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Transition Temperature of Josephson Junction Arrays with Long-Range Interaction
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We report measurements of the dependence on magnetic field and array size of the resistive transition
of Josephson junction arrays with long-range interaction. Because every wire in these arrays has a
large number of nearest neighbors (9 or 18 in our case), a mean-field theory should provide an excellent
description of this system. Our data agree well with this mean-field calculation, which predicts that
Tc (the temperature below which the array exhibits macroscopic phase coherence) shows very strong
commensurability effects and scales with array size. [S0031-9007(97)04071-4]
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We report an experimental investigation of ordere
Josephson junction arrays with long-range interacti
(ALRI), of the sort originally proposed in the disordere
limit by Vinokur et al. [1]. Although such arrays had
been fabricated by Sohnet al. [2], the samples used in the
present Letter for the first time have low enough critic
currents and hence low enough screening to be in
regime well described by existing theoretical models [3,4

These arrays consist of two perpendicular sets ofN
parallel superconducting wires, coupled by Josephs
junctions at every point of crossing (see Fig. 1).
this geometry, any horizontal (vertical) wire is neare
neighbor to all vertical (horizontal) wires, and next-
nearest neighbor toall other horizontal (vertical) wires.
Hence we term the interaction long range. The numb
of nearest neighbors in these arrays is equal to the ar
size N. This is in sharp contrast to standard (shor
range interaction) 2D arrays where the number of near
neighbors (typically 4 or 6) is independent of array size

Arrays with long-range interaction were first propose
by Vinokur et al. [1] as a physical realization of the
Sherrington-Kirkpatrick (SK) model [5], which is an
analytically studied model of a spin-glass. The S
model assumes the interaction between spins does
depend on the separation between the spins, and there
does not describe most experimentally studied spin-gl
systems. Vinokuret al. showed that for the case wher
the wires are positionally disordered and a sufficien
strong perpendicular magnetic field is applied, ALRI a
very similar to the SK model and admit an analyt
solution. More recently, Chandraet al. [4] have shown
that even for anorderedarray, glassy behavior is expecte
in a very weak field (less than one flux quantum per row

The equivalent of “spins” in these ALRI are the phas
of the superconducting wires, which are well defined
any given gauge. Since field screening is negligible, t
actual field equals the applied field, and we can ma
the gauge choiceA ­ fxF0ya2ŷ, wherea is the lattice
constant andf is the flux per cell divided by a flux
quantum. In the appropriate limit where the junctio
critical currents are negligible compared to the wi
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critical currents, we can writeJ ­ 0, where J is the
current density in the wires.J is given by the Ginzburg-
Landau expression

J ­
e
m

jCj2
µ

h̄=w 2
2e
c

A
∂

,

whereC is the order parameter of the wires. With ou
gauge choice, settingJ to zero implies that the phaseswV

of the vertical wires are position dependent with=wV ­
2pfxya2ŷ, while the phaseswH of the horizontal wires
are constant. Above the transition temperatureTc, the
phases of the wires are uncorrelated. However, when
array is cooled belowTc, a transition to a macroscopically
phase coherent state is predicted to occur.

For an ordered array with long-range interaction in th
limit of negligible screening, Sohnet al. [3] have per-
formed a mean-field analysis and computed the transit
temperatureT MF

c s fd as a function of the applied field and
array size. Because each wire has a large number of n
est neighbors, a mean-field theory using the phase of e
wire as a classical thermodynamic variable should prov
a good description of this system. At zero field they fin
Tc ­ NEJ sT ­ Tcdy2kB, whereEJsT d ­ h̄icsTdy2e and
icsT d is the (unfluctuated) critical current of a single junc
tion at temperatureT . Note the unusual result thatTc

should scale with thesizeof the array. To keepTc of the
array well belowT wire

c , one requiresNh̄i0
c ø 4ekBT wire

c ,
wherei0

c is icsT ­ 0d. The computations of Refs. [1], [3],
and [4] only hold in the limit of negligible screening, wher

FIG. 1. Schematic drawing of a 2 wire by 3 wire array wit
long-range interaction. There are Josephson junctions at ev
crossing point of the superconducting wires.
© 1997 The American Physical Society



VOLUME 79, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 22 SEPTEMBER1997

e
y

s

v

f

t
u

e
-

n

n
o
s
u
f

n

e
s
t

n

th

d
s
n

y
t

g
a
he
for

id
ng

d
e:

ll
her
ys

e

d

e
s
s,
s
s

ns
n

re

r

ce
the array as a whole screens much less than one flux qu
tum F0, and in the limit when phase gradients along th
wires due to current flow are much less than phase dro
at the junctions. The former condition can be written a
N2Lgi0

c ø F0, whereLg is the geometric inductance of
a cell in the array. The latter condition can be express
as ijunction

c ø iwire
c . These three inequalities place ver

strong limits on the magnitude ofi0
c for givenN .

In the experimental work of Sohn and co-worker
Nh̄i0

cy4ekBTwire
c ø 300 and N2Lgi0

cyF0 ø 103. Hence
their samples were not in the regime defined by the abo
mentioned theories. We present here the first measu
ments of ALRI with critical currents small enough (o
order 5 nA) to be in the limit of extremely weak screening
and to have an arrayTc well below the wire critical tem-
perature. Our data show impressive agreement with
mean-field theory, including extremely strong commens
rability effects.

The samples consist of0.25 mm wide Al wires (Twire
c ø

1.7 K) connected by Al-AlOx-Al junctions, fabricated as
follows. A gridlike pattern of lattice constant2 mm is
defined using electron-beam lithography on a Si waf
coated with polymethyl methacrylate (PMMA). A three
angle shadow evaporation technique is used to depo
both sets of wires sequentially without breaking vacuum
using only the single lithography step. The evaporatio
are done at 45± to the substrate surface, but at differen
orientations with respect to the patterned channels. 30
of 99.999% pure Al are evaporated in the direction
one set of wires (the “horizontal” set). Al accumulate
on the substrate only along those horizontal wires beca
the PMMA shadows the “vertical” wires. 150 mTorr o
O2 is bled into the chamber, and an oxygen plasma
ignited for 20 min to grow an AlOx barrier. After pumping
out the O2, the sample is rotated so that the second a
third evaporations (30 nm of Al each) are done in th
direction of the “vertical” wires, going “up” for the second
evaporation and “down” for the third, to ensure that th
vertical lines are continuous where they “climb” over th
horizontal wires. A lift-off completes the process. Thi
shadow evaporation technique yields very high quali
underdamped junctions which are a major improveme
over those from the previous fabrication technique [2].

The typical single junction resistance isRJJ
N ­ 70 kV

which corresponds [6] to an unfluctuated critical curre
i0
c of 5.6 nA, orEJsT ­ 0dykB ­ 0.13 K. Junction uni-

formity, measured from single junctions cofabricated wi
the arrays, is approximately615%. The lead configura-
tion is shown in the inset of Fig. 2. Current is injecte
in the first wire of one set, and extracted from the la
wire of that same set. We report data on two arrays: o
consisting of9 3 9 wires (8 3 8 cells) and the other of
18 3 18 wires (17 3 17 cells).

The arrays are cooled to 315 mK in a3He cryostat
within a doublem-metal shield which reduces the stra
field to less than 50 mG. (A field of 5.2 G corresponds
an-
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FIG. 2. Voltage-current plot at 0.315 K in zero field of the
17 3 17 cell array. The dashed line corresponds to sweepin
current up, the solid line to sweeping current down. There is
finite slope at zero bias, too small to be seen on the graph. T
inset is a schematic diagram of the lead configuration used
current injection and voltage measurement.

f ; FcellyF0 ­ 1 for our 2 mm spacing.) Temperature
stability is better than 3 mK below 2 K. A small magnetic
field is applied perpendicular to the array using a soleno
surrounding the vacuum can of the cryostat. Screeni
by the array can be neglected becausei0

c is so small.
Quantitatively, the ratio of the maximum flux screene
by the array to the flux quantum is much less than on
N2Lgi0

cyF0 ø 3 3 1023 ø 1, for N ­ 18 and where
Lg ø 4 pH is the geometric inductance of a single ce
in the array, modeled as a superconducting square was
[7]. Considerable care was taken to ensure that the arra
are well shielded from rf and microwave radiation by th
use of a shielded room, room-temperature low-pass LCP

filters, cold resistors, and cold microwave filters [8].
The current-voltage (I-V ) curves for single junctions

cofabricated with the arrays do not show a well-define
critical current at 0.3 K becauseEJ , kBT , and hence
a finite resistance is observed for all bias currents. Th
arrays, on the other hand, consisting of many junction
in parallel, do show, at least at the lowest temperature
a well-defined critical current and strong hysteresis, a
expected from underdamped junctions. Figure 2 show
an I-V curve for the 17 3 17 array at f ­ 0. The
two jumps in voltage to2Dye and 4Dye (where D is
the superconducting gap) correspond to all the junctio
connected to one, then the other, of the current injectio
wires going normal. The unfluctuated zero-temperatu
array critical currentsI0

c ­ Ni0
c (,60 nA for the 9 3 9

wire array,,100 nA for the 18 3 18 wire array) are so
small that the measuredIc will be significantly less than
I0

c due to thermal fluctuations. The measuredIc actually
corresponds to a jump from a finite-voltage (of orde
1 mV) phase-diffusion branch [9] to2Dye at a current
value which is affected by damping as well asEJ andT .

We therefore focus instead on the differential resistan
Rd ­ dVydI (at zero dc bias) as a function of field and
2325
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temperature since it should be a better measure of the z
current phase coupling of the array (and henceTc). Rd is
measured using a PAR 124 lock-in amplifier at 15.6
with an excitation current of 0.2 nA (corresponding
,Icy10). Figure 3 showsRd vs f ; FcellyF0 plots for
several temperatures from 0.4 to 1.7 K for the17 3 17
cell sample. The curves arenot offset. BecauseRds fd
is periodic in f and symmetric aroundf ­ 1y2, we
only plot Rds fd for f ranging from 0 to 1y2. Rds fd
displays minima atall commensurate fields wheref ­
pyq, p and q being integers smaller thanN. The f ­
1y17 andf ­ 1y16 states are not clearly resolved but a
other commensurate states are clearly present (such
for instance, all other multiples of 1y17, like 2y17 and
3y17). All the measured positions of the resistance mini
are within less than1024 3 F0 from the ideal computed
commensurate field values. We observe very sim
behavior for the8 3 8 cell array, with resistance minima
at f ­ 1y8, 1y7, . . . . It is a characteristic feature of ALR
that such strong and detailed structure in theRds fd curve
is visible. Standard 2D arrays do not exhibit such richn
of structure because they do not have the long-range o
needed to support a stable vortex superlattice with suc
large lattice constant (e.g., 17 cells).

The deepest resistance minima occur at the m
strongly commensurate states:f ­ 0, 1y2, 1y3, 1y4.
The shape of theRds fd curve is very similar near all
of these states (see Fig. 3). The full widths of t
resistance dips (i.e., the field intervals between lo
maxima on either side of the dips) scale as1yq, with
q ­ 1, 2, 3 . . . . Near integer f (e.g., f ­ 0, 1, 2 . . .)
where q ­ 1, the resistance increases smoothly fro
f ­ n until f ­ n 6 f1ysN 2 1dg, i.e., the first adjacent
commensurate state, giving a modulation-free half-wid

FIG. 3. Plot of zero-bias differential resistance of the17 3 17
cell array vs normalized fluxf, measured with a 0.2 nA ac
excitation, for selected temperatures. The curves arenot offset.
From the lowest to the highest curve, the temperatures
0.417, 0.702, 0.797, 0.959, 1.047, 1.13, 1.212, 1.288, 1
1.51, and 1.69 K. The local minima in resistance occur with
1024 3 F0 of all the commensurate flux values, i.e., atall
f ­ pyq wherep andq are integers between 1 and 17.
2326
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of 1ysN 2 1d. Corresponding behavior occurs near oth
strongly commensurate states.

Rds fd was measured for 20 temperatures between 0.3
and 1.8 K, of which 11 are shown in Fig. 3. As th
temperature is increased,Rds fd increases and the relative
amplitudes of the resistance oscillations decrease unti
higher temperatures (but with the wires still supercondu
ing) Rds fd saturates at the normal state resistance of
array R

array
N ­ 2RJJ

N y18. In order to extractTcs fd from
the Rds fd vs T data, we make use of the finite width o
the resistive transition. Wedefinethe experimentalTc us-
ing a resistive criterion; for each field value,Rd is plotted
vs T , andTc is taken to be the temperature at whichRd

interpolates toeRN , ande is a number between 0 and 1
Automating this process produces the top two curves
Fig. 4 of Tcs fd for e ­ 0.5 (top curve) ande ­ 0.375
(middle curve). For values ofe between approximately
0.4 and 0.8, the inferredTc scales almost linearly withe.

The bottom curve is the result of a mean-field calcul
tion of TMF

c s fd for a 17 3 17 cell array. TMF
c sfd is the

temperature above which the order parameterhi ; keiwi l
is equal to 0, wherewi is the phase of theith wire and the
brackets denote a thermal average. There are no free
rameters in this calculation, which consists of using an
ficient scheme to find the largest eigenvalue of a17 3 17
matrix given by Eq. (19) of Ref. [3] for each of 1000 field
values shown. The eigenvalue problem is solved assu
ing a temperature-independentEJ , andTMF

c is finally cor-
rected to account forEJsT d, which varies by,30% over
the temperature range of interest.

The data and mean-field theory curves are in go
agreement, both for the17 3 17 cell array in Fig. 4, and
for the 8 3 8 cell array (not shown). The maxima in
the experimentalTcs fd obviously occur at commensurat

FIG. 4. Plot of the temperatureTc corresponding to the
onset of macroscopic phase coherence vs normalized fluf
for the 17 3 17 cell array. The top two curves (data) ar
computed from the differential resistance vs field data by usi
a resistive transition criterion forTc of 0.5R

array
N (top curve) and

0.375R
array
N (middle curve). The lower curve is the result of

mean-field calculation ofTMF
c s fd.
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fields to the same high accuracy as the minima
the resistive data do, since the critical temperature w
extracted from theRds fd curves. The mean-field theory
also predicts local maxima inT MF

c at all commensurate
fields: we find that the positions of the clearly discernib
maxima in the experimentalTcs fd and TMF

c agree to
better than one part in104. As can be seen in Fig. 4,
the lower resistance criterion gives better quantitati
agreement with the mean-field theoryTMF

c , which is
always below the experimentalTc (and is defined slightly
differently). We cannot use a resistive criterion of les
thane ø 0.37 over the whole field range because at lo
temperatures, forf fi 0, the array resistance saturates
a nonzero value (up toø3 kV for incommensuratef),
probably due to macroscopic quantum tunneling of t
phases.

In order to compare the experimentalTc ’s of the 18 3

18 wire and9 3 9 wire arrays, we must first account fo
the temperature dependence ofEJ in order to obtainTp

c ,
the transition temperature one would observe ifEJ were
constant and the same for both arrays. Forf ­ 0 we then
obtainTp

c,18yTp
c,9 ­ 1.9, usinge ­ 0.375 to determineTc

for both arrays. This is very close to the theoretical val
of 18y9 ­ 2, indicating thatTc does indeed scale with
system sizeN.

Having verified the mean-field prediction forTcs fd, we
now briefly discuss the ground-state phase configuration
the wires at zero temperature. In the absence of screen
we can write the following simple expressions for th
phases of each wire atx ­ ja andy ­ ka at zero applied
current:

wH
k ­ wH

0 1 2pfNk ,

wV
j ­ wV

0 1 2pfkj .

w
H
k is the phase of thekth horizontal wire (constant along

the wire) andw
V
j is the phase of thejth vertical wire

(depends linearly on the positiony along the wire). The
only free parameter isDw

HV
0 ­ w

H
0 2 w

V
0 . The system

energyE is

E ­ 2

N21X
k,j­0

cosswH
k 2 wV

j d .

The ground-state energy is found by minimizingE numeri-
cally as a function ofDw

HV
0 for each field. OnceDw

HV
0 is

found, all the phase differences are then determined. T
local extrema of both2Emins fd andTMF

c s fd occur at ex-
actly the same fields, with very similar relative amplitude
indicating that the above simple expressions for the pha
of the wires do indeed describe the phases very accurat

It is very difficult to probe the glassiness of this syste
using transport measurements because the phases un
as soon as a small transport current is applied. Ev
though the arrays are biased well belowIc, a finite voltage
develops across the system because of phase diffus
in
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Phase diffusion is unavoidable in the small (i.e., low
capacitance) and weak junctions required to conform
the model conditions. Since the phases are evolving
kdwydtl ­ 2eVdcyh̄, they cannot lock. Hence individual
metastable states, the presence of which would confi
the presence of a glass, cannot be probed using
transport technique. For instance, we observe the samIc

at every field cool, while trapping into different metastab
states should give a range of measured critical curren
Similarly, the Tc we measure reflects an average ov
many configurations and thus reveals very little about t
glassiness of the array.

In conclusion, we have fabricated Josephson juncti
arrays with long-range interaction and extremely wea
critical currents. A mean-field theory provides an excelle
description of this system because every wire has a la
number of nearest neighbors (9 or 18 for the arra
presented here). Our data forTcs f, Nd are in very good
agreement with the mean-field calculation: we find th
Tcs f ­ 0d scales with system size and observe very stro
commensurability effects. The array differential resistan
at zero dc bias exhibits minima atall commensurate
fields, displaying far more complex, but well understoo
structure than standard 2D arrays or wire networks.
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