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Abstract

This work is motivated by an industrial interest in gaining a better understand-
ing of the phase transformations that govern the mechanical properties of 18-
carat gold alloys commonly used in jewelry applications and luxury watchmak-
ing. These alloys fall in one of two categories: yellow gold based on the gold-
copper-silver system and white gold based on gold-copper-palladium, but may
contain further alloying elements that improve color, castability, strength, and
wear resistance.

In this thesis, selected alloys from the two series are studied, primarily by me-
chanical spectroscopy. The analysis and interpretation of the experimental data
identifies three important anelastic relaxations (internal dissipation processes),
which dominate the mechanical loss spectrum of each of these materials above
room temperature.

A Zener relaxation, due to directional ordering of atoms in the substitutional
solid solution, occurs at intermediate temperatures, between 550 K and 700 K
depending on the alloy. Near an order-disorder transition, the Zener relaxation
increases markedly in strength when approaching the transition temperature
from above, and breaks down when the materials forms the long-range ordered
phase below it. In a preliminary study on a Au-Cu alloy (close to the equiatomic
composition), this behavior is, for the first time, directly documented by mea-
surements of the mechanical loss in isothermal conditions. It is demonstrated
that this experimental method provides a precise value of the transition tem-
perature as well as useful data of the transformation kinetics. The Zener relax-
ation in yellow gold alloys (of sufficiently high copper content) exhibits the same
characteristics. These materials harden because they form an ordered phase of
tetragonal symmetry like AuCu. Compared to Au-Cu, the addition of silver re-
duces the transition temperature. Furthermore, it is concluded that no atomic
ordering occurs in the white gold alloys.

Above 700 K, the mechanical loss spectrum of 18-carat gold features an anelastic
relaxation peak that is shown to be caused by the sliding of grain boundaries.
The analysis of this part of the spectrum exposes the age-hardening mechanism
acting in some of the white gold alloys. Their composition is such that they form
a second phase that precipitates as fine particles. Particles segregating on grain
boundaries block the sliding and the grain boundary relaxation peak subsides,
leaving only the high-temperature background. The background is created by
vibration of bulk dislocations. Precipitates forming inside the grains pin these
dislocations, which explains the increased resistance to plastic deformation in
the age-hardened state.

Keywords: 18-carat, gold, mechanical spectroscopy, anelasticity, internal friction, Zener re-
laxation, stress-induced ordering, directional ordering, atomic ordering, order-disorder, grain

boundary sliding, precipitation hardening



Résumé

Ce travail est motivé par un intérét industriel de mieux comprendre les trans-
formations de phase qui regissent les proprietés mécaniques des alliages d’or
18 carats couramment utilisé en joaillerie et horlogerie de luxe. Ces alliages se
divisent en deux catégories : 1’or jaune basé sur le systeme or-cuivre-argent et
’or gris basé sur or-cuivre-palladium, mais peuvent contenir des élements d’al-
liage supplémentaires permettant d’améliorer la couleur, de faciliter la coulée ou
encore d’augmenter la résistance a 1'usure.

Dans cette these, des alliages de ces deux séries sont étudiés, principalement
par spectroscopie mécanique. Grace a l’analyse et l'interprétation des données
expérimentales, trois phénomenes de relaxation anélastique (processus de dis-
sipation interne), qui dominent les spectres de pertes mécaniques au-dessus de
la température ambiante, sont identifiés comme importants pour les propriétés
mécaniques de ces matériaux.

Un pic de relaxation de Zener, dii a la mise en ordre directionnel d’atomes dans
la solution solide, apparait a température intermédiaire, entre 550 K et 700 K en
fonction de I’alliage. Au-dessus de la température critique d’une transition ordre-
désordre, I'intensité de la relaxation de Zener augmente de maniere accrue. Par
contre, la relaxation disparait quand la phase ordonnée se forme. Dans une étude
préliminaire d’un alliage Au-Cu (proche de la composition equiatomique), ce
comportement est observé, pour la premiere fois, de maniere directe grace a
des mesures des pertes mécaniques en conditions isothermes. Il est montré que
cette méthode expérimentale fournit une valeur précise de la température de
transition ainsi que des informations sur la cinétique de la transformation. La re-
laxation de Zener dans I’or jaune (a condition que 1’alliage en question contienne
suffisamment de cuivre) montre les mémes caractéristiques. Ces matériaux dur-
cissent parce qu’ils forment une phase ordonnée de symétrie tétragonale tel que
AuCu. Par rapport a Au-Cu, ’addition d’argent réduit la température de tran-
sition. En outre, on conclut qu’il n’y a pas de mise en ordre atomique dans les
alliages d’or gris.

Au-dessus de 700 K, le spectre de pertes mécaniques d’or 18 carats présente un
pic de relaxation interprété par le glissement aux joints de grains. L'analyse de
cette partie du spectre revele le mécanisme de durcissement qui agit dans cer-
tains alliages d’or gris. Leur composition est telle qu’ils forment une phase se-
condaire qui précipite en particules fines. Les particules qui naissent aux joints
de grains bloquent le glissement de ceux-ci, ce qui fait que le pic de relaxation
décroit, ne laissant que le fond haute température. Ce fond est créé par la vibra-
tion de dislocations. Des précipités qui se développent a l'intérieur des grains
ancrent ces dislocations, ce qui explique la résistance élevée a la déformation
plastique dans I’état durci.

Mots-clés : 18 carats, or, spectroscopie mécanique, anelasticité, frottement intérieur, relaxation

de Zener, ordre directionnel, ordre atomique, ordre-désordre, joints de grains, précipitation



Zusammenfassung

Die vorliegende Arbeit bezieht ihre Motivation aus dem industrieseitigen In-
teresse an einem besseren Verstandnis der Phasentransformationen, die mafs-
geblich die mechanischen Eigenschaften jener 18-Karat-Goldlegierungen bestim-
men, welche iiblicherweise im Schmuckgewerbe und der Luxusuhrmacherei Ver-
wendung finden. Die Legierungen unterteilen sich in zwei Kategorien: Gelb-
gold, das auf Gold-Kupfer-Silber aufbaut, sowie Weilsgold, das auf Gold-Kupfer-
Palladium basiert, konnen aber weitere Legierungselemente enthalten, die dem
Zweck dienen, Farbe, GielSbarkeit, Festigkeit und Abnutzungsresistenz zu ver-
bessern.

In dieser Dissertation werden ausgewahlte Legierungen beider Serien unter-
sucht, in erster Linie per mechanischer Spektroskopie. Durch Analyse und Inter-
pretation der experimentellen Daten werden drei wichtige anelastische Relaxati-
onsarten (interne Dissipationsprozesse) unterschieden, die in all diesen Materia-
lien das mechanische Spektrum, ab Zimmertemperatur aufwarts, dominieren.

Eine Zener-Relaxation, verursacht durch direktionale Ordnung von Atomen in-
nerhalb der substitutionellen festen Losung, tritt bei mittleren Temperaturen
auf, zwischen 550 K and 700 K je nach Legierung. In unmittelbarer Umgebung
eines Ordnungs-Unordnungs-Ubergangs nimmt die Relaxation rasch an Intensi-
tat zu, solange man sich der kritischen Temperatur von oben her nahert. Unter-
halb jedoch, wenn sich die atomare Ordnung einstellt, bricht die Relaxation ein.
In einer vorbereitenden Studie an einer Au-Cu-Legierung (unweit der aquiato-
maren Zusammensetzung) wird dieses Verhalten zum ersten Mal durch direkte
Beobachtung dokumentiert, dank Messungen der mechanischen Verluste unter
isothermen Bedingungen. Es wird gezeigt, dass diese experimentelle Methode
dazu dienen kann, prazise die Ubergangstemperatur zu bestimmen, und dar-
uberhinaus Informationen uber die Kinetik der Phasentransformation liefert. Die
Zener-Relaxation in Gelbgold weist die gleichen Charakteristika auf, vorausge-
setzt der Kupferanteil ist ausreichend hoch. Diese Materialien harten deshalb,
weil sie eine geordnete Phase mit einer Ubergitterstruktur tetragonaler Sym-
metrie wie in AuCu ausbilden. Im Vergleich zu Au-Cu senkt der Silberanteil die
Ubergangstemperatur.

Oberhalb von 700 K weist das mechanische Spektrum von 18-karatigem Gold
einen Relaxationspeak auf, der vom Gleiten entlang der Korngrenzen herruhrt.
Die Analyse dieses Teils des Spektrums deckt den Hartungsmechanismus auf, der
in einigen der Weillgoldlegierungen zum Tragen kommt. IThre Zusammensetzung
muss dafur derart beschaffen sein, dass sich eine zweite Phase bildet und sich in
Form feiner Partikel abscheidet. Ausscheidungen, die an Korngrenzen anlagern,
blockieren den Gleitprozess und die Relaxation kommt zum Stillstand. Nur der
Hintergrund bleibt zuruck, der durch die Vibration von Versetzungen verursacht
wird. Ausscheidungen, die sich innerhalb der Korner absetzen, behindern die Be-
wegung der Versetzungen, was den erhohten Widerstand gegenuber plastischer
Verformung im geharteten Zustand erklart.
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Introduction

Since the dawn of human civilization, gold has been one of the most appealing
and sought-after elements of the periodic system. With its high corrosion resis-
tance — the defining quality of noble metals — it suggested itself as the base
material or protective coating of works and ornaments created to stand the test
of time. Its distinctive color stands out against the grayish monotony displayed
by most metals (the only other exceptions being copper and caesium). These
properties combined with its rarity qualifies gold as a precious metal — a percep-
tion that, to the casual observer, is further reinforced by its high specific weight.
Historically, gold has therefore become a standard for monetary exchange and
reserve assets in many parts of the world.

In the industrial age, gold found many a new application: in electronics for its
good conductivity and chemical passivity; in optics for its excellent reflectivity of
infrared light; and, more recently, in organic chemistry for the catalytic proper-
ties of gold nanoparticles. However, to this day the lion share of gold has been
and is being used for jewelry production. It accounted for 58% (2137.5 tonnes) of
global gold demands in 2008, and even 68% during the two preceding years. The
jewelry demand is roughly matched by the annual output of today’s gold mines
worldwide. [¢Pos]

Pure gold, with a Vickers hardness of only 20 to 30 HVI‘°! (depending on pu-
rity), is too soft for almost all jewelry purposes as the final product would easily
deform and show poor resistance to wear. It must thus be alloyed to achieve
reasonable hardness values, ideally 300 HV or more in the finished product. To
reassure customers, these gold alloys are hallmarked with their fineness (mass of
gold per thousand) or caratage (24 carat equaling 100 weight-percent). In many
countries legislation restricts tradable gold alloys to certain compositions. Most
high-quality jewelry is therefore made of 18-carat gold, an international stan-
dard caratage combining high value with good resistance to tarnish, corrosion,
and wear. [P72]

18-carat gold alloys exhibit a variety of colors, from the pale yellow gold-silver
to the rose-colored gold—copper or even the purple gold-aluminum.!cm-Casl In
jewelry and watch-making the most widely used alloys fall in either of two (sim-
plified) categories: the group termed yellow gold (also, and more aptly, named:
colored gold) refers to any gold-copper-silver alloy, while white gold comprises
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alloys that have been bleached in order to display a regular metallic, grayish
color like platinum or even steel.

Yellow gold alloys have a long tradition in jewelry and watch-making. Most
“golden” rings or watches are made from the 18-carat alloy containing 12.5
weight-% of each copper and silver, which imitates the color of pure gold. The
phase diagram of Au-Cu-Ag has been studied for almost 100 years.!"™ ! It is a
ternary alloy system of particular interest as it inherits the immiscibility gap from
the binary silver—copper alloys as well as the tendency to form ordered phases
from gold-copper. Both mechanisms, phase separation (into a silver-rich and a
copper-rich phase) and atomic ordering (within the copper-rich phase), may lend
the alloy a much desired property: age-hardenability.?*! An age-hardenable ma-
terial offers the advantage that the jeweler can work or machine the product in a
soft and ductile state (the annealed and quenched solid solution), and eventually
finish the product by means of a simple heat treatment rendering the material
hard and resistant. However, even in the finished product the material must meet
certain requirements as to its ductility. If it is too brittle, certain elements, like
clockwork springs or watchstrap pins, may not withstand the stresses they are
subject to in everyday situations, and break or crack. It is therefore important
to control the phase transformation process for any given alloy, which requires
knowledge of transition temperature and transition times.

White gold, when developed in the 1920’s, was initially designed to offer a
cheaper alternative to platinum for high-quality jewelry.[N°2] Traditionally, two
elements, nickel and palladium, have been used almost exclusively to bleach out
the characteristic color that gold confers its alloys — though alternative bleach-
ers have been tested and reviewed.[°“¢] Since the 1980’s nickel-containing al-
loys have largely fallen into disuse — and legislation banning them from jewelry
production was introduced in many countries — as more and more costumers
became sensitized to nickel and experienced highly discomforting allergic skin
reactions upon contact.[Ruo-Ro0] With palladium trading at prices comparable to
gold (fluctuating between as low as 20% to up to 300% of the gold price over the
past ten years), Pd-based white gold alloys may nearly miss their declared design
goal, but do, however, enjoy great popularity since the end of the 1990’s. %]
After this shift of demand and surge of the market, further research into the
mechanical property of modern white gold seems warranted.

The goal of this thesis is to contribute to a fundamental understanding of mod-
ern 18-carat gold alloys by studying the dynamic processes at the microstruc-
tural level. The method of choice for this endeavor is mechanical spectroscopy,
an experimental technique that probes the mechanical response of a specimen
(deformation/strain) to a periodic external excitation (applied stress). Being sen-
sitive to point defect relaxations, grain boundary sliding and dislocation motion,
it can yield data on atomic diffusion as well as the mobility of the two mediators
of plastic deformation, grain boundaries and dislocations. While the primary ob-
jective is to present a comprehensive interpretation of the mechanical spectra,
further emphasis will be placed on implications with regard to the mechanical
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properties of the alloys, namely the detection of phase transformations (phase
separation, atomic ordering, precipitation of second phase particles) that may
be exploited to optimize material properties such as hardness and ductility. The
yellow golds, as the better known alloy system, will serve as a starting point of
this study and as a yardstick for the metallurgy of the white gold alloys.

Research for this thesis was part of a project funded by the Swiss Confeder-
ation’s Innovation Promotion Agency (CTI/KTI)! that promotes knowledge and
technology transfer between companies and universities. Our partner is Varinor,
a Swiss-based manufacturer that refines and processes gold alloys for the lux-
ury watch and jewelry industry. All 18-carat gold samples studied throughout
this work were provided by Varinor and can be considered a fairly representa-
tive selection of 18-carat yellow and white gold alloys currently available on the
market.

1Under grant number 7696.3 EPRP-IW.






Chapter 1

Materials

Carat gold has a long-standing tradition, dating back several centuries, as a bulk
material for jewelry®™ 2! and in watchmaking[™™*!. As such, it must meet metal-
lurgical demands imposed by the manufacturing process. Finely crafted pieces,
common in both domains, require a sufficiently ductile material, not too soft
but not too hard either, that can be precisely cut without bending at the edges or
fraying out. The finished products, on the other hand, should be as hard as possi-
ble so as to offer maximum resistance to wear and surface scratching. Polishing,
whenever needed, should produce smooth and shiny metallic surfaces that must
not be marred by inclusions or micro-cracks.

Two rather different series of 18-carat! gold alloys are the focus of this study:
yellow golds and white golds. As the names suggest, their distinguishing mark
is the color. Mechanical properties and color are both influenced to a great
extent by the alloying elements used besides gold. However, small variations
in composition may alter the mechanical properties drastically while the color
changes unnoticeably, or at least acceptably. One can therefore try to optimize
the mechanical properties while keeping the color intact.

1.1 Color

The color of a gold alloy — or any material for that matter — is the result of its
reflectivity as a function of the frequency of incident light, which in turn results
directly from its electronic band structure. Photons are absorbed as electrons
undergo interband transitions to (unpopulated) or from (populated) states near
the Fermi level. For most metals, such transitions require energies in excess of
3 eV so that visible light cannot be absorbed and must be reflected.

In the periodic table, copper, silver and gold can be found in periods 4, 5 and 6,
respectively, all in the same group, 11. Obviously, their electronic structures are
very similar. Simply put, they have (five) fully occupied, rather flat d-bands below

124 carats equal 100 weight percent. In North America, the spelling “karat” has become the
norm, in an effort to distinguish it from the homonymic weight unit (equaling 200 mg) for
gemstones. Common acronyms are ct, kt, or even just k.
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Figure 1.1: Colors exhibited by Au-Cu-Ag (Au 5125, top) and an 18-carat yellow gold
(after ref. Leyg, reproduced from Ragg). containing 12.5% silver (Au 318, bottom).

a half-filled s-band, the conduction band. Higher bands are far up in energy so
that the position of the highest d-band with respect to the Fermi level, which
intersects only the s-band, effectively determines the absorption threshold in the
spectrum of light.[AM15] This threshold is lowest in copper (2.0eV), followed by
gold (2.3 eV), then silver (4.0 eV), making copper red (absorbing green to blue),
gold yellow (absorbing blue) and silver white (reflecting all). [5277-AM "]

In general, studying the band structure of alloys is a difficult endeavor. Strictly
speaking, translational symmetry is lost in a disordered alloy and consequently
the Bloch theorem no longer applies. In other words, the Bloch wave vector k is
not a good quantum number and merely denotes a state of finite lifetime. How-
ever, while the eigenstates will depend on the actual atomic configuration, all
macroscopic physical observables should remain in the immediate vicinity of the
ensemble average. Therefore, a common approach to tackle the problem of non-
periodicity is to find an effective medium that yields the same expectation values
as the random alloy. This is known as the Coherent Potential Approximation5°7],
Eigenstates can again be classified in terms of k, but new quasi-particles (collec-
tive excitations) may emerge.

However, if the band structures of the constituents are as similar as they are in
the case of gold, silver and copper!®"], a good, yet simple approach is the Virtual
Crystal Approximation: the new (virtual) eigenstates are superpositions of the
corresponding eigenstates in the pure metals, weighted with their respective
atomic concentrations. Namely, alloying gold with silver will shift the d-bands
down in energy, while copper shifts them up. Just like a painter mixing paints of
different colors on a palette, one can thus obtain any shade between the yellow
of gold, the red of copper and the white of silver by choosing the appropriate
(atomic) percentages of the three constituents. This is illustrated on the ternary
diagram? in figure 1.1.

2In a ternary diagram, the content of a given component goes from 100% in the labeled corner
to zero all along its opposite edge, with isolevel lines parallel to the edge.
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mass fraction (%) | atom fraction (%)
Au Cu Ag Au Cu Ag
Au118 | 75.0| 4.0 | 21.0|59.6 | 9.9 | 30.5
Au?218 | 75.0| 9.0 | 16.0|56.8 | 21.1 | 22.1
Au 318 | 75.0 | 12.5]12.5|54.9 | 284 | 16.7
Au 3418 | 75.0 | 15.0 | 10.0 | 53.7 | 33.3 | 13.1
Au 418 | 75.0 | 16.0 | 9.0 | 53.2 | 35.2|11.7
Aub518 | 75.0 | 20.5| 4.5 | 51.1 |43.3| 5.6
Au 5618 | 75.0 | 21.5| 3.5 | 50.7 | 45.0 | 4.3

alloy

Table 1.1: Nominal composition of the yellow gold alloys studied in this work.

Alloying gold with metals from group 10 of the periodic system, the platinum
group, such as nickel, palladium and platinum itself, has a whole different ef-
fect on the color. These transition metals are one electron short of a complete
d-shell. In the pure metals, not only the s-band but also the d-bands extend be-
yond the Fermi energy. [AMP] The mixing of the impurities’ d-levels with the gold
matrix’s s-band produces new quasi-particles of finite lifetime: virtually bound
states.!F5#:Ca3] They correspond to conduction electrons being trapped by an im-
purity atom’s (screened) d-level and scattered back into the conduction band,
which all in all lowers their energies, but not enough to bind them permanently.
The virtually bound states are at 0.8 eV (infra-red) for Au-Nit**7l and 1.6 eV (red)
for Au-Pd™aesl helow the Fermi level. Thus, these resonances absorb light that
is otherwise reflected by gold, i.e. they whiten gold by flattening the reflec-
tivity’s frequency profile. Compared to silver, this bleaching mechanism is far
more efficient: at 12.5 weight-% palladium an 18-carat gold alloy is white, see
figure 1.2.

1.2 Yellow Gold

18-carat yellow gold alloys are essentially — and within the scope of this work:
exclusively — gold-copper-silver alloys with a 75% mass content of gold. In
atomic percentages, this corresponds to a gold content ranging from as low as
50% on the copper-rich end to up to 60% on the silver-rich end. Table 1.1 lists the
exact compositions of seven alloys on which measurements were performed.

Yellow golds (of any caratage) are often referred to as colored gold alloys since
they do, in fact, exhibit various hues and shades other than the one universally
associated with gold (cf. figure 1.1). The 18-carat alloys vary from pale yellow
(some say: greenish!“™l) on the silver-rich side to rose-colored on the copper-
rich side. A color standard has been developed with the German DIN 8238, an
extension of an earlier Swiss watch industry standard, that defines color codes
1IN through 5N by fixing the Au-Cu-Ag composition.[R°¢] These are reflected in
alloy designations such as “Au 318” in table 1.1, meaning an 18-carat gold alloy
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of color 3N. (The designation “3N18” is common as well.) The alloy (named here)
Au 3418 has an off-standard composition somewhere between 318 and 418.

In the previous section, the color palette offered by Au—-Cu-Ag was attributed to
a continuous variation of the band structure upon mixing the three very similar
elements. The electronic structure determines yet another aspect of practical
importance: the equilibrium phases. Whether an alloy tends to develop super-
structures of atomic order, separate in phases of different chemical composi-
tion, or retains a random configuration even in the medium and low temperature
range, depends largely on its electronic ground state and the stability thereof.
Here, however, the similarities end. As the experimental binary phase diagrams
in figures 1.3 through 1.5 suggest, all three of these tendencies play a role in the
ternary Au-Cu-Ag system.

In fact, silver is perfectly soluble in gold.!*9*%l No long-range order has been
observed in the bulk material.[°%®:! The ground state should nevertheless be or-
dered.©?¢! This is a consequence of the third law of thermodynamics which re-
quires that the entropy vanish when approaching absolute zero.!“"! However,
when the transition temperature is too low, as is the case here, the ground state
is kinetically inhibited. The mixing enthalpy per atom is —48 meV for the disor-
dered solid solution at equiatomic composition.[©%:!

Copper and silver, on the other hand, have a positive mixing enthalpy, about
104 meV per atom according to theoretical calculations.!°?*] That means, these
two atom species cannot lower their internal energy in the presence of each
other. As illustrated by the phase diagram in figure 1.4, only at very high temper-
atures, close to the solidus line, does the thermal entropy outweigh the mixing
enthalpy enough to dissolve one component in the other to some extent. Other
than that, the immiscibility gap spans virtually the entire composition range.
Hence, copper and silver repel each other in the solid solution and have a strong
tendency to form separate phases.

With —91 meV[©%¢! the mixing enthalpy of AuCu?® is even lower (greater in abso-
lute value) than that of AuAg, indicating an even stronger drive to form ordered
structures. Indeed, as the phase diagram in figure 1.5 shows, order-disorder
transitions occur over a wide composition range between 500 K and 700 K, i.e.
at temperatures where atomic diffusion remains fast enough to not hinder the
formation of long-range order.

Figure 1.6 illustrates the atomic configurations of the most prominent phases
appearing on the diagram. At all compositions the high-temperature phase («
phase) is a solid solution where gold and copper atoms are distributed nearly*
randomly over the sites of a face-centered cubic lattice (superstructure type:
Al). At 75 atomic-% gold or copper, the solid solution may transform into an
ordered structure that has the majority atoms sitting on the faces, the minority

3Throughout this work, designations such as Au-Cu (with a dash) will denote alloys of arbitrary
composition, while AuCu (just like a chemical formula) refers to the equiatomic alloy.

4Short-range order, i.e. non-perfect randomness of like or unlike neighbors, may be present in
the solid solution.
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Figure 1.7: Unit cell of the equiatomic AuCu II superstructure.

atoms at the corners of the unit cube (L1, type). In the so-called AuCu I phase of
equiatomic composition, gold and copper atoms occupy alternating {001} planes
(L1, type). It differs from the previous phases in that it breaks the cubic symme-
try and forms a tetragonal unit cell with an axis ratio of ¢c/a = (.92, i

Over the narrow temperature interval between 658 K and 683 K, above the ground
state AuCu I and below the high-temperature solid solution a-AuCu, the phase
AuCu II is stable. AuCu II is similar to AuCu I as its building blocks are L1, cells,
but with periodic anti-phase boundaries in either the [100] or [010] direction.
An anti-phase boundary delimits subdomains of same unit cell orientation but
with the sequence of Au and Cu planes out of step. The number of unit cells
between two successive anti-phase boundaries is generally denoted M. For the
AuCu II structure depicted in figure 1.7, M = 5 and the length of the orthogonal
unit cell is almost exactly b = 10a.Fe! In effect, AuCu II is an incommensurate
structure and M fluctuates statistically around some average value.["®»! In other
words, the regularly spaced anti-phase boundaries are not perfectly plane but
have random bumps and dents. The inherent disorder in this otherwise ordered
structure explains its intermediate thermodynamic position between the fully or-
dered AuCu I and the disordered a-AuCu. P!

To the left and right of the stoichiometric compositions Au3zCu, AuCu and AuCus,
the low-temperature ordered phase, while retaining its basic symmetry, will have
to incorporate a certain amount of substitutional disorder, i.e. some copper
atoms will populate the gold sublattice or vice versa. As for AuCu II, the anti-
phase periodicity M was found to vary continuously from 5 at the equiatomic
composition to up to 6.5.Feo]

The phase formation trends of the binary alloys persist in the ternary system.
Figure 1.8 shows sections at 350 °C and 300 °C of the experimental Au-Cu-Ag
phase diagram. "¢l Au-Cu-Ag clearly inherits the immiscibility gap from Cu-Ag.
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Figure 1.9: Transition temperatures of phase separation (1) and atomic ordering (2) for
18-carat yellow gold alloys (reproduced from reference Ra77).

While on the Au-Ag side of the diagram the silver-rich solid solution (o’ phase)
shows no sign of ordering, the copper-rich solid solution (), though it contains
silver to some extent, forms the same superstructures as Au-Cu.

The 18-carat yellow gold alloys are situated near the tip of the immiscibility
curve. At 300°C, only one alloy, Au 118, is outside the zone of phase separa-
tion. As the 350 °C section suggests, phase separation and atomic ordering occur
within the same temperature range, between 300 °C and 400 °C. Indeed, a sep-
arate study dedicated exclusively to 18-carat yellow gold!?®"! found that in red
gold ordering precedes phase separation (i.e. occurs at higher temperature),
while in the other alloys the order is reversed. These findings are reproduced in
figure 1.9.

It is worth pointing out that, for a given alloy, the predictions of a phase dia-
gram such as the ternary sections shown in figure 1.8 are of limited reliability.
Typically, only a few alloys are prepared, heat-treated, quenched and studied by
X-ray and electron diffraction. Phase boundaries are then interpolated. Further-
more, it is difficult to detect the onset of phase separation. It manifests itself as
the splitting of a diffraction spot, so it may be obscured by peak broadening. For
instance, with regard to alloy Au 418 (16 weight-% copper), another study!"Ves!
concluded that phase separation and atomic ordering occur at the exact same
temperature, contradicting the result in figure 1.9.

1.3 Order-hardening in AuCu

18-carat yellow gold alloys are age-hardenable, i.e. their hardness increases
over the course of a heat treatment at a well-chosen temperature. The more
copper the alloy contains, the more pronounced is the hardening effect. Table 1.2
compares the Vickers hardness of solution-treated samples (annealed at high
temperature in order to put all elements into solution) to those age-hardened at
about 550 K. Hardness values after mechanical hardening by cold deformation
are listed for comparison.
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alloy | solution-treated | work-hardened | age-hardened
Au 218 135 HV 210 HV 170 HV
Au 318 150 HV 225 HV 230 HV
Au 418 160 HV 240 HV 285 HV
Au 518 165 HV 240 HV 325 HV

Table 1.2: Vickers hardness of Au 218/A0°""] Ay 31814071 Ay 4181AD""1 and Au 518D
after three thermo-mechanical treatments: solution-treating (annealing at 550°C
for 30 min, then quenching), work-hardening (cold deformation to 75%) and age-
hardening/order-hardening (heat treatment at about 280 °C for 60 min).

It is fair to assume that the hardening of 18-carat yellow gold is brought on by
the process of atomic ordering. For two reasons: first, the presence of copper
is a prerequisite; and second, order-hardening is known to occur in AuCu. "]
Moreover, it has been reported that the a — o' + o” phase decomposition does
not strengthen 18-carat yellow gold. 77!

During a transformation of a-AuCu into AuCu I, the cubic unit cell expands by
2.3% along the a- and b-axis, while it shrinks by 5.3% along c.“"7! The substantial
change of shape produces large misfit strains that have to be accommodated over
the course of the ordering process.

X-ray diffraction[“®s! and transmission electron microscopy!""'s>%V¢’! have revealed
that the process of atomic ordering goes through the following stages: First, co-
herent plate-like AuCu I nuclei form on {110}y, planes of the disordered matrix.
When the coherency strains become large enough, so-called micro-twinning will
occur on {101} planes before growth continues perpendicular to that plane.
The result is a needle-shaped line-up of incoherent ordered domains with c-axes
alternating between two (out of three possible) orientations, as illustrated in fig-
ure 1.10. The size of a single ordered domain is of the order of 1 micron by 1 mi-
cron by one tenth of a micron. The domains may contain anti-phase boundaries
such as those in the AuCu II structure, but non-periodic. As the needle-shaped
twin lamellae grow along a <101>; direction, misfit strains of longer range are
accommodated by other needles that originated from nuclei of different orienta-
tion.

Other X-ray studies!®°2#Ma®] contend that at lower temperatures (less than 150 °C),
instead of the nucleation and growth process described above, ordering takes
place homogeneously. It would thus proceed uniformly throughout the crystal,
forming ordered domains of random c-axis orientation that gradually lose coher-
ence with their surroundings.

It may be worth of note that the kinetics of the ordering process depends on the
temperature of the previous disordering. 5! This suggests that the presence of
short-range order plays an important role for the transformation time of atomic
ordering. Interestingly, it was found that the higher the disordering temperature
(i.e. the less pre-existing short-range order there is), the faster the ordering
process. This can be understood as follows: Atomic ordering involves diffusion
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Figure 1.10: Section of a needle- Figure 1.11: Slip bands in AuCu (produced by a
shaped array of twin lamellae in 5% plastic deformation), confined exclusively to
AuCu, formed by a sequence of or- AuCu I ordered domains, as revealed by scan-
dered domains of alternating c-axis  ning electron microscopy after electro-polishing
orientation (reproduced from refer- and etching of the surface (reproduced from ref-
ence Higy). erence Syg7).

of gold and copper atoms to distinct {001} planes. If the degree of short-range
order is high, many atoms will be embedded in a low-energy configuration of
nearest neighbors. Instead of moving single atoms in a random matrix, more
energy is now required to break up the group of atoms or even move them all
together.

At ordering temperatures below about 200 °C, the hardness of AuCu increases
continuously with ordering time, i.e. with the degree of long-range order. At an-
nealing temperatures above 200 °C, hardness isotherms show a marked increase
followed by a softening.*s”! For example, at 340 °C hardness peaks at 300 HV af-
ter 30 minutes. On a related note, the Young’s modulus exhibits the same behav-
ior during isothermal annealing.!®""'] However, there is some contentionA7o-Ra7ol
as to the veracity of the trend just described with respect to the hardness, con-
tradicted by another study!“"! showing a steady increase at all temperatures.

At room temperature, the main mode of deformation in the AuCu I phase is slip
along the close-packed {111} planes.5¥"’] Among the six <110> glide directions
in these planes, only two allow single dislocations to move without destroying
order, namely those two that also lie in the (001) plane populated by like atoms.
Glide in the other four directions is effected by superdislocations. These are
pairs of ordinary dislocations separated by a strip of anti-phase domain. Both
move simultaneously and thus preserve order after their passage.

Domain boundaries present strong obstacles to dislocation glide, as the change
of symmetry reassigns the roles of single and superdislocations and it will re-
quire extra energy to reconstruct one type into the other.!5V¢’! Similar arguments
can be made for the passage of dislocations between ordered and disordered re-
gions.!*s71 In fact, as the electron micrograph in figure 1.11 attests, slip bands in
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alloy mass fraction
Au Pd Cu Fe | Ag | In | Ga
Au 5125 | 75.0 | 12.5 | 9.5 3.0
Au 5130 | 75.0 | 13.0 | 10.0 1.5/05
Au 5150 | 75.0 | 15.0 | 4.0 | 6.0
Au 8150 | 75.0 | 15.0 | 4.0 | 4.0 15|05
Au 5210 | 75.0 | 21.0 3.5 0.5
alloy atom fraction
Au Pd Cu Fe | Ag | In | Ga
Aub5125 [ 56.4 | 17.4 | 22.1 4.1
Au 5130 | 56.0 | 18.0 | 23.1 1.9 1.1
Au 5150 | 55.0 | 20.4 | 9.1 | 15.5
Au 8150 | 56.2 | 20.8 | 9.3 | 10.6 1911
Au 5210 | 61.8 | 32.1 5.0 1.2

Table 1.3: Nominal composition of the (main) white gold alloys studied in this work, in
weight-% and corresponding atomic-%.

AuCu I are by and large confined to ordered domains; only few slip bands cross
domain boundaries or even leave a twin-lamellae needle.!Vs’! The limiting effect
of AuCu I ordered domain boundaries on dislocation mobility explains the resis-
tance to deformation and thus the increase of hardness that comes along with
atomic ordering in the L1, type superstructure.

1.4 White Gold

The white golds investigated in this work are all palladium-based. Compositions
are given in table 1.3. Modifications of these alloys, produced over the course
of this study in order to elucidate the role of particular alloying elements, are
not listed. Note that the last three digits of the alloys’ designations denote the
nominal palladium fineness.

With up to six different elements in the mix, the white golds are much more
diverse than the yellow golds. Conventional palladium-based white gold, com-
mon before the 1990’s, were based on the gold-palladium-silver system. !N
The more modern alloys investigated here are for the most part based on gold-
palladium-copper.

As explained earlier, the interaction between the electronic structures of palla-
dium and gold is responsible for the strong bleaching effect. Empirically, around
12 weight-%, or about 17 atomic-%, is the minimum amount required in an 18-
carat gold to ensure a sufficiently pleasing white color. Most alloys do not exceed
15 weight-% as the palladium content is a major cost factor. Iron has proven
effective as a bleaching agent, comparable to nickel but less efficient than pal-
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alloy solution-treated | work-hardened | age-hardenable?
Au 5125 145 HV 235 HV no
Au 5130 160 HV 280 HV yes
Au 5150 145 HV 255 HV no
Au 8150 135 HV 260 HV yes
Au 5210 120 HV 225 HV yes

Table 1.4: Vickers hardness of white gold alloys after solution-treating and work-
hardening (cold deformation to 75%); data courtesy of Varinor.

ladium.[9¢7¢] In these alloys, iron and, to a lesser extent, silver act as secondary
whiteners.

The addition of copper improves the alloys’ mechanical properties. Conventional
18-carat Au-Pd-Ag white gold would have a Vickers hardness as low as 70 HV af-
ter solution treatment."0! Ideally, though, hardness in this ductile state should
be comprised between 120 and 150 HV.!°¢7¢] Compared to gold, palladium and
silver, copper’s atomic radius is 10 to 12% smaller. In the solid solution, copper
atoms will therefore cause lattice distortions that may act as pinning centers for
dislocations and thus decrease their mobility — a mechanism known as solid-
solution hardening. The same argument can be made for iron.

As a matter of fact, table 1.4 shows that the solution-treated Au-Pd-Cu white
golds are mostly within the ideal hardness range mentioned above. Furthermore,
they are sufficiently ductile, sustaining cold deformation of 75% and more. How-
ever, in the work-hardened state most alloys in the series have hardness values
well below the target of 300 Vickers. Others age-harden during thermal treat-
ment at a temperature around 800 K, though a peak hardness near 220 HV for
Au 5130 (measured in our lab) leaves room for improvement.

The mechanism of age-hardening remains to be investigated. Order-hardening,
as it occurs in yellow gold, is one of the candidates. Figure 1.12 shows a section
of the ternary Au-Pd-Cu diagram at 350 °C. A number of ordered phases feature
in it, most notably one of L1, type superstructure, the tetragonal symmetry of
which is cut out for increasing hardness as explained in the previous section. A
marker indicates the approximate position of Au 5130, neglecting the additions
of indium and gallium. It is situated rather far from the L1, ordering region,
which starts at copper contents of 35 atomic-%. Likewise, Au 5210, containing no
copper, is located somewhere between two possible ordering regions of different
symmetry on the binary Au-Pd phase diagram, reproduced in figure 1.13.

It is however difficult to predict the phase equilibrium of any of the alloys based
on those diagrams alone. Alloying additions such as indium, gallium or even
iron change the chemistry of the solid solution. This may promote or hinder the
formation of ordered phases. Furthermore, below the 350 °C section depicted in
figure 1.12, the ordering regions will expand further. In yellow gold for example,
ordering still takes place at temperatures as low as 150 °C, albeit over a couple
of days.
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Another possible hardening mechanism may be the precipitation of a second
phase. In fact, as the Au-In and Au-Ga phase diagrams in figures 1.14 and 1.15
reveal, gold forms a number of intermetallic compounds with either of these two
elements. The same is true for Pd-In and Pd-Ga. Whether or not any of the
compounds are stable in the Au-Cu-Pd solid solution is as questionable as for
the ordered phases. A strong indicator towards this hardening mechanism may
be seen in the fact that the age-hardenability of these alloys (table 1.4) correlates
with the presence of indium and gallium (table 1.3).

The main intent behind the indium and gallium additions is, however, to offset
one major shortcoming of palladium-based white gold: the increased melting
temperature, see figure 1.13. As their respective phase diagrams in figures 1.14
and 1.15 indicate, small quantities of indium and, even more so, gallium consid-
erably reduce the liquidus temperature of the solid solution with gold. To make
an alloy suitable for conventional manufacturing techniques, a liquidus temper-
ature below 1100 °C is desirable. N

1.5 Outlook

From the outset, the research goal of this thesis was to conduct a systematic
study by mechanical spectroscopy of the two afore-described 18-carat gold alloy
series. Mechanical spectroscopy reports the internal friction and dynamic (shear
or Young’s) modulus of a specimen as a function of temperature or (excitation)
frequency.!?'! Despite their wide commercial availability and importance in their
field of application, these materials have never been the subject of such studies.
A thorough interpretation of their mechanical loss spectra, which reflect the mo-
tion of point defects, dislocations as well as grain boundaries, will advance the
understanding of the physics governing their mechanical properties.

Mechanical spectroscopy has been performed on Au-Cu. In the solid solution, a
Zener relaxation peak, due to the reorientation of lattice distortions caused by
the smaller copper atoms, was found over the entire composition range. [M°67-507:]
The evolution of the Young’s modulus with temperature permits to distinguish
between a-AuCu, AuCu I and AuCu II.1°°#] In AuCus;, the anisotropy of the Zener
relaxationF°#7°¢] as well as non-linear effects near the order-disorder transi-
tion™i#:] have been studied in more detail.

Consequently, in a first step the Zener relaxation in 18-carat gold alloys will be
the focus of attention. Chapter 4 will demonstrate a novel way to detect the
order-disorder phase transition that, if complemented with a model for the or-
dering reaction, may even yield a theoretical prediction of transformation times.
Furthermore, we will see that while a Zener relaxation also occurs in white gold,
signs of atomic ordering are minimal, to the point that the possibility of order-
hardening in these alloys can be virtually excluded.
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Precipitation of second-phase intermetallic particles was the prime candidate
for the hardening mechanism in white gold, as outlined in the previous section.
Chapter 5 will prove that such a phenomenon does indeed occur. First, it will
be shown that a feature common to the spectra of all 18-carat gold alloys is a
relaxation peak due to grain boundary sliding. Second, we will see that second-
phase particles impede this relaxation mechanism by blocking grain boundaries
as soon as they precipitate. When the particles go back into solution at high
temperature, the grain boundary peak reappears. The empirically determined
age-hardening treatments performed on these alloys are well accounted for by
the temperature of precipitation/dissolution.

Recrystallization of cold-worked material is another phenomenon of practical im-
portance. During various steps of the working process, the material suffers plas-
tic deformation, rendering it harder but also less ductile. In order to restore
formability, accumulated dislocations need to be annealed out. During the re-
crystallization heat treatment, dislocations will disentangle, polygonize and form
low-angle subgrain boundaries that will be the nuclei of a new grain structure.
The heat treatment has to be well controlled to ensure an optimum structure of
fine and equiaxed grains. Mechanical loss spectra presented in chapter 3 will
show that the second-phase particles delay the recovery and restoration pro-
cess.
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Chapter 2

Experiments

Mechanical spectroscopy performed by means of a low-frequency inverted tor-
sion pendulum is the main experimental technique used in this study. It will be
explained in appropriate detail over the next two sections. Complementary meth-
ods, such as hardness testing, X-ray diffraction and the growth of single crystals
are described afterwards.

2.1 Mechanical spectroscopy

Ordinarily, the deformation a solid undergoes when subject to an external stress
is classified in two categories: elastic and plastic.

Elastic deformation occurs/vanishes instantaneously upon loading/unloading. At
any moment ¢, the stress-strain relationship of a simple mode of deformation,
such as uniaxial tension or shear, is then described by Hooke’s law:

o(t) = M e(t), (2.1)

where M denotes the elastic (Young’s or shear) modulus.! It is useful to rewrite
Hooke’s law as

e(t) = Jol(t), (2.2)

with the elastic compliance J = ML,

Whenever the applied stress exceeds the elastic limit, the solid will no longer
recover its initial shape after unloading: plastic deformation has occurred. If
that is the case, some of the energy supplied to the solid during the deformation
process, i.e.

€

W = /U(e’) de’, (2.3)

0

In a torsion pendulum, the relevant mode of deformation is shear. Shear stress/angle/modulus
(7, v, G) then take the place of o, e and M. For an arbitrary deformation, the theory presented
in this section can be generalized by replacing the scalar quantities with tensors.
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is lost, either dissipated as heat or stored in remnant internal strain fields. Only
the elastic part of the total strain energy can be retrieved. By using Hooke’s law
in equation (2.3), it is easily found to equal

1

1
Wy = §Me2 =3 J o2 (2.4)

A third category of deformation can be defined if one relinquishes the criterion of
instantaneity, but maintains that of full shape recovery (in the infinite time limit).
Such a deformation is known as anelastic or viscoelastic. Since the strain no
longer follows the stress immediately, some energy is dissipated inside the solid
via mechanical (anelastic) relaxations, namely the motion of structural defects.
Internal friction, or mechanical loss, defined as

F= i A—W, (2.5)

2m WU

is a measure of this damping in the case of periodic deformations, relating the
energy dissipated during a strain cycle,

AW = j{a(e) de, (2.6)

to the maximum elastic energy W, stored in the solid at some point of that same
cycle. W is essentially W, of equation (2.4), with stress or strain replaced by
their respective amplitudes.

In the anelastic regime, the total strain is the sum of two contributions:
€ = €o] T €an-

The elastic strain is the instantaneous reaction to the current stress field. The
anelastic strain, however, being the result of various evolving relaxation pro-
cesses that began in the past, may depend in a complicated way on the history
of loading. A common simplification of problems of this type is to disregard all
terms beyond the linear response of the system.X"’] Then:

t

e(t):JuU(t)+/X(t—t')a(t') dt’.

—0o0

Here, the elastic susceptibility y(¢ — ¢') accounts for the contribution of a unit
impulse (6-peak) of stress at time ¢’ to the anelastic strain at time ¢. J, denotes
the unrelaxed elastic compliance, the same that figures in Hooke’s law (2.2).
More useful is the Fourier transform of the above equation, as it deconvolutes
stress and susceptibility:

€(w) = Jyo(w) + x(w) o(w).
Defining the complex compliance as

J(w) = Jy + x(w)
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along with the complex modulus M = J~!, one finds a generalized Hooke’s law
in Fourier space:

(w)=Jw)o(w) or o(w)=Mw)ew). (2.7)

Now consider the application of a harmonic stress of constant amplitude, o(t) =
ope“, i.e. o(w) x opd(w). It follows immediately from (2.7) that strain is also
harmonic, €(t) = ¢y ¢'“*~%), lagging behind stress by the loss angle

p(w) = arg M(w) = —arg J(w)

which is thus equal to the phase of the complex modulus, while the amplitude
ratio is given by its absolute value, also known as the dynamic modulus:

o1y 1

o) M@= T

It is straightforward to show that the loss tangent tan ¢ is equivalent to the me-
chanical loss defined in equation (2.5). That is, as long as the linear response
theory is valid (the strain response varies linearly with the stress excitation’s
amplitude), we have

F(w) = tan p(w).

Finally, in an experiment of mechanical spectroscopy, the mechanical loss (in the
form of the loss tangent) along with the dynamic modulus is reported as a func-
tion of either frequency (f = ;%) or, as we will see further down, temperature.

A model for a large number of mechanical re-

laxation processes — particularly those driven by —_

atomic diffusion — is the standard anelastic solid,

sketched in figure 2.1. The spring in series, of

compliance J,, accounts for the instant elastic re- o) n

sponse of the solid. The dashpot simulates a vis-

cous friction mechanism, with its piston moving in

a liquid of viscosity 1. The stress ¢’ applied to the

dashpot is proportional to its strain rate: o/ = n¢€.

As the dashpot relaxes, the spring in parallel grad- JU

ually contributes the extra compliance §.J. One

readily finds the standard anelastic solid’s equa-

tion of motion to be™*" Figure 2.1: Rheological model of
the standard anelastic solid.

Jyo+71,J,0 =€+ T,¢€, (2.8)

where J, = J, + 0J denotes the relaxed compliance (total compliance at infinite
time) and 7, = nd.J the time constant of relaxation at constant stress. We also

note, still from equation (2.8), that the relaxation time at constant strain (¢ = 0)
Ju

iSTEZTUJ.
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Solving the equation of motion is once more facilitated by a Fourier transform,
as it turns all time derivatives into simple multiplications by iw. For the complex
compliance one easily finds:

€w) St iwTsdy
olw)  14iwr,

J(w) =

Calculating the tangent of — arg J(w) yields the mechanical loss. After introduc-
ing the relaxation strength

€an(t > 00) 6J

A=28" "7 2 2.9
€el Ju ( )
as well as the average relaxation time
T = \/ﬁa

one can express the result as follows:

2
Fw) = Fy—T

Tratr? (210

F(w) describes a Debye peak, thus named after

Dutch physicist Peter Debye who first derived it 5
for the case of dielectric relaxations.™®'1 The peak
reaches its maximum Fy at w = 1/7. The peak
height is related to the relaxation strength as per
1 A A log, oot
Ffp=-——== =~— forAkl1. (2.11)
2V1I+A 2 Figure 2.2: Debye peak over

four logarithmic decades of the

Conversely, and of more practical importance, one
angular frequency spectrum.

retrieves the relaxation strength from the peak
height according to

A =2F, <F0+\/1—|—F02> ~ 2F, for Iy < 1. (2.12)

Mechanical loss frequency spectra are usually plotted versus a logarithmic scale,

as it confers the Debye peak a symmetric shape:
Fy

cosh(lnw +In7)

F(lnw) = (2.13)
For a deca-logarithmic scale, this is illustrated in figure 2.2. The Debye peak
spans roughly four decades and is 1.144 (= 2log,,(2 + \/5)) decades wide at half
its height.

Many anelastic relaxations, since they take place at the atomic level, are diffusion-
controlled. Therefore, the relaxation time 7 generally follows an Arrhenius equa-
tion:

Hac
T =Ty exp(th> . (2.14)
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H,. denotes the activation enthalpy?, 7y the limit relaxation time. The equation
describes a thermally activated system trying time and again, at an attempt fre-
quency 1, to overcome an energy barrier. At infinite temperature 71" the effect of
the barrier becomes insignificant and 7, = 1/1.

An Arrhenius plot reports In 7, as obtained directly from the peak’s position, ver-
sus the temperature at which the frequency spectrum was recorded. Slope and
intercept of the regression line then yield H, and 7y. If, due to experimental
restrictions, only a flank of the peak appears in the spectrum, the shift with tem-
perature of a point of constant mechanical loss will at least yield the activation
enthalpy. This often comes in handy when a thermally activated background
needs to be subtracted.

It shall be noted that the entropy change of the activated state (with respect to
initial and final state) was neglected in this consideration, as is customarily done.
The actual energy barrier of the process is given by the variation of the Gibb’s
free enthalpy,

AG = AH — TAS, (2.15)

and not just Hyy = AH. While the term T'AS does not change the slope of the ex-
ponential (the temperature factor cancels out in the Arrhenius equation), it does
alter the pre-exponential factor 7y. If the system is at thermal equilibrium, the en-
tropy change during thermal activation must be positive. Therefore, should the
entropy term play a role, one would measure an activation enthalpy apparently
too high and a smaller limit relaxation time.

During the anelastic evolution of the rather complex microstructure of most ma-
terials, more than one relaxation process will come into play. If each of those can
be described by a standard anelastic solid, the full mechanical loss spectrum will
be a superposition of Debye peaks with corresponding relaxation strengths and
relaxation times.

If thermal activation is involved, the mechanical loss of the standard anelastic
solid, described by the Debye equation (2.10), has an indirect temperature de-
pendence via the relaxation time (2.14). Since 7 varies exponentially with 7', one
can explore larger parts of the full spectrum, possibly containing peaks with re-
laxation times of different orders of magnitude, by plotting the mechanical loss
versus temperature instead of frequency.

More often than not, one will find that, for a given relaxation, the relaxation time
is not a well-defined entity, but rather varies continuously over a certain inter-
val. This results in a broadening of the corresponding peak in the mechanical
loss spectrum. Since it is difficult to know exactly how the relaxation times are
distributed, one usually assumes that they scatter around some mean value 7,
according to a lognormal distribution:

1 2 . T
U(z) = Wexp ( ) with z = In —. (2.16)

z
B2 T

2The terms activation enthalpy and activation energy are often used interchangeably.
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It is a Gaussian distribution of In7 around In7,,, which in the sense of the Ar-
rhenius equation (2.14) corresponds to a Gaussian distribution of the activation
energy barrier around some mean value (provided the attempt frequency 1, re-
mains the same).

The distribution parameter 5 is a measure of the distribution’s width. Assuming
furthermore that the relaxation strength A is the same for all values of 7, 3 can
be obtained from a fitting procedure wherein a broadened Debye peak

+oo
FPlnw) = /F(lnw—i—z)lp(z)dz (2.17)

—0o0

is compared to the experimental data. Numerically, an integration cut-off at
+34 is largely sufficient. Note that, as the peak F° becomes broader, its height
decreases. The relaxation strength A must still be calculated from the height of
the pure Debye peak, Fj, which appears in (2.17) via F(Inw) from equation (2.13).
As Fy is a priori unknown, it must be fitted along with £5.

The next section will explain how the two output variables of mechanical spec-
troscopy — loss tangent and dynamic modulus — are measured by means of a
forced torsion pendulum.

2.2 Forced torsion pendulum

In an inverted torsion pendulum, drawn schematically in figure 2.3, a harmon-
ically varying torque 7' twists the specimen such that the top surface rotates
while the bottom remains fixed. The torsion angle # is measured by detecting a
laser’s reflection off a mirror attached to the rod. Temperature is controlled via a
furnace surrounding the specimen. The following will show how the signals 7(¢)
and 0(t) are acquired, and how they relate to shear stress 7, shear strain v and
shear modulus G.

The torque T is applied to the specimen’s top by means of a magnetic excita-
tion system: two magnetic coils driven by a harmonic current /, attracting or
repelling permanent magnets mounted at the end of levers which are connected
to the upper part of the rod, as depicted on the photo in figure 2.4.

The magnitude of the torque 7' is a priori unknown. It is due to the force the
magnetic field exerts on the two permanent magnets attached to the pendulum’s
rod. With p the magnetic moment of one such permanent magnet, its potential
magnetic energy (in first-order approximation with respect to spatial variations
of B) is given by

V() = —ji- B(F).
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laser beam

photocell

[slelelololelolslolelslote]

Figure 2.3: Schematic drawing of a low- Figure 2.4: Inner workings: magnetic ex-
frequency inverted forced torsion pendu- citation, photocell and upper rod hang-
lum. ing from a three-wire suspension.

Since the permanent magnet is aligned with the coil’s axis, i and B are parallel.
Hence there will only be a force if the intensity of the magnetic field B produced
by the coil varies along its axis. Let z be the coordinate along that axis, then:

dB.

ﬁ: — gr_éd V(F) = quez.

A straightforward application of the Biot-

Savart law 3 8
= ol [ dl x 7 B, B, le
B =t -
to the geometry of the coil will yield B, and @ ) é
its gradient. The result is plotted in figure 2.5. ol 1,
For thin coils, the gradient of B, is maximum
at z ~ % Therefore the permanent magnets o* : +0
should be positioned right outside the coils, z (cm)

where the coupling is strong and, more impor- . gure 2.5: Magnetic field compo-
tantly, the force hardly varies when the pendu- | .+ B, and its gradient created by
lum moves, so as to not distort the harmonic 4 ¢oil of 200 turns, 10 cm long, 2 cm
signal. According to the Biot-Savart law the in radius, at 1 A driving current as
force — and thereby the torque — is then pro- a function of the distance z from
portional to the current [ driving the coils. the coil’s center.
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We can thus write
T(t) = cV.(t) (2.18)

where V, denotes the excitation voltage input signal that controls the (linear)
current amplifier supplying the coils. The torque factor c is the product of the
current amplifier’s gain and the magnetic coupling resulting from the geometry.
However, since the mounting/unmounting of samples may change the position of
the permanent magnets, one is best advised to determine c at the start of each
measurement from a calibration procedure such as the one outlined at the end
of this section.

The torsion angle 6 is retrieved from the second input signal, the photocell’s
response. Note that 6 is well defined regardless of the specimen’s geometry,
being the angle between any vector within the top surface at torque 7' and the
same vector at zero torque. The response signal

Vi(t) =gpD(t)

is proportional to the distance D of the laser’s spot from the photocell’s cen-
ter. g denotes the post-amplifier’s gain, p the photocell sensitivity, a calibration
constant converting distance to voltage.

Taking into account that the angle of deviation by the mirror is twice the torsion
angle, one finds
AD(t AV, (t
oy — ADW) _ AV()
2L 2gpL

(2.19)

AD denotes the displacement of the laser’s reflexion, i.e. its variation with re-
spect to the zero-stress position. The latter is not necessarily at the photocell’s
center, meaning that the DC offset of the input signal V, should be ignored. L
designates the horizontal distance separating the mirror from the photocell.

The torsion of the specimen corresponds to a shear
of individual volume elements. This shear is not uni-
form. It will vary throughout the specimen’s section,
being zero at the center and maximum at some point
on the outer edge. The expressions relating torque T'
and shear stress 7 on the one hand, and torsion angle 6
and shear angle (shear strain) v on the other, will thus
depend on the specimen’s geometry.

Consider first a cylindrical specimen of radius r and
length [. From the schematic drawing in figure 2.6 one
concludes that for any volume element of coordinates
pO<p<7r),e0<yp<2m, and A (0 <\ <), the -
shear angle is related to the torsion angle as = S~

3

v(p) = %9. Figure 2.6: Cylinder in tor-
sion.
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As for shear stress and torque, we now apply (the generalized) Hooke’s law (for
the shearing mode of deformation):

T(p) = Gv(p) =G § 0.

The shear force acting on an element dS of the specimen’s top surface is 7(p)dS.
The sum of the corresponding moments of force must equalize the applied torque 7.
Thus

r

T:/pT(p)dS:%r/p%pdp:: k(G) 0,

S 0

where we have introduced the force constant
4

T

relating twist angle 6 and applied torque 7. It is the same k that appears in the
equation of motion of the (free or forced) torsion pendulum, as it describes the
restoring moment the specimen produces in response to the deformation. The
relation can be used to eliminate # in the expression for 7 to obtain

M) =22

mrd

As indicated above, we find that shear stress and strain vary along the radial
coordinate p. Experimental data from mechanical spectroscopy typically reports
the maximum stress and strain states present in the specimen. In the case of a
cylinder, they occur all over the lateral surface, i.e. at p = r. The volume average
differs from it by a factor of % Of course, the shear modulus, being given by the
ratio of 7 and v, is independent of p.

Thus, for a cylinder of length / and radius r, we have found:

(1) === (maximum) shear stress (2.20)
Tr
~(0) = %9 (maximum) shear strain (2.21)
21T
G(T,0) = pr i} shear modulus (2.22)

For a rectangular bar of length [, width w (w <) and thickness t (t < w), the im-
plicit symmetry argument used for finding v(p) from figure 2.6 no longer applies.

For details of the derivation, the reader is referred to literature: ™!
(T) = C- % (maximum) shear stress (2.23)
v(0) = C, ; 0 (maximum) shear strain (2.24)
G(T,0) = Cq L r shear modulus (2.25)

witd
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where
4 1

C’T 527 C’y Cla CG - 52

with3
8 — 1
Ci=1——
! 2 ; (2k + 1)2 cosh (£(2k 4+ 1)%)

and

oL 64t i tanh (5(2k + 1)%)
2= 927 50 5
3 mwi (2k +1)

So far, we have tacitly assumed that, at any moment ¢, the specimen is in mechan-
ical equilibrium, i.e. the restoring moment provided by the specimen compen-
sates the external torque applied by the magnetic excitation. This quasi-static
treatment of a dynamic measurement requires justification, as the system is ob-
viously in motion during the experiment. In fact, the forced torsion pendulum’s
equation of motion,

JO+ k(G(w)) 8 = Ty e,

naturally contains the acceleration term involving the pendulum’s moment of
inertia J. This will, in principle, shift the measured phase lag J between the
two signals 7" and # away from the phase lag ¢ between 7 and ~, i.e. the ac-
tual loss angle, and will also affect the amplitude ratio 7,/6, that, via equa-
tions (2.22) or (2.25), yields the dynamic modulus |G(w)|. These problems can
only be avoided if measurements are made in subresonant mode, at w < w,,
where the two phase shifts are approximately equal. More precisely, one can
show that!"s:!

w

tan p(w) = <1 - —> tan §(w),

Wy
where w, is the resonant frequency of the pendulum-specimen system.

The resonant frequency is close to the pendulum’s eigenfrequency in free mode,

k(G
o JHCw)
J

for as long as the friction coefficient is relatively low. The eigenfrequency on the
other hand, which can be easily measured after turning off the excitation signal,
contains another interesting information: it can be used to calibrate the impre-

cisely known torque factor c (equation (2.18)) at the start of an experiment, after

3Note that the result for C; reported in reference Rek (and cited in a previous thesis prepared
in our group!Fo2l) differs slightly (sinh instead of cosh), which, upon closer inspection, is clearly
a misprint. Also, the two power series converge quickly and can be readily calculated in real-
time during measurements.
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mounting the specimen. With the pendulum’s inertia J determined once and for
all, and k(G) = % given by equation (2.22) for the cylinder or equation (2.25) for
the rectangular bar, w, provides an independent measurement of the dynamic
shear modulus. It can be compared to the result obtained in forced mode from
the amplitude ratio. The procedure must be performed at a temperature where
the variation of the dynamic modulus between the two frequencies w and w, is
negligible.

This calibration feature was introduced in the data acquisition program control-
ling the pendulum more than halfway through the work for this thesis. Therefore,
earlier results report the shear modulus in arbitrary units, as the shear stress
amplitude was unknown.

2.3 Hardness tests

The hardness of a metal is perceived as the resistance it
offers to local plastic deformation. A common and sim-
ple method to measure it is provided by the Vickers hard-
ness test: an indenter with a diamond tip in the shape of a
square-based pyramid is pressed onto the specimen’s sur-
face at a specified load. The resulting indentation is ob-
served in an optical microscope where its size can be mea-
sured. Generally, hardness (not just Vickers hardness) is
defined as the ratio of applied force to area of indentation
and traditionally given in kilogram-force per square mil-
limeter.!™! Owing to the geometry of the tip, the Vickers
hardness is therefore:

Figure 2.7: Leitz hard-
m ness tester.

HV =2 sin(68°) E,

where d denotes the indentation pyramid’s diagonal and m the load mass. Alter-
natively, hardness values may be given in GPa by an obvious conversion.

Vickers hardness was measured using the Leitz hardness tester depicted in fig-
ure 2.7 at a load of m = 0.3 kg.

2.4 X-ray diffraction

X-ray 6-20 powder diffraction was performed on some specimens to confirm the
presence or absence of atomic ordering in the bulk. As the quantitative evalua-
tion of peak intensities was not an issue, polycrystalline samples were measured
as they were, i.e. no actual powder was ground.



32 2 Experiments

160 T 111"
I 40.2° Cu-Kq, A=1.54056 A
1401 200’
T 45.6° ‘
120 220
66.4°
% 100 110°
a 32.0° .
> 202
.a °
c
9
€
002" 201° s
201 g9
0 : T T T T T T T T T T T T

20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
20 ()
Figure 2.8: X-ray 6-20 diffraction spectrum of a slow-cooled, polycrystalline Au 518 sam-
ple, showing fundamental (f) reflections of the f.c.c. crystal lattice and superstructure (s)
reflections from the AuCu I type ordered phase.

Compared to the disordered solid solution, atomic ordering always manifests
itself in the X-ray spectrum by the appearance of extra reflections, particularly
at the low-angle end. Say, for example, the Bragg diffraction condition

nﬁ = sinf
in first order (n = 1) is fulfilled for a family of lattice planes of inter-planar
spacing d that are crystallographically equivalent in the solid solution. If, within
the same family of planes in the ordered phase, alternating planes are populated
by atoms of different scattering power, some of the intensity will shift to a peak
corresponding to twice the inter-planar spacing, 2d, i.e. at (very roughly) half the
diffraction angle 6.

For the AuCu I phase, this is true for planes such as (110) and (001), see fig-
ure 1.6 on page 10 for illustration. Figure 2.8 shows the X-ray spectrum of
Au 518; the peaks corresponding to the AuCu I type superstructure feature
prominently.

2.5 Growth of single crystals

In an effort to understand the role of grain boundaries in the mechanical loss
spectra, monocrystals were produced by means of the vertical Bridgman method.

To that end, as illustrated in figure 2.9, the polycrystalline source material is
introduced into a graphite crucible and sealed with a quartz tube under vac-
uum. Powered by a high-frequency generator, an induction furnace heats the
crucible above the material’s melting temperature, which would be verified with
a pyrometer. Through a small orifice at the crucible’s bottom end, some of the
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guartz tube

induction coil ——— > D

high-frequency
i generator

graphite crucible

cast specimen

Figure 2.9: Growth of a single crystal from melt heated inside a graphite crucible by an
induction furnace.

melt escapes. As the entire crucible is being slowly retracted from the furnace’s
center (at less than 1 mm/min), the lowest part of the melt solidifies in a polycrys-
talline state, but the one grain reaching through the small hole in the crucible
will serve as a seed for a single crystal (of arbitrary orientation) growing from
the rest of the melt.

=

Figure 2.10: Heated graphite crucible inside quartz tube (center), high-frequency gener-
ator (to its left), pyrometer (front left), and vacuum pump (front right).
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Chapter 3

Anelastic Relaxations
in 18-carat Gold

This chapter provides a phenomenological overview of mechanical relaxations
occurring in 18-carat gold alloys between room temperature and melting point.
The alloys’ mechanical loss spectra measured as a function of temperature will
be presented and explained, differences and similarities throughout the two alloy
series pointed out. The two chapters following this one will each focus on a single
feature, first the Zener relaxation, then grain boundary sliding, and lay out in
detail if and how theory accounts for these results.

3.1 Yellow Gold

The mechanical loss spectra of the yellow gold alloys all show the same char-
acteristic features. Results for alloys Au 118 and Au 518 are presented in fig-
ures 3.1 and 3.2 as examples. Below 500 K the spectrum is flat. This is due to the
limited sensitivity of the forced pendulum, which (as opposed to free vibration
techniques) cannot resolve mechanical loss levels much below 1073. At around
600 K a first peak appears, followed by a second peak at about 720 K. At high
temperature, there is a noticeable increase of the background.

The first peak is associated with a Zener relaxation. The theoretical basis for this
relaxation phenomenon as well as an in-depth analysis of the peak will follow in
chapter 4.

Owing to the presence of atoms of varying sizes, the crystal lattice of most dis-
ordered substitutional alloys is distorted. For AuCu for example, this has been
concluded from x-ray absorption fine structure (XAFS) studies backed up by com-
puter simulations; the result is illustrated in figure 3.3.[F"°! The distorted lattice
represents an incommensurate state, i.e. the bond angle variations are ran-
dom.
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Figure 3.1: Mechanical loss temperature spectrum of Au 118 (Au-Cuj9%—-Agso%) at 0.5 Hz
excitation frequency and 1 K/min cooling rate.
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Figure 3.2: Mechanical loss temperature spectrum of Au 518 (Au-Cuy3%—-Ags%) at 0.5 Hz
excitation frequency and 1 K/min heating/cooling rate.
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In Au-Cu-Ag, the copper atoms are undersized com-
pared to gold and silver. The Zener peak in Au-Cu-
Ag can then be understood as changes in the local
arrangement of copper atoms. They accommodate
an applied stress by reorienting short bonds towards
directions in compression, long bonds towards those
in tension.

Consequently, the Zener relaxation is driven by dif-
fusion of single atoms to neighboring sites. Again,
since copper is the smallest atom species, there is
good reason to believe it is the also fastest diffuser. g e 3.3. Distorted lat-
Therefore, the relaxation time corresponding to the tice of a-AuCu according
Zener peak is a measure of the diffusion coefficient to XAFS measurements and
of copper atoms embedded in a Au-Cu-Ag matrix. computer simulations from
The activation enthalpy was found to increase with reference Fry.

copper content, from 1.6eV in Au 118 to 2.6¢eV in

Au 518 (see chapter 4). Therefore the peak tends to shift to higher tempera-
tures throughout the series Au 118 to Au 518.

The height of the Zener peak, and thus its relaxation strength, also varies greatly
with copper content. The Zener peaks as they appear in the corresponding tem-
perature spectra, but after background subtraction, are shown in figure 3.4. The
dependence of the peak height on the copper concentration, as revealed in fig-
ure 3.5, is not a simple linear or quadratic function. The more sophisticated
analysis in chapter 4 will address this issue.

More importantly, the Zener peak is affected by atomic ordering. As one may ob-
serve on Au 518’s temperature spectrum in figure 3.2, there is an abrupt change
in the mechanical loss on the Zener peak’s low-temperature flank in cooling. In

Au 118
Au 218 C
0.10+ —o—Au 318 0.10+
—8—Au 418 y=0.32x2+0.13 x
—e—Au 518
o 5 (]
) ‘T
c
® <
(3 0.051 © 0,051
o o
[ J
[
0.00 : : : 0.00t . . . .
500 550 600 650 700 0 10 20 30 40 50
temperature (K) Cu fraction (%,)

Figure 3.4: Zener peaks of the yellow gold Figure 3.5: Height of the Zener peak in the
alloys (after background subtraction, in various temperature spectra as a function
heating). of the copper atom fraction.
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heating, the Zener peak’s maximum is suppressed and only the high-temperature
side appears in the spectrum. The sharp drop-off in cooling and the retarded in-
crease in heating both result from the fact that the excitation frequency of 0.5 Hz
was chosen such that the Zener relaxation occurs in the same temperature range
as the order-disorder phase transition.

Ordered phases do not contribute (or contribute very little) to a Zener relaxation
process. In a perfectly ordered (i.e. stoichiometric) structure, local lattice distor-
tions, as they occur in the solid solution, are eliminated as a consequence of the
higher symmetry. Even if atoms do change sublattices in order to accommodate
stress, they would incur too high a penalty in internal energy to offset the release
of strain energy. However, in off-stoichiometric alloys, substitutional disorder ex-
ists in the ordered phase, so to some extent a relaxation remains possible. The
same is true for thermal disorder. Even if the order-disorder phase transition is
of first order, the equilibrium long-range order parameter right below the transi-
tion temperature is less than unity, so some atoms stay on the opposite sublattice
as this increases the entropy term of the free energy.

Thus, the accelerated decrease of the Zener peak in cooling occurs when order-
ing sets in. The volume fraction of ordered phase increases, and only contribu-
tions from the disordered domains (e.g. the silver-rich phase) as well as thermal
disorder within the ordered domains remain. In heating, the process is reversed.
However, the critical temperature at which the disordering process begins, ap-
pears to be higher than the ordering temperature in cooling. This hysteresis
indicates a first-order phase transition. All these conclusions, and more, can be
drawn from the frequency spectra of mechanical loss measured in isothermal
conditions, which will be the main focus of chapter 4.

As point defects, i.e. single atoms, become mobile at the temperature of the
Zener relaxation, one would expect the next peak in the spectrum to be caused
by the collective motion of groups of atoms forming linear defects, such as dis-
locations. As it turns out, that is not the case. Chapter 5 will demonstrate that
the second peak in the temperature spectrum, only about 120 K higher than the
Zener peak, must be attributed to grain boundary sliding.

One of the main arguments for this assertion are comparative studies of mono-
crystals and polycrystals of identical composition. Figure 3.6 shows the spec-
tra of monocrystalline and polycrystalline Au 518 plotted on the same graph.
One striking difference is the absence of the high-temperature peak in the sin-
gle crystal’s spectrum, while the high-temperature background remains virtually
unchanged. The background, as will be discussed at the end of chapter 5, is due
to dislocations and increases with dislocation density.

On a side note, the reduced height of the Zener peak in the monocrystal may be
attributed to the anisotropy of the Zener relaxation. In fact, the Zener relaxation
strength depends strongly on the crystal’s orientation.!"! In a polycrystalline
material, however, the contributions of the various grains average out.
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Figure 3.6: Temperature spectrum in heating and cooling (at 1 K/min and 0.5 Hz) of a
monocrystalline Au 518 specimen, compared to the spectrum of a Au 518 polycrystal.
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Figure 3.7: Strain amplitude dependence of the Zener peak (left) and the grain boundary
peak (right) in Au 518.
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Both, Zener and grain boundary relaxation, show little to no amplitude depen-
dence, as evidenced by figure 3.7. Accordingly, they can be described within
the scope of the linear response theory laid out in chapter 2, more precisely the
viscous friction mechanism corresponding to a standard anelastic solid. Only the
grain boundary peak decreases slightly at small amplitude. This indicates that
some break-away mechanism (requiring a threshold stress) is at work, which
would explain the non-linearity. However, this mechanism is not necessarily re-
lated to the peak itself — it may be due to the background, which increases with
temperature.

The grain boundary peak hardly changes with alloy composition. In all spectra it
appears at roughly the same temperature, between 700 K and 750 K. The peak’s
height is never less than 0.7 and never more than 0.8 (including the background).
The peak is very broad, with g ranging from 3 in some alloys to 5 in others.
Note that the Zener peak, with § = 1.5 for Au 518 (from fits to the spectra in
figure 3.7), is not a perfect (5 = 0) Debye peak either.

3.2 White Gold

At a fugitive first glance, the spectra of the white gold alloys, depicted in fig-
ures 3.8 through 3.12, do not resemble each other much. This comes as no
surprise given their diversity in composition. Only a closer look reveals the re-
curring features.

Figure 3.8 shows the spectrum of Au 5125. It looks remarkably similar to the
spectrum of Au 118 (figure 3.1), but shifted to higher temperatures. As it turns
out, the same relaxation mechanisms as in yellow gold are at work.

The Zener peak now appears at roughly 700 K instead of 600 K. At 0.03, its height
is virtually the same as in Au 218. With 21% compared to 22%, Au 218 and
Au 5125 contain almost the same amount of copper. These observations indicate
that copper atoms may again be responsible for the Zener relaxation, but their
diffusion slows down in the presence of palladium.

However, this conclusion is somewhat contradicted, or rather weakened, by the
fact that a Zener peak of similar height appears in the spectra of Au 5150 (fig-
ure 3.10), Au 8150 (figure 3.11) and Au 5210 (figure 3.12). The first two alloys
contain little copper (9%), but in turn more than 10% iron which, being of simi-
lar atomic size, might have a comparable effect. Au 5210 contains no copper at
all, though data from isothermal measurements presented in chapter 4 suggests
that the relaxation is indeed of the Zener type, which would then stem from the
Au-Pd alloy system. Unfortunately, no mechanical spectroscopy data for Au-Pd
is available to this date. In any event, it seems safe to assert that, as opposed
to yellow gold, the Zener relaxation in white gold cannot be understood as being
due to the rearrangement of copper atoms alone.
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Figure 3.8: Mechanical loss spectrum of Au 5125 at 1 Hz excitation frequency and 2 K/min
heating/cooling rate.
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Figure 3.9: Mechanical loss spectrum of Au 5130 at 1 Hz excitation frequency and 2 K/min
heating/cooling rate.
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Figure 3.10: Mechanical loss spectrum of Au 5150 at 0.5 Hz excitation frequency and
1 K/min heating/cooling rate.
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Figure 3.11: Mechanical loss spectrum of Au 8150 at 0.5 Hz excitation frequency and
2 K/min heating/cooling rate.
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Figure 3.12: Mechanical loss spectrum of Au 5210 at 0.5 Hz excitation frequency and
2 K/min heating/cooling rate.

The Zener peak is again followed by the grain boundary peak, of comparable
height (Fy = 0.08 including the background) and broadening (8 > 3) as in yel-
low gold. Hence, the different chemistry seems to have little influence on the
strength of this relaxation. As the white gold’s Zener peak tends to be situated
higher in temperature, both peaks are often found closer to each other com-
pared to yellow gold, such as in the spectrum of Au 5150 in figure 3.10. How-
ever, the position of the grain boundary peak does depend on a given sample’s
grain size, shifting to higher temperature for larger grains, as will be detailed in
chapter 5.

Compared to Au 5125 and Au 5150, the spectra of Au 5130, Au 8150 and Au 5210
differ in one important aspect: the high-temperature regions all exhibit a strong
hysteresis between heating and cooling. Incidentally, these and only these al-
loys contain indium and gallium additives. Chapter 5 will present convincing
evidence that the following scenario occurs: As the alloy is cooled down from
the solid solution, a second phase containing indium or gallium or both becomes
thermodynamically stable and precipitates in the form of small particles. These
particles pin the grain boundaries so that the grain boundary peak is cut off in
cooling, when the particles precipitate, and mostly suppressed in heating until
they are dissolved. The hysteresis observed between heating and cooling marks
again a first-order phase transformation, associated this time with the precipita-
tion and dissolution of the second phase.

Further proof for the this interpretation is provided in figure 3.13. It shows the
spectrum of Au 5130-1, a modification of Au 5130 that differs in that neither
indium nor gallium were added to the melt.! The full grain boundary peak is now

IThis implies that the mass fractions of the remaining components increased slightly, elevating
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Figure 3.13: Mechanical loss spectrum at 0.5 Hz excitation frequency and 2 K/min heat-
ing/cooling rate of Au 5130-1, a modification of Au 5130 containing neither indium nor
gallium.

observed, just like in Au 5125 (figure 3.8), and no hysteresis whatsoever.

In order to elucidate the role played by gallium on the one hand and indium on
the other, two more modifications of Au 5130 and one modification of Au 5210
were produced: Au 5130-2 and Au 5210-2 only contain the indium part, Au 5130-
3 only gallium. Results are shown in figures 3.14 and 3.15.

In Au 5130, precipitates form whenever either one of the two additives is present.
However, in the gallium-free alloy Au 5130-2, the precipitation temperature is
distinctly lower compared to Au 5130 and Au 5130-3, which both contain gal-
lium. This could either indicate that the temperature of second-phase stability
is extremely sensitive to the presence of gallium, or, much more likely, that two
different types of particles form in the material. The formation of indium-rich
particles, occurring at lower temperatures, would then be masked by the earlier
precipitation of a gallium-rich phase.

In Au 5210-2, the characteristic hysteresis, due to the blocking of grain bound-
aries, is not observed. Hence, there is no evidence of a second phase. As
Au 5210-2 (just like Au 5210) does not contain copper, one is thus lead to sus-
pect that the indium-rich particles forming in the other white gold alloys must
also be rich in copper, whereas the gallium-rich particles appear to be stable
even without copper present.

The absence of the grain boundary peak in the single crystal’s spectrum was
verified for several white gold alloys. Figures 3.16, 3.17 and 3.18 show the
results for Au 5130, Au 5130-1 and Au5210-2, respectively.

the caratage a little above 18.
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Figure 3.14: Mechanical loss spectra in cooling (at 2 K/min) of Au 5130 and its modifica-
tions (containing either no additives, or only indium, or only gallium) at 0.5 Hz (Au 5130-
1, 5130-2, 5130-3) or 1 Hz (Au 5130) excitation frequency. To correct for the difference
in excitation frequency as well as inaccuracies of the temperature calibration, the spec-
tra were shifted in temperature until the Zener peaks’ low-temperature flanks would
overlap.
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Figure 3.15: Mechanical loss spectrum (at 0.5 Hz excitation frequency and 1 K/min heat-
ing/cooling rate) of Au 5210-2, a modification of Au 5210 containing only indium, no
gallium.
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Figure 3.17: Mechanical loss spectra in heating and cooling (at 2 K/min and 0.5 Hz) of
monocrystalline and polycrystalline Au 5130-1.
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0.25

0.20 1

o
[N
(6]
1
T

loss tangent
=
|_\
o

0.05T

® Au 5130

® Au5125

0.00 SNMINNENNINNNNNNNNMNNINIE == L L= L

600 700 800 900 1000 1100
temperature (K)

Figure 3.19: Mechanical loss spectra in heating and cooling (at 1 K/min and 0.5 Hz) of
heavily cold-worked specimens (drawn to 75% deformation) of Au 5130 and Au 5125.
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The optimal hardening temperatures of the hardenable white golds, as deter-
mined empirically, roughly coincide with the precipitation temperature. It is
therefore fair to assume that the precipitates are also responsible for the age-
hardening of these alloys. However, since hardness is measured at room tem-
perature, the blocking of grain boundaries does not enter into account. The
age-hardenability must be attributed to precipitates forming inside the grains as
well, pinning dislocations and thereby increasing the alloy’s yield stress.

In chapter 5 it will be argued that the high-temperature background appearing
in all spectra is created by the motion of dislocations. Regarding this relaxation
process, we can make another observation in figures 3.9 and 3.11: during an-
nealing at the high-temperature end of the spectrum, the background decreases.
All specimens showed such a behavior when exposed to sufficiently high temper-
ature over extended periods of time. The background decrease is attributed to
the mutual annihilation of dislocations of opposite sign, reducing the dislocation
density.

The motion of dislocation also plays an important role during the recrystalliza-
tion of heavily deformed material. Here, too, significant differences have been
observed between white golds forming precipitates and those that do not. Fig-
ure 3.19 compares the spectra of heavily cold-worked specimens of Au 5125
(which contains no additives) and Au 5130. Both recrystallize during heating.
The cooling curves correspond to the respective mechanical loss spectra pre-
sented earlier. The transient damping, which occurs during the recovery phase
of the recrystallization process and therefore adds to the mechanical loss during
heating, is much more pronounced in Au 5130 and subsides at higher tempera-
tures. The alloy does not fully recrystallize until all precipitates are dissolved.

In Au 5130, and only in this alloy, a third peak is observed at medium tempera-
ture, above the Zener peak but below the grain boundary peak cut-off by precip-
itation (figure 3.9). Since it is an isolated feature, only little attention has been
dedicated to this phenomenon. The peak is about as high as the Zener peak,
but much broader (5 = 3.5). Its origin is not clear so far. While it was tempting
to think of it as the remnant grain boundary peak (after the precipitates have
appeared, reduced its height and shifted its position to lower temperature), this
possibility can be ruled out: the peak appears as well in the spectrum of mono-
crystalline Au 5130, where the grain boundary peak is absent (figure 3.16). The
relaxation seems to require the presence of gallium, as it was not observed in
any modification of Au 5130 produced without this additive. It is possible that it
originates from the interaction of dislocations and precipitates.
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Chapter 4

Zener Relaxation
near Order-Disorder Transitions

This chapter will focus on the interplay of two rather different ordering pheno-
mena occurring in yellow gold: stress-induced directional ordering, which causes
the Zener relaxation, and long-range atomic ordering.

First, an analytic expression for the Zener relaxation strength is derived that ac-
counts for the peak’s breakdown upon atomic ordering in binary alloys. Then,
frequency spectra (measured in isothermal conditions) of the binary Au-Cu alloy
are analyzed in view of the model predictions. Experimental data of the ternary
yellow gold are presented afterwards. Their spectra exhibiting the same charac-
teristic features as the binary Au-Cu suggests these are due to ordering in the
copper-rich phase. Disorder-to-order transition temperatures, marked by the
breakdown of the Zener peak, are reported on a phase diagram. Furthermore,
it will be demonstrated how the kinetics of the ordering process can be studied
by mechanical spectroscopy in order to obtain predictions of the transformation
times as a function of temperature. The chapter concludes with a discussion of
the Zener relaxation in white gold.

4.1 Theory of the Zener relaxation

Several theories exist describing stress-induced ordering either as a reorien-
tation of elastic dipoles formed by solute pairs!?®»N°:1 as directional order of
(nearest-neighbor) bonds!"®*], as variations in short-range order beyond near-
est neighbors™®’!, or by a lattice gas model!"'»s], Experimentally, the primary
interest lies in the fact that the Zener relaxation time is of the same order of
magnitude as the time between atomic jumps, but can be measured at tempera-
tures far below those accessible to radio-tracer diffusion experiments. N0

In the previous chapter, it was argued that the size mismatch between alloying
elements causes lattice distortions in the solid solution, such as those observed
in Au-Cu by XAFS, and thus gives rise to a relaxation mechanism: stress-induced
directional ordering of bonds. Historically, Clarence Zener first put forward such
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Figure 4.1: Schematic illustration of the Zener relaxation in dilute alloys: when a pair of
undersized atoms in a {100} plane locally distorts the f.c.c. lattice (left), an external
stress will favor some sites over others (right).

reasoning to explain a mechanical loss peak he observed in an a-brass single
crystal in 1942. Five years later, the same author proposed a theoretical model,
attributing the effect to the reorientation of atomic pairs.!?®*”] Since then, the
phenomenon is known as Zener relaxation.

Zener’s pair reorientation theory is valid for small concentrations of one of the
two alloying elements. In the solid solution, a pair of solute atoms locally deforms
the lattice of the surrounding solvent matrix and can therefore be thought of as a
structural defect. Figure 4.1 illustrates the case of an undersized atomic pair in
a {100} plane of an f.c.c. lattice. The so-called A-tensor, of components Ag’) for a
defect of orientation p, describes the extra local strain field the defect produces
with respect to the matrix. For the atom pair in figure 4.1, the A-tensor’s principal
axes are along [110], [110] and [001]. Generally, its three principal values are
mutually different, \; # \s # A3, reflecting the defect’s orthorhombic symmetry.
There are six crystallographically equivalent orientations of the pair axis, two in
each {100} plane, so p runs from 1 to 6.

At zero stress, the pair orientation is random. But this symmetry is broken as
soon as an external stress field comes into play. It will lower the free energy level
of those orientations A\*?) that would relax the elastic strain, i.e. further increase
it while the stress remains constant. Diffusion of one of the atoms forming the
pair to a neighboring lattice site changes the orientation. Consequently, the
relaxation time 7 will be of the order of %, where « is the lattice parameter and
D the diffusion coefficient. 5"

Zener’s pair reorientation model yields a relaxation strength proportional to
1/kT."?*+7] The singularity at zero temperature is readily understood: At 7" = 0
the configurational entropy no longer plays a role and all dipoles would want to
align at even infinitesimally small stresses to minimize energy. The relaxation
strength, defined in equation (2.9) as the ratio of anelastic strain (which is finite)
and elastic strain (infinitesimal), must therefore go to infinity.
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Le Claire and Lomer, in 1954, criticized Zener’s theory on several grounds. "¢
Most notably, they pointed out that it is not obvious how the reorientation illus-
trated in figure 4.1 produces a relaxation. In fact, as the pair rotates, if one
counts the atomic bonds the pair forms in the {100} plane, there are one like
bond (B-B, the one between the two solute atoms) and two unlike bonds (A-B)
in the crystal direction [110] parallel to the pair, and four unlike bonds in the
[110] direction perpendicular to it. l.e., the net difference in total bond num-
bers (of the entire crystal) between the two orientations is two A-B bonds versus
one B-B bond. The same is true for a rotation of the pair into one of the other
(out-of-plane) orientations. Now, if the average bond length of the solid solution
followed Vegard’s law,

ap-B = Cp QA + C aB, (4.1)

there would be no dimensional change of the crystal as the pair rotates. In
other words, the elastic dipole created by the pair, while per se orthorhombic in
symmetry, would have degenerate principal values if Vegard’s law was strictly
obeyed.

Experimentally, Vegard’s law was found true only for some ionic salts, but rarely
for metallic systems.!“™ However, we learn from the above remarks that the
atom size mismatch in the solid solution, despite the intuitive appeal of imagining
atoms as hard spheres of different atomic radii, does not by itself explain the
Zener relaxation. It is rather the varying compressibility of the different kinds of
bonds, and thus the deviation from Vegard’s law, that accounts for the anisotropy
of the elastic dipole.

In fact, a Zener relaxation peak has also been observed in Au-Ag,!™! though
gold with 4.078 A and silver with 4.086 A have very similar lattice parameters.
Furthermore, XAFS studies of Au-Ag could not reveal any significant deviations
from a regular crystal lattice.[F™! Nevertheless, the solid solution disobeys Veg-
ard’s law.“9""l Hence, it may be argued that local lattice distortions are a suffi-
cient, but not a necessary condition for stress-induced ordering.

Another major point of concern with Zener’s theory is that the notion of an atomic
pair representing an isolated structural defect loses all meaning if the solute con-
centration becomes significant. Particularly because the phenomenon is most
often observed in concentrated solid solutions. ™" Instead of atomic pairs, one
is better advised to recur to bond numbers for the choice of the internal thermo-
dynamic variable.

Long-range ordered alloys are not (or are a lot less) susceptible to stress-induced
diffusion. Not only are they free of static lattice distortions if the order is perfect,
but any bond reorientation would then incur the same energy penalty that stabi-
lized the ordered structure in the first place. Stress-induced bond relaxation can
only occur as long as some disorder is present, be it substitutional or thermal.
Thus, in a stoichiometric alloy the Zener relaxation strength should go to zero
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as the long-range order parameter reaches unity. At off-stoichiometric composi-
tions the peak height may remain finite, but should drop off markedly compared
to the solid solution.

Experimentally, this behavior was verified early on in a number of alloy systems,
such as Mg-Cd that forms an ordered structure at composition MgCds.!""s¢] How-
ever, contemporary experimental methods, temperature-dependent mechanical
loss measurements, made it difficult to study the Zener relaxation in conjunc-
tion with the order-disorder phase transition, and therefore never went beyond
establishing the existence or absence of the peak for a given alloy composition.
The evolution of the relaxation strength during the transition could never be fol-
lowed first-hand. The next section of this chapter will present the first direct
observation of the peak’s breakdown, in isothermal conditions, that is, in fre-
quency-dependent mechanical loss spectra.

In a concentrated solid solution, long-range ordering may be regarded as being
the result of a spontaneous self-alignment of bonds of the same kind. While,
conceptually, this reasoning is certainly an oversimplification, the idea behind it
is to point out the analogy to ferromagnetic materials, where the spontaneous
alignment of permanent magnetic moments results in the formation of the fer-
romagnetic (ordered) phase. Moreover, in the (disordered) paramagnetic phase,
the magnetization produced by an external magnetic field, i.e. the partial align-
ment of all spins, becomes increasingly stronger as one approaches the Curie
temperature 7,. For many ferromagnets, the magnetic susceptibility has a sin-
gularity exactly at 7, a fact expressed by the Curie-Weiss law:

e
CT-T.

Xm

Strictly speaking, the term “law” is a misnomer. There are a number of ferro-
magnetic materials with a non-linear behavior of ! in the vicinity of 7;.M°"

Similarly, and contrary to the predictions of the Zener pair reorientation model,
the Zener relaxation strength in many materials follows a Curie-Weiss type law:

C

A= .
T —1T¢

(4.2)

Here T, is the critical temperature of self-induced ordering.[NBgl C shall be re-
ferred to as the anelastic Curie-Weiss constant.

The theory presented in the following paragraphs will start off from Le Claire and
Lomer’s model*»*] for binary concentrated alloys, wherein the internal order
parameters are the (like/unlike) bond numbers in different crystal directions,
and then extend it by incorporating Li and Nowick’s approach!s!! that takes
interaction of order parameters into account, thus yielding the observed Curie-
Weiss type temperature dependence.

Let us consider a crystalline binary solid solution formed by mixing atoms of
species A and B. Disregarding interactions beyond the nearest-neighbor shell
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(and neglecting local lattice distortions), the total internal energy of the crystal
can be expressed in terms of the numbers of unlike bonds N,g (of type A-B or
B-A) and like bonds N, and Npg, as well as the corresponding bond energies
VAB: VAA: VBB:

U = Naa Vaa + Ngg Veg + Nag Vas. (4.3)

The average bond energy
V: 2VAB _VAA_VBB

reflects the alloy’s tendency to exhibit short-range order (V' < 0), atom segrega-
tion (V' > 0), or form a perfectly random solid solution (V' = 0).

An external stress will break the assumed symmetry among the nearest neigh-
bors. As the deformation of the crystal stretches the interatomic spacing in some
directions and shortens it in others, the bond energies, which vary with bond
length, will now depend on the crystallographic direction p, i.e.

VP =2V — Vi — Vi, (4.4)
p runs again from 1 to %, where z is the coordination number of nearest neigh-
bors.

Each of the crystal’s N atoms forms g bonds (per atom). The bonds of all N4
A-atoms are either of the A-A or A-B type, while the Ny B-atoms form only B-B

or A-B bonds. This can be expressed as:

1 z

N, —Npxg=-=-N,
AA+2 aB = 5 Na,
1 z
Ngp + ENAB = ENB~

Similar relations hold if one distinguishes bonds oriented in different crystallo-
graphic directions p. Per atom and p, there is only one of such bonds:

1

NﬁA—i_é KB:NAH
1

N§B+§ £B:NB'

(4.5)

It follows that, as long as the particle numbers N, and N (on the right-hand side)
are constant, any change in bond numbers — which may reposition any number
of atoms — must satisfy:

1
AN, = ANgy = —5 AN,

Particularly, as pointed out in the above discussion of the atom pair reorientation
with respect to Vegard’s law, any B-B bond that rotates will be replaced by two
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Figure 4.2: Illustration of the count of unlike bonds, NﬁB, along (two) different crystallo-
graphic directions p.

A-B bonds in its original direction (while an A-A bond rotates along with it). This
dissociation of like bonds resembles a reversible chemical reaction:

A-A + B-B = 2A-B (for each p). (4.6)

To preserve the problem’s symmetry with respect to the two atom species A and
B, it is best to parametrize in terms of the following order parameter:

1 arp

N,
yP = 2—]\?]3 (0 < y” < min{ca, cg}). (4.7)

Its range is limited by the smaller of the two atom fractions, ¢, = 42 or ¢ = 2.
Thanks to the bond number restrictions (4.5), the total energy of the crystal,

equation (4.3), can now be written as

U=NY (caViy+ca Vi + V), (4.8)

p

where only the last term, the mixing enthalpy, depends on the order parame-
ters.

As for the free energy, ¥ = U — T'S, one neglects all but the configurational
entropy:

S =kInQ{y"}),

where Q({y”}) means the number of possible arrangements of all atoms sharing
the specified set of order parameters. A numerical approximation for {2 and
minimizing the free energy,

oF

— =0
OyP ’
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leads to the equilibrium condition !>+ o]

(ca — ZJ(’:’U)ZE)CQB -y _ exp (%) ' (4.9)

A formal application of the law of mass action to the bond “reaction” (4.6) would
have given the same result.["® Equation (4.9) is therefore known as the quasi-
chemical approach to a solid solution’s equilibrium state of short-range order.
For " — oo, or if V? = 0 at any temperature, the equilibrium condition yields
bond numbers corresponding to a perfectly random distribution of atoms:

P P
NAA _ 2 NAB

= NSB 2
N A7 N

B 3 (4.10)

= 2cacp,

At zero stress, and as long as there is no long-range order, equilibrium order
parameter and bond energy must be independent of p:

yp’UZO = Yo and Vp’ozo - Vb
Expanding the left-hand (l.h.s.) and right-hand side

(r.h.s.) of the equilibrium condition (4.9) into Tay-
lor series around their respective equilibrium values,

l. .................
and equating the two linear terms,
L ins)| Ay = -L (chs)| ave >
dyp Yo dve Vo ’ g
yields a relation between Ay? and AV?, the first- ;
order stress-induced deviations from equilibrium. Yo=CaCe™™
One finds: 0 ATTITTUTIT I
AV 0.0 0.1 y 0.2 0.3
0
AyP = —g(yo) ca 3 T (4.11)
Figure 4.3: Plot of the func-
where tion ¢(yo), equation (4.12),
( Vo ( ) for ca = 0.3 (or cg = 0.3).
ca — cg —
9yo) = A — Yo) Yo (CB — Yo (4.12)

0124 C2B (2cacs — Yo)

is a function depending only on the initial state of order y,. It is plotted in fig-
ure 4.3.

We have yet to find an equilibrium condition at finite stress, i.e. an expression
that fixes either AV? or Ay?P. To that end, consider first the effect on the total
strain at constant temperature:

€= cot€an=Juo+ ) A Ay (4.13)
p

Here the anelastic strain is expressed in terms of coefficients

Oe

p = 8_yp (4.14)

T,0,yd7P
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that relate the changes in short-range order to the strain relaxation that ensues.
They hail from atomistic properties such as the different bonds’ compressibili-
ties. Note that for single crystals, due to their anisotropy, the effective strain
relaxation and thus )\ depend on the mode of deformation and the crystal’s ori-
entation. In this treatment the coefficients will be taken as parameters.

On the other hand, learning from expression (4.8) of the internal energy that
y? and VP are conjugate thermodynamic variables, we can write down the dif-
ferential of the Gibbs free enthalpy, G = U — T'S — Ve (where V denotes the
undeformed crystal’s volume), at constant temperature (d7° = 0) for the state
under stress:

dG = N) VPdy? - Vedo.
p

From the reciprocity relation

ove
oo

_ e
oyP

N

T,yP T,0,y97P

we find, using (4.13), that

ovr
oo =0
Tyyp
where v = % This means that V? varies linearly with o. For the finite-stress

equilibrium one can therefore make the reasonable ansatz: !

AVP = —0 X0 = by Ay, (4.15)

q

The first term accounts for the direct stress-induced variation of the bond ener-
gies, the second for repercussions of the ensuing change in the state of order.

The interaction coefficients b,, complicate the solution of the problem as they
couple AV? and Ay? corresponding to different bond orientations p and ¢. We will
therefore disregard all non-diagonal terms. All diagonal terms must be equal for
symmetry reasons, as they refer to equivalent crystallographic directions. Thus:
b,y = bd,,. Physically, the one remaining parameter b describes the average
additional gain in bond energy due to the stress-induced change in local order.
As such, the decoupling of the interaction terms corresponds to a mean-field
approximation. Note, again, that for single crystals b is anisotropic.

Using (4.11) in (4.15), we can now solve for the stress-induced deviations of the
bond energies:

T
T-T,

AVP = —u )\, 0 (4.16)

The critical temperature of self-induced ordering turns out to be:

kT, =bg(yo) caca. (4.17)
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The relaxation strength, defined in (2.9) as the ratio of anelastic and elastic
strain, can now be calculated for the Zener relaxation. Starting from equa-
tion (4.13) and using (4.11), then (4.16), one finds:

CACB
A= KT T UM Zg o) (4.18)

where M, = J;! denotes the unrelaxed elastic modulus corresponding to the
applied mode of deformation (the shear modulus for a polycrystalline sample
measured in a torsion pendulum). The relaxation strength exhibits a temperature
dependence of the Curie-Weiss type, equation (4.2). The anelastic Curie-Weiss
constant

C—cAchM Zg (Yo) (4.19)

is symmetric in the concentrations of constituents A and B.

The singularities at T¢, that both the bond energies AV? as well as the relaxation
strength A present, should be interpreted in view of the equilibrium condition
provided by the quasi-chemical approach, equation (4.9): V? approaching plus
or minus infinity means that y” takes on one of its extreme values, i.e. either 0 or
min{ca, cg} depending on p and the sign of AV?. This maximization of short-range
order can be understood as the formation of a long-range ordered structure (par-
ticularly at cpx = cg = % where it is the only possibility). Thus, at 7T, the alloy
would spontaneously order, even at infinitesimally small stresses.

In practice, the singularity at 7. is never reached. It is always preceded by atomic
ordering, at 7T, > T,. The model, as described above, does not account for this
experimental fact since it only deals with short-range order in the a priori dis-
ordered phase. However, no proof was provided that the thermal equilibrium of
the quasi-chemical approach, which was the starting point of the derivation, is
actually stable. The model prediction that at 7¢, at least for stoichiometric com-
positions, the spontaneous ordering leads to a final state of zero configurational
entropy, is a strong indicator that at this temperature the disordered phase had
been unstable to begin with, and thus 7, > T¢.

Conversely, if the ordered phase is in fact stable, then the zero-stress equilib-
rium values become p-dependent, yo — v5, and so does the function g from equa-
tion (4.12) which depends on . As typeset with foresight in (4.18), ¢(y}) must
then remain under the sum sign (over p) in that equation.

In a random solid solution, where y, = cacg according to (4.10), g(yo) yields the
value 1. In a long-range ordered structure such as AuCu I, however, it is zero for
all p: see figure 1.6 on page 10 for illustration and note that 3} is either 0 (only
like bonds) or % (only unlike bonds) depending on p, and that the function g,
plotted in figure 4.3, is zero in both cases.
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For the more complicated structure of AuCu II, the result should be virtually
the same. While the anti-phase boundaries introduce a certain amount of dis-
order!®°»l, they are not expected to contribute measurably to stress-induced re-
laxation since that would involve a collective motion of atoms, not just isolated
jumps.

In conclusion, the model presented here predicts a Zener peak of relaxation
strength given by equation (4.18) that, while in the disordered solid solution,
shows an increase of the Curie-Weiss type (4.2) towards a critical temperature
T.. Upon atomic ordering below 7, the peak disappears or, at off-stoichiometric
compositions, decreases markedly. The relaxation strength depends like cici on
the compositions of the constituents.

4.2 Zener peak in Au—Cu

In a first step, we have investigated the Zener relaxation in the binary Au-Cu.
The gold-copper system is a classic example for atomic ordering in alloys and a
popular testing ground for theories predicting alloy phase stability.[©7!

In an effort to also obtain kinematic data (relaxation times) of the ordered phase,
an off-stoichiometric composition was chosen with Aus;,Cuysy so that, thanks
to configurational disorder, a measurable Zener peak would remain even in the
long-range ordered state. According to the experimental phase diagram!“““",
Aus79,Cuyzy should undergo the a — AuCu II disorder-order phase transforma-
tion at 7, = 634 K.

Mechanical spectroscopy was performed in the forced, low-frequency, inverted
torsion pendulum described in chapter 2. Measurements were carried out under
a helium atmosphere (7 mbar) on a polycrystalline, cylindric specimen (22 mm
in length and 2.5 mm in diameter). The specimen was produced from 5N-pure
gold and copper, melted together and cast in a graphite crucible inside the same
induction furnace used for the growth of single crystals and described in sec-
tion 2.5, though in this case the crucible was cooled quickly and as a whole in an
effort to obtain a multi-grained microstructure.

Figure 4.4 shows isothermal frequency spectra of the mechanical loss tangent
at selected temperatures around the atomic order-disorder transition. From one
frequency scan to the next, the temperature was increased (figure 4.4a) or de-
creased (figure 4.4b) in steps of 5 K.

Initially, i.e. at 610 K in figure 4.44a, the alloy is ordered — a result from a previous
thermal treatment. Nevertheless, a small Zener relaxation peak appears in the
spectrum. This indicates that the state of atomic order is not perfect, as intended.
In the equiatomic AuCu this peak would be absent, unless the temperature were
so close to T, that thermal disorder becomes significant.



4.2 Zener peak in Au-Cu 59

0.3 0.3
() (b)
€02 0.2
(D) (D)
(@) (@)
C C
8 8
" " 625 K:
3 3
=01 =01 *
620 K
It 610 K
5678 2 3 4 5678 2 5678: 2 345678: 2
0.1 1 0.1 1
frequency (Hz) frequency (Hz)

Figure 4.4: Mechanical loss frequency spectra of Auj;9,Cuysy in isothermal conditions
at selected temperatures (steps of 5 K between curves) below and above the order-
disorder phase transition. (a) Formation of the Zener relaxation peak with increasing
temperature. (b) Critical evolution of the Zener relaxation peak height with decreasing
temperature in the disordered a-AuCu phase (light shade), breakdown of the peak during
the phase transformation (medium shade) to the ordered AuCu II phase (dark shade).

The relaxation time of stress-induced ordering in the ordered phase, as obtained
from the Zener peak’s position in all the frequency spectra up to 640 K, is plot-
ted in figure 4.5 as a function of temperature. Fitting of 7(7") to the Arrhenius
equation (2.14) yields a limit relaxation time 7\® = 3.6-107? s and an activation

enthalpy H® = 1.00 ¢V for AuCu II.

act —

Due to the decrease of the relaxation time with increasing temperature, the
Zener peak shifts to the right in figure 4.4a. At the same time, the peak grows
in height: slowly at first, reflecting the gradual decline of long-range order due
to thermal disorder, then, between 640 K and 650 K, much more rapidly, which
marks the transition from the now unstable AuCu II phase to the stable solid
solution.

The temperature dependence of the Zener relaxation in the disordered phase
is observed in figure 4.4b. The relaxation strength A, obtained from the peak
height as per equation (2.12), follows, to a good approximation, a Curie-Weiss
type law. This can be observed in figure 4.6 and is in agreement with the model
prediction, equation (4.18). Extrapolation of the fit to the data points yields a
critical temperature of self-induced ordering of 7, = 596 + 5 K.

As it turns out, the peaks are slightly broadened (5 =~ 1). This detail was over-
looked in the evaluation of the relaxation strength for figure 4.6, but would not
change the determination of 7; as it only introduces a constant factor.

In the disordered phase, the relaxation time also obeys the Arrhenius equation
(2.14), but the activation parameters are different. The curve is plotted on fig-
ure 4.5 along with the one for the ordered phase. There is a noticeable change
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Figure 4.6: Curie-Weiss type behavior of
the relaxation strength of stress-induced
ordering, A~! « T — T, as obtained from
the evolution the Zener peak’s height in
the disordered phase.

in slope at the phase transition. It means that diffusion in the ordered phase
is actually faster than the trend of the disordered phase would let expect. For
limit relaxation time and activation enthalpy in the disordered phase one finds
@ =1.2-107s and HY = 2.47¢eV. This activation enthalpy is two and a half
times higher than in the ordered phase, while 7\%’ is suspiciously small. No defini-
tive explanation can be offered at this point. It seems likely though, that the fluc-
tuations in short-range order near the critical point play an important role. Also,
as pointed out in the discussion of equation (2.15) in section 2.1 (page 25), the
entropy difference involved in thermal activation may not always be neglected,
even less so in the vicinity of a first-order phase transition where the equilibrium-
state entropy incurs a discontinuous jump while the entire structure evolves.
Note that the thermodynamical description of the activated state!®°»! is rather

complicated, since this state is per se out of equilibrium.

Upon cooling below 630 K (again in figure 4.4b), the Zener relaxation peak breaks
down. This marks the onset of atomic ordering, which hinders stress-induced or-
dering except for the contribution due to substitutional disorder in the ordered
phase. Contrary to earlier mechanical spectroscopy studies, the isothermal mea-
surements presented in figure 4.4 are the first direct observation of the Zener
peak’s breakdown during atomic ordering.

Obviously, the disordered a-phase is unstable at 630 K and below, so this tem-
perature represents a lower bound for the equilibrium critical temperatures of
atomic ordering, 7, though both temperatures should be very close. In the fol-
lowing section we will see how to improve this first and simple determination
of T,.

The hysteresis between heating and cooling observed in figure 4.4 clearly in-
dicates that the phase transformation is of first order: the initial phase first
becomes metastable and additional overheating or undercooling is required to
render it thermodynamically unstable. After that, the transformation proceeds
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Figure 4.7: Kinetics of the disorder-order transformation as obtained from (normalized)
mechanical loss measurements over time, at 1 Hz, after quick cooling of the disordered
specimen to temperatures below T5.

much more rapidly, only limited by the energy barrier of atomic diffusion. This
conclusion, that the AuCu II — « phase transition is of first order, agrees with

calorimetry studies showing that the transformation is associated with a latent
heat. [FeooBag,]

4.3 Kinetics of atomic ordering

The kinetics of the ordering processes in Au—-Cu have been studied by several
authors, using indicators such as the elastic modulus!®“°! and the electrical resis-
tivityP51¥uss] or observing the evolution of the X-ray diffraction patterns!©Bse-Fes]
as a function of annealing time and annealing temperature. Furthermore, in-situ
temperature observations per transmission electron microscopy have shown that
AuCu II grows in the a-phase starting from needle-shaped nuclei. %!

The gradual breakdown of the Zener peak below the transition temperature can,
too, be used to study the kinetics of the ordering process (figure 4.7). To that end,
the specimen was first annealed in the disordered state at 680 K for one hour,
then quickly cooled below the order-disorder transition temperature 7,. After
reaching the target temperature, the mechanical loss was monitored over time
at a fixed frequency. The evolution of the state of long-range order is reflected
in the mechanical loss dropping from an initial value, due to stress-induced dif-
fusion in the still disordered phase, down to the infinite-time value correspond-
ing to maximum atomic order, i.e. the state corresponding to the equilibrium
long-range order parameter at that temperature. (For temperatures where or-
dering is slow, the final value was obtained after establishing order at a lower
temperature and subsequent reheating.) We will assume that there is a corre-
spondence between this relative relaxation strength and the volume fraction of
the disordered phase. The assumption implies that the ordered phase nucleates
and grows within the disordered phase.



62 4 Zener Relaxation near Order-Disorder Transitions

In figure 4.7, the relative relaxation strength is reported as a function of anneal-
ing time. It should be noted that the curves were smoothed to improve the pre-
sentation. The scatter in the data during the phase transformation, indicated by
error bars in figure 4.7 and also noticeable in the frequency spectra (figure 4.4),
is caused by a shape memory effect that happens to occur in this particular al-
loy!©Ps] hampering precision measurements.

In figure 4.7 one observes that the stronger the undercooling, the faster the
ordering process. This presents further evidence that the phase transition is first
order in nature. At 634 K, on the other hand, ordering slows down drastically and
one readily estimates an equilibrium transition temperature of 7, = 635 + 1 K.

This result can be corroborated by modeling the kinetics of the ordering process.
For the present alloy, Sima’s model for equiatomic AuCu seems promising, as
it has proven to agree very well with experimental data, such as differential
calorimetry, X-ray diffraction and resistivity measurements. 52!

It was noted by that author that the ordering in AuCu does not proceed according
to the classical Avrami equation for nucleation and growth processes. Instead,
the volume fraction of ordered domains, f, evolves as a simple exponential: f o
1 — exp X!, Fits to the drop-off of the relative Zener relaxation strength during
disordering, figure 4.7, confirm this observation for the present Aus,¢Cu,s alloy.
Obviously f then obeys a rate equation. We therefore suppose:

f=-K9f+K°(1-f), (4.20)

with rate parameters of ordering (0) and disordering (d) given as

H(d/o) lo/d)
Klo/d) _ (d/o) _ “fact — . 4.21
Yy exp T exp LT ( )

F© and F@ denote the free energy barriers for ordering and disordering, re-
spectively. They reflect the fact that, in order to pass from the meta-stable to
the stable phase (or even in the other direction), the alloy must go through atom
configurations that are even higher in energy. These energy barriers will be
determined from the fitting procedure that follows.

All configurational changes hinge on the diffusional process of atoms switching
lattice sites with nearest neighbors. The other exponential factor appearing in
expression (4.21) for the rate parameters is therefore nothing but the activation
energy of atomic diffusion. In a slight variation of Sima’s approach, we distin-
guish here diffusion within the ordered and the disordered phase. Note that
diffusion within the ordered phase enters the rate parameter of disordering and
vice versa.

An advantage of using the Zener relaxation strength as an indicator for long-
range order is that it readily provides diffusion data as well. We can now use
the results for 7 and 7@ extracted from figure 4.5 to estimate the respective
diffusion activation energy H%® and the pre-exponential factor v’ in equa-
tion (4.21).
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Figure 4.8: Calculated TTT diagram for the ordering process o — AuCu II, showing the
volume fraction of ordered phase f as a function of temperature and transformation
time.

Starting from an expression for the Landau free energy of AuCu — derived from
an alloy Hamiltonian that takes the electronic properties of Au and Cu into ac-
count!Ce2! — SimalSs:S2] parametrized the potential barriers F© and F@ in the
temperature interval from 7, — 2§ to T, + 14 as follows:

FO(T) = %nsé (1 —3UT) + 21(T)%)

and

Besides the equilibrium transition temperature 7T,, the parameters are the width
of the thermal hysteresis range ¢, the discontinuity of the molar entropy s, and
some energy scaling factor n. Outside the hysteresis interval, the energy barrier
of the stable phase is set to zero, so that the transformation proceeds as fast as
diffusion allows.

Fits to the kinetic data displayed in figure 4.7 yielded: n = 2470, s = 0.31k
(where £ is the Boltzmann constant), 6 = 67 K, and, most importantly, a transition
temperature of T, = 635.3 K.! The latter is in excellent agreement with literature
data (T, = 634 K, and of inferior precision). !¢

Based on the rate equation (4.20), one can now use the full set of parameters to
calculate the fraction of ordered domains as a function of (transformation) time

!The systematic error on temperatures reported in this section is about 1 K. It is due to insta-
bilities of the temperature control and the possible inaccuracy of its calibration.
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and temperature:

K©)
o N —(K(°)+K(d))t
f(t,T) - K (© 4 K@ (1 e >
The result is plotted on the transformation time vs. temperature diagram (TTT
diagram for short) in figure 4.8.

The TTT diagram’s “nose” indicates that the disorder-to-order transition is fastest
at 594 K, where the transformation is nearly complete after a couple of minutes.
This detail was impossible to deduce from the kinetics data in figure 4.7 alone.
The problem lies in the fact that at temperatures too far below 7, (strong un-
dercooling), the Zener peak shifts out of the observable frequency range and its
breakdown goes unnoticed. In calculating the low-temperature part of the TTT
diagram, we have exploited the fact that the Zener relaxation time is a measure
of atomic diffusion, which in turn is the limiting factor of the disorder-to-order
transformation rate at low temperatures.

On a final note, it should be pointed out that, in order to conduct similar mea-
surements for any given alloy, the frequency range (of the torsion pendulum to
be used) has to be chosen (or happen to be) such that the Zener relaxation peak
appears close to the order-disorder transition temperature.

4.4 Order hardening in yellow gold

Mechanical spectroscopy was performed on polycrystalline, cylindric samples
(50 mm in length, 2 mm in diameter) of five of the 18-carat yellow gold alloys
listed in table 1.1 on page 7. Measurements were carried out either in vac-
uum better than 10~° mbar (alloys Au 118, Au 318, Au 418) and subsequently
calibrated in temperature to account for the temperature gradient between tem-
perature sensor and sample, or, in an effort to improve on temperature control,
under a helium atmosphere of 7mbar (Au 218 and Au 518). Generally, all re-
ported temperature values have an uncertainty of up to 10 K.

Figure 4.9 shows the Zener relaxation peak of Au 518 (Aus;9,Cuy3%4Agesy) as mea-
sured in isothermal conditions. One remarks immediately that, with varying
temperature (changed stepwise from one spectrum to the next), the Zener peak
in Au 518 evolves in the same characteristic manner as it does in the binary
Aus79,Cuysy (compare with figure 4.4). However, though both alloys contain the
same amount of copper, the Zener relaxation in Au 518 is considerably weaker,
with a peak only little more than half the height (right before it breaks down)
compared to Aus;q,Cuysy.

Figures 4.10 and 4.11 show the Zener peak in alloys Au 118 and Au 418, both
in “cooling”, i.e. at stepwise decreasing temperatures. The Zener relaxation
is stronger by approximately one order of magnitude in Au 418, of higher cop-
per content, compared to Au 118, the silver-richest of the series. Note that in
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Figure 4.9: Mechanical loss frequency spectra of Au 518 in isothermal conditions at se-
lected temperatures (steps of 5 K between curves) below and above the order-disorder
phase transition. (a) Formation of the Zener relaxation peak with increasing tempera-
ture. (b) Critical evolution of the Zener relaxation peak height with decreasing temper-
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Figure 4.10: Isothermal mechanical loss
spectra of Au 118, showing the increase
of the Zener relaxation peak with stepwise
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Figure 4.11: Isothermal mechanical loss
spectra of Au 418, showing the Zener
peak’s increase before and its breakdown
after the onset of long-range ordering.
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ation time 7 of yellow gold alloys. ture dependence of the Zener relaxation
strength.

these two figures the background contribution, due to the grain boundary peak
situated higher in temperature (lower in frequency), was subtracted in order to
obtain the pure Zener peaks. However, as far as the peak heights are concerned,
an uncertainty with respect to the background level persists, which is the more
important the smaller the peak.

The major difference between Au 118 and Au 418 is that, while in the latter alloy
the Zener peak clearly breaks down, no such behavior can be observed in the
former alloy’s spectra, nor has it been in any other measurement performed.
The isothermal spectra of Au 218, 318, 3418 and 5618 (not shown) all exhibit the
same characteristic breakdown of the Zener peak. Two of those alloys, Au 3418
and 5618, were excluded from the following analysis due to insufficient data
regarding the background, which would introduce too great an uncertainty in
the assessment of the peak height. From the sum of these observations it can be
concluded that atomic ordering occurs in all yellow gold alloys except Au 118, at
least not in the temperature region investigated so far.

As usual, the Zener relaxation’s thermal activation manifests itself in the peak’s
shifting to lower frequencies with decreasing temperature. The corresponding
Arrhenius plots are presented in figure 4.12. Fit results to the Arrhenius equa-
tion (2.14) are summarized in table 4.1, along with the log-normal distribution
parameter 3 of peak broadening. As a general trend, one observes that the ac-
tivation enthalpy H,. increases with copper content. Again alloy Au 118 stands
out in that its peak is not broadened and its activation enthalpy considerably
lower. Its limit relaxation time corresponds to an attempt frequency vy = 7, "
for the atomic diffusion process that, contrary to the rest of the alloy series, is
reasonable, as it is close to the Debye frequency in copper (roughly 103 Hz!AM),
Arguably, the diffusion parameters in the other alloys are apparent values, over-
estimating H,. and underestimating 7), due to the proximity to 7,, as we had
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alloy To Hot 16 TS T, C

118 | 107" s | 1.6 eV 0 — 355 K| 4K
218 | 107" s | 2.1evV|1.61 |550K | 380K | 16K
318 | 107 s | 2.3eV | 1.95| 580K | 460K | 20 K
418 |107°s | 22eV | 1.61 | 605K | 502K | 22K
518 | 107*2s | 2.6eV | 1.47 | 615K |531K | 28K

Table 4.1: Limit relaxation time 7y, activation enthalpy H,c, and log-normal distribution
parameter [ of the Zener relaxation peak, as well as transition temperature of long-
range atomic order T, critical temperature of stress-induced ordering 7, and anelastic
Curie-Weiss constant C for five of the yellow gold alloys.

observed to be the case for Aus;q,Cuysy.

The relaxation strength A was calculated from the Zener peak’s height at each
temperature step, taking peak broadening into account. In all alloys A exhibits
a Curie-Weiss type temperature dependence,

T-T.
=
as demonstrated by the plots in figure 4.13. This is also true for Au 118, which,
with A~! ranging from 50 to 70, is not plotted for the sole reason of maintaining
a convincing scale. The trend, however, is already recognizable in figure 4.10.

Fits yield the anelastic critical temperatures 7. and anelastic Curie-Weiss con-
stants (', which are reported in table 4.1.

A_l

An oft-employed argument in identifying a relaxation mechanism as being of the
Zener type is to determine its relaxation strength from the peak’s height in a
temperature spectrum and proving that it varies with composition like ¢? (for
small solute concentrations) or 012;0213 (in concentrated alloys). For the purpose of
illustration, such a plot for yellow gold was presented in figure 3.5 (page 37 in
section 3.1). We now understand why, in proximity to an order-disorder transi-
tion, this approach is fundamentally flawed and yields the inexplicable fit result
illustrated on that figure. Isothermal studies allow for a more accurate analysis
of the Zener peak’s concentration dependence if they are based on the anelastic
Curie-Weiss constant to eliminate the temperature dependence.

According to equation (4.19) from the theory section, C is given by:
v
C=cic z M, Z 9(vo) /\12,.
p

While all dynamic modulus data available from various mechanical spectroscopy
measurements suggests that the unrelaxed modulus M, varies little throughout
the alloy series, this does not necessarily hold true for the state of local order vy,
(which might be affected by short-range ordering) nor the coefficients \,. How-
ever, the influence of the variation of the atomic volume v, albeit small, can be
corrected by linearly interpolating the data for the lattice parameter of the solid
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solution collected in reference Pros. Figure 4.14 shows C’ = C'Tg/vy as a function
of the copper concentration.

Arguably, one may conclude from figure 4.14 that the composition dependence
of the relaxation strength is rather well described by the theory for concentrated
binary alloys. Only Au 218 does not obey the fit of C’ to ¢Z,(1 — ccy)? within the
precision of the experiment. However, a possible concentration dependence of
other factors but the atomic volume was disregarded in the assessment. Hence,
it is just as if copper took on the role of one species, and gold or silver that of
the other. Nevertheless, this simplified picture is somewhat contradicted by the
difference in relaxation strength of Au 518 compared to Aus;¢,Cuysy.

The transition temperature of long-range atomic order, 7, is also reported in
table 4.1 and plotted, like a phase diagram, in figure 4.15. The estimated phase
boundary (for arbitrary copper concentration) represents a polynomial fit of the
data points. For each alloy the value of 7, was ascertained from the approximate
temperature at which the Zener peak (and thus the disordered phase) becomes
unstable. In Au 418 for example, the phase transformation sets in at about 605 K,
see figure 4.11. As explained in the theory section, the phase transition temper-
atures are systematically higher than the critical temperatures of self-induced
ordering, 7T;, see table 4.1.

As for Au 118, where the Zener peak is still observed at a temperatures as low
as 558 K in figure 4.10, a T of only 355 K indicates a rather low 7, £ T;. At this
temperature, solute diffusion is too slow to promote the ordering transformation.
In effect, the Zener relaxation time, which is of the same order of magnitude
as the mean time between atomic jumps, is already 20s at 560 K and further
increases exponentially (figure 4.12). One can therefore conclude that atomic
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ordering does not occur at this composition, and even if it did, the transformation
time would be too long for practical applications.

The transition temperatures reported here agree well with the ternary phase
diagram.“’r%] It is, however, worth noting that in literature dedicated to the met-
allurgy of 18-carat yellow gold used for jewelry (references Mc,g, Ragp, and
most recently Rogg) the extent of the ordering region is systematically under-
estimated.

A conspicuous detail in the spectra of Au 518, figure 4.9, is that after the Zener
peak’s breakdown only the background remains and no residual peak is dis-
cernible. This contrasts with the observations made in Aus;4Cuysy, figure 4.4,
where the residual peak offered the opportunity to obtain diffusion data in the
ordered phase.

The absence of the Zener relaxation peak after atomic ordering may be under-
stood as a consequence of phase separation, which in Au 518 should occur even
before ordering sets in (see figure 1.9 on page 12). This is not the case for the
other alloys. In fact, for an alloy very similar in composition to Au 418, elec-
tron micrographs and diffraction patterns indicate a @ — AuCul + a, phase
transition at 593 K!Ne#! (12 K lower than 7, reported here), i.e. atomic ordering
and phase decomposition occur at the same time. While at high temperature
stress-induced ordering takes place in the solid solution of all three constituents,
with its strength depending mainly on the copper concentration, alloy Au 418
would separate into a disordered silver-rich phase and an ordered copper-rich
phase, where, if one is inclined to accept this explanation, the composition of the
latter approaches the stoichiometric one for which the Zener peak disappears
entirely.

As pointed out at the beginning of the theory sec-

tion, the gold-silver system also features a Zener re-

laxation. For a gold atom fraction corresponding to i 597 K
that of Au 418, this Zener peak, produced by the
silver-rich disordered phase, should appear in the
frequency spectrum at temperatures around 600 K
according to reference Tugy. The Au-Ag Zener relax-
ation is considerably weaker than the one in Au-Cu.
It would be further diminished in a two-phase mate-
rial where the total relaxation strength is given by a
lever rule (as is, for example, the case with + precipi-
tates forming in Al-Ag'%s)). Indeed, a small peak can
be perceived in the frequency spectrum of Au 418 at
597 K (figures 4.11 and 4.16), and, though the datais Fioure 4.16: Residual peak in
sketchy, it seems to be centered at higher frequency A 418 the same as in fig-
than the original Zener peak before its breakdown — ure 4.11 but on a different
as opposed to the expected trend. (Unfortunately, for scale.

the remaining alloys the data is inconclusive.)
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Just like in AuCu, the observed phase transition is of first order, since the same
arguments as for Aus;¢Cuy3y, in section 4.2, can be applied to the isothermal
mechanical loss spectra of the Zener peak in yellow gold (such as Au 518’s in
figure 4.9). Differential scanning calorimetry was performed to confirm that the
transformation is indeed associated with a latent heat. In calorimetry, the latent
heat manifests itself as a sharp peak, particularly during heating, superimposed
on the otherwise continuous curve of heat capacity versus temperature. The
sharp peak in heating is due to the fact that, for first-order transitions, most of
the latent heat is released when the low-temperature ordered phase becomes
unstable (it is but metastable at the equilibrium transition temperature), and or-
der parameter, entropy and enthalpy incur a sudden discontinuous change.[Qél-l]
In cooling, the discontinuity is less pronounced as the transformation is kineti-
cally inhibited by slower diffusion and, in most cases, the necessity to first create
nuclei of a minimum critical size (which also enlarges the hysteresis).

Results are presented in figures 4.17 and 4.18 for Au 418 and Au 518, and
show the expected features in both cases. The peaks in Au 418 are however
much broader. The curves generally resemble those reported for AuCu, includ-
ing the broad hump in the heating curve before the peak (attributed to con-
figurational disordering while the equilibrium order parameter begins to de-
crease).!®:] However, note that the heating rate used for the measurements
presented here is too high to resolve the small bump that would, possibly, signal
the AuCu I — AuCu II type phase transformation right before disordering. "¢}

By integrating the area under the peak in heating, the latent heat (or rather
the enthalpy difference between the fully ordered and the disordered state) was
found to be about 8 J/g in Au 418 and roughly twice that, 16 J/g, in Au 518. The
most recent evaluation of the latent heat of AuCu (associated with the full AuCu I
— « order-disorder transition) yielded 21 J/ g.[Bagll There is considerable error
on the values reported here, but the same is true for the various (and greatly
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varying) results for AuCu’s latent heat reported throughout literature. ¢!

It is virtually certain that during all age-hardening treatments performed in in-
dustry (typically at 550 KP"l) 3 superstructure of AuCu I type, not AuCu II, is
formed. This implies that the hardening mechanism of AuCu, reviewed in sec-
tion 1.3, also governs the age-hardening of the hardenable yellow gold alloys,
with the added difference that silver-rich disordered domains form as well.

A AuCu II type ordered phase, should it even exist in a given yellow gold alloy,
would only be stable in a very narrow temperature range below the disordered
phase that lies most probably entirely within the region covered by the hystere-
sis (as suggested by the calorimetry data). This is so because the driving force
for the nucleation of ordered domains is very low at such little undercooling. To
produce a specimen of (possible) AuCu II order, one would rather stabilize the
AuCu I phase first, then make a second heat treatment close to the disordering
temperature. The attempts made in our lab with Au 518 samples, following the
described scheme, were not crowned by success, i.e. these samples never exhib-
ited X-ray diffraction patterns indicating a AuCu II superstructure, in which case
AuCu I's 110 peak (see figure 2.8 shown as illustration on page 32) would split
into two separate peaks!™! due to the presence of periodic anti-phase bound-
aries. Of course, the chosen annealing temperature (600 K) or, particularly, the
length (two hours) of the applied heat treatment may have been inadequate to
produce this change.

4.5 Zener peak in white gold

As pointed out in chapter 3, the temperature spectra of those white golds con-
taining neither indium nor gallium resemble the spectra of yellow gold in that
they all feature the same two peaks: the first due to the Zener relaxation, the
second due to grain boundary sliding. The Zener peak in white gold is situated
higher in temperature, typically at about 700 K at 1 Hz, and often closer to the
grain boundary peak.

Figure 4.19 shows isothermal spectra of the Zener peak as measured in Au 5125.
It is superimposed on the grain boundary peak, which is larger and broader.

In order to properly subtract the background, the fit illustrated in figure 4.21
was performed. During the fitting procedure, the activation enthalpies were
fixed at the values obtained from separate Arrhenius plots for the Zener peak
(figure 4.22) and the grain boundary peak (figure 5.6 on page 87 in chapter 5).
To correct for the possible inaccuracy of the temperature calibration, 7, was
allowed to vary (and did so only a little). Besides the grain boundary peak, no
other background contribution was considered.

The fit is in excellent agreement with the measured spectrum. The information
thus obtained on the background was used to extract the pure Zener peak at
each temperature. The result is plotted in figure 4.20. The height of the peak
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increases with lowering temperature, a characteristic feature of the Zener re-
laxation. However, compared to those yellow gold alloys that form an ordered
phase, the peak grows little over the observed temperature range and is obvi-
ously far from the critical temperature of self-induced ordering. No breakdown
of the Zener peak was ever observed in this alloy. Hence, just like for Au 118,
one can argue that no atomic ordering occurs in Au 5125 and exclude this phe-
nomenon as a possible candidate for age-hardenability.

The characteristic temperature dependence of the Zener peak is even more pro-
nounced in Au 5130 as figure 4.23 testifies. To test if the peak eventually does
break down, a long annealing was performed at about 550 K. The mechanical
loss level was monitored over the course of almost three weeks at a frequency
as low as 0.001 Hz. Temperature and frequency so chosen should correspond to
some point on the Zener peak’s right flank (in the frequency spectrum). Any such
point would decrease by the same factor as the peak’s maximum when the peak
breaks down. The result is shown in figure 4.24. Each data point on this graph
is actually the average value of mechanical loss measurements during more than
6 hours. This was done to eliminate some of the scatter in the data, which is
inevitable at this low a frequency.

Unfortunately, the data is inconclusive. While one observes an obvious trend in
figure 4.24, it could never be established that atomic ordering does indeed occur.
X-ray diffraction performed in our lab showed no trace of any superstructure
whatsoever. Furthermore, the alloy does not harden during thermal treatments
such as the one it underwent in this experiment.

In the Au-Pd based alloy Au 5210, the Zener peak is situated about 100 K higher
in temperature compared to other white golds. Actually, attributing this peak to
a Zener relaxation is somewhat speculative. After all, this alloy does not contain
any copper. To the knowledge of the author, pure Au-Pd has never been studied
by mechanical spectroscopy. Furthermore, gold-palladium is one of the few alloy
systems that actually follow Vegard’s law rather well.!***d Deviations from the
law have however been observed, and they are strongest at about 60% gold. @]
The gold fraction in Au 5210 is 62%. A slight increase of the peak’s height from
high to low temperature can be observed in the isothermal spectra in figure 4.25,
though this effect is small and little convincing. There are no signs of atomic
ordering in this alloy either.

The general shift of the Zener peak to higher temperatures compared to the yel-
low golds can be understood as being due to the involvement of palladium. The
fact that palladium additions always increase the alloy’s melting point implies
that Pd atoms form bonds stronger than the other elements all by themselves.
As these bonds must be broken for atomic diffusion to take place, the presence
of palladium in the matrix arguably increases the activation enthalpy of self-
diffusion for any element. Consistent with this reasoning, the Zener peak’s ac-
tivation enthalpy in Au 5210 is 0.3 eV higher than in Au 5125, see the Arrhenius
plot in figure 4.26.
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Chapter 5

Grain Boundary Sliding
blocked by Precipitates

In chapter 3, based on the observation that the high-temperature peak only
appears in the spectrum of polycrystals but not single crystals, we concluded
that the corresponding relaxation results from the relative sliding of adjacent
grains along their common boundary. The very same argument was first made
in 1947 by Ting-Sui Ké, then a post-doctoral scientist in the research group
headed by Clarence Zener, in his interpretation of the spectrum of (poly- and
monocrystalline) aluminum. "] As opposed to the Zener peak discussed in the
previous chapter, which was discovered at about the same time, the veracity
of Ké&’s interpretation has been disputed — and even rejected by some [P0+ Wos1]
— over the years. At the small stress amplitudes that are put into play dur-
ing mechanical spectroscopy, it seemed questionable how, in a metal, the two-
dimensional macroscopic defect that is a grain boundary becomes mobile at tem-
peratures only little higher than for (zero-dimensional) point defects, and way
before (one-dimensional) dislocations. The debate was still going on as recently
as 2004 [Beod]

In view of this controversy, one objective of this chapter will be to compile as
much evidence as possible that the high-temperature peak observed in 18-carat
gold is in fact due to grain boundary sliding. In a first step, the experimental
data will be confronted with a continuum model of grain boundary sliding, which
describes the polycrystal as an assemblage of elastic grains separated by glissile
boundaries.

The interpretation of the peak as due to grain boundary sliding will be further
substantiated by observations made in those white gold alloys containing indium
and gallium. Below a certain temperature, they form a stable phase with some
of the alloy’s other elements. When the second-phase particles precipitate, they
block grain boundaries and prevent them from sliding. This can be directly ob-
served in the spectra, which show the breakdown of the grain boundary peak —
a behavior similar to the Zener relaxation at the disorder-to-order transition.

Hardness measurements and mechanical spectroscopy of single crystals will
then show that precipitates do not only block grain boundaries, but also pin dis-
locations inside the grains. This explains the age-hardenability of these alloys.
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Figure 5.1: Shearing of a honeycomb type grain assemblage, made up of grains shaped
like hexagonal prisms.

5.1 Grain boundary sliding in metals

A first model for grain boundary sliding in metals was developed by Zener in
1941.1%¢41 It was found to be in excellent agreement with K&’s measurements of
the grain boundary peak in aluminum six years later. [Kel; Kei, NBY] Therefore, the
outlines of Zener’s model shall be recalled.

Consider the application of a shear stress 7 to a periodic grain assemblage, such
as the hexagonal prisms forming the honeycomb-like arrangement illustrated in
figure 5.1. If the entire polycrystal behaves as a homogeneous (and isotropic)
elastic medium, the resulting displacement field is simply @(z,y, z) = (yy,vx,0),
i.e. all volume elements are in a state of pure shear, with shear angle v = #-. As
usual, GG, denotes the unrelaxed shear modulus.

We now allow sliding along grain boundaries and consider only the relaxed state,
i.e. when all sliding processes have come to a halt. On the relaxed state we
impose the condition that grain boundaries shall no longer transmit any shear
stress. Similar to a jigsaw puzzle, the remaining rigidity is then due to local
stresses accumulating near triple junctions, where boundaries of different orien-
tations meet and sliding is impossible. Obviously, this scenario is an exaggera-
tion, otherwise bicrystals would fall apart at the temperature of grain boundary
sliding. In reality, grain boundaries are not perfectly flat, but contain ledges that,
besides triple junctions, also form obstacles to slip. This problem was addressed
by Raj and Ashby whose model describes grain boundaries with a periodic wavy
(or even bumpy) profile.[?%1] Nevertheless, flat profiles, as in Zener’s model,
should yield a lower bound for the relaxed shear modulus.
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In the relaxed state, the stress and strain fields are inhomogeneous. The dis-
placement field is even discontinuous at the grain boundary: it incurs a jump in
its parallel component. Volume elements next to the boundary are under tensile
stress only, as opposed to the grain centers which, for symmetry reasons, remain
in a state of pure shear. Grain boundary sliding is thus accommodated by elastic
deformation of the grains. The relaxed average shear angle is given by the rel-
ative displacement of neighboring grain centers.!"! The relaxed displacement
field can be determined by solving the equilibrium equations of elastostatics un-
der the boundary conditions as described.

Without going into the details of this calculation, we can already draw two impor-
tant conclusions. First, as the strain field is an intensive thermodynamic variable,
it remains invariable under a spatial scaling transformation, i.e. e(a7) = €(7).
Hence, unrelaxed and relaxed shear angle are independent of grain size, and
therefore also the relaxation strength, given by their ratio. This is even easier
to see if one realizes that the average shear angle of the periodic structure is
always given by the triangle drawn in figure 5.1, and obviously independent of
the figure’s scale. It is this symmetry argument that distinguishes sliding accom-
modated by elastic deformation of the grains from sliding accommodated by dif-
fusion, such as Coble or Nabarro-Herring creep in ceramics. In the latter case,
which might occur at rather high temperature (with respect to the material’s
melting point), matter transported over long distances changes the geometry of
the grain structure and thereby redistributes the internal stresses. The restoring
force is then no longer proportional to the anelastic strain. It might even van-
ish entirely, in which case there is no mechanical loss peak but only a continual
increase with temperature (steady-state creep).

Second, as the displacement field is extensive, i.e. u(a7) = a (), the distance
grain boundary elements have to cover scales with grain size d. The rate of
sliding though is controlled by microscopic processes (the intrinsic grain bound-
ary viscosity), so it cannot depend on the overall sliding distance. Therefore,
the relaxation time should be proportional to grain size, 7 o« d. The small
grain size exponent of 1 also distinguishes elastic accommodation from diffu-
sional creep, where it is between 2 (volume-controlled diffusion) and 3 (boundary-
controlled). Ra7]

Both conclusions hinge on the assumption of perfectly flat grain boundaries. For
realistic boundaries containing ledges it is questionable (though not impossible)
that the spacing of those steps would scale with d. Conversely, however, an ex-
periment where, for a polycrystal, 7 increases with d and A varies only little
should be seen as an indicator that grain boundary sliding is primarily accommo-
dated by elastic deformation of the grains. As opposed to ceramics, this is the
expected behavior for metals.

The solution of the displacement field’s boundary value problem is generally dif-
ficult. Zener made a significant simplification by assuming all grains were spher-
ical, since for spheres the theory of elasticity is well known. He could thus solve
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the problem for a polycrystal under tensile stress. Ké applied the theory to shear-
ing and found for the ratio of relaxed to unrelaxed shear modulus: ¢!

G, 2T7+5bv

G, 57—4v

(5.1)

It depends only on the Poisson’s ratio v of the elastic grains. The modulus ratio
is related to the relaxation strength A, equation (2.9), as follows:
G

A=—"—1. 2
a (5.2)

For aluminum’s v = 0.35, equation (5.1) yields a modulus ratio of 0.63. This agrees
very well with K&’s measurement of 0.67.1%:7] Therefore, in literature reviews of
the grain boundary peak, Ké’s work is often presented as evidence for Zener’s
theory.

However, such an assertion overlooks the fact that the approximation made in
deriving equation (5.1) is rather crude: it is based on the boundary conditions of
spherical grains, which only touch in a few points and do not pack to fill space.
Ghahremanil®"! and later Fotiu!"! each applied different finite element meth-
ods (FEM) to solve the problem for the hexagonal prisms of figure 5.1. They both
found the same numerical solution, which can be approximated by the formula:

G, 14v0.86—0.83v
G, 1—-v1.14+083v (5.3)

As Fotiu pointed out, this result can be considered the “exact” solution for the
honeycomb grain structure since it did not change with mesh refinement.
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Figure 5.2 compares both solutions of the continuum model. (Raj and Ashby’s
result, extrapolated to the case of flat boundaries, is also shown.!) The Zener/Ké
formula yields huge relaxation strengths for small Poisson’s ratios. The 2d-FEM
prediction is much more conservative. For aluminum’s v = 0.35, it gives a mod-
ulus ratio of 0.83. In view of the fact that this represents a lower bound (flat
grain boundaries were assumed), one must conclude that, in fact, Ké’s findings
in aluminum are at variance with Zener’s model of elastically accommodated
grain boundary sliding. It could be argued that the honeycomb grain structure
is asymmetric in its treatment of the third dimension. However, it is generally
considered to provide a realistic description of the multi-grain continuum and is
commonly applied to model metals™®*1] as well as ceramics(%:.

Assuming that sliding occurs in a viscous manner, i.e. the internal friction force
acting along the boundary is proportional to the boundary’s average slip veloc-
ity =, the entire relaxation process can be modeled by a standard anelastic solid.
The dashpot’s viscosity 7 (see figure 2.1 on page 23) is then given by the product
of grain boundary viscosity 74, and grain size d. Obviously, the grain boundary
viscosity would be thermally activated and determine the activation enthalpy of
the peak.

Ké’s results supported the prediction that 7 scales with grain size. Subsequent to
Ké’s work, grain boundary peaks were identified as such in a number of metals,
among them gold, silver and copper."™®""1 However, these studies also revealed
contradictions in the grain-size dependence of the relaxation parameters: the
relaxation strength would vary considerably between materials — possibly indi-
cating that the elastic medium’s anisotropy, neglected in Zener’s model, might
play a role —, and often 7 « d2 was found.™3""] Moreover, in lieu of a single peak,
many metals of the highest purity (99.999%) feature a double peak. This (and
other observations) prompted some authors to question the existence of a grain
boundary peak altogether: the high-temperature double peak in high-purity alu-
minum was attributed to dislocation damping instead. [z

Peters et al.[P%+NB"] studied the grain boundary peak in copper. It appears in
the mechanical loss temperature spectrum at around 550 K. Fits to a broadened
Debye peak yielded a relaxation strength A = 0.158. A direct measurement of
the modulus ratio gave 0.875. Using equation (5.2), valid for a standard anelastic
solid, this corresponds to A = 0.143, leaving a discrepancy of about 10% to the
value obtained from the mechanical loss. The modulus ratio is, for once, consis-
tently above the lower bound given by the continuum model of hexagonal grains.
With a log-normal distribution parameter § greater than 5, the peak in copper is
very broad. It was observed that the peak broadens even further with increasing
grain size. While  increased, the peak height decreased, leaving the relaxation
strength A constant.

1A flat grain boundary in Raj and Ashby’s model has a profile of periodicity d and imitates
the outlines of successive hexagonal grains throughout the entire honeycomb structure of
figure 5.2 in either the x- or y-direction.
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These experimental findings in copper and many other studies™?""1 all substan-
tiate the view that grain boundaries in metals slide viscously, i.e. behave like a
standard anelastic solid. The mechanical loss is independent of amplitude, no
threshold stress need be overcome.

The latter is at variance with modern ab initio (Monte Carlo and density func-
tional theory) simulations of grain boundary sliding™°s! that, for copper!®®:
and also aluminum™°7], predict a slip-and-stick mechanism. These studies found
that a grain boundary’s energy increases drastically for very small relative dis-
placements, requiring a critical stress to overcome the energy barrier and slip
to the next energy minimum. However, incorporating grain boundary vacancies
into the calculation seemed to reduce the energy variations.??s! More sophisti-
cated studies might therefore reconcile this apparent contradiction. Molecular
dynamics simulations for aluminum yielded results in better agreement with ex-
periment, predicting a constant slide velocity at intermediate stresses, but also
the absence of sliding at low stress (indicating a threshold) and a non-linear slid-
ing behavior at high stress.[?7!

Assuming 7  d to be true, Peters et al. noted that the distribution of grain sizes,
while typically log-normal itself, would only account for a small part of the overall
broadening, having a /3 less than unity.!"! After all, the grain size distribution
would translate to a distribution of In 7y within the continuum model. Even higher
grain-size exponents would not explain the discrepancy.

The remaining broadening must be attributed to a rather wide distribution of
activation energies. This is understandable considering the diversity of atomic
structures the various grain boundaries formed in a polycrystal possess. Grain
boundaries emerge as interfaces during (re-)crystallization of grains. They have
five degrees of freedom: three for the relative orientation of the grains, two
for the orientation of the boundary plane. If the lattice misorientation is rather
small, the grain boundary can be imagined as a regular array of dislocations.
This concept loses meaning for high-angle grain boundaries, i.e. for misorienta-
tions greater than 20°.[%:) High-angle grain boundaries should exhibit a higher
degree of disorder. That is, unless the misorientation is such that there is some
symmetry relation between the two lattices (coincidence site lattice, CSL). It
is therefore very reasonable to believe that the activation energy of the rate-
controlling single-step process producing the sliding motion varies significantly
from one boundary to another.

The question, which single-step process that is, has received a lot of attention,
but so far no definitive answer. Experiments have shown that in f.c.c. metals
the activation energy of atomic diffusion along the core of a grain boundary,
Hygp, is about half the energy of self-diffusion, Hyq, inside the grain.!%:! Diffusion
is facilitated by the higher degree of disorder at the interface. In high-purity
metals, the activation energy of the grain boundary peak was often, though not
always, found near Hg,, while for solid solutions the peak’s activation energy was
mostly higher than or equal to Hgq.NB" Q12!
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A number of models have been proposed that would explain either one or the
other value. Diffusion of single atoms from one position inside the boundary’s
core to another, and thereby inducing a stress relaxation, would be the simplest
one. This, however, implies that grain boundaries resemble an amorphous phase,
while in metals they are known to have a crystalline structure. @1

Consequently, as Ashby pointed out, sliding at the boundary must involve the
motion of boundary dislocations along its surface.*s2] Such dislocations are a
structural feature of most grain boundaries. According to Ashby’s model, dislo-
cation glide in the boundary plane is accompanied by diffusion of single atoms
across the boundary, i.e. from one grain to the opposite side. Grain boundary
sliding is thus coupled with grain boundary migration, and the activation energy
is given by Hgy,.

Lakki and Schaller™®! argued differently: as a grain boundary is typically not a
glide plane, dislocation motion must involve climbing as well. This necessitates
the formation of jogs, and the migration of these jogs over the extent of the
dislocation line. Obviously climb, not glide, is the rate-controlling process, and
the activation energy is given by the sum of Hq and the activation energy of jog
formation. [Qa1--a01]

In should be noted that, in terms of dislocations, elastic accommodation implies
that the dislocation loops merely bow out in response to the applied stress, to-
wards regions of higher local strain such as triple junctions. Once they break
away from their pinning points, a component of plastic deformation is added,
which reduces the restoring force. If that is the case, the relaxation strength be-
comes, again, grain-size dependent. Such a scenario is incorporated into Lakki
and Schaller’s model. 29

Most recently, Shi and co-workers studied grain boundary sliding in aluminum
bicrystals. [ShosJlos,Shos. Kool They based their interpretation of the mechanical spec-
troscopy data on Ngai’s coupling model.N97! The main idea behind this approach
is that the single-step processes — whichever they may be — are not indepen-
dent, but, to some degree, correlated. The universality of this claim was sub-
stantiated by the successful application of the coupling model to a variety of
relaxation processes. The observable consequence is a retardation of the relax-
ation response. In terms of mechanical spectroscopy, the effect is twofold: the
mechanical loss peak deviates from the Debye shape, becomes asymmetric (on
a plot versus logw or %) and broadens, while the measurement of activation pa-
rameters (from an Arrhenius plot) yields only apparent values £*, 7}, which are
related to the true values as per

E=(1-nE" and 7 =t"7""", (5.4)

where n (0 < n < 1) denotes the coupling parameter and ¢, ~ 102 s the time of
crossover from the Debye regime to the non-Debye regime. The coupling model
agrees well with Shi et al.’s experimental data in that the peak was indeed notice-
ably asymmetric and could be fit to a single non-broadened (non-Debyean) peak
predicted by the model. When, in an earlier evaluation, the same data was fit
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to a regular Debye peak, broadening parameters [ ranging from 0.25 to 1 had to
be admitted, despite the fact that a bicrystal contains only a single grain bound-
ary.U»] The coupling parameter n, obtained from the fits to the non-Debyean
peak, varied between (0.2 and 0.5, depending on boundary type and misorienta-
tion angle. The “decoupling” would thus reduce the measured activation energy
to a more reasonable value, below Hgy. However, the authors did not specify
which atomistic processes they had in mind.

Second-phase particles, when precipitating from the solid solution, tend to segre-
gate at grain boundaries, as these offer preferential nucleation sites due to their
intrinsic disorder and faster diffusion paths. Since grain boundaries are very thin
objects, no more than a few atoms wide, the particles extend far into the adja-
cent grains. Just like triple junctions and boundary ledges, they will thus oppose
the sliding of the grain boundary: local stresses build up so that the boundary
area around the particle no longer contributes to the average boundary displace-
ment, which reduces the overall relaxation strength. This phenomenon has been
directly observed in transmission electron microscopy, or rather its reverse ef-
fect on the particle itself, which suffers a shear deformation and rotation due to
the two grains pushing in opposite directions.!™°s! Therefore, in the vicinity of
a particle, sliding cannot be accommodated elastically, but only by diffusion of
matter.

Mori et al.!™°s3] have calculated the stress field created by spherical inclusions.
They concluded that relaxation strength and time would vary according to:

Qu

14 2% 1+ 2%

~

where A©® and 7(°) denote the relaxation strength and time for particle-free grain
boundaries, d and p the grain and particle size, and [ the inter-particle spacing.

It is far more telling to rewrite the expressions given by Mori et al. like this:

A0) (0)
and T = T

—— B (5.5)
1+ 5/4 1+254

Here, f is the volume fraction of second phase and the following assumptions
were made: the particles are distributed randomly throughout the entire grain
(no preferential segregation at the boundary); only those particles are counted
that are within a distance of § from the boundary; the grain is, for the sake of
argument, cubic, and the particles are distributed equidistantly over its surface
S = 6d°. From these expressions it is immediately clear that the smaller the par-
ticles, the lower the relaxation strength and time. Even for little volume fractions
of second phase, a drastic decrease of the grain boundary peak is expected, as
the ratio ;—f is generally huge. Preferential particle growth on boundaries would
amplify this effect further.

Peters et al. have studied the grain boundary relaxation in the precipitation-
hardenable copper-2 weight-% cobalt alloy, which forms cobalt-rich particles. "¢



5.2 Grain boundary peak in 18-carat gold 83

Compared to pure copper, the peak exhibited the same broadening and similar
activation energy, but its relaxation strength was smaller by a factor of 60. It had
shifted to lower temperatures, which is also in accord with equation (5.5).

Similarly, Cao et al. found that the grain boundary peak in nickel-chromium
completely disappeared (within the precision of the experiment) during the pre-
cipitation of grain boundary carbides, which where forming due to the presence
of carbon impurities. The peak re-emerged after heating above the dissolution
temperature of the second phase. ¢

To sum up, metals generally exhibit a grain boundary relaxation peak in the
medium to high temperature range (above, very approximately, half the melting
temperature). There is little reason to doubt its existence given the overwhelm-
ing experimental evidence, and even less so if one considers the most recent
studies on aluminum bicrystals. (The peak was absent in a single crystal cut
from the same grown product adjoining the bicrystals.!S"s1) Sliding proceeds in
a viscous manner (though not necessarily Newtonian viscous), with threshold
stresses, if any, so small that the forces put into play during mechanical spec-
troscopy are sufficient. The process is thermally activated, with an activation
energy in the vicinity of the one for diffusion of a single atom. In metallic poly-
crystals, where grain boundary sliding should be accommodated predominantly
by elastic deformation of the grains, the peak is characterized by its large broad-
ening, a height fairly independent of grain size, and its shifting to higher tem-
peratures (lower frequencies) during grain growth. The atomistic mechanism
of the sliding process is not well understood as of yet. It is generally difficult
to distinguish between competing models by means of mechanical spectroscopy
alone, since they only differ in the prediction of just one observable, the activa-
tion energy. The relaxation can be impeded by a fine dispersion of second-phase
particles on the grain boundary.

5.2 Grain boundary peak in 18-carat gold

Mechanical spectroscopy, by means of the forced, low-frequency, inverted tor-
sion pendulum described in chapter 2, was performed on polycrystalline wire-
shaped samples (50 mm in length, 2 mm in diameter) of white golds Au 5125 and
Au 5130-1 as well as three alloys of the yellow gold series. Au 5130-1, not men-
tioned in chapter 1, is a modification of Au 5130 where the components indium
and gallium were removed, produced for research purposes only. Measurements
were carried out in vacuum better than 10~° mbar.

Furthermore, single crystals of alloys Au 518, Au 5130, Au 5130-1 and Au 5210
were grown in our lab (50 mm in length, 2.5 mm in diameter), using the Bridgman
technique. X-ray diffraction patterns confirmed that the specimens were indeed
monocrystalline. All these single crystals’ spectra showed only an increasing
background, but no peaks at high temperature (see chapter 3), as expected for
grain boundary related relaxation phenomena.
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Figure 5.3: Discontinuous polishing scratch  Figure 5.4: Grain structure and polishing
across a grain boundary after plastic de- scratches of a Au 318 sample after plas-
formation (twisting) of a Au 318 sample at  tic deformation (twisting) at room temper-
650 K. ature.

To further substantiate (though not prove) the claim that the high-temperature
peak appearing in the gold alloys’ mechanical loss spectra is indeed due to grain
boundary sliding, a scratch mark test was conducted for Au 318. Two specimens
were polished to such a degree that an appropriate number of scratches re-
mained visible, then chemically etched to reveal the underlying grain structure.
The first specimen was deformed at a temperature high enough to reasonably
expect that grain boundary sliding would contribute to the plastic creep behav-
ior. The second specimen was deformed at room temperature. Afterwards, both
specimens were examined under an optical microscope. In the first specimen,
some of the originally straight scratches now exhibited discontinuities at a grain
boundary. An example is shown in figure 5.3. During careful examination of the
cold-deformed specimen’s scratch marks, figure 5.4, no such observation could
be made. Despite the fact that, compared to mechanical spectroscopy, the slid-
ing distances in such an experiment differ by several orders of magnitude, this is
considered a direct macroscopic manifestation of grain boundary sliding.[N515]

In order to study the effect of different grain sizes on the grain boundary peak,
a specimen of Au 5125 was annealed inside the pendulum at 1130 K. At this high
a temperature, the grains grow at the expense of other grains. After one hour
of annealing, the temperature spectrum was measured in cooling. This proce-
dure was repeated several times. Figure 5.5 shows the resulting spectra. The
grain boundary peak is seen to shift to higher temperatures, while its height and
width change very little. The temperature shift implies that all relaxation times
contributing to the broadened peak increase with grain size. This is exactly the
behavior expected for grain boundary sliding accommodated by elastic deforma-
tion of the grains.

The trend was observed in other alloys as well, such as the yellow gold Au 3418
and the white gold Au 5130-1. However, the majority of measurements were
made up to temperatures no more than 1000 K in white gold, and no more than
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Figure 5.5: Shift of the grain boundary peak in Au 5125 due to grain growth induced
by long annealing treatments at 1130 K. The total annealing time is given. While the
position of the peak changes, its height does not. The Zener peak, at low temperatures,
remains unaffected.

900 K in yellow gold. It can be inferred that below these temperatures grain
growth is negligible in most cases. Au 3418 appears to be an exception, where a
shift of the grain boundary peak occurred already between heating and cooling
in the first thermal cycle to 900 K. In principle, a systematic study of the grain
boundary peak in a given alloy can provide information on the onset and mag-
nitude of grain growth at various annealing temperatures, which is of practical
importance with regard to the alloy’s metallurgy.

From the measurements in figure 5.5 alone, the grain size exponent m, defined
by 7 o« d™, cannot be deduced, as the evolution of d with annealing time is
unknown, as well as the final grain size. Mechanical spectroscopy has to be
accompanied by a microstructural study that determines d directly. A linear fit
of % where T is the temperature of the peak maximum, versus Ind then yields
m, since it can be shown that:

1 k
T = const — mﬁ Ind.

The activation enthalpy H of the grain boundary peak has to be known before-
hand, % is the Boltzmann constant. The quality of the result depends sensitively
on the accuracy of the temperature measurement, which may easily incur a sys-
tematic error when the specimen is mounted in the pendulum.? Unfortunately,

2For example, if one changes, albeit slightly, the position of sample or temperature sensor. It is
generally tricky to measure the precise sample temperature during mechanical spectroscopy
in vacuum since the specimen is moving and any direct contact that might cause non-internal
friction has to be avoided. As opposed to isothermal conditions, corrections for temperature
spectra are further complicated by the non-stationary temperature field inside the instrument.
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but apparently for that reason, a (very limited) study conducted in our lab on
a Au5130-1 specimen grown to three different grain sizes (30 um, 100 pm and
200 um) gave inconclusive results: the peak shifted first with m = 1, consistent
with elastic accommodation, but the second shift indicated m larger than 2.

The grain boundary peak is fairly broad, in agreement with findings for other
metals and alloys reviewed in the previous section. The broadening can be read-
ily observed in the isothermal spectra, figure 5.6 for Au 5125 and figure 5.7 for
Au 5130-1, where the peak obviously spans more decades than a pure Debye
peak would.

Arrhenius plots yield the activation parameters, displayed on the same respective
figures. In white gold, the activation enthalpy is generally higher than the one of
the Zener relaxation: in Au 5125, for instance, the difference is 0.3 eV (compare
with figure 4.22 on page 72). In yellow gold, however, 2.4 eV (Au 318), 2.2eV
(Au 3418, Au418) and 2.1 eV (Au 518) were measured, with limit relaxation times
all near 107" s. These energies are close to or, in the case of Au 518, below the
ones for the Zener relaxation (see table 4.1, page 67). However, it was noted
that the proximity of the order-disorder transition seems to lead to an apparent
increase of the values measured for the Zener peak in yellow gold.

In order to perform fits of the grain boundary peak, the high-temperature back-
ground, which appears in all spectra, must first be taken into consideration. As
will be argued in section 5.4, it is due to dislocation relaxations. Schoeck!S%]
has derived the following expression for such a mechanism:

Fog(w,T) = %exp (—n%) . (5.6)
Hy,g is the activation energy of the rate-controlling process that governs the mo-
tion of dislocations, such as the interaction with point defects, K and n are es-
sentially constant over limited ranges of temperature. For temperature spectra
measured in a forced torsion pendulum, w is constant and expression 5.6 boils
down to the very common exponential background. This was generally observed
to be a good approximation of the high-temperature mechanical loss in all gold
alloys (as it is in many other materials too!%s)). It also proved convincing in
fits to frequency spectra, though, sometimes, when due to the limited frequency
range little information on the (low-frequency) background was available, a con-
stant background level was used instead. In these rare cases, the frequency-
independent offset was taken to be equal to the exponential background level at
the same temperature as observed in the temperature spectrum of the sample.

Using the activation energy from the Arrhenius plots, the grain boundary peaks
in the temperature mechanical loss spectrum of several alloys were fitted to a
broadened Debye peak. During the fitting procedure, the limit relaxation time 7
was allowed to deviate slightly from the Arrhenius plot’s result to accommodate
inaccuracies of the temperature reference on the one hand, and changes in grain
size (or differences, in cases where another specimen was used) on the other. Re-
sults are shown in figures 5.8 and 5.9 for the white golds Au 5125 and Au 5130-1,



5.2 Grain boundary peak in 18-carat gold

87

0.08

0.06 1

loss tangent
o
o
D

0.02+

0.00+ t

2 468 2 4
0.1

frequency (Hz)

N

10

T (s)

0.1 -
8

920" 900" 880" 860°

8 1,=2.610""s
Hact =

2.31eV

' a0t 820

T Y

-1

Figure 5.6: Grain boundary peak in isothermal conditions and corresponding Arrhenius

plot for Au 5125.

0.10

0.08 48
g 0.06 1 \\\
(o))
C
i
2
80047

0.02

0.00 : :

2 4 6 2 4 6 8 2

0.1
frequency (Hz)

1

N

10

T(s)

1,=2.010""s
H,o = 2.54 eV

800" 780" 760" 740" 720" 700"

T Y

Figure 5.7: Grain boundary peak in isothermal conditions and corresponding Arrhenius
plot for Au 5130-1. (To establish the Arrhenius plot, some curves not depicted on the

left graph were used.)



88 5 Grain Boundary Sliding blocked by Precipitates

as well as in figures 5.10 and 5.11 for the yellow golds Au 318 and Au 518. Fur-
thermore, figures 5.12 and 5.13 show fits to the peak in isothermal conditions
for alloys Au 3418 and Au 518.

It can be said without exaggeration that the quality of the fits is excellent. Minor
deviations only occur in Au 5130-1 (figure 5.9) where the background is fairly
high, as well as in Au 518 (figure 5.11) where the Zener peak, that had to be
included in every case in order to accurately fit the low-temperature flank of the
grain boundary peak, was assumed to have a regular broadened Debye shape,
despite the fact that it is cut off by the order-disorder transition.

Thanks to these fits, the broadening can now be quantified. The log-normal dis-
tribution parameter of relaxation times, 3, was never found below 3 and reached
values as high as 5, depending on the alloy and, arguably, the actual grain struc-
ture of the specimen. There is some inconsistency in the determination of 5 be-
tween the temperature and frequency spectra: for the sample of Au 518 (which
was never heated to more than 800 K, so the effect on grain structure is expected
to be minimal), the two fits gave values that differ by 0.3, compare figures 5.11
and 5.13. In general, the range of 5 agrees with values reported in literature for
grain boundary peaks of various other metals.

The peak appears at different temperatures in each spectrum, from as low as
700 K in Au 518, to 800 K in Au 5130-1 and even more than 900 K in Au 5125.
The latter specimen was the one subject to grain growth for the measurements
presented earlier, in figure 5.5. This explains the higher peak position compared
to the Au 5130-1 spectrum, where an as-received specimen of finer grain struc-
ture (d ~ 30 um) was used. Generally, like the Zener peak, the grain boundary
peak in white gold tends to be higher in temperature than in the yellow gold se-
ries. As argued at the end of chapter 4, this should be attributed to the presence
of palladium in the matrix, which not only increases the alloys’ melting point but
generally slows diffusion. The trend is a little less pronounced in the case of the
grain boundary peak, which is therefore closer to the Zener peak in fine-grained
specimen such as the Au 5130-1 sample of figure 5.9. However, in terms of
height and shape, the peaks resemble each other a great deal in all gold alloys
studied. This is even true for gold-rich Au-Cu, which is shown as an illustrative
example in figure 5.14.

There may be a correlation between broadening and peak temperature: larger
B values were found whenever the peak was lower in temperature. For white
gold this can be seen by comparing the fit results of the temperature spectra
in figures 5.8 and 5.9, for yellow gold by comparing the fits to the frequency
spectra of figures 5.12 and 5.13. Further proof for the existence of such a trend is
provided by the spectra recorded over the course of the grain growth treatments
in Au 5125 (figure 5.5). The broadening parameter § was determined for the
individual curves and is reported in figure 5.15 as a function of the (shifting) peak
temperature (due to increasing grain sizes). Error bars indicate the standard
deviation of 3 as estimated from the quality of the least-squares fit. Clearly,
decreases with peak temperature, i.e. the peak becomes narrower while the
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grains grow. If the trend observed on figure 5.15 were extrapolated linearly,
£ would vary by, roughly, 0.8 over 100 K. A variation of this magnitude would
explain the different broadening parameters among the various gold alloys.

It shall not be overlooked that $ has a temperature dependence by virtue of its
definition. Consider the fraction of 5 that stems from the distribution of acti-
vation enthalpies involved in the relaxation process, i.e the fraction that is not
accounted for by the grain size distribution. Using A7 = 23 as a measure of the
relaxation times’ width of log-normal distribution3, one has AH = 2kT 3 due to
the Arrhenius equation (2.14). If the contributing activation enthalpies do not
change, then AH is constant and 3 would decrease with temperature like 1

7
However, this effect is far too small to account for figure 5.15.

Therefore it stands to reason that, as the grains grow, the distribution of activa-
tion energies narrows. This makes sense if one recalls that, during grain growth,
the most mobile grain boundaries migrate and consume neighboring grains. It
is therefore conceivable that the process eliminates certain types of boundaries
and selects others that, consequently, resemble one another in structure and
thus require similar energies to activate sliding. (A caveat to this interpretation
may be the possible existence of coupling effects, discussed at the end of this
section.)

Another fitting parameter that correlates with [ is the relaxation strength, A. It
is smallest in Au 5125, about 0.32 for the relatively narrow peak of § ~ 3 (fig-

3See equation (2.16) on page 25: erf(1) = 84% of all 7 are within 43 of 7,,,.
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tained from fits to the spectra in figure 5.5.

ure 5.8), and reaches values of 0.42 or even more for some of the peaks with
£ > 4. The correlation as such is not surprising at all: it is a simple consequence
of the easily observable fact that the grain boundary peak is of similar height
in all 18-carat gold alloys — between 0.06 and 0.07 if the background estimation
is correct. Indeed, as a Debye peak broadens, its height decreases (see equa-
tion (2.17), page 26). Conversely, if two peaks of the same height differ in width,
then the broader peak must be due to a stronger relaxation (the “pure” Debye
peak) to begin with.

The real question that arises is this: How can one explain the magnitude of the
relaxation strength, as well as the fact that it varies by as much as 30% and more
from alloy to alloy?

We first note that a relaxation strength of 0.4 is much higher than predicted by
the continuum model of elastically accommodated grain boundary sliding, see
Ghahremani/Fotiu’s result plotted in figure 5.2. As for the alloys’ Poisson’s ratio
(at peak temperature), v = 0.4 should be a good enough estimate, based on the
room-temperature Poisson’s ratios of gold (0.44), palladium (0.39), silver (0.37)
and copper (0.34). Equation (5.3) then yields a modulus ratio of g—u = 0.837 which,
as per equation (5.2), corresponds to a relaxation strength of A = 0.195 — less
than half of some of the values observed.

Mechanical spectroscopy provides a second, direct measurement of the modulus
ratio from the relative drop-off of the dynamic modulus curve before and after the
relaxation. This is indicated on all temperature spectra on page 89 (figures 5.8
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to 5.11). It requires an extrapolation of the modulus’s decline with temperature
that is unrelated to the relaxation (due, chiefly, to thermal dilatation), which
introduces some error (even more so when the Zener peak is close). The directly
measured values of the modulus ratio are all in the vicinity of 0.8 and vary by
no more than 10% from alloy to alloy. They are thus much closer to the model
prediction than the relaxation strength, particularly for the two yellow golds
Au 318 and Au 518 (figures 5.10 and 5.11).

One is therefore lead to question the validity of the approach chosen here: to
model the grain boundary relaxation process as a standard anelastic solid. After
all, the directly measured modulus ratio is an undeniable experimental fact. An
overestimation of 5 would then explain the excessive values obtained for the re-
laxation strength. This lends credence to the findings of Shi et al. in aluminum
bicrystals, where a single non-Debyean relaxation would well describe the other-
wise broadened peak. As these authors pointed out, the coupling analysis cannot
be simply applied to polycrystals.Ste-Xo0! In polycrystals, two effects would over-
lap: the variation of activation energy among grain boundaries, as well as that of
the coupling parameter n. It is not clear how n is distributed and if and how the
two distributions are correlated. For example, the decrease of § with tempera-
ture, discussed further above, could also be a result of differences in coupling.

In conclusion, the high-temperature peak found in 18-carat gold alloys has the
characteristics of a relaxation due to grain boundary sliding that is primarily ac-
commodated by elastic deformation of the grains. It is associated with activation
energies that are generally higher than for self-diffusion in the bulk material.

5.3 Precipitates blocking grain boundary sliding

Three of the commercially used white gold alloys investigated in this study —
Au 5130, Au 8150 and Au 5210 — contain indium and gallium additives. Instead
of the single grain boundary peak, these alloys exhibit what appears to be a
double peak at high temperature. For Au 5130, the high-temperature part of
the mechanical loss spectrum is shown in figure 5.16 at various heating/cooling
rates 7.

The spectra measured in cooling can be understood in the following way: At high
temperature, all alloy constituents form a solid solution. Initially, during cooling,
the grain boundary peak manifests itself in the spectrum. Then, below some crit-
ical temperature, a second phase becomes thermodynamically stable. The alloy
undergoes a phase transformation (a phase separation) as particles precipitate
from the matrix. Some of the particles happen to grow across grain boundaries
(or may even do so preferentially), which reduces the relaxation strength of grain
boundary sliding. Evidently, the particles are dispersed fine enough to make the
grain boundary peak vanish entirely, leaving only the background (within the
precision of this experiment).
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Figure 5.16: High-temperature part of Au 5130’s mechanical loss spectrum at various
heating/cooling rates: the grain boundary peak disappears/reappears during precipita-
tion/dissolution of grain boundary particles.

The lower the cooling rate, the higher is the temperature at which the peak
disappears. This is only logical because cooling at a slow rate leaves the particles
more time to grow, so that the blocking of grain boundaries sets in at a higher
temperature despite the driving force for precipitation being relatively low. If
one cools quickly, the grain boundary peak is retraced further in temperature
before enough particles have formed to effectively block sliding. Parallel to the
peak’s breakdown, the modulus increases to the unrelaxed value corresponding
to nearly rigid grain boundaries.

Thus far, the interpretation of the high-temperature hysteresis in white gold is
identical to the one originally provided by Cao et al. to explain the spectrum of
Ni-Cr.[®! Indeed, the similarities are manifold. As an example, compare the
temperature spectra of Ni-Cr in figure 5.17 and Au 5210 in 5.18, both measured
at varying excitation frequencies. The effect one observes is this: The higher the
frequency, the further the grain boundary peak shifts up in temperature, which
means that a smaller part of the peak is cut off due to precipitation. Conse-
quently, the peak appears larger, though its true height does not change.

Differences with respect to Ni-Cr are found in the heating curves of figure 5.16
for Au 5130. During heating, above the critical temperature, the grain boundary
peak re-appears as more and more particles go back into solution. However, as
opposed to cooling, the process is superimposed by a transient loss which pro-
duces an additional, more complicated temperature dependence of the spectrum.
The transient component of the mechanical loss must be due to changes in the
microstructure, induced by the rise in temperature, that couple to the applied
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Figure 5.17: Effect of the frequency on the  Figure 5.18: Effect of the frequency on
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stress. It therefore increases with the heating rate T (figure 5.16), but decreases
with excitation frequency (figure 5.18), i.e. for shorter stress cycles.

In fact, if there was no transient damping, the sequence of the curves for differ-
ent heating rates should be reversed. Instead, the mechanical loss at the lowest
heating rate (when the material evolves closer to equilibrium) trails all other
curves. The transient component is obviously responsible for the “overshoot” of
the mechanical loss with respect to the grain boundary peak: after each heating,
this part does not appear in the subsequent cooling curve.

The overall modulus defect is the same for all heating rates since, eventually,
the transient component fades out, leaving only the relaxed value of the grain
boundary peak. All modulus curves intersect at about 975 K: the lowest heating
rate corresponds to the most abrupt change. This, too, should be a consequence
of the transient damping: it produces a “temporary” modulus defect at fast rates
which, after the intersection, is compensated by a lower fraction of dissolved
precipitates (similar to the retardation in cooling), i.e. less grain boundary slid-
ing.

Since the blocking of grain boundary sliding occurs only in alloys containing
indium and gallium, the second phase or phases must contain one or both of
these elements. The quantity of indium and gallium contained in the alloys, atom
fractions of at least 1% each, explains easily the complete breakdown of the
grain boundary peak, as discussed in connection with equation (5.5) (page 82).
The volume fraction of second phase might be even much higher, depending on

its composition.

In an effort to elucidate the influence of composition on the observed phenome-
non, modifications of Au 5130 and Au 5210 were produced (see section 3.2). For
the alloy designated Au 5130-1, none of the two additives were added to the
melt. Au 5130-2 and Au 5210-2 only contain the indium part, Au 5130-3 only

gallium.
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Figure 5.19: TEM micrograph of grain  Figure 5.20: SEM micrograph of large pre-

boundary precipitates in a polycrystalline  cipitates in a Au 5130 single crystal; mark-

Au 5130 sample. ers indicate target regions of EDX chemi-
cal analysis.

As expected, no second phase formed in Au 5130-1, leaving the grain boundary
peak perfectly intact (see figure 3.13 on page 44). Au 5130-1 was therefore
included in the investigation of the previous section. The spectra of the other
two Au 5130 modifications showed the same characteristic feature as Au 5130,
indicating blocked grain boundaries (figure 3.14, page 45). Therefore, indium or
gallium may each individually stabilize a second phase in the Au-Cu-Pd based
alloy Au 5130.

In the Au-Pd based Au 5210-2 (figure 3.15, page 45), indium alone did not pro-
duce the desired effect: the mechanical loss spectrum shows the large grain
boundary peak, without any hysteresis between heating and cooling. The al-
loy would not harden during aging. Apparently, indium requires copper to be
present in the matrix to form a stable second phase. However, it shall be noted
that, only in this alloy, the shape of the grain boundary peak deviates markedly
from a (broadened) Debye peak, as fits like those performed in the previous sec-
tion clearly revealed.

Subsequent to the findings obtained by mechanical spectroscopy, electron mi-
croscopy (SEM and TEM) in connection with EDX chemical analysis (performed
by co-workers) confirmed the presence of second-phase particles inside the grains
and on grain boundaries of Au 5130, see micrographs in figures 5.19 and 5.20. %!
Palladium concentrations correlated with gallium, indicating (with considerable
error) a phase composition near the stoichiometry Pd;Ga. In the Au 5130 sin-
gle crystal, higher concentrations of the gallium-rich precipitates were found in
proximity of the free surface, as opposed to the bulk. Indium-rich precipitates
have not been identified (so far).

The precipitation/dissolution transition was studied in isothermal conditions as
well: once more in alloy Au 5130, figure 5.21, and in Au 5130-2, figure 5.22.

Figure 5.21a shows the frequency spectra of Au 5130 recorded at stepwise low-
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Figure 5.21: Mechanical loss frequency spectra of Au 5130 in isothermal conditions at
selected temperatures (steps of 10 K between curves) near the precipitation/dissolution
temperature of the second phase: (a) stepwise decreasing temperature (cooling); (b)
stepwise increasing temperature (heating).
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(heating).



5.3 Precipitates blocking grain boundary sliding 97

ered temperatures. Consider first the spectrum at 1010 K. It is entirely due to
the high-temperature background which, so far, we have mostly observed in the
temperature spectra as the exponential increase towards the melting point. The
background is obviously thermally activated: as the temperature is lowered, it
progressively disappears at the low-frequency end.

On the opposite side, the grain boundary peak advances into the frequency win-
dow. Below 900 K, the peak becomes unstable and gradually breaks down as
more and more second-phase particles precipitate and pin grain boundaries.
Actually, the decrease in peak height is not as obvious as the figure suggests.
Rather, the peak is seen to shift back to high frequency — contrary to the trend
imposed by thermal activation. Such a shift is proof that the relaxation time
decreases, in agreement with the model by Mori et al., see equation (5.5). The
height must shrink as well to explain the observed breakdown in the temperature
spectrum, since a shorter relaxation time (higher peak frequency) corresponds
to a lower peak temperature.

In figure 5.21b, measured in stepwise heating, the mechanical loss is seen to
increase drastically above about 900 K. This temperature is thus critical for the
phase transition, i.e. the precipitation/dissolution of particles. Even in isother-
mal conditions the transient damping affects the mechanical loss spectra. The
time delay (of only 10 minutes), imposed during this experiment after each heat-
ing step to the next temperature, was obviously not sufficient to equilibrate
the microstructure. The “overshoot” registered in the temperature spectra is
recognizable in the frequency spectrum at 960 K. After that, the mechanical
loss settles at values corresponding to the equilibrated structure: at 980 K, one
clearly distinguishes part of the grain boundary peak, superimposed on the low-
frequency/high-temperature background.

The isothermal spectra of the gallium-free Au 5130-2 in figure 5.22 show the
same characteristic features, with only the following two differences: the precip-
itation temperature is about 90 K lower, and the effect of the transient damping
is less pronounced. The same observations were made in Au 5130-2’s temper-
ature spectrum (at f = 0.5 Hz): the grain boundary peak reaches almost its full
height before it breaks down, while the transient overshoot occurs much more
discreetly. Note, however, that partly the differences in transient mechanical
loss between the isothermal spectra of the two alloys are due to the smaller fre-
quency range chosen for the Au 5130 experiment. Those spectra could therefore
be measured only 54 minutes apart, as opposed to 115 minutes (including a 20-
minute delay) for Au 5130-2. All isothermal frequency sweeps ran from high to
low frequency.

Regarding the low-frequency background, one could easily jump to the conclu-
sion that its level decreases along with the breakdown of the grain boundary
peak. This, however, would be premature. Its progressive decline or rise in
the respective series of frequency spectra, as important as each may appear,
is rather well accounted for by the background’s exponential temperature de-
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Figure 5.23: Evolution of the mechanical loss (at 0.5 Hz) with time in Au 5130: (a) after
quick cooling from the solid solution; (b) after quick heating from below the second
phase’s dissolution temperature.

pendence. On the other hand, due to the limited frequency range, a change of
background damping can also not be excluded.

Figure 5.23 provides insight into the kinetics of the phase transformation. In
figure 5.23a, a Au 5130 specimen was quickly cooled from the solid solution to
temperatures below the critical temperature of phase stability (which is about
900 K). The mechanical loss decreases, following the breakdown of the grain
boundary peak as sliding is gradually blocked by particles precipitating at grain
boundaries. At 840 K, the transformation time was as short as a few minutes.
It proved technically impossible to measure the specimen at a cooling rate high
enough to observe the precipitation process slow down. Such quick cooling can
only be achieved externally, by quenching. Based on the results from mechani-
cal spectroscopy, one can thus not say with certainty where in temperature the
“nose” of the phase transformation’s TTT diagram is situated.

In figure 5.23b, another Au 5130 sample was heated, as fast as the pendulum’s
furnace would allow, from 830 K to a target temperature above 900 K. The tran-
sient damping dominates all measured curves: apart from the initial ten minutes
of quick heating (or its aftereffects), the mechanical loss never increases over
time as one would expect during the resurgence of the grain boundary peak.
Below 970 K, the loss level would not stabilize over the course of the one-hour
experiment. Note in particular the slow but steady decline of the high transient
damping at 960 K, which explains the isothermal spectrum of figure 5.21b at the
same temperature. Above 970 K, the temporal decline of the transient loss accel-
erates markedly. At 990 K, the microstructure stabilizes extremely fast.

These observations warrant the hypothesis that the transient damping is cou-
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pled to the process of particle dissolution. The following scenario would then
explain the observed behavior: Above the critical temperature, of about 900 K,
the second phase becomes metastable and particles begin to dissolve. Above
970 K, the second phase becomes unstable, i.e. the energy barrier for the phase
transformation goes to zero. The dissolution of particles therefore accelerates
and equilibrium is reached quickly. When all particles have disappeared, the
transient damping ceases.

It was noted earlier that the magnitude of the transient damping varies from al-
loy to alloy. It appears to be strongest in Au 5130, which is why it featured so
prominently even in the isothermal spectra. As opposed to Au 5130, the mechan-
ical loss’s characteristic overshoot in heating does not occur in the temperature
spectrum of Au 5210 whenever the heating rate is very low (0.1 K) or the fre-
quency relatively high (see figure 5.18 for that matter), i.e. for low %

The microscopic origin of the transient damping remains unclear. Spectra very
similar to the one of figure 5.16 were observed in Al-Ag and the transient loss at-
tributed to a stress-coupled shape change of bulk precipitates during heating and
cooling.X#! This does not seem to be the case here. Rather, the transient damp-
ing appears to originate from the shearing of grain boundary inclusions during
dissolution. This assertion is founded on the observation that the spectrum of
the Au 5130 single crystal (figure 3.16, page 46) does not exhibit the prominent
peak of the transient component in heating. Should the transient loss indeed be
caused by grain boundary precipitates, then a higher level among similar alloys,
as is the case for Au 5130 compared to the gallium-free Au 5130-2, might indi-
cate a preferential formation of particles at grain boundaries. This is of practical
concern as such a microstructure is prone to grain boundary embrittlement.

5.4 Precipitation hardening in white gold

Grain boundary sliding occurs at high temperature, 700 K and more in 18-carat
gold alloys. The fact that precipitates block the grain boundaries can therefore
not explain the age-hardenability of white gold alloys (that is, of those that form
a second phase) since sliding does not contribute to room-temperature plasticity,
which is what a hardness test measures.

At room temperature, deformation is mediated by the motion of dislocations
through the material, or, more precisely, through the individual grains. If second-
phase particles precipitate inside the grains (not just on grain boundaries) and
if, by doing so, they decrease the mobility of dislocations (pin them), they would
effectively be the cause of the hardening mechanism in these materials.

First of all, hardening does indeed occur inside the grains, as the compara-
tive Vickers hardness tests on mono- and polycrystalline samples summarized
in table 5.1 testify. Within the precision of these measurements, one concludes
that the boundary-free single crystal hardens as much the multi-grained material
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alloy polycrystal monocrystal
ductile | hardened | ductile | hardened

Au 5130-1 (—) 130 130 145 140

Au 5130-2 (In) 135 205 150 200

Au 5130-3 (Ga) 145 190 165 200

Au 5130 (In+Ga) 160 230 160 210

Table 5.1: Vickers hardness of poly- and monocrystals of the Au 5130 modifications in the
ductile, solution-treated state as well as in the age-hardened state.

hardening temperature | micro-hardness (GPa)
400°C 3.08 £ 0.11
450°C 3.37 £ 0.13
500°C 3.45 4+ 0.12
750°C 3.04 £ 0.11

Table 5.2: Average micro-hardness and its standard deviation based on 12 micrometer-
sized indentations each, placed inside the grain as well as close to grain boundaries in
four Au 5130 samples subjected to different age-hardening treatments.

Figure 5.24: Optical micrograph of a series of 12 micrometer-sized indentations on the
Au 5130 specimen aged at 500 °C listed in table 5.2.
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Figure 5.25: Mechanical loss spectrum of a Au 5130-1 monocrystal plastically deformed
at room temperature, showing a strong increase of the high-temperature dislocation-
related background compared to the undeformed monocrystal (as grown by the Bridg-
man method).

does. Furthermore, micro-hardness test (with a different apparatus, producing
finer indentations) on a Au 5130 polycrystal showed that the alloy hardens ho-
mogeneously, regardless of the position of the indentation, whether close to the
boundary or well inside the grain — see table 5.2 as well as figure 5.24 for illus-
tration.

For the fits to the mechanical loss spectra near the grain boundary peak, pre-
sented in section 5.2, we had used Schoeck’s expression, equation (5.6), for the
high-temperature background. It describes the mechanical loss created by dis-
location loops vibrating around their average position under an external stress
and a restoring force (due to their line tension or internal stresses), assuming
their motion is subject to viscous drag created by the interaction with point de-
fects. The background would then be nothing but the low-temperature side of a
peak, the maximum of which is never reached as it is too close or even beyond
the melting point. In the simplest case, where the restoring force is the same
for each dislocation loop, the background mechanical loss is proportional to the
dislocation density A (total dislocation length per volume) and has a % frequency
dependence. The more general equation (5.6) admits a distribution of restoring
forces, which alters the frequency dependence to w™" with n close to 1.

All fits, those performed for frequency as well as those for temperature spec-
tra, generally showed that equation (5.6) is a good approximation of the high-
temperature/low-frequency background. For the frequency exponent n, values
between 1 and 1.2 were common. The activation energy governing the vis-
cous drag, Hpy from equation (5.6), was best fit with values near 0.3 eV in most
cases.
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Figure 5.26: Spectrum of the Au 5130 Figure 5.27: Increase of the dislocation-
single crystal in heating and cooling (at related background at high temperature
0.5 MPa stress amplitude), showing a hys- and high shear stress amplitude in the
teretic behavior of the high-temperature = mechanical loss temperature spectrum of
dislocation-related background. Au 5125 at 0.05 Hz excitation frequency.

It is therefore reasonable to suppose that the high-temperature background ob-
served in all 18-carat gold alloys is created by the relaxation of bulk dislocations.
In an effort to substantiate this claim, a monocrystalline specimen of Au 5130-1
was plastically deformed at room temperature. Such a mechanical treatment in-
creases the dislocation density A. Afterwards, the mechanical loss spectrum was
measured and compared to the non-deformed crystal as grown by the Bridgman
method. Both spectra are plotted on figure 5.25. Since the specimen is a single
crystal, no grain boundary peak obfuscates the high-temperature background,
which can be seen to have increased by a factor of 5.

The spectrum of Au 5130, presented as figure 3.16 in chapter 3 (on page 46)
provides direct evidence for the interaction of precipitates and dislocations. The
high-temperature region is shown once more in figure 5.26. It features a hystere-
sis of the background over roughly the same temperature range as the hysteresis
due to the particle-blocked grain boundary peak in the polycrystal. The evolution
of the background from one level to another can be attributed to precipitates pin-
ning bulk dislocations. This would reduce the density of mobile dislocations and
thus the magnitude of background damping, but not change the activation en-
ergy which defines the slope of the background contribution in the temperature
spectrum. Consistently, no such hysteresis was observed in the single crystal of
Au 5130-1 (see figure 3.17, page 46), which does not form a second phase.

Dislocations may even be created as a consequence of deformation by the tor-
sion pendulum itself, during a measurement. This can be seen in figure 5.27 for
Au 5125. When the stress amplitude was high enough (more than 3 MPa), dislo-
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cation sources would be activated at temperatures above 1100 K. This increase
of the exponential background is permanent if one cools down immediately after-
wards. Note that, as expected, the grain boundary peak remains unaffected by
the background change — yet another indicator that this relaxation is not related
to bulk dislocations.

If one stays at high temperature, but excites at a moderate or low stress level
(below 2 MPa), the opposite effect occurs: the exponential background decreases
with time. This general trend was already commented on in the discussion of the
white golds’ temperature spectra at the end of chapter 3. It can be understood
as the mutual annihilation of dislocations of opposite sign during the annealing.
The decline of the background damping was observed in virtually all alloys over
the course of experiments. After only a few temperature sweeps to 1000 K or
more, the background level was often much lower than in the beginning. Its
magnitude therefore depends on the thermal history of a given sample. The
increase or decline of the background over time, depending on the respective
stress amplitude, can be directly observed on figure 5.28.

The combination of the two phenomena — creation and annihilation of bulk dislo-
cations — explains the conspicuous hysteresis the mechanical loss presents dur-
ing amplitude scans at high temperature. An example is presented in figure 5.29.
Note, however, that not all aspects of this hysteretic behavior are fully under-
stood, particularly the fact that it is much less pronounced when the excitation
frequency is raised towards 1 Hz. Other experiments suggested a non-trivial am-
plitude dependence of the background also at much lower temperatures. There-
fore, a thorough analysis of the background relaxation at various temperatures,
amplitudes and frequencies seems warranted to affirm this interpretation with
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due care.

The pinning of bulk dislocations by precipitates also explains the retardation of
recrystallization in those white gold alloys that form a second phase. This was
noted in section 3.2 and exemplified by figure 3.19 (page 47). Recrystalliza-
tion occurs after heavy cold-deformation, producing a high dislocation density,
and subsequent annealing at elevated temperatures. It begins with the motion
of dislocations that arrange themselves to form low-angle subgrain boundaries,
which then migrate while eliminating more defects (the driving force of the pro-
cess) until a high-angle grain boundary emerges. Here, too, precipitates form
obstacles to the dislocation movement. The recrystallization process speeds up
considerably when the particles dissolve.

From a more general perspective, the analysis of the mechanical loss spectra
as well as first results from electron spectroscopy both suggest that two types
of particles form in age-hardenable white gold alloys, one rich in gallium, the
other rich in indium. The comparison of the Au 5130 modifications (figure 3.14
on page 45) indicated that the indium-rich phase (in Au 5130-2) had a signifi-
cantly (about 100 K) lower precipitation temperature compared to the gallium-
rich phase. In alloys containing both additives, a two-step precipitation pro-
cess would not be evident in mechanical spectroscopy since the grain-boundary
peak’s breakdown may only serve as an indicator for the phase formations that
is first to occur.
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Conclusions

The mechanical loss spectra of 18-carat gold alloys between room temperature
and the melting point are characterized by three different anelastic relaxations:
the Zener relaxation due to stress-induced directional ordering of different types
of atomic bonds at temperatures between 550 K and 700 K (depending on alloy
composition); the relaxation due to grain boundary sliding in the polycrystalline
material at temperatures above 700 K; and the vibration of bulk dislocations that
gives rise to the high-temperature background.

The Zener relaxation decreases drastically in magnitude when the alloy forms
regions that exhibit long-range atomic order. This occurs in yellow Au-Cu-Ag
alloys of sufficient copper content (above 20 atomic-%) below a critical temper-
ature of 550 K and up to 620 K. The phase transformation shows the same char-
acteristics as the @« — AuCu II order-disorder transition in near-stoichiometric
AuCu, but develops tetragonal superstructures of the AuCu I type and is ac-
companied (or closely followed) by the separation of a silver-rich solid solution.
Alloys with such microstructure present an increased hardness with respect to
the high-temperature solid solution, as differently oriented ordered regions hin-
der the motion of dislocations through the bulk. The gradual breakdown of the
Zener peak follows the progress of the change in microstructure and provides an
estimation of the transformation time as a function of ageing temperature. No
significant atomic ordering was detected in any of the white gold alloys. Their
composition is not suited to allow for this phase transformation of practical con-
venience.

The age-hardenability of the subgroup of white gold alloys containing gallium
or, when combined with copper, indium additives is attributed to second-phase
particles forming inside the grains, pinning bulk dislocations. As this process co-
incides with the blocking of grain boundary sliding by the same precipitates, the
gradual breakdown of the grain boundary peak reflects the kinetics of precipita-
tion. However, all experimental evidence suggests that two types of particles are
formed: one composed of palladium and gallium, the other of indium and copper.
There is no reason to assume that both phases become stable at the same critical
temperature, nor that they confer the same mechanical properties, particularly
with regard to the detrimental effect of grain boundary embrittlement that, if
it occurs, would be more likely caused by the Pd-Ga precipitates. One should
therefore seek to optimize the microstructure by varying the type and relative
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content of additives, or by exploring more elaborate heat treatments that favor a
homogeneous and refined distribution of particles throughout the material.

The two phase transformations that trigger the hardening, atomic ordering in
yellow gold and precipitation of a second phase in white gold, both exhibit fast
kinetics that, at the optimum temperature, complete in a matter of minutes. For
industrial applications, this result underlines the necessity to guarantee a reli-
ably fast quenching process of solution-treated specimens, particularly for ingots
of larger sizes, in order to bypass the phase transformation and obtain a homo-
geneous material of maximum ductility before proceeding with metal forming,
such as cold-rolling or extrusion.
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