
Affordable SLAM through the Co-Design of Hardware and Methodology

Stéphane Magnenat, Valentin Longchamp, Michael Bonani, Philippe Rétornaz, Paolo Germano,
Hannes Bleuler, and Francesco Mondada

Abstract— Simultaneous localization and mapping (SLAM)
is a prominent feature for autonomous robots operating in
undefined environments. Applications areas such as consumer
robotics appliances would clearly benefit from low-cost and
compact SLAM implementations. The SLAM research commu-
nity has developed several robust algorithms in the course of
the last two decades. However, until now most SLAM demon-
strators have relied on expensive sensors or large processing
power, limiting their realms of application. Several works have
explored optimizations into various directions; however none
has presented a global optimization from the mechatronic to
the algorithmic level.

In this article, we present a solution to the SLAM problem
based on the co-design of a slim rotating distance scanner, a
lightweight SLAM software, and an optimization methodology.
The scanner consists of a set of infrared distance sensors
mounted on a contactless rotating platform. The SLAM algo-
rithm is an adaptation of FastSLAM 2.0 that runs in real time
on a miniature robot. The optimization methodology finds the
parameters of the SLAM algorithm using an evolution strategy.

This work demonstrates that an inexpensive sensor coupled
with a low-speed processor are good enough to perform SLAM
in simple environments in real time.

I. INTRODUCTION

The diffusion of consumer robotics appliances would
greatly benefit from the integration of SLAM capabilities.
Robotic vacuum cleaners, for instance, can radically improve
their coverage algorithms using SLAM, as Samsung demon-
strated in their Hauzen VC-RE70V. This vacuum cleaner
successfully integrates visual SLAM and thus confirms the
analysis made by Pirjanian et al. [1]. However, as that paper
points out, visual SLAM requires an environment populated
with well-illuminated features and a large processing power.
Even lightweight visual-SLAM algorithms require laptop-level
processing power [2]. Samsung has elegantly fit to these
constraints by pointing a camera to the ceiling. This both
reduces the dimensionality of the problem to one surface and
provides few but robust visual features. The resulting product
clearly outperforms competitors. However, some applications
do not enjoy such excellent conditions, and must fall back
on distance measurements to perform SLAM. For instance
search and rescue robots often operate in dark environments

This work was supported by the Swarmanoid and Perplexus projects, both
funded by the Future and Emerging Technologies programme (IST-FET) of
the European Community, respectively under grants 022888 and 34632. The
information provided is the sole responsibility of the authors and does not
reflect the Community’s opinion. The Community is not responsible for any
use that might be made of data appearing in this publication.

Paolo Germano is with LAI-EPFL; the other authors are with LSRO-
EPFL. Please send correspondence to Stéphane Magnenat (stephane at
magnenat dot net), EPFL-LSRO, Station 9, 1015 Lausanne, Switzer-
land. We thank Basilio Noris for his picture of the experimental marXbot.

with no clear visual features. We therefore believe that there
exists a strong need for non-visual SLAM techniques that one
can integrate into cheap, small, and low-power robots.

II. RELATED WORK

The reliance of most SLAM implementations on bulky
and expensive laser scanners hinders their diffusion into
mainstream products. Several projects have therefore explored
the use of cheap and low-resolution distance sensors.

Schroter et al. [3] used the array of sonar sensors which
equips the SCITOS A5 robot. Their work focused on reducing
the memory footprint of particle-based gridmap SLAM by
sharing the map between several particles. The resulting
implementation runs in real-time on laptop-level computers.

Yap et al. [4] also used sonar sensors. They worked with
the ActivMedia P3-DX robot, which has less sensors than
SCITOS A5. To cope with this sparseness, their SLAM
implementation uses a map of line segments instead of a
gridmap. Together with a strong assumption that the walls are
orthogonal, their solution was able to reconstruct large indoor
environments. Their article do not report any performance
measurement. In the same direction, Abrate et al. [5] used
line extraction to apply SLAM to a Khepera II robot, which
only embeds 8 short-range infrared proximity sensors. Like
in the work of Yap et al., the environment consists of a small
number of orthogonal walls.

These projects are representative of a line of research which
focuses on developing SLAM algorithms that fit the features
of specific sensors. They all succeed in performing SLAM in
loopy environments thanks to robust algorithms. However,
these are too computationally intensive to run in an embedded
computer, requiring at least laptop-level performances. Gifford
et al. [6] have proposed a global approach to address these
limitations. They have both designed a robot and implemented
a distributed SLAM algorithm which uses a scanning sensor.
Their SLAM algorithm uses a particle filter, and they report
real-time performances using 15 particles and 3 seconds per
update. The authors conclude that their scanner, a simple set
of infrared distance sensors mounted on top of a servomotor,
does not provide enough information in sparse environments.
They also underline the difficulty in finding the right SLAM
parameters to fit within the available computational power.
Recently, Grzonka et al. [7] performed SLAM experiments on
an autonomous indoor flying robot. Albeit they use a laser
scanner, their SLAM implementation runs in real-time on the
computer of their small flying robot.

In this article, we show how to run SLAM in real time on
mobile robots through the co-design of hardware, software,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147956839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Fig. 1: The marXbot modular mobile robot. The modules are,
from base to top: base, connection ring, range and bearing,
rotating scanner, main processor board with cameras.

and methodology. At the hardware level, a slim rotating
distance scanner fits the cost requirements. At the software
level, our lightweight SLAM implementation builds upon
the work of [8] and runs in real time on smartphone-level
processors. At the methodological level, we propose to employ
a global optimization algorithm to find the best parameters
for the SLAM algorithm.

III. THE MARXBOT ROBOT

The rotating distance scanner that we present in this paper
is a module for the marXbot mobile robot (Fig. 1). The
marXbot consists of a base of 17 cm of diameter, and various
application-dependent modules stacked on top of it. This base
provides mobility, energy, and basic sensing. To move, the
marXbot uses a pair of treels, a combination of tracks and
wheels [9]. These provide good mobility even in rough terrain,
at the expense of the precision of odometry. Among other
sensors, the base embeds 24 short range infrared proximity
sensors and a gyroscope. A 10 Ah lithium polymer battery
provides 7 hours of continuous operation when moving around
and using the scanner. Several microcontrollers drive the
hardware and provide low-level control using the ASEBA
framework [10]. A 533 MHz ARM 11 (Freescale iMX31)
processor runs Linux to perform high-level control and
communicates with the microcontrollers through ASEBA [11].

IV. HARDWARE OF SCANNER

A. Mechanical design

To fulfill the requirements of compactness, limited power
consumption, and low cost; we decided to design our own
rotating distance scanner. Using a commercially available
laser scanner would not fit the compactness nor the cost

0 500 1000 1500

0
1

0
0

0
2

5
0
0

distance [mm]

ra
w

 s
e

n
s
o

r
v
a

lu
e

s

short range

long range

Fig. 2: The response functions of the short and long range
sharp sensors.

specification value

diameter 130 mm
height 29 mm
weight 220 g
power consumption 2 W
cost 390 USD
infrared sensors 2× GP2Y3A001K0F (4–30 cm)

2× GP2Y3A002K0F (20–150 cm)
global operating distance 4 to 150 cm
maximum scan speed 2 scans/s
angular resolution 3◦ at 1 scan/s, 6◦ at 2 scan/s

TABLE I: Characteristics of the rotating distance scanner.

Fig. 3: Overview of the rotating distance scanner module.

Fig. 4: CAD drawing of the scanner, with semi-transparent PCB.
a: long range sharp sensors, b: short range sharp sensors, c:
infrared LEDs for data transmission (fixed, 12×), d: infrared
LEDs for data transmission (rotating, 2×), e: rotating motor
with a worm gear drive, f: induction coils, directly on the
PCBs

Fig. 5: CAD drawing of the scanner, cut in a 3/4 view. a:
plastic ball bearing, b: hole in the center to pass cables to
other modules, c: fixed PCB (primary coil), d: rotating PCB
(secondary coil), e: distance sensor

requirement. Fig. 3 shows the final version of the scanner
and TABLE I shows its characteristics. Our design is based
on 4 infrared sharp distance sensors mounted on a rotating
platform. These sensors have a limited range and a dead zone
close to the device (Fig. 2), so we couple two sensors of
different ranges (40–300 mm and 200–1500 mm) to cover
distances up to 1500 mm. The platform rotates continuously
to make 360◦ scans; as it embeds two sensors of each type,
the robot gets a full scan every 180◦. A motor with a worm
gear (Fig. 4) drives the rotation while two plastic ball bearings
ensure the guidance. The motor is located in the rotating part,
to ease the synchronization between the platform position
and scanner’s values. This location also fits well within our
geometrical constraints and allows for a slim design. To
minimize the wear and maximize the life time of the scanner,
the fix part transfers energy by induction to the rotating part.
They exchange data using infrared light. This solution, albeit
more difficult to implement then sliding contacts, is much
more reliable and lasting. We have implemented induction
directly on two PCB spaced by a gap of 0.8 mm (Fig. 5).

B. Electronic design

The electronics of the scanner is distributed between the
two PCB (Fig. 6, top). The fixed PCB manages the energy
transmission, and the rotating PCB acquires the sensors
data and sends them back to the fixed PCB using infrared
communication. We can decompose the electronics into two
major subsystems: the power and the data transmission. On
each PCB, a microcontroller synchronizes the operations of
each subsystem.

The single-cell battery of the marXbot provides a voltage
in the range of 3.5–4.2 V. The sharp distance sensors demand
an input voltage of 5 V. The output voltage from the inductive
transfer must thus be higher than 5 V plus the voltage drop
in the rectifiers. We designed the inductive transfer for a
nominal output voltage before rectifier of 8 V with a peak
power transmission of 3.5 W. The primary winding (fixed
part) has 2 turns and the secondary winding (rotating part)
has 8 turns; the resonant frequency is 228 kHz. We measured
an efficiency of η = 0.78 for the (inductive) transformer with
an input voltage of 3.8 V and an output voltage of 5.51 V.
The overall efficiency is η = 0.69, when we consider the H

Fig. 6: Electronics of the scanner. Bloc scheme (top) and
timing diagram (bottom). In the timing diagram, reception
(RX) and transmission (TX) are considered from the point of
view of the fixed PCB.

bridge, the rectifier, and the microcontroller of the fixed part.
We are satisfied with this efficiency, especially considering
that the inductive energy transfer system acts as a voltage
step-up for the sharp sensors as well.

The induction generates noise on the power planes. This dis-
turbs infrared communication because its bit rate is 115 kHz,
which is close to the frequency of the induction system.
This results in erroneous transceivers’ outputs. However, we
take advantage of large capacitors (4400µF) that smooth the
rectifier’s output and thus store energy and shut down the
inductive supply during data transmission.

We have implemented bidirectional half-duplex communi-
cation between the two PCB using a simple serial transmission
with 16-bit cyclic redundancy check. When a microcontroller
transmits data, it drives all the infrared transmission LEDs
in parallel. The output of the transceivers are simply OR-
ed into the RX pin of the destination microcontroller. The
rotating PCB sends a message for each sensor acquisition (at
60 Hz) with the 4 sensor values, position of the motor, and
the voltage at the output of the rectifier. The latter enables
us to regulate the power in the induction’s primary coil, to
save energy. The fixed PCB sends back a message with the
position or speed set-point.

When synchronizing the induction and the infrared com-
munication, a variable time enables us to modulate the power
transmitted and to regulate the input voltage of the rotating
PCB (Fig. 6, bottom). The target voltage is 6.5 V, which results

in a total current consumption of 500 mA at 3.8 V for the
whole scanner. The scanner communicates with the rest of
the marXbot through a CAN bus using the ASEBA framework.

V. SLAM IMPLEMENTATION

We have adapted FastSLAM 2.0 [8] to the specificities
of our hardware. This SLAM implementation estimates the
position of the robot and incrementally builds a 2D occupancy-
grid map [12] of its surrounding environment. A time step
corresponds to a full 360◦ scan by the rotating scanner (half
a turn). Each cell of the occupancy-grid map holds the log
odds ratio of the belief that this cell is an obstacle [13]. It
consists of a particle filter, where each particle k at each
time step t contains the robot position xt = (x y θ)T , the
associated weight wt, and a full map of the environment
mt. The algorithm updates these three values with the new
measurements acquired by the scanner in four phases. These
phases are: A. the position update, B. the measurement to
map matching, C. the occupancy-grid update, and D. the
particles resampling.

A. Position update

The rotating scanner only produces enough data for a
relevant map matching every half turn. Moreover, we must
perform the estimation of the robot position at the same
rate as the measurement to map matching. Yet during a
half turn of the scanner, the robot receives several odometry
measurements. To cope with this discrepancy, we store all the
measurements and delay the computation of the robot position.
To compute the position, we reconstruct the trajectory by
iteratively applying the odometry measurements.

The update of the position x[k]
t knowing the position at

the previous time step t− 1 and the command ut (odometry
measurements) that steered the robot between the two time
steps is described by the motion posterior:

p(xt|x[k]
t−1,ut) (1)

The marXbot is roughly equivalent to a differential wheeled
robot at the level of the motion model. We approximate this
motion model by an odometry model in which we decompose
the interval (t−1, t] into an initial rotation δrot1, a translation
δtrans, and a final rotation δrot2. We can directly get δtrans
from the motors’ encoders as the average of displacement of
each treel. However, the tracks introduce non-linear slipping
depending on the speed, the acceleration, and the type of
surface. The slipping particularly affects the odometry when
the robot rotates. We therefore use the gyroscope integrated in
the base of the marXbot to measure the changes in orientation.

B. Measurement to map matching

We compute the weight of a particle w
[k]
t which is

proportional to the likelihood of the measurement zt:

w
[k]
t ≈ p(zt|x

[k]
t ,m

[k]) (2)

To compute the likelihood of each measurement, we project
4 rays oriented like the 4 sensors of the scanner at the time of
the measurement onto the particle’s internal map and compare

the distance measured by the sensor and the one found by
reading the map. We back-propagate all the measurements
along the trajectory computed at phase A such that matching
is done with the estimated robot position at the time of
the measurement. The final likelihood is the product of the
likelihood of each measurement along the trajectory of the
robot in (t− 1, t]. Since the response functions of the sharp
sensors are not injective (Fig. 2), we ignore their values
corresponding to invalid distances. The probabilistic nature
of the map is sufficient to disambiguate wrong readings from
correct ones. We manage to cover the whole (0, 1] m range
by dropping the values of short range sensors over 35 cm and
the values of long range sensors below 35 cm.

We optimize the robot position knowing the measurement
by performing a small Monte-Carlo localization. For each
particle, we explore a small space around the final position
computed in phase A, following a Gaussian distribution. We
perform the measurement to map matching for each candidate
position and keep the best match. This operation improves
the positioning, and is comparable to having more particles,
yet without the memory expense of one distinct map per
particle. However, we must project more rays per particle.

C. Occupancy-grid update

We compute the map m which is represented by the
posterior:

p(m|x1:t, z1:t) (3)

We represent m by the set of all grid cells m = {mi},
where mi is a binary variable with p(mi = 1) representing the
probability that an obstacle occupies a cell. This independence
assumption allows us to approximate the posterior of the map:

p(m|x1:t, z1:t) =
∏
i

p(mi|x1:t, z1:t) (4)

For each grid cell, we use the log odds representation of
occupancy:

lt,i = log
p(mi|x1:t, z1:t)

1− p(mi|x1:t, z1:t)
(5)

For the sake of efficiency, we update the map for each
sensor measurement using a pre-computed update function
dependent on the sensor value (Fig. 7). We have pre-computed
tables for all sensors values for every sensor (512 KB of
data). Like in phase B, we cast a ray from the estimated
robot position into the direction of the measure. On this ray,
the update function adds information that cells before the
measured distance are free of obstacles and that cells at the
measured distance are occupied by an obstacle. It adds no
information to cells beyond the measured distance. We back-
propagate the estimated positions of the measures along the
robot trajectory in (t− 1, t].

D. Particles resampling

The particles resampling frequency is a parameter of our
algorithm. When it resamples particles, the algorithm first
sorts them according to their weight. It then draws a new
set of particles out of the previous set, with a probability

distances

robot center obstacle

Fig. 7: The update function, whose values are added to the
occupancy-grid map.

Fig. 8: The experimental setup for SLAM experiments.

proportional to the weight of the particle. The new set may
contain many times the same particle, as particles with a large
weight have a strong probability to be drawn more then once.
However, as the position update step introduces randomness,
the particles will quickly differentiate.

VI. EXPERIMENTAL METHODOLOGY

A. Measuring the quality of SLAM

We run experiments in a room with an overhead camera
connected to a robot tracker (Fig. 8). We built the tracker
using libfidtrack from the reacTIVision project1 [14].
We measure the quality of the SLAM by comparing the average
squared difference between the reconstructed trajectory of
the best particle and the real trajectory (Tslam = {T islam}
and Treal = {T ireal}, for i iterating over ST = |Tslam| =
|Treal| tracked positions). However, as both trajectories are
expressed in different coordinates, we must first find the
set of parameters θT = {θα,θd} for the transformation
A(T islam,θT) = R(θα)T islam + θd (knowing that R(x) is
2D rotation matrix of angle x) to minimize the distance:

d(Tslam,Treal,θT) =
ST∑
i

(‖A(T islam,θT)− T ireal‖2) (6)

We find the optimal set θ̂T :

θ̂T = argmin
θT

(d(Tslam,Treal,θT)) (7)

1http://reactivision.sourceforge.net/

parameter default
value

mut.
σ

best
of

best
of

best
of

best
of

ray budget n.a. n.a. 8125 16250 32500 65000

dist. error ratio 0.05 0.01 0.13 0.10 0.10 0.12
dist. error const 0.01 0.002 0.014 0.010 0.016 0.006
angle error ratio 0.05 0.01 0.045 0.002 0.064 0.10
angle error const .01◦ 0.002◦ 0.01◦ 0.01◦ 0.02◦ 0.01◦
min pos uncertainty 2 0.4 0.41 0.28 0.02 0.05
min angle uncertainty 5◦ 1◦ 4.3◦ 6.9◦ 8.4◦ 0.98◦

particle resampling f. 1 0.5 1 1 2 5
angle between scans 0 2.5◦ 1.9◦ 2.9◦ 1.8◦ 3.7◦
particle count 1 1 1 1 1 1

TABLE II: Parameters for the SLAM algorithm (left) and
their values after optimization (right, best individual of last
generation). The particle resampling frequency is irrelevant
when the particle count is 1.

The quality of the trajectory is the inverse of the mean of
the residual errors:

q(Tslam,Treal) = − 1
ST

ST∑
i

(‖A(T islam, θ̂T)− T ireal‖2) (8)

B. Optimizing parameters for the SLAM algorithm

The SLAM algorithm depends on multiple parameters
(TABLE II). A first set of parameters is related to the error
model of the motion model of the robot. They are the constant
error, the proportional error, and the minimal uncertainty on
position and orientation. A second set of parameters concerns
the processing power allocation policy. We have observed
that tracing rays on the map consumes most of the processing
power (>95 %). Thus to perform SLAM in real time we have
a limited ray budget. On the marXbot, when performing
1.5 scan/s, this budget is 65000 rays per scan for a load
of 100 %. The parameters related to this budget allocation
are the particle count, the minimal angle between scan for
measurement to map matching, and the particle resampling
frequency.

These parameters affect the quality of the SLAM, but they
are not obvious to measure nor compute. We thus propose to
learn them from experimental data. Our experimental setup
allows the recording of the robot’s odometry and scanner data
(Fig. 8). We have synchronized the tracker with this telemetry
using ASEBA, which allows us to replay any experiment with
any set of parameters. We utilize this feature to optimize the
set of parameters. To do so, we implement a simple evolution
strategy [15] with 25 % elitism. TABLE II gives the standard
deviations of Gaussian mutation rate for every parameter.

The quality measure q(Tslam,Treal) is well suited for
human interpretation. However, it is highly non-Gaussian: if
the robot looses itself during the map creation, the quality
will be orders of magnitude worst than in a successful map
reconstruction. To alleviate this effect, we let the evolution
strategy minimize the following term instead of the quality:

e(Tslam,Treal) = log(1− q(Tslam,Treal)) (9)

This results in a smoother evolution, because we evaluate each

ray budget: 16250 32500 65000

8125 rays; 12.5% of robot’s CPU 6.6e-7 2.1e-14 2.2e-16
16250 rays; 25% of robot’s CPU 1.0e-4 2.2e-16
32500 rays; 50% of robot’s CPU 6.1e-11

TABLE III: P-values of the Mann–Whitney U statistical test
between the last generation of evolutions for different ray
budgets, for the alternative hypothesis “true location shift is
not equal to 0”.

parameter set over 5 recorded experiments in three different
environments and take the mean in a log scale.

VII. EXPERIMENTS AND RESULTS

We run 5 experiments of 5 minutes each, in 3 different
environments (Fig. 9). We let the marXbot move freely
and avoid obstacles using its short range proximity sensors.
We recorded the robot’s scans, odometry, and absolute
position from the tracker. We then evolved the parameters
corresponding to allocating 1, 1

2 , 1
4 , and 1

8 of our processing
budget to SLAM. As Fig. 10 shows, allocating more processing
resources leads to statistically significatively better maps
(TABLE III).

The evolution was free to use several particles, to the
expense of the quality of the robot position optimization
during phase B of the SLAM algorithm. Yet it always kept
a single particle, and adapted the minimum uncertainty on
position in regards to the available computational power
(TABLE II). The more rays were available, the smaller
uncertainty the evolution kept. It seems that in our setup,
a small number of particles do not hold enough different
possibilities to be worth the investment in computational
power. However, the robot position optimization reduces the
need for particles, as it locally simulates several particles.
Nevertheless, we cannot rule out that a longer evolution, with
a larger population, and with more experiments per evaluation
would lead to the use of more particles. In particular, it
would be interesting to allow more computational power and
to increase the complexity of the environment to see when
multiple particles would get used.

At the qualitative level, we see that all our three environ-
ments are well reconstructed (Fig. 9). One exception are the
corners, which our scanner tend to see as holes. This is due
to the orientation of the sharp sensors and their triangulation-
based distance measurement. Corners create reflections which
lead to wrong readings from the sensors. We could alleviate
this effect by fixating the sensors vertically, but that would
triple the height of the scanner. Moreover, we could post-
process the grid map knowing that walls are flat [4], and thus
work around the problem of the corners.

Several researchers have proposed to take profit of a global
optimization algorithm to perform SLAM [16], [17]. However,
these works employ the algorithm to estimate the posterior
probability distribution over trajectories or maps, which is
taken care by our particle filter. To our knowledge, there is
no previous work on using an optimization algorithm to find

the parameters of the robot’s error model and to allocate
processing resources.

VIII. CONCLUSION

In this article, we have demonstrated a SLAM implemen-
tation using a low-cost rotating distance scanner. Based on
the hardware constraints, we have developed a methodology
to optimize the parameters of the software. The optimization
has opted for a single-particle SLAM, thus using solely scan
matching to build a consistent map. This work demonstrates
that an inexpensive sensor coupled with a low-speed processor
are good enough to perform SLAM in simple environments
in real time.

REFERENCES

[1] P. Pirjanian, N. Karlsson, L. Goncalves, and E. Di Bernardo, “Low-
cost visual localization and mapping for consumer robotics,” Industrial
Robot: An International Journal, vol. 30, pp. 139–144, 2003.

[2] V. A. Sujan, M. A. Meggiolaro, and F. A. W. Belo, “Mobile Robot
Simultaneous Localization and Mapping Using Low Cost Vision
Sensors,” in Experimental Robotics (G. E. W. Wolstenholme and
M. O’Connor, eds.), vol. 39, pp. 259–266, Springer Verlag, 2008.

[3] C. Schroter, H. Bohme, and H. Gross, “Memory-Efficient Gridmaps
in Rao-Blackwellized Particle Filters for SLAM using Sonar Range
Sensors,” in Proceedings of the European Conference on Mobile Robots
2007, pp. 138–143, 2007.

[4] T. Yap and C. Shelton, “SLAM in Large Indoor Environments with
Low-Cost, Noisy, and Sparse Sonars,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pp. 1395–
1401, IEEE Press, May 2009.

[5] F. Abrate, B. Bona, and M. Indri, “Experimental EKF-based SLAM
for mini-rovers with IR sensors only,” in Preceedings of 3rd European
Conference on Mobile Robots, European Conference on Mobile Robots,
2007.

[6] C. Gifford, R. Webb, J. Bley, D. Leung, M. Calnon, J. Makarewicz,
B. Banz, and A. Agah, “Low-Cost Multi-Robot Exploration and
Mapping,” in Proceedings of the IEEE International Conference on
Technologies for Practical Robot Applications, pp. 74–79, IEEE Press,
2008.

[7] S. Grzonka, G. Grisetti, and W. Burgard, “Towards a Navigation
System for Autonomous Indoor Flying,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), (Kobe,
Japan), pp. 2878–2883, IEEE Press, 2009.

[8] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit, “FastSLAM 2.0:
An improved particle filtering algorithm for simultaneous localization
and mapping that provably converges,” in IJCAI, pp. 1151–1156, 2003.

[9] F. Mondada, G. C. Pettinaro, A. Guignard, I. Kwee, D. Floreano, J.-L.
Deneubourg, S. Nolfi, L. Gambardella, and M. Dorigo, “SWARM-BOT:
a New Distributed Robotic Concept,” Autonomous Robots, special Issue
on Swarm Robotics, vol. 17, no. 2–3, pp. 193–221, 2004.

[10] S. Magnenat, P. Retornaz, M. Bonani, V. Longchamp, and F. Mondada,
“Aseba: a modular architecture for event-based control of complex
robots,” 2009. submitted for publication.

[11] S. Magnenat and F. Mondada, “Aseba Meets D-Bus: From the Depths
of a Low-Level Event-Based Architecture,” in IEEE TC-Soft Workshop
on Event-based Systems in Robotics (EBS-RO), 2009.

[12] A. Elfes, “Using Occupancy Grids for Mobile Robot Perception and
Navigation,” Computer, vol. 22, pp. 46–57, Jun 1989.

[13] S. Thrun, Probabilistic robotics. ACM, 2002.
[14] R. Bencina and M. Kaltenbrunner, “The Design and Evolution of

Fiducials for the reacTIVision System,” in Proceedings of the 3rd
International Conference on Generative Systems in the Electronic Arts,
(Melbourne, Australia), 2005.

[15] H. Beyer, The theory of evolution strategies. Springer Verlag, 2001.
[16] T. Duckett, “A Genetic Algorithm for Simultaneous Localization and

Mapping,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pp. 434–439, IEEE Press, 2003.

[17] D. J. Feng, S. Wijesoma, and A. Shacklock, “Genetic Algorithmic Filter
Approach to Mobile Robot Simultaneous Localization and Mapping,”
in 9th International Conference on Control, Automation, Robotics and
Vision, pp. 1–6, IEEE Press, Dec. 2006.

Fig. 9: The different experimental environments (top), and the map built by our SLAM implementation (middle), using a
budget of 65000 rays. The SLAM trajectory is in light red while the real trajectory (tracker) is in dark blue. The bottom
shows the map reconstruction while ignoring the phase B of our algorithm.

0 10 20 30 40

−
5
0
0

−
4
0
0

−
3
0
0

−
2
0
0

−
1
0
0

0

8125 rays per scan

12.5% of robot's CPU

generation

q
u
a
lit

y

0 10 20 30 40

−
5
0
0

−
4
0
0

−
3
0
0

−
2
0
0

−
1
0
0

0

16250 rays per scan

25% of robot's CPU

generation

q
u
a
lit

y

0 10 20 30 40

−
5
0
0

−
4
0
0

−
3
0
0

−
2
0
0

−
1
0
0

0

32500 rays per scan

50% of robot's CPU

generation

q
u
a
lit

y

0 10 20 30 40

−
5
0
0

−
4
0
0

−
3
0
0

−
2
0
0

−
1
0
0

0

65000 rays per scan

100% of robot's CPU

generations

q
u
a
lit

y

Fig. 10: Optimization of parameters for different ray budgets. We have evolved populations of 48 individuals, over 40
generations, by evaluating each parameter set over 5 recorded experiments for three different environments. The black line
represents the median and the gray area represents the interquartile range of quality.

