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Abstract. We describe a decision procedure for a logic that supports
1) finite collections of elements (sets or multisets), 2) the cardinality
operator, 3) a total order relation on elements, and 4) min and max
operators on entire collections. Among the applications of this logic are
1) reasoning about the externally observable behavior of data structures
such as random access priority queues, 2) specifying witness functions
for synthesis problem of set algebra, and 3) reasoning about constraints
on orderings arising in termination proofs.

1 Introduction and Background

In many cases it is useful to check satisfiability of formulas involving collections
such as sets and multisets. Such formulas arise in a variety of tasks, from software
verification to interactive theorem proving. In addition to operators that combine
collections into new ones (such as union or intersection), these formulas often in-
volve the cardinality operator computing the number of elements in collections.
Several decision procedures for sets and multisets with cardinality operator have
been described recently [KNR06, KR07, PK08c, PK08a, PK08b]. Among these
results is the NP-completeness of the theory of sets and multisets with the car-
dinality operator [PK08c]. In addition to their use in verification, these decision
procedures can be used to synthesize code from specifications [SPMK09]. The ap-
plicability of these decision procedures can be increased by combining them with
other decision procedures and theorem provers [SDK10,YKP10,WPK09,Kun07].
The existing decision procedures for collections with cardinality bounds do not
consider operations that couple collection operations with the operations on the
elements. Full second-order theory of sets of totally ordered elements without
cardinality operator is known to be decidable [Rab69, She75]. Quantifier-free
fragments of multisets have also been considered [Zar02]. However, these results
do not support the cardinality operator. A weak form of cardinality operator
can be supported using the Feferman-Vaught theorem [FV59] (see e.g. [Lug05]).

In this paper we start from the NP-completeness result for sets and multisets
with cardinality operator [PK08c] and extend it to collections of totally ordered
elements. Given a collection variable C, our formulas support computing not only
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the number of elements |C|, but also the minimum min(C) and the maximum
max(C) of all elements of C. The key challenge is to avoid NEXPTIME hardness
as when adding e.g. relations to QFBAPA [YKP10]. As in the previous work
[PK08a, PK08c] our constraints support all operations definable using integer
linear arithmetic formulas (applied point-wise to the characteristic functions of
collections). This includes, in particular, set and multiset algebra operations
∩,∪, \,⊆ as well as multiset disjoint union ], and the setof(M) operator that
computes the set of those elements that occur at least once in the multiset M .
By combining set and multiset operations with min and max we can define the
function take(k,C) that computes the least k elements from the collection C,
where k is an integer variable. More generally, one can compute lrange(i, j, C)
or rrange(C, j, i) as the collection of elements from position i to position j in
the ordered collection, counting either from the minimum element or from the
maximum element. A special case of this definable operation is extracting the
ith smallest or ith biggest element of a sorted collection.

There is a number of areas in which we believe our constraints to be useful.

1. Our constraints can be used to model programs that manipulate data struc-
tures. Whereas previous decision procedures supported unsorted sets and
multisets, our result allows us to additionally consider ordered sets and mul-
tisets. The presence of order means that we can define operations such as
extracting the least element of a multiset, which gives us complete alge-
braic laws for the external behavior of priority queues and sorted lists or
trees [CLRS01]. Our language supports not only operations of insertion and
removal but also merging and comparison of collections, as well as selecting
sub-collections or indexing elements.

2. We can define in our language a natural relationship A≺B on sets, denoting
∀x ∈ A.∀y ∈ B. x < y, simply by max(A) < min(B). This relationship is
useful in specifying e.g. invariants of binary search trees.

3. Given a well-founded total order of elements, the standard multiset ordering
on sets of elements is expressible in our language. Our decision procedure
can therefore be used to check certain termination conditions for programs
and relations.

4. Using sets defined over well-founded total orders, we are able to remove non-
determinism in program synthesis. In [SPMK09] we have developed a syn-
thesizer that works for arbitrary QFBAPA formulas. The synthesizer invokes
a quantifier elimination procedure and uses the test terms from quantifier
elimination as the synthesized program. These test terms involve choosing k
elements from a Venn region, where the value k is computed in the synthe-
sized program. Despite many good closure properties of QFBAPA, we found
no natural way to introduce such test terms as part of QFBAPA itself. With
the addition of ordering, functions such as take(k,C) suffice to specify all test
terms. The presence of ordering in the specification language means that the
user of synthesis can write specifications that have a unique solution.

Our result is formulated as a BAPA reduction and can thus be combined with
other logics using the non-disjoint combination framework of [WPK09]. In the
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rest of this paper, we give an NP algorithm for quantifier-free formulas of mul-
tisets and sets of ordered elements with min, max, and cardinality operators
on collections. We also show how to apply this result to the above-mentioned
problems of interest.

2 Examples

2.1 Tree Find Example

As an example of the application of our decision procedure to program verifica-
tion, consider the program of Figure 1.

object BSTSet {
sealed abstract class Tree
private case class Leaf() extends Tree
private case class Node(left: Tree, value: Int, right: Tree) extends Tree {

@invariant(content(this.left).max < this.value
&& this.value < content(this.right).min)

}

def content(t: Tree): Set[Int] = t match {
case Leaf() ⇒ ∅
case Node(l,e,r) ⇒ content(l) ∪ Set(e) ∪ content(r)
}

def find(e: Int, t: Tree): Boolean = (t match {
case Leaf() ⇒ false
case t @ Node(l,v,r) ⇒

if (e < v) find(e, t.left)
else if (e == v) true
else find(e, t.right)

}) ensuring (res ⇒ res ⇔ e ∈ content(t) )
}

Fig. 1. Looking up an element in a binary search tree.

Verifying the property specified for find requires taking into account the in-
variant on the sortedness of trees. The difficult case is showing that if the pro-
cedure does not find an element, then the element is indeed not in the tree. The
proof uses the fact that, for each node with value v, all elements L in the left
subtree are less than v, and all elements in the right subtree are larger than v.
We can express this condition as max(L) < v < min(R). By applying standard
techniques to reduce functional programs to formulas, we obtain the following
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verification conditions for find:

(max(L) < e < min(R) ∧ e < v)→(e ∈ (L ∪ {v} ∪R)↔ e ∈ L)
∧ (max(L) < e < min(R) ∧ e = v)→(e ∈ (L ∪ {v} ∪R)↔ e = v)
∧ (max(L) < e < min(R) ∧ e > v)→(e ∈ (L ∪ {v} ∪R)↔ e ∈ R)

These formulas belong to our decidable class, and can be handled using the
decision procedure that we present in the sequel.

Here content computes a set or a multiset of elements contained in a given
tree. Decidable classes for such functions over algebraic data types are presented
in [SDK10]. When instead of this functional code we have an imperative struc-
ture, the corresponding content functions can often be defined using monadic
second-order logic over trees and its combination with logics supporting set and
multiset images [WPK09,YKP10].

2.2 Multiset Ordering for Termination

When proving that a program terminates, tools and programmers often use
multiset orderings [DM79]. We define them in more details in Section 5.2. A
multiset ordering is an extension of an order on the base set over which multisets
are defined. If this order is total, then the multiset ordering is also total [DM79].
Termination is proved with the help of a termination function τ which assigns
to every program state a multiset. Let M be the multiset value of a given state.
To show that the program terminates, it suffices to show that for each possible
successor state, the multiset value associated to it is smaller in the multiset
ordering than M .

We illustrate the use of multiset orderings for program termination proofs. .
Consider the following program which computes gcd(x, y):

while x 6= y do
if x > y then

x := x − y;
else

y := y − x;

We define a termination function τ as τ(x, y) = {x, y}. In this example we
consider only the case when x > y. The case when y > x is handled analogously.
Let M be the value of a multiset associated with the current program state. We
can define Mn, the multiset value in the next program state as follows:

Mn = (M \ {x}) ] {x− y}
To guarantee termination on the x > y branch, we need to show that (M \{x})]
{x− y}≺mM is a valid formula, i.e. that

x > y ∧ (M �m(M \ {x}) ] {x− y})
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is unsatisfiable. We consider the two cases

x > y ∧ (M = (M \ {x}) ] {x− y})
and x > y ∧ (M ≺m(M \ {x}) ] {x− y})

Let us start with the first formula. If a multiset did not change after adding and
removing an element, it must have been the same element which was added and
removed. Using this observation, the formula reduces to x > y∧x = x−y which
is clearly unsatisfiable in N+.

The second formula contains the ≺m operator which the logic that we study
(QFMAPA≺) does not permit. However, in Section 5.2 we show how it can be
rewritten to use only the min and max operators. Using this rewriting, we obtain
the formula

x > y

∧ X 6= ∅
∧ X ⊆ (M \ {x}) ] {x− y}
∧ M = (((M \ {x}) ] {x− y}) \X) ] Y
∧ max(Y )≺max(X)

This is a QFMAPA≺ formula defined over natural numbers and we can apply the
algorithm defined in Section 4 to prove that it is unsatisfiable.

2.3 Using Ordered Sets in Program Synthesis

Synthesizing software from given specifications [MW80] should increase the pro-
ductivity of a programmer and the chances of obtaining error-free software that
entirely corresponds to its specification. The concept of ordering immediately
yields a much larger number of definable functions, such as take, lrange, rrange.
These functions are sufficient to provide witnesses for Skolem functions of quan-
tified formulas of BAPA. Consider, for example, the formula

∀S.∀k.∃A.∃B. (|S| = 2k → S = A ∪B ∧A ∩B = ∅ ∧ |A| = |B|)

This formula has a witness function f(S, k) computing the sets (A,B)

f(S, k) = (take(k/2, S), S \ take(k/2, S))

where k/2 denotes integer division by 2, which is definable in integer linear
arithmetic. Using ordering on sets, we can define such a computable witness
function for every valid BAPA formula with a ∀?∃? prefix. We have used such
witness functions as an output of a synthesis procedure for BAPA [SPMK09].
Without an ordering on elements it was not clear how to specify a particular
subset of a set of a given size.
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3 Sets of Densely Ordered Elements

In this section, we introduce QFBAPA≺, a logic to reason about sets of totally or-
dered elements, and a strict extension of QFBAPA [KR07]. We show that the prob-
lem of establishing the satisfiability of a formula in QFBAPA≺ is NP-complete.

F ::= A | F ∧ F | F ∨ F | ¬F

A ::= AS | AT | AE

AS ::= S = S | S ⊂ S | S ⊆ S | S≺S

S ::= B | S ∪ S | S ∩ S | S \ S | U | ∅
AT ::= T = T | T < T | T ≤ T

T ::= k | C | T + T | C ∗ T | |S|
C ::= . . . | − 2 | − 1 | 0 | 1 | 2 | . . .

AE ::= E = E | E≺E | E�E | E ∈ S

E ::= e | constants of E | ⊥ | > | min(S) | max(S)

Fig. 2. Syntax of QFBAPA≺. In the text we generally use S, T and E to denote
set, integer and element terms respectively. We use A, B, C for set variables, i, j,
k for integer variables and e for element variables. Note that QFBAPA≺ without
the rules AE , E and the partial ordering ≺ on sets corresponds to QFBAPA.

The complete syntax of QFBAPA≺ is presented in Figure 2. QFBAPA≺ has
three sorts: sets, integers and set elements. Integers range over Z, set elements
over a finite unbounded domain E and sets over 2E. We are interested in the
satisfiability over a family of models containing a model for each finite set E. We
further assume that ≺ is a dense, total order on E. (See Section 4 for the case of
the non-dense order on integers.) To make the min and max functions total, we
extend the domain E with the special values ⊥ and >, which have the following
properties:

– min(S) = >↔S = ∅
– max(S) = ⊥↔S = ∅
– ∀e ∈ E . ⊥� e
– ∀e ∈ E . e�>
– ∀A ∈ 2E . min(A) 6= ⊥
– ∀A ∈ 2E . max(A) 6= >

Note that these rules are consistent with the interpretation of min and max
over set terms. For instance, the identity min(A∪B) = min({min(A),min(B)})
should always hold. When B = ∅, we have min(A∪∅) = min({min(A),min(∅)}),
so it is consistent that min(∅) is greater than any possible value for min(A).

The total order ≺ on elements of sets induces a partial order on sets.
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Definition 1. We define A≺B to hold iff max(A)≺min(B).

3.1 A Decision Procedure for QFBAPA≺

We now describe all important steps of our decision procedure for QFBAPA≺. The
algorithm presented here applies to a conjunction F of literals. Formulas of arbi-
trary boolean structure can be handled by first rewriting them into disjunctive
normal form for instance, or by using the DPLL(T ) approach [GHN+04].

Rewritings. We start by applying the following rewritings:

E ∈ S ; ef = E ∧ |Af| = 1 ∧min(Af) = ef ∧max(Af) = ef ∧Af ⊆ S
where ef and Af are fresh

S1≺S2 ; max(S1)≺min(S2)

Purification. We introduce a fresh set variable Af for each non-variable set
term T that appears as parameter of the min or max function. When doing
this we add to our formula the constraint that Af = T . After this step, we can
assume that min and max are only applied to set variables. We then separate our
formula F into two formulas, FQFBAPA and F≺ such that F ≡ FQFBAPA ∧ F≺,
and such that F≺ contains only atoms over set element terms. In particular,
we observe that all literals in F≺ are of one of the forms E1 = E2, E1≺E2 or
E1�E2, where E1 and E2 can be constants, element variables or min and max
applied to a set variable. We also observe that FQFBAPA is a formula in QFBAPA

(and therefore makes no mention of sets elements).

Guessing the empty sets. For each set variable A, we guess whether A
is empty or not. If yes, we add the constraint |A| = 0 to FQFBAPA and the
constraint min(A) = > ∧ max(A) = ⊥ to F≺. If not, we add the constraint
|A| ≥ 1 to FQFBAPA and the constraint min(A)�max(A) to F≺. Note that for
each set variable A, the terms min(A) and max(A) now appear in F≺.

Guessing an ordering on elements. We consider the set E of all terms
appearing in F≺ (including constants). We guess an arrangement into (equality)
equivalence classes of all terms in E that does not violate the formula F≺.
If no such arrangement can be found, we conclude that the original formula
F is unsatisfiable. We then guess an ordering between the equivalence classes,
consistent with the≺ and� constraints of F≺. If we cannot find such an ordering,
we also conclude that F is unsatisfiable.

Segmentation of the domain. We number the equivalence classes from the
previous point in increasing order from 1 to n. For each of them, we create a fresh
set variable Ci. We constrain each of these sets to be a singleton by adding to
FQFBAPA the constraints |Ci| = 1 for 1 ≤ i ≤ n. We create n− 1 more fresh set
variables Cn+1 to C2n−1. We force all the fresh set variables to represent disjoint
sets by adding to FQFBAPA the constraints |Ci ∩ Cj | = 0 for 1 ≤ i < j ≤ n.
In the following we interpret the fresh sets as points (C1 to Cn) and intervals
(Cn+1 to C2n−1) on the total order on E (see Figure 3). Using this interpretation,
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⊥ >
C1 C2 C3 CnCn−1

Cn+1 Cn+2 C2n−1

Fig. 3. Segmentation of the domain E.

we express each non-fresh set variable A using the point and interval sets. For
each non-empty set A we introduce 2n − 1 fresh variables Ai representing the
intersection of A with each point or interval set. It is then clear that A can be
expressed as the (disjoint) union of all variables Ai:∧

1≤i<2n

Ai = A ∩ Ci ∧A =
⋃

1≤i<2n

Ai

If we guessed that min(A) and max(A) were in the pth and qth equivalence classes
respectively (with the possibility that p = q), we add the following to FQFBAPA:∧

1≤i<p

Ai = ∅ ∧An+i = ∅ ∧ |Ap| = 1 ∧ |Aq| = 1 ∧
∧

q<i≤n

Ai = ∅ ∧An+i = ∅

Solution of the QFBAPA constraints. As a final step, we use the decision
procedure for QFBAPA [KR07] on FQFBAPA. Our original formula is satisfiable
if and only if FQFBAPA is satisfiable.

Theorem 1. Our decision procedure for QFBAPA≺ is sound and complete.

Proof. Soundness. We first show that each of our reasoning steps results in a
logically sound conclusion. The rewritings are correct by definition. The purifi-
cation process introduces fresh variables that are constrained to be equal to the
term they represent, so any model for the formula without the fresh variables can
trivially be extended to the original variables. It is sound to non-deterministically
guess which sets are empty, and the constraints that we add are immediate con-
sequences of the guesses. Failing to guess equivalence classes implies that at least
two elements are constrained to be equal and strictly ordered at the same time,
which means that the ordering constraints are unsatisfiable. Similarly, a failure
to establish a total ordering on the equivalence classes implies that the strict or-
dering constraints form at least one cycle and are thus unsatisfiable. It remains to
show that when we introduce the fresh variables Ci and Ai and the constraints
on them, we do not exclude any solution for the existing variables. To show
this, consider a valuation for all non-fresh variables, and consider the ordering of
equivalence classes generated by the values of min and max applied to the values
of non-fresh set variables. For each variable A, define Ai = A∩{x | np < x < nq}
for i > n and Ai = A ∩ Si where Si is the appropriate singleton containing nq

(here np and nq correspond to max and min of sets). Note that Ai are all finite
sets because each A is finite. Then define Ci as the union of Ai over all variables
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i. Note that Ai = A ∩ Ci and Ci ⊆ {x | np < x < nq} for i > n and Ci ⊆ Si,
otherwise. Thus all Ci sets are also disjoint.

Completeness. To show completeness we need to show that we can build a
model for the original formula from a model for our formula FQFBAPA. The
model for FQFBAPA will contain the cardinality of each set, and all we need to
do is populate them with elements from E. We start by populating the singleton
sets Ci, for 1 ≤ i ≤ n: if the ith equivalence class contains a constant from E, we
set it to be the element of Ci. We do this for all classes with a known constant.
It is then always possible, because the order is dense, to pick a value that does
not contradict the ordering for each of the other classes. We then proceed to
populate the sets Cn+i for 1 ≤ i < n. We know the cardinality of Cn+i from the
model of FQFBAPA, and we want to pick only values that are between the value
in Ci and the value in Ci+1. Again, because the order is dense, this is always
possible. This outlines the model generation procedure for the sets C1 to C2n−1.
The construction for all the other sets follows then from their cardinalities and
from the constraints we added when we segmented the domain.

Theorem 2. The satisfiability problem for QFBAPA≺ is NP-complete.

Proof. Since QFBAPA≺ is a strict extension of QFBAPA and the satisfiability
problem for QFBAPA is NP-complete, we can conclude that it is NP-hard for
QFBAPA≺. It remains to show that the complexity does not increase with the
extension. To this end, since the algorithm is essentially a reduction to QFBAPA,
it is sufficient to see that we only add polynomially many constraints to the
QFBAPA formula and that we only guess polynomially many variables.

4 Sets of Integer Elements

In this section we consider sets of integers instead of a set of elements from a
dense order. The high-level idea of the decision procedure is similar to the one
in Section 3. However, note that for a non-empty finite set of integers A the
following always holds:

|A| ≤ max(A)−min(A) + 1 (1)

We thus obtain an additional upper bound on cardinalities of sets, which was
not present in the case of dense orders. It is therefore natural for collections of
integers to permit integer variables to participate both in cardinality constraints
and in min,max constraints. We obtain the syntax in Figure 4. Note that, by
conjoining a formula with literals 0 ≤ min(A) for every set variable A, we can
model sets of non-negative integers with the natural well-founded total order.

Note that using these constructs we can write the following property of a set
C:

min(C) = p ∧max(C) = q ∧ |C| = q − p+ 1,

which ensures that C is equal to the interval {x | p ≤ x ≤ q}.
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The steps of the decision procedure are similar to those for dense orders. The
steps Rewriting and Purification are analogous. Because the sort of collection
elements is identical to the sort of integers used for cardinalities, the result of
these two phases is a conjunction of a QFBAPA formula and constraints of the
form min(A) = i or max(A) = j. The steps Guessing the empty sets and
Guessing an ordering of elements are identical. The ordering is expressed
using the ordering relation on integers. The step Segmentation of the domain
differs only in adding the constraints

|Cn+i| ≤ min(Ci+1)−min(Ci)− 1 (2)

in addition to all other constraints added. Finally, Invoking QFBAPA is similar
but now all generated constraints are given to QFBAPA, including the ordering
constraints on variables. Note that the presence of ⊥ and > does not significantly
affect the decision procedure for Presburger arithmetic or QFBAPA [KNR06,
FV59].

The questions of soundness, completeness, and NP membership are natural
generalizations of the corresponding properties for dense orders. Even though the
constraints here are more tightly coupled, the description of model constructions
are simpler because models are sets of integers.

For soundness, the key step is defining an extension of a model to the model
of set variables Ci and Ai. In this case, for i ≤ n the single element of Ci is
given by the corresponding integer variable. The value of Cn+i is simply the set
of integers {x | min(Ci) < x < min(Ci+1)}, which is a finite set. The value of Ai

is simply A ∩ Ci.

For completeness, the condition (2) ensures that Ai has no more elements
than Ci, which makes the construction of the model straightforward.

F ::= A | F ∧ F | F ∨ F | ¬F

A ::= AS | AT

AS ::= S = S | S ⊂ S | S ⊆ S | S≺S

S ::= B | S ∪ S | S ∩ S | S \ S | U | ∅
AT ::= T = T | T < T | T ≤ T | T ∈ S

T ::= k | C | T + T | C ∗ T | |S| | min(S) | max(S)

C ::= ⊥ | . . . | − 2 | − 1 | 0 | 1 | 2 | . . . | >

Fig. 4. QFBAPAZ: algebra of sets of integers with cardinality, max, and min.



On Decision Procedures for Ordered Collections 11

5 Multisets Defined over an Ordered Set

Quantifier-free multiset formulas can be seen as a natural extension of QFBAPA

formulas. While in sets the same element cannot be repeated, in multisets du-
plicate elements can occur. Given a finite domain E, we define a multiset M
as a function counting how many times an element from E appears in M . For-
mally, a multiset is a function from E to N. Checking satisfiability of a multiset
formula means to define a base set E and a function from E to N for each
multiset variable such that the formula evaluates to true under the standard se-
mantics. Decidability and complexity of the logic that includes reasoning about
multisets and integers was studied in [Zar02]. Adding cardinality constraints to
multisets and combining that with Presburger arithmetic was further investi-
gated in [PK08a, PK08c]. All these approaches are compatible with the above
definition, as there are no additional constraint on the base set E.

In this paper we adopt the logic presented in [PK08a], but add the additional
constraint that the base set must be totally ordered. This allows us to express
various properties, including the minimal or the maximal element of a multiset.
For example, we can express the constraint min(M1) ∈ M2. We call this logic
QFMAPA≺, and its syntax is shown in Figure 5.

As the domain of elements, we start by considering dense orders, for sim-
plicity. The results also applies to multisets over integers, in which case they
extend QFBAPAZ rather than QFBAPA≺. Note that, even when the domain of
elements is Z, we do not allow the use of integer variables denoting cardinalities
or min, max within the inner integer arithmetic formulas (used to build Σ or
∀e.F formulas).

5.1 Decidability and Complexity of QFMAPA≺

Decidability and complexity of QFMAPA≺ strongly relies on the decidability and
complexity of QFBAPA≺, as we show in Theorem 3. In the proof, the operator
setof() plays a major role. It takes a multiset and creates a set from it. As an
illustration, setof({a, a, a, b, b}) = {a, b}. Formally, it is defined as setof(M) =
{e |M(e) > 0}.
Theorem 3. Checking the satisfiability of a formula F in QFMAPA≺, is NP-
complete.

Proof. We prove this using a similar technique as in the case of QFBAPA≺. How-
ever, we cannot simply apply the proof used in establishing the NP-completeness
of QFBAPA≺, as min and max are here defined on multisets. Defining a multi-
set as a union of disjoint regions does not apply, since this would not cap-
ture the repeated elements. However, we notice that the properties min(M) =
min(setof(M)) and max(M) = max(setof(M)) always hold. Using this observa-
tion, for each multiset expression M that occurs as a parameter of the min or
max function, we introduce a fresh multiset variable Sf. We flatten the formula
using the following two rules:
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top-level formulas:
F ::= A | F ∧ F | ¬F
A ::= M=M | M ⊆M | E�E | E = E | E ∈M | ∀e.Fin | Aout

outer linear arithmetic formulas:
Fout ::= Aout | Fout ∧ Fout | ¬Fout

Aout ::= tout ≤ tout | tout=tout | (tout, . . . , tout)=
P
Fin

(tin, . . . , tin)

tout ::= k | |M| | C | tout + tout | C · tout | ite(Fout, tout, tout)
inner linear arithmetic formulas:

Fin ::= Ain | Fin ∧ Fin | ¬Fin

Ain ::= tin ≤ tin | tin=tin

tin ::= m(e) | C | tin + tin | C · tin | ite(Fin, tin, tin)
multiset expressions:

M ::= m | ∅ | M ∩M | M ∪M | M ]M | M \M | M \\M | setof(M)
expressions about ordered elements:

E ::= x | min(M) | max(M)
terminals:

m - multiset variables; e - index variable (fixed)
k - integer variable; C - integer constant

Fig. 5. Quantifier-free multiset constraints with the cardinality operator over a
totally ordered set as a domain (QFMAPA≺).

– C[min(M)]  C[min(Sf)] ∧ Sf = setof(M)
– C[max(M)]  C[max(Sf)] ∧ Sf = setof(M)

(Here C[ ] denotes a rewriting context.)
Although the newly introduced variables are multisets variables, they are

actually sets, since they never contain repeating elements. This means that the
min and max operators are now applied only to sets and we can apply the same
procedure as before.

We separate the initial formula into two parts: one about pure QFMAPA

constraints and the other about ordering constraints. Note that Sf = setof(M)
is also a QFMAPA constraint. Now we repeat the same procedure as in the case
of QFBAPA≺. We denote by FBC the newly derived QFBAPA constraints. Every
QFBAPA formula can be easily transformed into a QFMAPA formula. We do this
by adding the constraint stating that S is a set for each set variable S: ∀e.(S(e) =
0 ∨ S(e) = 1). The translated constraints from FBC are conjoined with the
original QFMAPA constraints.

We thus obtain a new formula FM which is entirely in QFMAPA. The increase
in size is at most polynomial. Checking satisfiability of QFMAPA formulas is an
NP-complete problem as it was shown in [PK08c]. Therefore, checking satisfi-
ability of FM is in NP. This concludes our proof that checking satisfiability of
QFMAPA≺ formulas is an NP-complete problem.

The soundness and completeness of the procedure follow from these proper-
ties for QFBAPA≺. For soundness, we note that all reasoning steps we performed
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in the QFBAPA≺ reduction are valid within QFMAPA≺ as well, For complete-
ness, the proof of completeness for QFBAPA≺ shows that the solution for sets
can be extended to an ordering on the elements that satisfies the total order.
The solution of the formula on multisets is also a solution of the formula on
sets. Moreover, thanks to the use of the setof() transformation, all ordering con-
straints on the multiset formula apply to sets. This in particular implies that
the elements can be ordered using the same method as for QFBAPA≺ to make
the QFMAPA≺ formula true.

5.2 Multiset Ordering

Let M(E) be the class of all finite multisets defined over a totally ordered set
(E,�). Our goal is to define an order on M(E). The following is the standard
definition given in [DM79]:

Definition 2. Given two multisets N and M defined over a total order (E,�),
N ≺mM if and only if there exist two multisets X and Y such that X 6= ∅ and
X ⊆M and N = (M \X) ] Y and ∀y ∈ Y.∃x ∈ X.y≺x.

One can visualize the definition of N ≺mM as follows: let Z be a subset
of the intersection of the multisets M and N . The multiset X is defined as a
multiset of all the elements of M that are not contained in the intersection:
X = M \Z. Similarly, the multiset Y contains all elements of N that are not in
the intersection. The multisets X and Y are disjoint.

Lemma 1. Let X and Y be disjoint multisets and X 6= ∅. The formula ∀y ∈
Y.∃x ∈ X.y≺x is equivalent to max(Y )≺max(X).

Proof. Every element of Y is bounded by max(Y ): ∀y ∈ Y.y�max(Y ). Since
max(Y ) ∈ Y , there exists an element E ∈ X such that max(Y )≺E. Taking this
element to be max(X) we are sure that it is a greater element of every element
of Y . The other direction is similar.

Lemma 2. It is possible to extend a QFMAPA≺ solver in such a way that it
can also reason about multiset orderings by rewriting every multiset ordering
subformula N ≺mM into an equivalent QFMAPA≺ formula

X 6= ∅ ∧X ⊆M ∧N = (M \X) ] Y ∧max(Y )≺max(X)

Apart from their use for proving termination of programs, multiset orderings
are also used in a model construction based on resolution proofs [BG01]. We
therefore expect that automation of formal correctness proofs of such model
construction would benefit from a decision procedure for multiset orderings.



14 Kuncak, Piskac, Suter

6 Conclusions

We had previously identified a number of uses for constraints on sets and cardi-
nality bounds and established their optimal complexity. In this paper we gener-
alized these results to the case of a total ordering relation on collection elements.
We have shown that this step beyond uninterpreted elements provides important
expressive power while preserving the key complexity properties of the decision
problems. We expect the resulting decision procedures to be even more useful in
data structure verification, synthesis, and termination proofs. Moreover, these
new results naturally fit into the framework of combining theories by sharing
sets.
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