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Transition Temperature of Josephson Junction Arrays with Long-Range Interaction
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We report measurements of the dependence on magnetic field and array size of the resistive transition
of Josephson junction arrays with long-range interaction. Because every wire in these arrays has a
large number of nearest neighbors (9 or 18 in our case), a mean-field theory should provide an excellent
description of this system. Our data agree well with this mean-field calculation, which predicts that
T. (the temperature below which the array exhibits macroscopic phase coherence) shows very strong
commensurability effects and scales with array size. [S0031-9007(97)04071-4]

PACS numbers: 74.50.+r

We report an experimental investigation of orderedcritical currents, we can writd = 0, where J is the
Josephson junction arrays with long-range interactiorturrent density in the wiresJ is given by the Ginzburg-
(ALRI), of the sort originally proposed in the disordered Landau expression
limit by Vinokur et al.[1]. Although such arrays had e 2¢
been fabricated by Sotet al. [2], the samples used in the J=— |‘1’|2<EV¢ - — A>,
present Letter for the first time have low enough critical n ¢
currents and hence low enough screening to be in thethereV is the order parameter of the wires. With our
regime well described by existing theoretical models [3,4]gauge choice, settinfjto zero implies that the phases’

These arrays consist of two perpendicular setsVof of the vertical wires are position dependent Witp" =
parallel superconducting wires, coupled by Josephso fx/a%y, while the phaseg! of the horizontal wires
junctions at every point of crossing (see Fig. 1). Inare constant. Above the transition temperatiife the
this geometry, any horizontal (vertical) wire is nearestphases of the wires are uncorrelated. However, when the
neighbor to all vertical (horizontal) wires, and next- array is cooled beloW,, a transition to a macroscopically
nearest neighbor tall other horizontal (vertical) wires. phase coherent state is predicted to occur.

Hence we term the interaction long range. The number For an ordered array with long-range interaction in the
of nearest neighbors in these arrays is equal to the arrdinit of negligible screening, Sohet al.[3] have per-

size N. This is in sharp contrast to standard (short-formed a mean-field analysis and computed the transition
range interaction) 2D arrays where the number of nearesemperature’™F( f) as a function of the applied field and
neighbors (typically 4 or 6) is independent of array size. array size. Because each wire has a large number of near-

Arrays with long-range interaction were first proposedest neighbors, a mean-field theory using the phase of each
by Vinokur et al.[1] as a physical realization of the wire as a classical thermodynamic variable should provide
Sherrington-Kirkpatrick (SK) model [5], which is an a good description of this system. At zero field they find
analytically studied model of a spin-glass. The SKT. = NE,(T = T.)/2kg, whereE,(T) = hi.(T)/2e and
model assumes the interaction between spins does not(T) is the (unfluctuated) critical current of a single junc-
depend on the separation between the spins, and therefdfen at temperaturd’. Note the unusual result thdt,
does not describe most experimentally studied spin-glasshould scale with theizeof the array. To keeff. of the
systems. Vinokueet al. showed that for the case where array well belowZ¥', one requireV/ii® < 4ekpgT ™,
the wires are positionally disordered and a sufficientlywherei® isi.(T = 0). The computations of Refs. [1], [3],
strong perpendicular magnetic field is applied, ALRI areand [4] only hold in the limit of negligible screening, where
very similar to the SK model and admit an analytic
solution. More recently, Chandret al. [4] have shown Josephson
that even for amrderedarray, glassy behavior is expected Junction

in a very weak field (less than one flux quantum per row).
The equivalent of “spins” in these ALRI are the phases superconductor
of the superconducting wires, which are well defined in
any given gauge. Since field screening is negligible, the
actual field equals the applled field, and we can make
the gauge choicA = fx®,/a’§, wherea is the lattice

constant andf is the flux per cell divided by a flux FIG. 1. Schematic drawing of a 2 wire by 3 wire array with
quantum. In the appropriate limit where the junction|ong-range interaction. There are Josephson junctions at every
critical currents are negligible compared to the wirecrossing point of the superconducting wires.
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the array as a whole screens much less than one flux quan-
tum @, and in the limit when phase gradients along the
wires due to current flow are much less than phase drops i
at the junctions. The former condition can be written as 0.5¢ l T
N2L,i? < ®,, whereL, is the geometric inductance of I 3
a cell in the array. The latter condition can be expressed 0.0f14 i
Lo

1.0 @

as jjunction « jwire - These three inequalities place very i
strong limits on the magnitude & for givenN. 05
In the experimental work of Sohn and co-workers, ]
Nhi/4ekpT?™ ~ 300 and N?L,i%/®, ~ 10°. Hence ol .
their samples were not in the regime defined by the above- 1 U SO B
mentioned theories. We present here the first measure- 100 30 0 50 100
ments of ALRI with critical currents small enough (of Current (nA)
order 5 nA) to be in the limit of extremely weak screening,FIG. 2. Voltage-current plot at 0.315 K in zero field of the
and to have an array, well below the wire critical tem- 17 X 17 cell array. The dashed line corresponds to sweeping

perature. Our data show impressive agreement with th urrent up, the solid line to sweeping current down. There is a
inite slope at zero bias, too small to be seen on the graph. The

mean-field theory, including extremely strong commensUsnget is a schematic diagram of the lead configuration used for
rability effects. . current injection and voltage measurement.

The samples consist 6125 wm wide Al wires ('™ =~
1.7 K) connected by Al-AIQ-Al junctions, fabricated as
follows. A gridlike pattern of lattice constar®t um is  f = ®..;;/Py = 1 for our2 um spacing.) Temperature
defined using electron-beam lithography on a Si wafestability is better than 3 mK below 2 K. A small magnetic
coated with polymethyl methacrylate (PMMA). A three- field is applied perpendicular to the array using a solenoid
angle shadow evaporation technique is used to depossurrounding the vacuum can of the cryostat. Screening
both sets of wires sequentially without breaking vacuumpy the array can be neglected becau$eis so small.
using only the single lithography step. The evaporationQuantitatively, the ratio of the maximum flux screened
are done at 45to the substrate surface, but at differentby the array to the flux quantum is much less than one:
orientations with respect to the patterned channels. 30 niN?L,i%/®, =3 X 1073 < 1, for N = 18 and where
of 99.999% pure Al are evaporated in the direction ofL, = 4 pH is the geometric inductance of a single cell
one set of wires (the “horizontal” set). Al accumulatesin the array, modeled as a superconducting square washer
on the substrate only along those horizontal wires becaugé]. Considerable care was taken to ensure that the arrays
the PMMA shadows the “vertical” wires. 150 mTorr of are well shielded from rf and microwave radiation by the
O, is bled into the chamber, and an oxygen plasma isise of a shielded room, room-temperature low-pasdLC
ignited for 20 min to grow an AlQbarrier. After pumping filters, cold resistors, and cold microwave filters [8].
out the Q, the sample is rotated so that the second and The current-voltage/¢V) curves for single junctions
third evaporations (30 nm of Al each) are done in thecofabricated with the arrays do not show a well-defined
direction of the “vertical” wires, going “up” for the second critical current at 0.3 K becausg; < k3T, and hence
evaporation and “down” for the third, to ensure that thea finite resistance is observed for all bias currents. The
vertical lines are continuous where they “climb” over thearrays, on the other hand, consisting of many junctions
horizontal wires. A lift-off completes the process. Thisin parallel, do show, at least at the lowest temperatures,
shadow evaporation technique yields very high qualitya well-defined critical current and strong hysteresis, as
underdamped junctions which are a major improvemenéxpected from underdamped junctions. Figure 2 shows
over those from the previous fabrication technique [2]. an I-V curve for the17 X 17 array at f = 0. The

The typical single junction resistanceRf/ = 70 kQ  two jumps in voltage t2A/e and 4A/e (where A is
which corresponds [6] to an unfluctuated critical currentthe superconducting gap) correspond to all the junctions
i% of 5.6 nA, orE;(T = 0)/kg = 0.13 K. Junction uni- connected to one, then the other, of the current injection
formity, measured from single junctions cofabricated withwires going normal. The unfluctuated zero-temperature
the arrays, is approximatety 15%. The lead configura- array critical currentd? = Ni% (~60 nA for the 9 X 9
tion is shown in the inset of Fig. 2. Current is injected wire array,~100 nA for the 18 X 18 wire array) are so
in the first wire of one set, and extracted from the lastsmall that the measureld will be significantly less than
wire of that same set. We report data on two arrays: oné’ due to thermal fluctuations. The measufgedictually
consisting of9 X 9 wires @ X 8 cells) and the other of corresponds to a jump from a finite-voltage (of order
18 X 18 wires (17 X 17 cells). 1 uV) phase-diffusion branch [9] t@A/e at a current

The arrays are cooled to 315 mK in3&e cryostat value which is affected by damping as well AsandT.
within a double u-metal shield which reduces the stray We therefore focus instead on the differential resistance
field to less than 50 mG. (A field of 5.2 G corresponds toR; = dV/dI (at zero dc bias) as a function of field and

Voltage (mV)

2325



VOLUME 79, NUMBER 12 PHYSICAL REVIEW LETTERS 22 BPTEMBER1997

temperature since it should be a better measure of the zerof 1/(N — 1). Corresponding behavior occurs near other
current phase coupling of the array (and hefice R;is  strongly commensurate states.
measured using a PAR 124 lock-in amplifier at 15.6 Hz R,( f) was measured for 20 temperatures between 0.315
with an excitation current of 0.2 nA (corresponding toand 1.8 K, of which 11 are shown in Fig. 3. As the
~1./10). Figure 3 showsR, vs f = d.. /Py plots for  temperature is increasel,( f) increases and the relative
several temperatures from 0.4 to 1.7 K for the X 17  amplitudes of the resistance oscillations decrease until at
cell sample. The curves armt offset. Becaus&,(f)  higher temperatures (but with the wires still superconduct-
is periodic in f and symmetric around® = 1/2, we ing) R,( f) saturates at the normal state resistance of the
only plot Ry(f) for f ranging from O to 2. R.(f) arrayRy ° = 2R3/ /18. In order to extract,( f) from
displays minima atll commensurate fields where = the R,(f) vs T data, we make use of the finite width of
p/q, p and g being integers smaller thaN. The f =  the resistive transition. Weefinethe experimental’. us-
1/17 andf = 1/16 states are not clearly resolved but all ing a resistive criterion; for each field valug, is plotted
other commensurate states are clearly present (such ag T, and7. is taken to be the temperature at whikj
for instance, all other multiples of/17, like 2/17 and interpolates toeRy, ande is a number between 0 and 1.
3/17). All the measured positions of the resistance minima\utomating this process produces the top two curves of
are within less thal0~* X ®, from the ideal computed Fig. 4 of T.( f) for € = 0.5 (top curve) ande = 0.375
commensurate field values. We observe very similaymiddle curve). For values of between approximately
behavior for the8 X 8 cell array, with resistance minima 0.4 and 0.8, the inferref. scales almost linearly witk.
atf =1/8,1/7,.... Itis a characteristic feature of ALRI  The bottom curve is the result of a mean-field calcula-
that such strong and detailed structure in &y f) curve  tion of TMF( f) for a 17 X 17 cell array. TMF(f) is the
is visible. Standard 2D arrays do not exhibit such richnesgemperature above which the order parametes (¢'¢)
of structure because they do not have the long-range ordé equal to 0, where; is the phase of thih wire and the
needed to support a stable vortex superlattice with such lsrackets denote a thermal average. There are no free pa-
large lattice constant (e.g., 17 cells). rameters in this calculation, which consists of using an ef-
The deepest resistance minima occur at the modicient scheme to find the largest eigenvalue affax 17
strongly commensurate stateg:= 0, 1/2, 1/3, 1/4.  matrix given by Eq. (19) of Ref. [3] for each of 1000 field
The shape of theR,( f) curve is very similar near all values shown. The eigenvalue problem is solved assum-
of these states (see Fig. 3). The full widths of theing a temperature-independdiyt, and7MF is finally cor-
resistance dips (i.e., the field intervals between locatected to account foE;(T), which varies by~30% over
maxima on either side of the dips) scale B&;, with  the temperature range of interest.
g=1,2,3.... Near integerf (e.g., f =0,1,2..)) The data and mean-field theory curves are in good
where ¢ = 1, the resistance increases smoothly fromagreement, both for th&7 X 17 cell array in Fig. 4, and
f=nuntlf=n=[1/(N— 1)], ie., the first adjacent for the 8 X 8 cell array (not shown). The maxima in
commensurate state, giving a modulation-free half-widtithe experimental’, ( f) obviously occur at commensurate
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FIG. 3. Plot of zero-bias differential resistance of tlvex 17 ]

cell array vs normalized fluy’, measured with a 0.2 nA ac FIG. 4. Plot of the temperaturd. corresponding to the
excitation, for selected temperatures. The curvesateffset. ~ onset of macroscopic phase coherence vs normalized fflux
From the lowest to the highest curve, the temperatures arfor the 17 X 17 cell array. The top two curves (data) are
0.417, 0.702, 0.797, 0.959, 1.047, 1.13, 1.212, 1.288, 1.3%omputed from the differential resistance vs field data by using
1.51, and 1.69 K. The local minima in resistance occur withina resistive transition criterion faf. of 0.5Ry - (top curve) and
1074 X @, of all the commensurate flux values, i.e., @t  0.375Ry ° (middle curve). The lower curve is the result of a

f = p/q wherep andq are integers between 1 and 17. mean-field calculation of MF( f).
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fields to the same high accuracy as the minima irPhase diffusion is unavoidable in the small (i.e., low-
the resistive data do, since the critical temperature wasapacitance) and weak junctions required to conform to
extracted from the®,( f) curves. The mean-field theory the model conditions. Since the phases are evolving as
also predicts local maxima iMF at all commensurate (d¢/dt) = 2eVy./h, they cannot lock. Hence individual
fields: we find that the positions of the clearly discerniblemetastable states, the presence of which would confirm
maxima in the experimental.(f) and TMF agree to the presence of a glass, cannot be probed using our
better than one part in0*. As can be seen in Fig. 4, transport technique. For instance, we observe the $ame
the lower resistance criterion gives better quantitativeat every field cool, while trapping into different metastable
agreement with the mean-field theo®MF, which is states should give a range of measured critical currents.
always below the experimentd] (and is defined slightly Similarly, the T. we measure reflects an average over
differently). We cannot use a resistive criterion of lessmany configurations and thus reveals very little about the
thane = 0.37 over the whole field range because at lowglassiness of the array.
temperatures, fof # 0, the array resistance saturates at In conclusion, we have fabricated Josephson junction
a nonzero value (up te=3 kQ) for incommensuratg’),  arrays with long-range interaction and extremely weak
probably due to macroscopic quantum tunneling of thecritical currents. A mean-field theory provides an excellent
phases. description of this system because every wire has a large
In order to compare the experimenfal's of the 18 X number of nearest neighbors (9 or 18 for the arrays
18 wire and9 X 9 wire arrays, we must first account for presented here). Our data f6r(f, N) are in very good
the temperature dependencekf in order to obtainZ, = agreement with the mean-field calculation: we find that
the transition temperature one would observ& jfwere  T.(f = 0) scales with system size and observe very strong
constant and the same for both arrays. Fer 0 we then commensurability effects. The array differential resistance
obtain7; 3/T:9 = 1.9, usinge = 0.375 to determinel,  at zero dc bias exhibits minima &l commensurate
for both arrays. This is very close to the theoretical valudields, displaying far more complex, but well understood,
of 18/9 = 2, indicating that7,. does indeed scale with structure than standard 2D arrays or wire networks.
system sizeV. We wish to thank R.J. Fitzgerald and M.A. ltzler
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