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Abstract

For good performance in practice, real-time optimization schemes need to be able
to deal with the inevitable plant-model mismatch problem. Unlike the two-step
schemes combining parameter estimation and optimization, the modifier-adaptation
approach does not require the model parameters to be estimated on-line. Instead,
it uses information regarding the constraints and selected gradients to improve the
plant operation. The dual modifier-adaptation approach presented in this paper
drives the process towards optimality, while paying attention to the accuracy of the
estimated gradients. The gradients are estimated from successive operating points
generated by the optimization algorithm. The novelty lies in the development of an
upper bound on the norm of the gradient errors, which is used as a constraint when
determining the next operating point. The proposed approach is demonstrated via
numerical simulation for both an unconstrained and a constrained problem.

1 Introduction

Real-time optimization (RTO) is a technology that aims at improving steady-
state operation of continuous plants [1]. The majority of RTO schemes avail-
able in the literature uses a model of the plant. Hence, reaching optimal perfor-
mance in the presence of plant-model mismatch is a difficult task, which neces-
sitates adaptation based on measured information. A three-way classification
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of RTO schemes has recently been proposed in [2]. One class includes the so-
called modifier-adaptation approach [3], whereby appropriate terms are added
to the optimization problem and updated so that the KKT conditions of the
model match those of the plant. In this context, modifier adaptation requires
experimental gradient information to be estimated on-line. This paper inves-
tigates the estimation of such gradients and their use in modifier-adaptation
schemes.

A comparison of different approaches for on-line gradient estimation is given
in [4]. Finite-difference techniques can be used to estimate the gradients exper-
imentally. The most straightforward approach consists in perturbating each
input individually around the current operating point to get an estimate of
the corresponding gradient elements. This is the case, e.g., when forward finite
differencing (FFD) is applied at each RTO iteration. An alternative approach,
which was introduced in the ISOPE (Integrated System Optimization and Pa-
rameter Estimation) literature under the name dual ISOPE, is to estimate the
gradients based on the past operating points [5, 6]. The key issue therein is the
ability to estimate the experimental gradients reliably while progressing with
the optimization. Following the paradigm of dual control [7], this results in two
conflicting objectives: the “primal objective” consists in improving the plant
operation, while the “dual objective” aims at estimating accurate gradients. A
way to accommodate these conflicting tasks is by adding a constraint in the op-
timization problem so as to ensure sufficient information in the measurements
and guarantee gradient accuracy. For example, a constraint that prevents ill-
conditioning in gradient computation has been proposed [5, 6]. The present
paper goes further and investigates the two main sources of errors, namely
the error introduced by the numerical approximation of derivatives and mea-
surement noise. A constraint that enforces an upper bound on the gradient
error norm is proposed. Since the constraint for ensuring sufficient information
might compromise optimality in the vicinity of the optimum, it has also been
suggested to use the ill-conditioning measure not to constrain the optimization
problem but rather to determine whether an additional input perturbation is
needed [8]. Clearly, one such scheme could also be used in the context of the
proposed dual-modifier approach.

The paper is organized as follows. Background material is presented in Sec-
tion 2. The optimization problem is formulated and the necessary conditions
of optimality are reviewed, then the modifier-adaptation scheme is presented.
The method used to estimate the gradients from past operating points is in-
troduced and analyzed in Section 3. Based on this analysis, a norm-based con-
straint is proposed, which is incorporated into the dual modifier-adaptation
algorithm presented in Section 4 for unconstrained optimization problems,
and in Section 5 for constrained optimization problems. The approach is il-
lustrated in Section 6 for the unconstrained operation of the Williams-Otto
reactor and for the optimization of a constrained numerical example. Finally,
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Section 7 concludes the paper and presents directions for future work.

2 Preliminaries

2.1 Problem Formulation

The usual objective in RTO for continuous processes is to determine the oper-
ating point that optimizes some operating performance of the plant at steady
state (e.g., minimization of operating cost or maximization of production rate),
while satisfying a number of constraints (e.g., bounds on process variables or
product specifications). The steady-state optimization problem for the plant
can be formulated as follows:

u⋆p ∈ argmin
u

Φp(u) := φ(u,yp(u)) (1)

s.t. Gp(u) := g(u,yp(u)) ≤ 0,

where u ∈ IR
nu denotes the decision (or input) variables and yp ∈ IR

ny the
measured (or output) variables; φ : IR

nu × IR
ny → IR is the cost function to be

minimized; gi : IR
nu×IR

ny → IR, i = 1, . . . , ng, is the set of inequality constraint
functions, which includes input bounds. The notation (·)p is used throughout
for the variables associated with the plant.

This formulation assumes that φ(u,yp) and g(u,yp) are known functions of
u and yp, i.e., they can be evaluated from the measurements. On the other
hand, the steady-state input-output mapping of the plant, yp(u), is typically
unknown, and only the approximate model f(u,y, θ) = 0 is available, where
θ ∈ IR

nθ is the set of model parameters. Assuming that the model outputs y

can be expressed explicitly as functions of u and θ, i.e. y(u, θ), the solution
to the original problem (1) can be approached by solving the following NLP
problem:

u⋆ ∈ argmin
u

Φ(u) := φ(u,y(u, θ)) (2)

s.t. G(u) := g(u,y(u, θ)) ≤ 0.

In the presence of plant-model mismatch, a model-based solution u⋆ does not
generally match the plant optimum u⋆p, so some adaptation is needed.

Assuming that the feasible set U := {u : G(u) ≤ 0} is nonempty and compact
for θ given, and that Φ(u) is continuous on U , a minimizing solution u⋆ of
Problem (2) is guaranteed to exist (see, e.g., [9], Theorem 2.3.1). The set of
active constraints at u⋆ is denoted by A := {i : Gi(u

⋆) = 0, i = 1, . . . , ng}.
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2.2 Necessary Conditions of Optimality

Provided that a constraint qualification holds at the solution point u⋆ and
the functions Φ and G are differentiable at u⋆, there exists unique Lagrange
multipliers µ ∈ IR

ng such that the following first-order Karush-Kuhn-Tucker
(KKT) conditions hold at u⋆ [9]:

G ≤ 0, µTG = 0, µ ≥ 0, (3)

∂L
∂u

=
∂Φ

∂u
+ µT

∂G

∂u
= 0,

with L := Φ + µTG being the Lagrangian function.

The problem of approaching the optimization problem (1) for the plant by
solving the model-based optimization (2) is analogous to the inside-out prob-
lem discussed by Biegler et al. [10]. In that work, the observation was made
that a necessary condition for a model to be adequate for optimization is that
it recognizes the plant optimum as a KKT point. In other words, a KKT point
for the model ought to be a KKT point for the plant. The KKT conditions
involve the values and gradients of the constraints as well as the gradient of
the cost function. These KKT elements are denoted collectively by the vector

C =
(

G1, . . . , Gng
, ∂G1

∂u
, . . . ,

∂Gng

∂u
, ∂Φ
∂u

)

T ∈ IR
nK , with nK = ng + nu(ng + 1).

Since the Lagrange multipliers µ corresponding to inactive constraints are
zero, KKT matching only requires to match the values and gradients of the
active constraints. However, because neither the plant optimum nor its corre-
sponding active set are known a priori, a sufficient condition for a model-based
RTO scheme to reach the plant optimum upon convergence is that all the
KKT elements of the model C match those of the plant Cp at every RTO it-
eration. The modifier-adaptation approach, which is described next, has been
conceived for meeting this condition in spite of plant-model mismatch.

2.3 Modifier-Adaptation Approach

The idea behind modifier adaptation is to use measurements for correcting
the predicted cost and constraints between successive RTO iterations in such
a way that a KKT point for the model eventually coincides with the plant
optimum [3]. At the kth step of modifier adaptation, the next input uk+1 is
obtained as:

uk+1 ∈ arg min
u

Φm(u) := Φ(u) + λΦ
k

T

u (4)

s.t. Gm(u) := G(u) + εk + λG

k

T

(u − uk) ≤ 0
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where εk ∈ IR
ng are the constraint-value modifiers; λG

k ∈ IR
nu×ng are the

constraint-gradient modifiers; and λΦ
k ∈ IR

nu are the cost-gradient modifiers.
These modifiers represent the difference between the plant and predicted val-
ues of the KKT elements. They are adapted repeatedly by using (estimates
of) the constraint values and the cost and constraint gradients of the plant at
the current operating point uk:

εk = Gp(uk) − G(uk), (5)

λG

k

T

=
∂Gp

∂u
(uk) −

∂G

∂u
(uk), (6)

λΦ
k

T

=
∂Φp

∂u
(uk) −

∂Φ

∂u
(uk). (7)

The modifiers can be denoted collectively by the nK-dimensional vector

Λk =
(

ε1,k, . . . , εng,k,λ
G1

k

T

, . . . ,λ
Gng

k

T

,λΦT

k

)

T ∈ IR
nK . This way, (5)-(7) can

be rewritten as Λk = Cp(uk) − C(uk). However, such a simple strategy may
lead to excessive correction, thereby compromising the convergence of the
algorithm, and it may also make modifier adaptation very sensitive to mea-
surement noise. A better strategy consists in filtering the modifiers, using for
example a first-order exponential filter:

Λk = (I − K)Λk−1 + K [Cp(uk) − C(uk)] , (8)

where K ∈ IR
nK×nK is a gain matrix.

An appealing property of the modifier-adaptation scheme is that, upon con-
vergence and in the absence of noise, the optimum u∞ for the modified op-
timization problem (4) satisfies the same first-order optimality conditions as
the problem (1) [3]. The downside of modifier adaptation lies in the need to
estimate the experimental gradients ∂Φp

∂u
and ∂Gp

∂u
.

3 Experimental Gradient Computed from Past Operating Points

Gradients have numerical values that depend on the order of magnitude of the
decision variables u. It is assumed throughout this work that all the decision
variables u are of the same order of magnitude, which usually necessitates some
scaling. For example, if the decision variable ui remains within the interval
[ui,a, ui,b], it can be scaled between 0 and 1 as uscaled

i = (ui−ui,a)/(ui,b −ui,a).
For notational simplicity, the superscript indicating a scaled variable will be
omitted thereafter.
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Time

ψ̃

δ

Fig. 1. Measured quantity at steady state with indication of the noise level δ.

3.1 Gradient Computation

A straightforward approach for estimating the experimental gradients con-
sists in perturbing each input individually around the current operating point
and estimating the corresponding gradient element. In the forward finite dif-
ferencing (FFD) approach, an estimator of the partial derivative

∂ypi

∂uj
(uk),

i = 1, . . . , ny, j = 1, . . . , nu, at the kth RTO iteration is obtained as

γ̂j(h) =
[

ypi(uk + hej) − ypi(uk)
]

/h, h > 0, (9)

where h is the step size and ej the jth unit vector.

This approach requires nu perturbations to be carried out at each RTO it-
eration. In addition, it is necessary to wait for a new steady-state after each
perturbation. As an alternative approach, it is possible to estimate the gra-
dients using several past operating points generated by the previous RTO
iterations, as proposed for example in dual ISOPE algorithms [5, 6]. This
approach reduces the total number of input changes that are required. Fur-
thermore, unlike the FFD approach, the operating points used to estimate the
gradients do not have a fixed spatial arrangement.

The analysis in this section is carried out for a general noisy function of the
form

ψ̃(u) = ψ(u) + v, (10)

where v denotes the measurement noise. ψ̃(u) might represent the measured
plant cost, a measured constraint value or simply an output variable. It is
assumed that the noisy function ψ̃(u) remains within an interval δ at steady-
state operation, as illustrated in Figure 1. The interval δ can be selected by
considering some confidence level for a given statistical description of v.

Consider the kth iteration and the nu most recent operating points, uk−j, j =
0, . . . , nu− 1. The objective is to evaluate the gradient ∂ψ

∂u
(u) as a function of

the location of the next operating point that will generically be labeled u. Let
us consider a first-order approximation of ψ(uk−j) in the neighborhood of the

6



new operating point u:

ψ(uk−j) = ψ(u) +
∂ψ

∂u
(u)[uk−j − u] +O

(

‖uk−j − u‖2
)

, (11)

for each j = 0, . . . , nu − 1. Written for the noisy functions ψ̃(uk−j) and ψ̃(u),
and neglecting the higher-order terms, (11) becomes:

ψ̃(uk−j) = ψ̃(u) + γ̂(u)T[uk−j − u], j = 0, . . . , nu − 1, (12)

where γ̂(u) is an estimate of the gradient γ(u)T := ∂ψ
∂u

(u). This estimate can
be computed from the nu most recent operating points uk, . . . , uk−nu+1 and
the corresponding noisy values ψ̃(uk), . . . , ψ̃(uk−nu+1) by writing (12) in the
following matrix form [6]:

γ̂(u)T = Y(u) U−1(u), (13)

with

U(u) := [u − uk . . . u− uk−nu+1 ] ∈ IR
nu×nu (14)

Y(u) := [ ψ̃(u) − ψ̃(uk) . . . ψ̃(u) − ψ̃(uk−nu+1) ] ∈ IR
1×nu . (15)

It is assumed in this analysis that the nu+1 operating points in U(u) are such
that U(u) is invertible. The gradient estimation error is defined as

ǫ(u)T := γ̂(u)T − ∂ψ

∂u
(u),

which, from (13) and using ψ̃(uk−j) = ψ(uk−j) + vk−j and ψ̃(u) = ψ(u) + v,
can be split as

ǫ(u) = ǫt(u) + ǫn(u), (16)

where ǫt and ǫn represent the errors due to truncation and measurement noise,
respectively,

ǫt(u)T = [ ψ(u) − ψ(uk) . . . ψ(u) − ψ(uk−nu+1) ] U−1(u) − ∂ψ

∂u
(u) (17)

ǫn(u)T = [ v − vk . . . v − vk−nu+1 ] U−1(u). (18)

Next, we investigate these two components of the gradient error.

3.2 Gradient Error due to Truncation

An upper bound on the norm of the truncation error is given in the next
proposition.
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Proposition 1 Let ψ(u) be twice continuously differentiable with respect to
u. Then, given the nu most recent operating points uk, . . . , uk−nu+1, one has

‖ǫt(u)‖ ≤ E t(u), (19)

with

E t(u) :=
σmax

2

∥

∥

∥

∥

[

(u− uk)
T(u− uk) . . . (20)

. . . (u− uk−nu+1)
T(u− uk−nu+1)

]

U−1(u)
∥

∥

∥

∥

,

where σmax is the largest absolute eigenvalue of the Hessian of ψ(·).

Sketch of the proof. The proof proceeds by Taylor series expansion of
ψ(uk−j) at u and upper bounding of the norm of the Hessian of ψ. See [11]
for details. 2

Note that σmax represents an upper bound on the curvature of ψ(·).

Remark 1 If the points are taken as uk−j = u + hej+1, j = 0, . . . , nu − 1,
there results the FFD arrangement with h > 0 being the step size and ej+1 the
(j+ 1)st unit vector. In this particular case, it can be shown that (19) reduces
to

‖ǫt‖ ≤ σmax
2

√
nu h, (21)

which is independent of u. Notice that (21) is the same expression as that
reported in [12] for the FFD approach.

Remark 2 For a given value c, the contour level E t(u) = c corresponds to
the envelopes of two intersecting hyperspheres of radius r = c

σmax
, the centers

of which are symmetrically located on each side of the hyperplane generated by
the nu past operating points [11]. The center point corresponding to a given
operating point u is given by

uT

c (u) =
1

2

[

uTu− uT

kuk · · · uTu − uT

k−nu+1uk−nu+1

]

U−1(u), (22)

and it can be shown that

E t(u) = σmax
∥

∥

∥u− uc(u)
∥

∥

∥ = σmax r(u), (23)

where r(u) is the radius of the hypersphere as a function of u. The situation
in the two-input case is depicted in Figure 2. The most recent operating points
are uk and uk−1. The new operating point u generates the center point uc1(u)
of radius r(u). The symmetric center point uc2(u) is also represented. The
corresponding upper bound on the norm of the gradient error due to truncation
is E t(u) = σmax r(u).
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u1

u2

u

um,kuc1(u) uc2(u)

uk

uk−1

r(u
)

E t(u) = σmax r(u)

Fig. 2. Representation of the geometrical properties of E t(u) in the two-input case.

3.3 Gradient Error due to Measurement Noise

For relating the error norm ‖ǫn(u)‖ to the location of the new operating
point, the concepts of affine subspaces and distance between complement affine
subspaces will be used (see Appendix A for a brief review of these concepts).

The largest possible value of ‖ǫn(u)‖, noted En(u), is computed in the next
proposition.

Proposition 2 Given the nu most recent operating points uk, . . . , uk−nu+1

and the interval δ for the noisy function ψ̃(·), one has:

‖ǫn(u)‖ ≤ En(u) :=
δ

lmin(u)
, (24)

where lmin(u) is the shortest distance between all possible pairs of complement
affine subspaces that can be generated from S = {u,uk, . . . ,uk−nu+1} (see
Appendix A for how to calculate lmin(u)).

Sketch of the proof. The proof proceeds in two parts: (i) the largest error
occurs when the error v is either δ/2 for some of the operating points and
−δ/2 for the other points, with each set of points defining an affine subspace,
and (ii) the error vector ǫn(u) is normal to both affine subspaces, which results
in the largest possible error norm given by (24). See [11] for details. 2

Remark 3 In order to evaluate lmin(u), it is necessary to evaluate all the
distances between complement affine subspaces. Let us consider the distance
between the new operating point u and the hyperplane generated by the most
recent operating points. In this case, we have SA := {uk,uk−1, . . . ,uk−nu+1}
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and SC := {u}. The matrix U ∈ IR
(nu−1)×nu defined in (A.4) is given by:

Uk := [ uk − uk−1 uk − uk−2 . . . uk − uk−nu+1 ]T.

Denoting by nk the vector normal to the hyperplane generated by the most
recent operating points, we have that Uknk = 0 and, from (A.1) and (A.5),
the hyperplane is given by nT

ku = bk, with bk = nkuk

‖nk‖ . Notice that, since Uk does
not depend on u, the direction of nk is independent of u. This is not the case
for the normal directions between all the other complement affine subspaces,
which depend on the position of u.

3.4 Upper Bound on Gradient Error

The estimated gradient (13) requires the matrix U(u) to be non-singular. In
dual ISOPE algorithms [5, 6], good conditioning is achieved by introducing a
lower bound on the inverse condition number of U(u):

κ−1(u) :=
σ(U(u))

σ(U(u))
≥ ϕ, (25)

where κ(u) is the condition number of U(u), with σ and σ denoting the maxi-
mum and minimum singular values, respectively. This bound ensures that the
new operating point does not introduce large errors in the gradient estimates
due to ill-conditioning of U(u). However, the bound is not directly related to
the errors resulting from truncation and measurement noise.

In this section, a consistent, although possibly conservative, upper bound on
the gradient error norm is introduced. Let EU denote the desired upper bound
on the gradient error norm:

‖ǫ(u)‖ ≤ EU . (26)

The following theorem provides a sufficient condition for the location of u so
as to satisfy (26) given the nu past operating points uk, . . . ,uk−nu+1.

Theorem 1 For given values of δ, d2 and EU , the gradient error norm ‖ǫ(u)‖
does not exceed the desired upper bound EU if u is chosen so that

E(u) := E t(u) + En(u) ≤ EU , (27)

with E t(u) and En(u) given by (20) and (24), respectively.

Proof. It follows from (16), (19) and (24) that:

‖ǫ(u)‖ ≤ ‖ǫt(u)‖ + ‖ǫn(u)‖ ≤ E(u). (28)
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The proof follows from inequalities (28) and (27). 2

Note that, for given values of δ and d2, there is a minimal value that E(u)
can take. Hence, EU should be selected larger than this minimal value for the
constraint (27) to be feasible.

The following remark considers the feasible regions generated by En(u).

Remark 4 If ψ(u) is linear, σmax = 0 (there is no truncation error), and
(27) reduces to δ/lmin(u) ≤ EU. Equivalently, the following lower bound lLmin

can be defined for lmin(u):

lLmin :=
δ

EU
≤ lmin(u). (29)

The constraint (29) can be also seen as the combination of the nb constraints
lLmin ≤ li(u), for i = 1, . . . , nb, where nb is the number of complement affine
subspaces. Let us consider the distance between u and the hyperplane nT

ku = bk.
If ǫnT(u−uk) > 0, the constraint (29) corresponding to this pair of complement
affine subspaces gives

lLmin ≤ ǫnT

‖ǫn‖(u− uk) =
nT

k

‖nk‖
(u − uk),

which can be written as

nT

ku ≥ bk + lLmin‖nk‖. (30)

On the other hand, if ǫnT(u − uk) < 0, we obtain

nT

ku ≤ bk − lLmin‖nk‖. (31)

Hence, this point-to-hyperplane constraint generates two feasible regions, one
on each side of the hyperplane nT

ku = bk. For all other complement affine
subspaces, the direction of a vector that is normal to both affine subspaces will
vary with the position of u.

Example 1 For the purpose of illustration, consider the two-input case (nu =
2) with δ = 0.2 and EU = 0.5. Figure 3 uses the most recent operating points
uk = [0 − 0.5]T and uk−1 = [0 0.5]T. The constraints (29), which can be
evaluated in terms of the position of the new operating point u = [u1 u2]

T,
consist of three point-to-line distances. For the case of the distance between
u and the line generated by uk and uk−1, denoted l1 in this example, the
feasible regions generated by (30) and (31) are given in Figure 3a. The feasible
regions corresponding to the two remaining point-to-line distances are shown in
Figures 3b and 3c. The combination of these constraints is given in Figure 3d.
It is seen that (29) generates two convex feasible regions, one on each side of
the hyperplane nT

ku = bk.
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Fig. 3. Evaluation of the feasible regions given by constraint (29) in Example 1, as
combination of the constraints lLmin ≤ li(u). Shaded area: feasible regions; Plot a:
feasible regions given by the lower bound on the distance between u = [u1 u2]

T

and the line generated by uk and uk−1 (lLmin ≤ l1(u)); Plot b: feasible regions given
by the lower bound on the distance between uk−1 and the line generated by u and
uk (lLmin ≤ l2(u)); Plot c: feasible regions given by the lower bound on the distance
between uk and the line generated by u and uk−1 (lLmin ≤ l3(u)); Plot d: feasible
regions given by constraint (29) (lLmin ≤ lmin(u)).

Example 2 Consider the two-input case (nu = 2) with δ = 0.2 and σmax = 2.
Figures 4a, 4c and 4e on the left side use the most recent operating points
uk = [0 − 0.5]T and uk−1 = [0 0.5]T, while figures 4b, 4d and 4f on the right
side, use the operating points uk = [0 − 0.1]T and uk−1 = [0 0.1]T that are
closer to each other. The upper bounds E t(u) and En(u) are evaluated in terms
of the position of the new operating point u = [u1 u2]

T. Figures 4a and 4b show
the contours of E t(u), whereas the contours of En(u) are shown in Figures 4c
and 4d, and the contours of E(u) are shown in Figures 4e and 4f. It is seen that
both E t(u) and En(u) increase as U(u) becomes more ill-conditioned (u aligned
with uk and uk−1). Moreover, the two regions generated by the constraint (27)
may become nonconvex depending on the distance between the past operating
points.

12



2

2

2

2

2

2

2

2

22
2

3 3

3

3
3

3

3

3

3
3

3
6 6

6 6
6

6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

a. E t(u)

u1

u
2

1

1

1

1 1

1

2

2

2

2

2

2

2

2

2

2

2

3 3

3

3

3 3

3
3

3

3

3

3

6

6

6

6

6

6

6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

b. E t(u)

u1

u
2

0.5

0.5

0.
5

0.
5

0.
5

0.5

1

1

1

1

1
1

2
2

2

2

2
2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

c. En(u)

u1

u
2

1.
5

1.
5

1.5

1.
5

1.
5

1.5

2

2

2

2

2

2

4

4

4

4

4

4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

d. En(u)

u1

u
2

22

2 2

2

2

2

2

3

3

3

3
3

3

3

3

3

3

6
6

6 6

6
6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

e. E(u)

u1

u
2

2

22

2 3

3

3

3

33

3

3

3

3

6

6

6

6

6

6

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1.5

−1

−0.5

0

0.5

1

1.5

f. E(u)

u1

u
2

Fig. 4. Contour maps of an upper bound on the gradient error due to truncation
(a,b), measurement noise (c,d), and both (e,f) for two cases of most recent points
(more distant on the left, and closer on the right).

Convexification of the Gradient Error Constraint. If the optimiza-
tion problem (4) is convex, addition of the nonconvex constraint (27) would
open the possibility of multiple local solutions. Hence, we introduce a tight
relaxation that makes this constraint convex.

Since the worst-case measurement error δ/lmin(u) is convex on each side of the
hyperplane nT

ku = bk (see Example 1), it is clear that the non-convexity of the
regions generated by the constraint (27) is due to the part of the hyperspheres
that crosses the hyperplane nT

ku = bk. The distance (positive or negative)
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Fig. 5. Convex regions (in bold) corresponding to the constraint E(u) ≤ 2.

from the center point uc(u) to the hyperplane nT

ku = bk is given by:

lC(u) =
bk − nT

kuc(u)

‖nk‖
. (32)

Given the nu operating points uk,uk−1, . . . ,uk−nu+1, the point um,k can be
obtained by projecting the center point uc(u) on the hyperplane nT

ku = bk:

um,k = uc(u) +
lC(u)

‖nk‖
nk. (33)

It can be verified that um,k is independent of u (see the location of um,k in
Figure 2 in the two-input case). For a given upper bound EU, it is possible to
define convex feasibility regions by adding constraints that express the distance
between the new point and the hyperplane. This way, the non-convex part of
the regions generated by (27) is eliminated, as illustrated in Figure 5. The
minimal point-to-hyperplane distance ρk can be determined numerically by
finding the smallest absolute value solution to the following equation

E
(

um,k +
ρk

‖nk‖
nk

)

= EU.

4 Dual Modifier Adaptation for Unconstrained Optimization

In unconstrained optimization problems, only the cost gradient needs to be
estimated at each iteration. The function ψ(u) introduced in (10) is therefore
the plant cost itself, i.e. ψ(u) = Φp(u). In the presence of noisy measurements,
an estimate ψ̃(u) of the cost is obtained as:

ψ̃(u) = φ(u,yp(u) + ν) = Φp(u) + v, (34)

14



where ν is the output measurement noise vector, and v represents the resulting
noise in the cost function. Notice that v generally has a nonzero mean when
the function φ(u,y) is nonlinear in y, even in the case that ν itself has zero
mean.

4.1 Loss in Cost due to Cost Gradient Error

The ability to bound the gradient error is not important per se but as a means
to limit the loss in performance. In this section, a local analysis of the effect of
the gradient error in terms of performance is carried out. This analysis assumes
that the optimum uk+1 of the modified optimization problem is located in the
neighborhood of the plant optimum u⋆p, which is assumed to be a strict local
minimum. The loss in cost at the operating point uk+1 is given by:

∆Φp(uk+1) := Φp(uk+1) − Φp(u
⋆
p). (35)

With ∂Φp

∂u
(u⋆p) = 0, the Taylor expansion of ∆Φp(uk+1) around u⋆p gives:

∆Φp(uk+1) =
1

2
(uk+1 − u⋆p)

T
∂2Φp

∂u2
(u⋆p)(uk+1 − u⋆p) +O

(

‖uk+1 − u⋆p‖3
)

(36)

The error between the predicted and plant cost gradients is given by:

ǫΦ
m(uk+1)

T :=
∂Φm

∂u
(uk+1) −

∂Φp

∂u
(uk+1), (37)

In this equation, ∂Φm

∂u
(uk+1) = 0 because uk+1 is an optimum of the model-

based optimization problem. On the other hand, ∂Φp

∂u
(uk+1) can be written

using Taylor expansion around u⋆p to give:

ǫΦ
m(uk+1)

T = −(uk+1 − u⋆p)
T
∂2Φp

∂u2
(u⋆p) +O

(

‖uk+1 − u⋆p‖2
)

. (38)

Combining (36) and (38) gives:

∆Φp(uk+1) =
1

2
ǫΦ
m(uk+1)

T

[

∂2Φp

∂u2
(u⋆p)

]−1

ǫΦ
m(uk+1) +O

(

‖uk+1 − u⋆p‖3
)

, (39)

which establishes the local relation between the predicted cost gradient er-
ror ǫΦ

m(uk+1) and the loss in cost ∆Φp(uk+1) in unconstrained optimization
problems.
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4.2 Dual Modifier-Adaptation Algorithm

The dual modifier-adaptation scheme proposed in this section uses the upper
bound on the gradient error defined in Section 3 as a constraint in the op-
timization problem. On each side of the hyperplane generated by the most
recent operating points, nT

ku = bk, a modified optimization problem is solved.
The optimization problem corresponding to the half space nT

ku ≥ bk reads:

u+
k+1 = arg min

u
Φm(u) = Φ(u) + λΦ

k

T

u (40)

s.t. E(u) ≤ EU

nT

ku ≥ bk + ρk‖nk‖,

and for the half space nT

ku ≤ bk:

u−
k+1 = arg min

u
Φm(u) = Φ(u) + λΦ

k

T

u (41)

s.t. E(u) ≤ EU

nT

ku ≤ bk − ρk‖nk‖.

The modifiers λΦ
k are adapted according to (8). The next operating point is

chosen as the value of {u+
k+1,u

−
k+1} that minimizes the modified cost function

Φm(u).

Initialization. In order to initialize the dual modifier-adaptation scheme,
it is necessary to have (nu + 1) operating points satisfying the constraint
E(u) ≤ EU so as to to compute a first estimate of the gradient and evaluate the
gradient modifiers. One possibility is to generate the initial (nu+1) operating
points by considering deviations from the initial point along the Cartesian
axes, as in the FFD scheme (9). This technique proposed for the dual ISOPE
algorithm [5, 6] is retained here. Notice that an optimized initial phase has
also been suggested for the dual ISOPE algorithm [6].

5 Dual Modifier Adaptation for Constrained Optimization

In constrained optimization problems, the modifier-adaptation approach re-
quires an estimate of the cost and constraint gradients at each iteration. In
order to implement dual modifier adaptation with a bound on the gradient
error norm, one has to decide which gradient error to consider. The cost and
constraint functions are evaluated from noisy measurements with different
noise levels; furthermore, the curvature of all these functions also differ. Im-
plementation of the upper bound on the gradient error norm introduced in
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Section 3.4 requires the selection of the parameters δ and σmax corresponding
to the function of interest ψ(u) in (10). In the case of an unconstrained opti-
mization problem, this function was selected as the cost function. In the case
of constrained optimization problems, either one of two possible strategies can
be considered:

5.1 Two Strategies

Strategy 1. Determine values of δ and σmax for the cost function and each
of the constraints individually, and select the largest values of δ and σmax. This
strategy guarantees that the upper bound on the gradient error given by E(u)
is valid for the cost function and for each constraint individually. However, it
introduces extra conservatism, leading to the implementation of smaller than
necessary regions for positioning the new operating point.

Strategy 2. Select the function ψ(u) as a linear combination of the cost
and constraint functions:

ψ̃(u) = φ(u,yp(u) + ν) + cTg(u,yp(u) + ν)

= Φp(u) + cTGp(u) + v. (42)

In particular, one natural choice is to select the weights on the constraint func-
tions in (42) as the Lagrange multipliers, that is, c = µ, in which case, the
function ψ(u) corresponds to the Lagrangian function. Interestingly, since the
Lagrange multipliers associated with inactive constraints are zero, this choice
eliminates from ψ(u) the inactive constraints. It is clear that, if a constraint
does not become active in modifier adaptation, the error with which its gra-
dient is estimated will not influence the optimization behavior. However, the
difficulty with such a choice is that the active constraints are not known a
priori. One way around this difficulty is to update the values of c as ck = µk.
Notice that this will modify the noise level v at each RTO iteration, hence,
the values of δ and σmax could also be updated at each RTO step to compute
the upper bound E(u). The difficulty in doing so is that, if δk and σmax,k are
allowed to vary, there is a risk that the constraint (27) becomes infeasible since
the past operating points were placed using different values of δk and σmax,k.
Indeed, infeasibility can occur if the values of δk or σmax,k decrease from one
RTO iteration to the next. Ways to deal with these infeasibilities will be the
subject of future research. If the problem becomes infeasible, it is possible to
either (i) reinitialize the algorithm with a FFD gradient estimation, which
requires generating nu new operating points, or (ii) increase the value of the
upper bound EU.
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5.2 Dual Modifier-Adaptation Algorithm

Once the parameters δ and σmax are selected, the following modified optimiza-
tion problems including constraints are solved on each side of the hyperplane
generated by the nu most recent operating points, nT

ku = bk. The optimization
problem corresponding to the half space nT

ku ≥ bk is:

u+
k+1 = arg min

u
Φm(u) = Φ(u) + λΦ

k

T

u (43)

s.t. Gm(u) = G(u) + εk + λG

k

T

(u− uk) ≤ 0

E(u) ≤ EU

nT

ku ≥ bk + ρk‖nk‖,

whereas, for the other half space, nT

ku ≤ bk,

u−
k+1 = arg min

u
Φm(u) = Φ(u) + λΦ

k

T

u (44)

s.t. Gm(u) = G(u) + εk + λG

k

T

(u− uk) ≤ 0

E(u) ≤ EU

nT

ku ≤ bk − ρk‖nk‖.

The modifiers εk, λG

k and λΦ
k are adapted as in (8). The next operating point

is chosen as the value of {u+
k+1,u

−
k+1} that minimizes the augmented cost

function Φm(u).

It might happen that one of the optimization problems (43) and (44) be in-
feasible. However, if the plant is not subjected to sudden perturbation nor
change in the operating conditions that might drastically shift the constraints,
it will seldom be the case that both problems (43) and (44) become infeasible
simultaneously. Indeed, when facing constraints, adaptation can always re-
turn the same way it came. Therefore, given the most recent operating points
uk,uk−1, . . . ,uk−nu+1, a new operating point uk+1 satisfying E(uk+1) ≤ EU

can always be found as uk+1 = uk−nu
.

Also, since most numerical optimization solvers require a feasible initial guess,
a procedure is required to find a feasible initial guess prior to each optimiza-
tion and deal with infeasibility of the problems (43) and (44). This infeasibility
issue, which is also inherent to the dual ISOPE approach, has not been ad-
dressed in the literature.

In summary, when constraints are included in the optimization problem, two
main issues arise regarding the implementation of dual modifier adaptation
with a bound on the gradient error. The first issue is tied to the strategy used
to select the parameters δ and σmax. The second issue regards the way to deal
with possible infeasibility in optimization problems (43) and (44).
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6 Illustrative Examples

The dual modifier-adaptation approach is now illustrated through two sim-
ulated examples. The first example considers the RTO of the unconstrained
CSTR reactor in the Williams-Otto plant, while the second example is a con-
strained optimization problem.

6.1 Williams-Otto Reactor

6.1.1 Reactor and model

The reactor in the Williams-Otto plant [13], as modified by Roberts [14],
is considered. This reactor example has also been used to illustrate model
adequacy and RTO performance [15, 16]. It consists of an ideal CSTR in
which the following reactions occur:

A+B −→ C k1 = 1.660 × 106e−6666.7/(TR+273.15)

C +B −→ P + E k2 = 7.212 × 108e−8333.3/(TR+273.15)

C + P −→ G k3 = 2.675 × 1012e−11111/(TR+273.15)

where the reactants A and B are fed with the mass flowrates FA and FB,
respectively. The desired products are P and E. C is an intermediate product
and G is an undesired product. The product stream has the mass flowrate
F = FA + FB. Operation is isothermal at the temperature TR. The reactor
mass holdup is 2105 kg.

The objective is to maximize profit, which is expressed as the cost difference
between the products and the reactants:

φ(u,y) = 1143.38XPF + 25.92XEF − 76.23FA − 114.34FB,

where XP and XE represent the concentrations of the products P and E. The
flowrate of reactant A is fixed at 1.8275 kg/s. The flowrate of reactant B and
the reactor temperature are the decision variables, thus u = [FB TR]T.

In this example, the aforementioned reaction scheme corresponds to the simu-
lated reality. However, since it is assumed that the reaction system is not well
understood, the following two reactions are used in the model of the reactor
[15]:

A+ 2B −→ P + E k1 = 2.189 × 108e−8077.6/(TR+273.15)

A+B + P −→ G k2 = 4.310 × 1013e−12438/(TR+273.15).
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The material balance equations for the plant and the approximate model can
be found in [16].

The inputs are scaled using the intervals [3, 6] for FB, and [70, 100] for TR. In
this range, the maximal value of σmax obtained with the scaled inputs is 1030
for the model and 1221 for the (unknown) plant. The simulations are carried
out assuming that the noise v has a Gaussian distribution with standard de-
viation σφ = 0.5. The noise interval δ = 3 is chosen. The exponential filter (8)
is implemented for the cost gradient modifiers with K = 0.5 I2.

6.1.2 Modifier Adaptation using FFD

Modifier adaptation is first applied using the FFD approach, which consists
in perturbing the inputs one at the time from the current operating point
with the fixed step size h. In this two-dimensional case, the shortest distance
between complement affine subspaces for the FFD arrangement is lmin = 1√

2
h.

Hence, from (21) and (24), one can write:

E(h) =

√
2

2
h σmax +

√
2
δ

h
. (45)

The step size that minimizes E(h) is h⋆ =
√

2 δ
σmax

= 0.0763 (scaled value), for

which E(h⋆) = 111.2.

Figure 6a shows an input trajectory. The observed offset with respect to the
plant optimum results mainly from the gradient error due to truncation.

6.1.3 Dual Modifier Adaptation with Bound on Gradient Error

Dual modifier adaptation is now applied with EU = 111.2 (same value as
above). The algorithm is initialized using FFD with h⋆ = 0.0763. Figure 6b
shows a realization of the input trajectory. Compared with modifier adapta-
tion using FFD, significantly fewer iterations are required to approach the
optimum.

Figure 7a shows the evolution of the plant profit and the gradient error norm
for 20 noise realizations. To simulate a process change, the flowrate FA is
increased from 1.8275 kg/s to 2.2 kg/s at iteration 20. Modifier adaptation
tracks the change in plant optimum. It can be seen in the upper plot of Fig-
ure 7a that the neighborhood of the new optimal profit is reached within 6
iterations for all 20 realizations. The lower plot of Figure 7a shows that the
gradient error norm is kept below EU . The observed peak in gradient error
occurring at iterations 21 and 22 is due to the fact that, at these points,
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Fig. 6. Input trajectory with 45 operating points. The dotted lines represent the
contours of the plant cost function. (a) Modifier adaptation using FFD. (b) Dual
modifier adaptation with bound on gradient error.

the computed gradient is inconsistent because it is estimated using operating
points corresponding to different values of FA.

6.1.4 Dual Modifier Adaptation with Bound on Condition Number

For the sake of comparison, dual modifier adaptation is applied with a lower
bound on the inverse condition number of U(u), given by (25), as proposed for
the dual ISOPE approach [5, 6]. The results are shown in Figure 7b. The lower
bound of ϕ = 0.4 gives an adaptation that is similar to that using the gradi-
ent error bound in the first iterations. However, as soon as the neighborhood
of the plant optimum is reached, the distance between the operating points
decreases, and the gradient estimates become much less accurate. Further-
more, the feasible region given by the condition number constraint decreases
proportionally to the distance between points. This appropriately prevents
taking large steps in the wrong direction, but it also appears less suitable for
tracking a changing optimum.

6.2 Constrained Optimization Problem

Consider the following convex optimization problem:

min
u≥0

Φ(u, θ) := (u1 − θ1)
2 + 4(u2 − 2.5)2 (46)

s.t. G := u2
1 + θ2u1 + θ3u2 + θ4 ≤ 0,

comprising two decision variables u = [u1 u2]
T, four model parameters θ =

[θ1 θ2 θ3 θ4]
T, and a single inequality constraint G. The parameter values θ
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Fig. 7. Optimization for 20 noise realizations. A perturbation in the form of a
flowrate change is introduced at iteration 20. (a) Dual modifier adaptation with
bound on gradient error norm. (b) Dual modifier adaptation with bound on the
condition number. Dashed line: Optimal profit for the plant. Dash-dotted line:
EU = 111.2.

for the plant (simulated reality) and the model are reported in Table 1. This
problem has been used to illustrate the modifier-adaptation approach in [3].

Because of measurement noise, both the cost function and the constraint are
assumed to be Gaussian random variables with standard deviations σφ =
σG = 0.02. Hence, the noise v corresponding to the Lagrangian function has

a Gaussian distribution with standard deviation σL =
√

σ2
φ + µ2σ2

G. We select
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Table 1
Values of the uncertain parameters θ in Problem (46) for the plant and the model.

θ1 θ2 θ3 θ4

Plant 3.5 -5 1.6 2.65

Model 2.0 -3 2 -0.75

µ = 4, which is the value of the Lagrange multiplier at the model optimum
(the unknown value of µ at the plant optimum is 1.68). With this choice,
the value of σmax corresponding to the Lagrangian function is 10. The noise
interval δ = 6 σL is chosen. The exponential filter (8) is implemented with
K = 0.8 I5.

Dual modifier adaptation is applied with EU = 5.5. The algorithm is initial-
ized using FFD with h = 0.16, which is obtained as the smallest value solution
to (45) with E(h) = EU . Figure 8 shows a realization of the input trajectory.
The algorithm converges to a region of input space that contains the plant
optimum (point P). To avoid constraint violation due to measurement noise
and perturbation of the inputs, a backoff from the constraint could be imple-
mented.

We observed in the unconstrained example that, in spite of the perturba-
tions around the plant optimum seen in Figure 6b, the profit is not strongly
affected as shown in Figure 7a. On the other hand, in constrained optimiza-
tion problems with active constraints, the perturbations required to estimate
the gradients accurately will always produce movements away from the con-
straints, thereby resulting in a larger performance loss. This can be observed
in Figure 8 upon ”convergence” to a region that contains the plant optimum.

7 Conclusions

This paper has developed a rigorous upper bound on the gradient error norm
that can be used in RTO schemes for positioning the next operating point
with respect to past operation. This constraint takes into account the effect
of truncation errors and measurement noise. The evaluation of the constraint
requires the selection of two parameters corresponding to the function(s) for
which the gradient is being estimated: δ, which is representative of the level
of measurement noise, and σmax, which is an upper bound on the curvature
of ψ(u). The proposed approach is based on error norms and thus is fairly
conservative.

The Williams-Otto reactor example has demonstrated the potential of dual
modifier adaptation, which pays attention to the accuracy with which the gra-
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Fig. 8. Modifier adaptation applied to Problem (46). Dotted lines: contours of the
cost function for the plant; Thick solid line: constraint for the plant; Thin solid line:
contour of the cost function for the model; Thick dash-dotted line: constraint pre-
dicted by the model; Point P: plant optimum; Point M: model optimum.

dients are estimated. In this application, dual modifier adaptation performed
better than modifier adaptation using the FFD approach. Also, the proposed
dual modifier adaptation with a bound on the gradient error produces more
accurate gradient estimates than with simply bounding the condition number
of U(u). In addition, the proposed scheme seems more capable of tracking a
changing optimum. The performance depends on the amount of plant-model
mismatch, the noise level, the curvature of the cost or Lagrangian function,
and the gain matrix K used to filter the modifiers.

The gradients are estimated by numerical approximation using (nu + 1) oper-
ating points. Hence, reasonable gradient estimates can be obtained provided
the frequency of the disturbances affecting the plant is sufficiently low with
respect to the time required for the plant to reach steady state (nu+1) times.
This clearly limits the applicability of this approach, in particular for systems
with a large number of inputs. Finally, the upper bound developed, albeit
comprehensive and consistent, suffers from its complexity. For instance, the
evaluation of the upper bound on the gradient error due to measurement noise
requires the evaluation of a number of distances between complement affine
subspaces, which quickly increases with the number of inputs. Clearly, faster
and more accurate ways of estimating the gradients are desirable, and they
represent the subject of future research. This is critical in order for modi-
fier adaptation to shift from an ad hoc operation improvement strategy to a
rigorous methodology amenable to industrial-scale applications.
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A Affine Subspaces

In a nu-dimensional space, a point is an affine subspace of dimension 0, a
line is an affine subspace of dimension 1, and a plane is an affine subspace of
dimension 2. An affine subspace of dimension (nu−1) is called an hyperplane.

Hyperplane. An hyperplane in nu-dimensional space is given by

n1u1 + n2u2 + · · · + nnu
unu

= b, or: nTu = b (A.1)

and divides the space into two half-spaces: nTu > b, and nTu < b.

Complement affine subspaces. Given a set of (nu+1) points in a nu-dimensional
space, S := {u1, . . . ,unu+1}, a proper subset SA, i.e. SA ( S, of nAu ∈
{1, . . . , nu} points generates an affine subspace of dimension (nAu − 1):

u = u1 + λ1,2
u1 − u2

‖u1 − u2‖
+ · · ·+ λ1,nA

u

u1 − unA
u

‖u1 − unA
u
‖ (A.2)

where the parameters λ1,2, . . . , λ1,nA
u

represent distances from the point u1

in the directions u1 − u2, . . . ,u1 − unA
u
, respectively. The complement subset

SC := S\SA of (nu+1−nAu ) points, generates the complement affine subspace
of dimension (nu − nAu ):

u = unA
u +1 + λnA

u +1,nA
u +2

unA
u +1 − unA

u +2

‖unA
u +1 − unA

u +2‖
+ . . . (A.3)

· · · + λnA
u +1,n+1

unA
u +1 − unu+1

‖unA
u +1 − unu+1‖

Distance between complement affine subspaces.

Definition 1 (Distance between complement affine subspaces). Given a set
of (nu + 1) points in a nu-dimensional space, S := {u1, . . . ,unu+1}, a proper
subset of S, SA ( S of nAu ∈ {1, . . . , nu} points, and its complement SC :=
S\SA of (nu+1−nAu ) points, the distance between complement affine subspaces
is defined as the (orthogonal) distance between the affine subspace of dimension
(nAu−1) generated by all the points in SA, and the affine subspace of dimension
(nu − nAu ) generated by all the points in SC.

The total number of possible pairs of complement affine subspaces that can
be generated from S is nb = 1 +

∑nu−1
s=1 2s.

Definition 2 (Nearest complement affine subspaces). The shortest distance
between complement affine subspaces is given by lmin := min{l1, l2, . . . , lnb

},
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where l1, l2, . . . , lnb
are the distances between all possible pairs of complement

affine subspaces that can be generated from S.

In the 2-dimensional case (nu = 2), the number of distances to evaluate is
nb = 3, which corresponds to the 3 point-to-line distances. In the 3-dimensional
case, there are nb = 7 distances to evaluate, which correspond to 4 point-to-
plane distances, and 3 line-to-line distances.

In order to compute the distance between the complement affine subspaces
(A.2) and (A.3), a vector n that is normal to both subspaces is required:

[ u1 − u2 . . . u1 − unA
u

unA
u +1 − unA

u +2 · · · (A.4)

unA
u +1 − unu+1 ]Tn = 0, or, Un = 0.

The matrix U ∈ IR
(nu−1)×nu is of rank (nu − 1). The vector n can be obtained

by singular-value decomposition of U.

Given a point ua that belongs to the affine subspace (A.2), a point ub that
belongs to the complement affine subspace (A.3), and a vector n that is nor-
mal to both complement affine subspaces, the distance lAC between the two
complement affine subspaces is:

lAC =
|nT(ub − ua)|

‖n‖ (A.5)
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