensity of the magnetic Bragg
peaks: (010) with H||c, (003) and (100) with H||b (⊥ c). Diamonds mark
the peak in specific heat measurements. d,f) Field dependence of magnetic
Bragg peak intensities at a temperature of 100 mK in the case of a field along
c: (010) and along b: (100), (103), (003). e) Temperature dependence of the
(003) intensity. In a,d-f), dashed lines are mean-field calculations using the
refined parameters. Solid lines are the same calculations with temperature
and field axes scaled by 0.52 and 0.76, respectively, to match the measured
TN and Hc. For both field directions the same scaling factor was used.
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field applied along the crystallographic b-axis, the (100) peak disappears
first due to mono-domain formation. The (003) peak, which is independent
of ab-domains, decreases towards Hc⊥ = 2.0 ± 0.2 kOe, but with a long
tail remaining out to 4 kOe. Simultaneously, the (103), which measures the
uniform FM component, increases strongly towards a kink at Hc⊥, corre-
sponding to maximal polarization of the ground-state doublet. Above Hc⊥
it shows a weak linear increase, achieved by mixing-in with higher lying
crystal field levels.

In the case of LiHoF4 a mean-field RPA model is able to predict the phase
diagram and the excitation spectra within the limits of the approximation.
Using the refined crystal-field parameters the mean-field calculation, as pre-
sented in chapter 3.3, yielding the correct ordered structure and a quali-
tatively correct phase diagram. However, the calculated transition points
TN = 728 mK, Hc⊥ = 3.25 kOe and Hc|| = 5.25 kOe are significantly over-
estimated. In contrast to LiHoF4, the nearest-neighbour exchange coupling
parameter cannot be used to fine-tune the phase diagram, since in the bilay-
ered structure each moment has two parallel and two anti-parallel neighbors,
hence canceling out the exchange term. Including the hyperfine interaction
in the mean-field calculation had little effect. In this case the calculated
critical values are Hc|| = 5.75 kOe and TN = 735 mK.

It was also verified that the effective model (4.4.1) gives indistinguishable
results, and indeed the obtained critical values in the single ion mean-field
treatment are Hc|| = 5.0 kOe and TN = 705 mK. An attempt to improve
the calculation was undertaken by dividing the lattice into blocks of eight
spins, which then are diagonalized together. Nearest neighbor interactions
beyond the block were included using periodic boundary conditions. Further
interactions were treated as self-consistent mean fields. The results showed a
7.5% reduction in TN compared to the simple single ion mean-field approach.
Albeit not sufficient to match the experiment, this indicates that a role is
played by entangled states, which are allowed by simultaneous diagonaliza-
tion of small clusters but not in the semi-classical mean-field description.
More generally, it should be anticipated that fluctuations are more signifi-
cant due to both the antiferromagnetic coupling and the less constraining
planar anisotropy, as compared to the FM system with Ising anisotropy.
Therefore a more sophisticated approximation beyond mean-field RPA is
needed to describe the system accurately.

Scaling the temperature and field to match TN and Hc(0), the Hc(T ) curve
is well described (Fig. 4.39a), but both the increase of the measured Bragg
peak intensity as a function of temperature and field are more abrupt than
the mean-field prediction (Fig. 4.39d,e). Deep in the ordered phase, the
mean-field calculation may work, but towards the transition, fluctuations
gain in importance. The onset of magnetic Bragg intensity, proportional
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Figure 4.40: Critical behavior of LiErF4 in the ordered regime as a function
of T at H = 0 (blue) and an applied field H along the c-axis at T =
80 mK (red). Lines are power law fits described in the text. Inset: From
the raw neutron diffraction data, the intensity of the magnetic Bragg peak
(blue) and the contribution originating from critical scattering around Tc
has been separated (red), providing an independent determination of the
critical temperature Tc.

to the order parameter squared, follows a power law for the thermal phase
transition at H = 0 T as well as for the QPT in an applied field along the
c-axis (Fig. 4.40). By analysis of the peak shape in the raw diffraction
data, it was possible to separate the critical scattering contribution to the
integrated intensity from the pure magnetic Bragg peak (figure 4.40 inset).
The divergence of the critical scattering signal provides a second independent
determination of TN and coincides with the onset of the order parameter.
The extracted critical exponents are βT = 0.15± 0.01 and for the quantum
phase transition βH = 0.33± 0.01, respectively, significantly deviating from
the 1

2 expected in the mean-field model.

4.4.2 Specific Heat

To further elucidate the nature of the (thermal) phase transition, specific
heat as a function of temperature was measured for several fields (figure
4.41). Most pronounced is the anomaly marking the magnetic ordering tran-
sition, in good agreement with the phase diagram established with neutrons
(figure 4.39f). Well above the magnetic ordering anomaly, the specific heat
is dominated by the single ion crystal field and Zeeman terms in the sin-
gle ion Hamiltonian, the phonon contribution and the magnetic interaction.



99 LiErF4 - QPT in a dipolar XY-Antiferromagnet

0.3 0.35 0.4
0

10

20

30

40

50

60 0.00 kOe
1.00 kOe
1.50 kOe
1.75 kOe
2.00 kOe
2.25 kOe
2.50 kOe
2.75 kOe
3.00 kOe

T   [K]

c 
  [

m
J/

g 
K

]

1 10
0

10

20

30

40

50

60

T   [K]

c 
  [

m
J/

g 
K

]

H = 0 T

T3

cf
T − 2

0.01 0.1 1

0.4

0.5

0.6

0.7

0.8
0.9

|T/T
c
−1|

1−
C

p/B

T<Tc

T>Tc

−0.2 −0.1 0 0.1 0.2

0.2

0.4

0.6

0.8

1

T/T
c
−1

C
/C

pe
ak

0.00 kOe
1.00 kOe
1.50 kOe
1.75 kOe
2.00 kOe
2.25 kOe
2.50 kOe

a) b)

c) d)

Figure 4.41: Specific heat as a function of temperature for several fields
along the c-axis (a). The specific heat for temperatures well above the mag-
netic phase transition can be described by a simple model shown as red curve
(b). It contains the crystal field Shottky anomaly, a phonon contribution T 3

and for the magnetic interactions in leading order of the high temperature
expansion a βT−2 temperature dependence. Power law behavior of specific
heat at H = 0 T and determination of critical exponents (c). Specific curves
measured at different field values shifted to the same peak center and nor-
malized by peak height to compare the evolution of peak shape (d). Below
Tc the data collapse on a unique curve whereas above Tc the enhancement
of the fluctuations closer to the QCP leads to an increase in the peak width.

The single-ion contribution can be calculated, and agree well with the data,
further confirming the accuracy of our crystal field determination. Subtract-
ing the crystal field contribution leaves a phonon contribution above 10 K
scaling as ρT 3, yielding ρ = (6.6± 0.1) · 10−7 J/gK, significantly lower than
reported in literature for LiReF4[33], the reason being that in previous work
the contribution from higher-lying crystal field levels was not subtracted
before estimating the phononic term. Below 3 K, the specific heat increases
due to interactions, which in a high-temperature expansion would follow to
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leading order T−2 temperature dependence [33]. Most important for this
study is a very pronounced tail above the ordering anomaly, which is much
more pronounced than in the cases of LiHoF4 and LiTbF4[33, 60, 61].

In the critical regime around the magnetic ordering anomaly, the specific
heat was fitted by a universal power law dependence in the reduced temper-
ature t = T/Tc − 1:

Cp = A|t|−α +B t = T/Tc − 1 (4.4.2)

for T > Tc and a similar equation for T < Tc with primed parameters. As a
rule α = α′ must be satisfied, and satisfying the further constraint B = B′

a good fit was achieved simultaneously below the transition and bove the
transition, up to t ' 0.03. The best estimate for critical exponents are
α = −0.29 ± 0.04. For t > 0.03 the curve tends towards a power law with
much lower exponent α = −0.07 ± 0.04. Again, these critical parameters
are substantially different from the mean-field result and the logarithmic
corrections from renormalization group results that adequately describe the
ferromagnetic Ising systems LiHoF4 and LiTbF4. To emphasize the growth
of the fluctuation regime as the quantum phase transition is approached, the
cp(T ) curves for different fields can be plotted on top of each others, scaling
by peak height and peak temperature (figure 4.41 c). Below Tc there is a
collapse to one unique curve, while above Tc a change in peak shape and a
growth the critical tail is visible.

4.4.3 Order by Disorder

A possible way to understand both the ordered magnetic structure and the
non-mean-field critical behavior is the phenomenon of order-from-disorder
[62]. The meaning of this term is the following. Given a degenerate ground-
state manifold, i.e. all the states have the same internal energy. At any
nonzero temperature the quantity that is minimized is not the internal en-
ergy but rather the free energy. The states are favorable around which the
largest phase space volume is accessible by thermal fluctuations. In other
words, due to the existence of soft fluctuations the system predominantly af-
ford time in exploring the vicinity of these states and gets effectively trapped.
The entropy implies a selection of states in the degenerate energy manifold
and induces an ordering transition.

On the mean-field level (i.e. neglecting fluctuations), there is in LiErF4 a
continuously degenerate ground-state manifold, which is obtained by rotat-
ing spins in adjacent layers of the BLAFM structure alternatingly clockwise
and anti-clockwise by an angle φ. Nevertheless, in real material the sym-
metry is broken and the ordered structures where moments point along the
a- or b-axis are selected, i.e. there is the restriction φ ∈ 0, π/2, π, 3π/2.
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Using a random-phase-approximation (RPA), the initial slope of the dis-
persions, and thereby the low-energy density of states as a function of φ.
The slope is minimal and the low energy density of states maximal when
the moments point along the a- or b-axis. As fluctuations suppress the
ordering transition from the mean-field value, the fluctuating system will
spend most of its time close to the φ = 0, π/2, π, 3π/2 states, which lifts
the degeneracy and selects these moment directions when ordering does
set in. Indeed, this conclusion was also reached by Henley[63], who used
second order perturbation theory to argue that order-from-disorder favor
the co-linear ground states of isotropic dipolar coupled magnets on square,
hexagonal and diamond lattices. Henley’s work was inspired by reports of
antiferromagnetic transitions at very low temperatures, 17− 30 mK, in the
susceptibility of RePO4(MoO3))12·30H2O, hosting Re=Er, Dy, Gd ions in
a diamond lattice[64]. The tetragonal Scheelite lattice of LiErF4 is in fact
a distorted version of the diamond lattice and therefore Henley’s argument
remains valid also in this case. As conclusion order by disorder is causing a
reduction to a four fold h4 degeneracy.

4.4.4 Universality Class

As already pointed out the classical phase transition features unexpected
critical exponents α = −0.28± 0.04 and β = 0.15± 0.02, far beyond mean-
field. For the classical, dipolar and quantum 3D Heisenberg model values
α = −0.13 to −0.198 are predicted and β falls into the range of 0.3 to
0.35 for all the common 3D universality classes. It has to be mentioned
that random fields or multicritical points can affect significantly critical ex-
ponents. However no 3D model was found in literature with the observed
combination of α and β. Further exponents that can be considered are δ,
which reflects magnetization versus field, and the ”anomalous dimension”
η, which is associated with the spatial correlation function exactly at the
critical point.

M ∝ H
1
δ , 〈S0Sr〉 ∝ |r|d−2+η. (4.4.3)

The Rushbrooke α+ 2β + γ = 2, Widom γ = β(δ− 1) and the hyperscaling
relations 2− α = dν and γ = (2− η)ν imply finally

δ =
2− α
β
− 1, η = 2− d δ − 1

δ + 1
. (4.4.4)

The fundamental exponents η and δ are super-universal depending only on
the spatial dimension.
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3D (Ising, XY, Heisenberg): δ = 4.7, η = 0.03.
2D (Ising, XY/h4): δ = 15, η = 0.25. (4.4.5)

The determined value for LiErF4 of δ = 15.2 is very close the expectation for
the 2D but again far away from the 3D case. Assuming 2D fluctuations yields
η = 0.26, signaling strong fluctuations, consistent with the large reduction
in transition temperature compared to the mean-field prediction.

The Mermin-Wagner theorem excludes long-range order in pure 2D XY mod-
els, but even infinitesimal h4 anisotropy leads to conventional order slightly
above the so-called Kosterlitz-Thouless transition. Weak h4 anisotropy re-
sults in the effective exponents η ' 0.35 and β ' 0.23 [65], which quickly
approach η = 0.25 and β = 0.125 on increasing h4. Indeed, for LiErF4 not
only δ and η but also the directly measured exponents agree with the 2D
XY/h4 model. The value β = 0.15 suggests medium to strong h4 anisotropy,
and α = −0.28 is consistent with a recent Monte-Carlo study on a bi-layer
square lattice finding β = 0.18±0.02 and α ' −0.4[66]. It must therefore be
concluded that the thermal transition in LiErF4 belongs to the 2D XY/h4

universality class, the effective dimensional reduction likely being due to the
frustrated nature of the dipolar coupling [59].

4.4.5 Magnetic Correlations

A phase transition from a disordered to an ordered magnetic state is in gen-
eral accompanied by critical scattering. To investigate this diffuse scattering
in neutron diffraction is more challenging than measuring the onset of the
magnetic Bragg peak, because the rather weak intensity is outspread over
a certain region in reciprocal space. In LiHoF4 in contrast to the thermal
phase transition at T=Tc in the case of the quantum phase transition only
a weak quasi elastic scattering was observable. However for LiErF4 there is
a measurable signal also around Hc.

The experiment has been performed on the RITAII spectrometer at SINQ,
the sample oriented with c-axis perpendicular to the scattering plane. The
field was applied along the c-axis. The analyzer was fixed on the elastic
position during the whole experiment, since due to the low energy scale in
the system it is impossible to further resolve the dynamical structure of the
critical scattering anyway. This implies that the detected signal is effectively
integrated over energy. But nevertheless the use of the instrument with the
analyzer instead of a simple diffraction setting improved the signal to noise
ratio. That this is a crucial point for the feasibility of the experiment was
highlighted by previous unsuccessful attempts on several diffractometers.

The critical scattering in LiErF4 is located around the magnetic Bragg peaks
equivalent to (100). Although highly anisotropic the intensity distribution
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over the reciprocal space does not show a characteristic butterfly like shape
in contrast to the ferromagnetic compound Li(HoY)F4. In the scattering
plane (hk0) the momentum dependence of the signal can be described by a
Lorentzian model. For example around q∗ = (100), the width is broad along
the (h00) and narrow along the (0k0) axis. The full anisotropy in reciprocal
space was mapped out at H = 3.4 kOe slightly above the critical field of
Hc = 3.05 kOe, see figure 4.42. This anisotropy seems to be independent of
the applied field, as seen in further scans along the Qh and Qk direction. The
data can be described approximatively by the phenomenologically model

χ(Q) ∝ 1
Γ2 + g2q2

h + q2
k

, (4.4.6)

with q = Q − q∗, where Q denotes the scattering vector. The anisotropy
factor is roughly 1/g = 2 to 3. Unfortunately there is no appropriate theo-
retical predictions specific to the case of LiErF4 which would allow a more
conclusive evaluation. The available data itself is also too inaccurate to
predict and verify directly such a sophisticated model.

0.8 0.9 1 1.1 1.2

−0.2

−0.1

0

0.1

0.2

Q
k  r

.l.
u.

Q
h
  r.l.u.

−0.2 −0.1 0 0.1 0.2

0

0.5

1

In
te

ns
ity

 a
rb

.u
.

ξ  r.l.u.

(1.04,ξ,0)

(1+ξ,0,0)

a) b)

Figure 4.42: Anisotropy of critical scattering in reciprocal space. (a) Pseu-
docolor map of neutron scattering intensity at H = 3.4 kOe. The white
ellipse with aspect ratio of 2.5 is plotted to visualize the anisotropy. (b)
Scans in perpendicular directions to each other, normalized to peak height.

The width of the critical scattering is related to the reciprocal of the correla-
tion length. Towards the phase transition the correlation length ξ diverges,
hence the width of the peak tends to zero and the scattering intensity di-
verges. The experimentally investigated evolution of the critical scattering
as function of the field at fixed temperature is summarizes in figure 4.43.
The scans have been performed slightly of the Bragg peak (100) in Qk direc-
tion. The data is fitted with a lorentzian line shape folded with a gaussian to



Experimental Results and Discussion 104

incorporate correctly the finite instrumental resolution. The intrinsic width
clearly decreases towards the phase transition, but the peak did not get reso-
lution limited. Of course in the scans there is a small offset in Qh which was
chosen to circumvent in the signal the contamination from the Bragg peak.
Taking into account this offset, by considering also the anisotropy, the de-
termined nonzero width at Hc can be reproduced, at least approximatively.
Therefore the hypothetical scan exactly through q∗ would indeed provide
a vanishing width and diverging intensity, as expected. Unfortunately the
data quality and the uncertainty in the model for the peak shape does not
allow to extract the critical exponent ν of the correlation length ξ in trust-
worthy way. Nevertheless in panel (c) of figure 4.43 the integrated intensity
is depicted in a log-log scale. Over a certain range there is indeed a power
law like field dependence, but close to Hc there are defective deviations, i.e.
the uncontrolled inaccuracies start to matter.
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values and at constant temperature.
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Summary 4.4:
In this chapter a investigation of the phase diagram of LiErF4 by means
of neutron diffraction and specific heat measurements was presented.
Below a short summary of the main results:

• LiErF4 exhibit bilayered antiferromagnetic ordering below TN =
373± 5 mK.

• In a field applied along the c-axis the system undergoes a quantum
phase transition at Hc|| = 4.03± 0.02 kOe.

• The critical exponents α and β have been determined.

• Thermal phase transition in LiErF4 belongs to the universality
class of the XY/h4 model in 2 dimensions, i.e. a dimensional re-
duction takes place.

• The fourfold anisotropy in the ordered phase originate from order-
by-disorder.
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4.5 LiErF4 - Excitations and Critical Dynamics

In LiHoF4 the weak hyperfine coupling to the nuclear spins has dramatic
effect on the quantum phase transition. A QPT should be accompanied
by softening of the characteristic excitation, but in LiHoF4 the magnetic
excitation of the electronic subsystem remains gapped due to coupling to
the nuclear spin bath. Details are discussed in chapter 4.3. Unfortunately
it is not possible to substitute Ho isotopes without nuclear spins, since only
one stable isotope exists. In Er the hyperfine coupling constant is weaker
than in for LiHoF4 and only 20% of the natural occurring isotopes have a
nuclear spin at all. Therefore one central question in LiErF4 is the existence
of a soft mode at QPT.

4.5.1 Excitations in the ordered phase at H = 0 T

The dispersions along the high symmetry directions of the crystal has been
measured in zerofield as well as in the quantum disordered phase, i.e. a
field of 1.5 T along the c-axis or 1 T along the a-axis respectively. In the
zerofield investigation we measured along (h0l) for l = 0, 1, 1.5, 2 fixed and
different h on TASP but also along (10l) and (00l) on PANDA. Because of
the limited instrumental resolution the spectra are smeared out and it was
only in particular cases possible to distinguish and fit discrete modes. The
dispersion along (h00) could be determined assuming a damped harmonic
oscillator model, see figure 4.44. Remarkably, the spectrum is gapped at
zone center. The RPA calculation is able to predict the correct slope of
the dispersion but underestimates the gap by a factor of two. Furthermore,
all measured data have been evaluated using the calculated RPA excitation
spectra convoluted with the experimental resolution as a model. Examples
of this fits are depicted in figure 4.45&4.46. The light blue area under the
fitting curve represents the magnetic signal, the yellow the contribution of
incoherent scattering, which could be determined from the energy scans in
the high field phase. At some points in reciprocal space in addition to that
also a quasi elastic contribution has to be included in the model. This
contribution can be interpreted as a phenomenological correction for the
neglected fluctuations in the RPA model. The two equivalent domains of
the magnetic structure has also to be considered in the RPA calculations for
the magnetic excitations. In zero field equal population is expected. The
contributions originating from the two different domains are indicated in
Fig. 4.45 by white lines. The agreement of the fit with the data is a direct
manifestation of two domain model. Hence it is an independent evidence
for the correctness of the underlying magnetic structure.



107 LiErF4 - Excitations and Critical Dynamics

−0.1 0 0.1 0.2

0

20

40

60

E  [meV]

In
te

ns
ity

   
ar

b.
u. Q = (1.4, 0, 0)

0.8 1 1.2 1.4 1.6
0

20

40

60

(ξ 0 0)    [r.l.u.]

E
   

[μ
eV

]

RPA
INS

a) b)

Figure 4.44: Dispersion relation at H = 0 T in the ordered phase of LiErF4

along the high symmetry direction q = (h00). At zone center q = (100)
the spectra is gaped and shows an almost linear dispersion-relation. The
red solid corresponds to an phenomenological polynomial approximation to
the dispersion extracted from the data using a simple damped harmonic
oscillator model. The black curves are the two modes obtained in an RPA-
Calculation for two possible domains, but only the mode depicted as a solid
line has a significant contribution to the scattering intensity. The RPA-
calculation is able to predict the dispersion-relation but underestimates the
gap of the spectra.
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Figure 4.45: Excitations in the ordered phase at H = 0 T at selected points
in reciprocal space. The fitted curve is the prediction from RPA-calculation
assuming a two domain model in the magnetic structure as described in the
text.
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Figure 4.46: Excitation spectra in the ordered phase along selected direc-
tions in reciprocal space. From left to right the two first panels represent
the RPA-Calculated spectra for the two different domains, the third is the
sum of the latter two convoluted with the experimental Resolution and in
the outer right panel the measured data subtracted by the incoherent line
is depicted. The white points corresponds to the dispersion obtained by a
fit to the data with a one mode damped harmonic oscillator model.
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4.5.2 Excitations in the phase above Hc

Applying a field the dispersion is lifted to higher energies and the inelastic
signal can be separated from the incoherent line. On the other hand are fluc-
tuations in the polarized higher field phase less pronounced than close to the
antiferromagnetic ordered region. Therefore MF/RPA can be regarded as
a reliable first approximation to describe the excitation spectra, see figure
4.47. Although due to the limited achievable resolution it is not possible
to distinguish directly from the data all details in the excitation spectra,
a correspondence of experiment and calculation is confirmed. This opens
the opportunity to refine the last unknown parameter in the Hamiltonian,
the exchange coupling constant. In Figure 4.48 the data is compared with
the RPA spectra calculated for different values of Jex, ranging from −0.3
up to 0.3 µeV. The coupling constant not only changes the dispersion but
also influences the meanfield and therefore the single ion splitting. To get
rid of this influence an energy offset is included in the fit. From the refine-
ment based on the measured dispersion relation and the RPA calculation,
it can be concluded that the exchange interaction is negligible compare to
the dominant dipole-dipole coupling. A strong exchange coupling constant
|Jex| > 0.1 µeV would induce a further separation of the two modes in the
spectra along Q=(00l), see for example figure 4.47. In particulary a split-
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Figure 4.47: Excitation spectra of LiErF4 in the high field (paramagnetic)
phase above the QPT. The applied field is either H||a = 1.0 T, as in panel
(a) and (c), or H||c = 1.5 T in (b). The absence of a distinct splitting at
zone boundary q = (002̄) within experimental resolution, indicates that the
so far unknown exchange coupling constant is orders of magnitudes lower
than the dominant dipole-dipole coupling.
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The applied field and its direction is indicated. To visualize the effect of
varying Jex, the calculated spectra are shifted by a fixed energy offset as
described in the text.

ting at the zone boundary would be expected. But inside the experimentally
achievable resolution, the two modes at q = (002̄) are almost degenerated
(figures 4.48&4.47). In the full refinement based on the measured dispersions
along four selected directions in reciprocal space, for the exchange coupling a
value of Jex = 0.0±0.1 µeV has been obtained. Therefore, the dipole-dipole
coupling is the dominant and only significant interaction in the model of
LiErF4.

4.5.3 Softmodes at QPT

The most remarkable result of this inelastic neutron scattering investigation
is the demonstration of the complete softening of the characteristic exci-
tations at the QCP. This is the hallmark of a quantum phase transition,
and in the case of LiErF4 this is even expected from a simple RPA point of
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view. Within the experimental resolution the gap is closing when the field
is approaching its critical value, i.e. at the quantum phase transition. This
was demonstrated in both configurations, in a field applied along the c-axis
(figure 4.49) as well as along the a-axis (figure 4.50).
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Figure 4.49: Softening of the characteristic excitation around the QCP in
LiErF4 applying a field along the crystallographic c-axis. (a) Energy scans
at Q = (0.05, 0, 3) at different field values. The solid line fits to a damped
harmonic oscillator model (blue) adding a fixed contribution for the inco-
herent scattering (yellow) measured at higher field phase. (b) the energies of
the critical mode extracted from the data as a function of the applied field
tends to zero reaching the QPT. As expected for a softmode the scattering
intensity, i.e. χ′, diverges.

The excitation energy was determined fitting the data to a damped harmonic
oscillator model. To correct for the incoherent scattering contribution, scans
at higher field can taken into account, where all the inelastic magnetic signal
is lifted to higher energies. The excitations are sharp compared to the in-
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Figure 4.50: Softening of the characteristic excitation around the QCP
in LiErF4 applying a field along the crystallographic a-axis. (a-b) Energy
scans at Q = (003 + ε) at different field values. The solid lines represent
fits to a two mode damped harmonic oscillator model (blue area) adding
a fixed contribution for the incoherent scattering (yellow area) measured
at higher field phase. (c) Energies of the two modes extracted from the
data as a function of the applied field. Inset: Onset of the magnetic Bragg
peak (003) at QCP. The critical field extracted from the ordering parameter
corresponds to the field where the critical mode becomes soft.

strumental resolution and there is no significant broadening of the line width
as a function of the field either. A fit assuming infinite sharp excitations in-
stead of a damped harmonic oscillator model provides a comparable result.
At the QCP the softening of the characteristic modes is accompanied by a
divergence of the scattering intensity, see figure 4.49. Formally the quantity
of interest is the generalized susceptibility χ′(ω = 0, ~q). This value can in
principle be calculated from the fitted parameters of the damped harmonic
oscillator model. Unfortunately in the interesting region where the energy
approaches zero, the result is highly affected by the uncertainties of the
experiment and the data evaluation. A more rigid value is the integrated
intensity which can be determined by numerical integration of the data. In
the present experimental configuration and due to the flat dispersion S(ω, q)
can be considered constant in q over the range affected by the resolution.
Therefore within this approximation the resolution function integrates out
in the following expression for the intensity integrated over energy.

Iint. =
∫ ∞
−∞

I(ω)dω ∝
∫ ∞
−∞

1
1− e−β~ωχ

′′(Q, ω)dω. (4.5.1)
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Assuming a sharp excitation with energy ωq and recall Kraemers Kronig
relation the integrated intensity Iint.(q) is proportional to χ′(ω = 0, q) · ωq.
In figure 4.49 the field dependence of the excitation energy and χ′ at zone
center is depicted.

4.5.4 Conclusions

In summary a comprehensive inelastic neutron scattering investigation of
the dipolar coupled quantum antiferromagnet LiErF4 has been presented.
A meanfield-RPA model is able to predict the excitation-spectra in the or-
dered as well as the paramagnetic high field phase within the limits of the
approximation and the experimental achievable resolution. The refinement
of the interactions constant proofs that the system is dominated by dipolar
coupling. As the most remarkable result the existence of a softmode at the
QPT can be confirmed. LiErF4 can be regarded as a much cleaner real-
ization of a quantum critical system as LiHoF4, due to the fact that the
quantum phase transition is not affected by secondary degrees of freedom
like hyperfine interaction to the nuclear spins.

Summary 4.5:
In this chapter a neutron spectroscopy investigation of the magnetic exci-
tations in the compound LiErF4 was presented. Below a short summary
of the main results:

• The excitations in the ordered phase were measured along high
symmetry directions in the ordered phase. Within the limited ex-
perimental resolution the spectra are qualitatively close to the RPA
prediction. However, in the experimental data a gap of around
20 µeV at H = 0 T is indicated.

• In the disordered high field phase the spectra is lifted towards
higher energies. The determined dispersion relation is in agree-
ment with the RPA prediction up to a certain global scaling factor.
The refinement based on the measured dispersion states that the
exchange coupling is at least two orders of magnitude smaller than
the dominant dipolar interaction.

• As a hallmark of the quantum phase transition there exist a soft-
mode in the characteristic excitations at the QCP.
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4.6 LiHoxEr1−xF4

The mixture of two or more different rare-earth ions in LiReF4 enhances
the range of possibilities in tuning the magnetic properties of the material,
instead of the so far considered doping with nonmagnetic Yttrium. Re-
markably there are no investigations about the magnetic behavior of any of
these dilution series reported in literature, as far as we knew. Furthermore,
the recent discussion about off-diagonal coupling effects in LiHoxY1−xF4

[10, 27, 29] promotes the idea for a new realization of a random field mag-
net by means of doping with Erbium ions instead of Yttrium. Because of
the planar xy-anisotropy in LiErF4, the Erbium moments in LiHoxEr1−xF4

will be coupled to the Ising like Holmium moments mainly through the off-
diagonal components of the dipole interaction. It is assumed that Er will be
more efficient than Yttrium to enhance the off-diagonal coupling effects such
that the system exhibits already at low dilution concentrations a crossover
to a spin-glass like phase. The non-percolation-like dilution may have the
further advantage to circumvent lower energy scales and spatial decoupling
as in the case LiHoxY1−xF4, making the LiHoxEr1−xF4 compounds better
suitable for experimental investigations.

Several compounds with different dilution concentrations have been recently
characterized by means of ac-susceptibility at Laboratory for Quantum Mag-
netism EPFL [67]. In the following the phase diagram will be discussed. For
the particular representant LiHo0.25Er0.75F4 the presence of strong antifer-
romagentic correlations in absence of long range order was demonstrated
by a neutron scattering investigation combined with an insitu susceptibility
measurement. Nevertheless the performed studies are only a first glimpse
on the physics of LiHoxY1−xF4 and still far away from a final conclusive
picture.

4.6.1 Phase Diagram

Starting form the pure compound LiHoF4 and introducing a marginal con-
centration of Er-ions has mainly the effect of suppressing Tc, whereas long
range ferromagnetic ordering is not affected. This is indicated in the com-
pound x = 0.8 by the frequency independence of the temperature Tf which
is denoting the position of the peak in susceptibility χ′. In contrast, for the
more diluted compounds, explicit x = 0.5, x = 0.3 and x = 0.2, the peak
in χ′ shifts towards higher temperatures for increasing frequency. From the
frequency dependence of Tf it can be assumed that in these compounds the
system enters either a superparamagnetic or a spin glass like phase.

The phase diagram of LiHoxY1−xF4 theoretically expected from a simple
virtual-crystal (VC) meanfield calculation (see paragraph 3.3) is shown in
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figure 4.51. In this model, below a certain critical temperature T ∗ the Er-
bium or Holmium subsystem tends to align and exhibits long range ordering.
Remarkably there exists also a region of coexistence in the phase diagram
where both types of ions align. Although VC-meanfield could never be an
adequate framework to reproduce glassiness, the calculated phase boundary
line is close to the measured Tf over the whole range of x. It is not surprising
that the calculation overestimates Tf , because the effect of randomness is
not considered adequately. Therefore, the deviation increase as one moves
in the phase diagram further away from the pure compounds.
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Figure 4.51: Phase diagram calculated via virtual-crystal meanfield approxi-
mation. T ∗Ho and T ∗Er denotes the critical temperatures, where the Holmium
respectively, Erbium moments aligne. Both temperatures are scaled such
that they match Tc in the case of the pure compounds. The measured
crossover temperatures Tf by means of ac-susceptibility at f = 990 Hz [67]
are reduced compared to the expected T ∗.

4.6.2 Magnetic Correlations in LiHo0.25Er0.75F4

In the scans around the points in reciprocal space related to ferromagnetism
no significant magnetic signal was observed neither in form of diffuse nor
in form of Bragg scattering down to temperatures of 170 mK. The small
changes in Bragg peak intensity on top of the strong nuclear scattering con-
tribution, found in a comparison of measurements at different fields and
temperatures was unfortunately only within the statistical error bars. Fur-
thermore, one has to be aware of possible systematic perturbations, like
positioning errors in consecutive runs or field induced shifts in the sample
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position, that could cause such small changes in intensity. Based on the
available data one must conclude that ferromagnetic ordering, long range as
well as short range, is unlikely.

Around the points in reciprocal space related to antiferromagnetism, e.g.
Q = (100), a strong diffuse magnetic scattering signal could be observed
(figure 4.52). The correlation length estimated from a Lorentzian fit is
ξ = (3.9 ± 0.1) Å at T = 170 mK. In a field applied perpendicular to the
scattering plane, i.e. along the crystallographic y-axis, the peak-intensity
of the scattering signal decreases continuously and vanishes at fields around
0.7 T completely. As a function of temperature there is no sharp transition
visible in the signal, instead the intensity varies continuously and persists
marginally even beyond the critical temperature TN of the pure compound
LiErF4. Hence LiHo0.25Er0.75F4 exhibits a crossover to a disordered phase
with short range antiferromagnetic correlations. Furthermore the correlation
length is decreasing as a function of increasing field or temperature. So far
it is a point of speculation if true long range antiferromagnetic order may
establish in the limit of zero temperature.
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LiHo0.25Er0.75F4. a) Reciprocal space scans at different applied fields in
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Summary 4.6:
In this chapter a first preliminary study on the mixed Li(HoEr)F4 was
presented. Below a short summary of the main results:

• The ac-susceptibility data implies for LiHoxEr1−xF4 x = 0.8 con-
ventional ferromagnetic order, whereas for the more diluted com-
pounds x = 0.5, x = 0.3 and x = 0.2, spin glass like or superpara-
magnetic behavior was observed.

• The phase diagram of LiHoxEr1−xF4 was calculated by means of
a virtual-crystal meanfield approximation.

• Neither long range order nor ferromagnetic correlations were ob-
served in a neutron diffraction investigation of LiHo0.25Er0.75F4.
Instead the system exhibit a crossover to a disordered phase with
short range antiferromagnetic correlations.



Chapter 5

Conclusions and Outlook

The compounds of the LiReF4-series (Re=rare earth) providing several sim-
ple model systems, where experimental observations can be compared quan-
titatively with theoretical predictions. These compounds host a rich variety
of collective phenomena and quantum effects. The understanding of such
model systems may also generate an important contribution to the wider
field of quantum phase transitions and spin glasses. In this thesis a number
of new experimental results have been achieved for different LiReF4 com-
pounds, mainly by means of neutron diffraction and spectroscopy.

LiHoF4 is a physical realization of a transverse field Ising model. However,
the real system turned out to be more complicated, the marginal hyper-
fine coupling to the nuclear spins intersects the quantum phase transition.
Hence, LiHoF4 offering an ideal system to study in a controlled way the
robustness of quantum criticality in non-perfect (hence realistic) systems.
Instead of a true softmode at the QPT, the excitations of the electronic
subsystem remain gapped. This was interpreted as a decoherence effect due
to coupling to the nuclear spin bath, i.e. a local environment that is con-
stituted from secondary degrees of freedom. Raising the temperature the
coupling to the spin bath weakens due to thermal fluctuations. Based on
the measured excitation spectra, on can conclude that the minimal, effective
model to describe comprehensively the LiHoF4 system is the transverse field
Ising model in a longitudinal random field.

By dilution with nonmagnetic yttrium Li(HoY)F4 evolve from a long range
ordered Ising ferromagnet to a random field magnet and a spin glass. Many
experimentally observed effects are referred as ’quantum’, but in our under-
standing at least some aspects of Li(HoY)F4 are consistent with a classical
or semi-classical picture. The system is thoroughly investigated and par-
ticularly well understood, although there exist some discrepancies in the
reported experimental results and a vivid theoretical dispute about mod-
eling issues. However, there is a general agreement about the importance
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of random fields induced by off-diagonal terms in the dipolar coupling. In
this thesis the first extensive neutron scattering investigation of Li(HoY)F4

versus transverse field was presented. One of the most remarkable findings
was the microscopic insight into the history dependence behaviour found
in the compounds LiHoxY1−xF4, x = 0.33 and x = 0.46. Following a zero
field cooling protocol one can prepare the system in the ferromagnetic state,
whereas cooling in an applied transversal field leads to a disordered short
range correlated state. However, an earlier dynamic susceptibility spec-
troscopy study draw the contrary conclusion. Therein the field cooling path,
or the quantum annealing, was interpreted as more efficient in establishing
the ground state.

LiErF4 is a realization of a planar antiferromagnet that exhibits layered
ordering and undergoes a quantum phase transition in a magnetic field.
Remarkably, the system shows a complete softening of the characteristic
excitations when approaching the critical field, regarded as one of the hall-
marks of a quantum phase transition. Furthermore, as a conclusion drawn
from the critical exponents, the thermal phase transition falls into the 2D
universality class XY/h4, implying that dimensional reduction takes place.
The emergence of symmetry breaking is interpreted as a consequence of the
effect referred as “order-by-disorder”. As a further project in LiErF4 an
additional specific heat investigation around the QCP is planned. Based
on the so far available neutron scattering data, we suggest that the criti-
cal exponents will be consistent with a classical 3D universality class. This
expectation is in accordance to the rule that the problem of a QPT in a
d-dimensional system can be transformed on a d+1 dimensional classical
system. A second further project will be the investigation of the scaling
behaviour of the quantum fluctuations in the quantum critical regime. The
intention is to verify universal ω/T -scaling at the critical field as well as
the non-universal ω/T-scaling away from the critical field. However, these
measurements are experimentally rather ambitious, because of the limited
resolution achievable in inelastic neutron.

Considering the fact that the most regarded studies about LiReF4 are related
the diluted compounds Li(HoY)F4, one can assume that there must exist
also promising collective quantum effects in other Li(ReY)F4 systems, for
example Re=Er. Also the mixture of two or more different rare-earth ions
may enhances the range of possibilities in tuning the magnetic properties of
the material. In this thesis already a first preliminary study on Li(HoEr)F4

was presented.

Furthermore, there exists the vision to realize sophisticated pump-probe ex-
periments on LiReF4 compounds. This would be a step forward beyond
the level of simple characterization and explanation of a given material
towards actively manipulating and controlling the system, also outside of
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equilibrium. One example presented in this thesis was the time resolved
SANS experiment to observe coherent oscillating spin clusters. A further
project, already mentioned in a previous chapter, is the NMR experiment in
LiHoF4, which aims to control the coupling strength of the spin bath with
the electronic subsystem. Only the simplicity of LiReF4 and the fact that
the physics of these systems is well investigated and characterized make such
experiments feasible. Nevertheless, the realization of in-situ experiments is
more complicated than it seems on the first glance, because it involves the
combination of several technics on a high-end level and under extreme con-
ditions.

One of the most challenging open issues for further projects is the theoreti-
cal description of the experimentally observed phenomena and a verification
of the preliminary descriptive interpretations. The new neutron scattering
results and the reported susceptibility data should be combined to more
sophisticated, comprehensive picture. A sophisticated theory beyond mean-
field/RPA would be also desirable, because it may promote new ideas for
further experimental projects.



Appendix

A Crystallographic Details of LiReF4

Figure A.1: Symmetries of space group I41/a as given the International
Tables of Crystallography (no. 88, choice 2) [68]. The symbols correspond
to the symmetry operations, the notation is explained in [68].

The positions of the ions within the unit cell of LiReF4 are listed in table
A.1. The asymmetric unit, which defines the position of the fluorine ions,
has to fulfill the general restrictions

0 ≤ x ≤ 1
4 , 0 ≤ y ≤ 1

4 , 0 ≤ z ≤ 1.

In case of LiReF4 the values for the asymmetric unit are reported for the
particular compound LiTb0.3Y0.7F4 [69]

x = 0.21887(8), y = 0.41394(7), z = 0.45618(4).
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Multiplicity Coordinates

Wyckoff letter

Site Symmetry (0, 0, 0)+ ( 1
2
, 1
2
, 1
2

)+

16 f 1 (1) x, y, z (2) x̄+ 1
2
, ȳ, z + 1

2
(3) ȳ + 3

4
, x+ 1

4
, z + 1

4
(4) y + 3

4
, x̄+ 3

4
, z + 3

4

(5) x̄, ȳ, z̄ (6) x+ 1
2
, y, z̄ + 1

2
(7) y + 3

4
, x̄+ 1

4
, z̄ + 1

4
(8) ȳ + 3

4
, x+ 3

4
, z̄ + 3

4

4 b 4̄ 0, 1
4
, 5
8

1
2
, 1
4
, 7
8

4 a 4̄ 0, 1
4
, 1
8

1
2
, 1
4
, 3
8

Table A.1: Crystallographic positions within the unit cell according to the
space group I41/a, reproduced from [68] (no. 88, choice 2). The Re3+ ions
occupy the sites with Wyckoff-Label 4b, Li3+ 4a and F− 16f.

c [Å] a [Å]

LiTbF4 10.873 5.181
LiYbF4 10.59 5.132
LiTmF4 10.64 5.15
LiDyF4 10.83 5.189
LiHoF4 10.75 5.175
LiYF4 10.74 5.175
LiErF4 10.70 5.162

Table A.2: Lattice constants of a few LiReF4 compounds according to [70].
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B Representation of the group S4

The crystal field Hamiltonian in LiReF4 is invariant under the symmetry 4̄
or S4 in Schoenflies notation. The Eigenvalue problem can then be solved in
the four subspaces according to the four irreducible representations A,B,E’
and E”. The S4 group is the cyclic group of the order 4 and contains following
elements:

e, s4, c2 := s2
4, s3

4

where s4 is a 90o mirror-Rotation around the c-axis, i.e. can be written as
the matrix

s4=

 0 −1 0
1 0 0
0 0 −1

 .

The Operator J transform like an axial vector, like J → RJ under a ro-
tation R but J → J under space inversion. The mirror rotation s4 can
be considered as an inversion plus a rotation and therefore one obtains the
transformations

x 7→ y Jx 7→ −Jy J+ 7→ iJ+

s4 : y 7→ −x Jy 7→ Jx J− 7→ −iJ−
z 7→ −z Jz 7→ Jz.

Since the group is commutative, all representations are one dimensional.
The character table is given as below and the subspaces can then be found
in the canonical way by means of projectors determined from the characters.

χ e s4 c2 s3
4

A 1 1 1 1
B 1 -1 1 -1
E’ 1 i -1 -i
E” 1 -i -1 i
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