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ABSTRACT
We introduce a novel case study in which a group of minia-
turized robots screen an environment for undesirable agents,
and destroy them. Because miniaturized robots are usually
endowed with reactive controllers and minimalist sensing
and actuation capabilities, they must collaborate in order to
achieve their task efficiently. In this paper, we show how ag-
gregation can mediate both collective perception and action
while maintaining the scalability of the algorithm. First,
we demonstrate the feasibility of our approach by imple-
menting it on a real group of Alice mobile robots, which are
only two centimeters in size. Then, we use a combination
of both realistic simulations and macroscopic models in or-
der to find optimal parameters that maximize the number of
undesirable cells destroyed while minimizing the impact on
the healthy population. Finally, we discuss the limitations
of these models, both in terms of accuracy, computational
cost, and scalability, and we outline the importance of an
appropriate multi-level modeling methodology to ensure the
relevance and the faithfulness of such models.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence;
I.2.9 [Artificial Intelligence]: Robotics—Autonomous ve-
hicles

General Terms
Algorithms, Performance, Experimentation, Theory

Keywords
Multi-robot systems, distributed problem solving, swarm in-
telligence, multi-level modeling

1. INTRODUCTION
Scientific and technological breakthroughs in the field of

nano- and microengineering have steered the robotics com-
munity towards the realm of extreme miniaturization. Very
small robots can access environments that are beyond the
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reach of typical robotic platforms, with recent case studies
exploring scenarios such as the inspection of the human di-
gestive tube [16] or complicated industrial machinery [2].
Further miniaturization down to the micro- or nanoscale
holds even more exciting promises in a large variety of fields.
However, miniaturization comes at a price: minimalist com-
putational, sensing, actuation, and communication capabil-
ities. These severe restrictions create the need for a collab-
orative approach towards the solving of tasks by leveraging
both collective perception and action.

In this paper, we intend to show how self-organization and
collective decision-making can be exploited to overcome the
intrinsic limitations in terms of sensing and actuation of sim-
plistic agents such as the miniaturized Alice mobile robot [5].
We introduce a case study in which a group of Alice robots
must achieve collaborative screening of an environment in
order to identify and destroy undesirable cells.

One can draw an analogy with different natural systems
that are responsible for identifying and neutralizing patho-
gens in a given environment (e.g., the human immune sys-
tem, or bacteria purifying environmentally polluted regions).
Importantly, this task must be carried out in a reliable man-
ner: the system must attack pathogens while preserving
healthy actors of the environment. Similarly, in our case
study, the environment contains two types of spots (“good”
and “bad”), which differ from each other in an observable
fashion. In Nature, pathogens are generally identified by
reading from chemical receptors located at their surface;
here, since cells are represented by colored spots displayed
by an overhead projector, their distinctive property is light
intensity, which can be perceived using the robots’ onboard
light sensor (see Figure 1(b)). However, light intensity mea-
surements are clouded by both the intrinsic noise of the
photocell, and the lighting variations of the projector, thus
making the identification of the cells’ type unreliable. In
this paper, we show how collective perception and decision-
making enable even simplistic robots to overcome their in-
dividual sensing limitations, and enhance the performance
of the group, i.e., maximizing the destruction rate of “bad”
spots while preserving “good” spots. In particular, we out-
line how a simple and reliable mechanism to share informa-
tion among the robots is needed in order to achieve collective
decision-making.

Aggregation allows us to solve this problem by replacing
the transmission of a message by a physical contact (which
can be thought also as a form of communication). In this
paper, we use local IR beaconing merely as a way of discrimi-
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Figure 1: (a) Picture of an on-going real experiment
with 5 robots and 4 spots. (b) Close-up of an Alice
2002 robot, which has a size of 2cm×2cm×2cm and is
equipped with four infrared sensors for environment
sensing and communication as well as an extension
board with one photocell and two LEDs of different
color (red and green) for tracking purpose.

nating between obstacles and other robots, a mechanism eas-
ily replicated at smaller length scales (e.g., by an electrical
contact or pressure sensor). At the same time, aggregation
is particularly scalable as it can mediated by a broad variety
of interactions, such as capillary or electromagnetic forces,
which are available down to the nanometer scale. In our
case, the destruction of cells is triggered by tracking software
that monitors the system, but in reality, the robots would
need an actual cell-destruction mechanism, which can come
in many forms. It is possible that in many scenarios more
than one robot may be required to successfully destroy a cell,
either because the effect of a single individual’s action is too
small or because the destruction mechanism is too complex
(e.g., chemical reaction involving more than one reactant).
Aggregation allows even minimalist robots to achieve these
tasks in a self-organized manner, without relying on cen-
tralized guidance or complex coordination schemes. Note
that this type of distributed control strategy requires effi-
cient model-based analysis and synthesis methodologies to
be successful; depending solely on intuition and trial-and-
error schemes is not an option, especially from a scalability
standpoint.

However, the complexity exhibited by stochastic aggrega-
tion and self-assembly prevents a single model from probing
the dynamics of the whole system. These difficulties moti-
vate a combination of multiple levels of abstractions, ranging
from realistic physics-based simulations up to macroscopic
models, into a consistent multi-level modeling framework.
On the one hand, one needs microscopic models that are able
to capture low-level details, namely robot direction, shape,
and trajectory. On the other hand, one is interested in mo-
dels that can yield accurate numerical predictions of collec-
tive metrics and investigate, possibly formally, macroscopic
properties such as the size, the type and the proportion of
the resulting aggregates. In this paper, we use a combina-
tion of both realistic simulations and macroscopic models in
order to accomplish these goals. We discuss the limitations
of macroscopic models, and we outline the importance of an
appropriate multi-level modeling methodology to ensure the
relevance and the faithfulness of such models. Finally, we
discuss the scalability of these models with respect to the
number of robots and spots; this feature is essential to the
tractability of systems that involve large numbers of very
small robots.

2. STATE-OF-THE-ART
Aggregation is an efficient mechanism exploited in nature

that allows interactions and information exchange between
individuals, enabling the emergence of complex collective be-
haviors [3] ranging from predator protection [17] to collective
decision-making [5].

In robotics, aggregation has been extensively studied as a
model of animal behaviors [3]. Mixed robot-animal societies
have also proven very useful for studying and controlling
self-organized behavioral patterns mediated by aggregation
in group-living animals [5]. Aggregation also forms the ba-
sis for more complex tasks in distributed robotics, such as
the assembly and the control of modular robots [16] or self-
assembling robots [9, 14]. It has also served as as a bench-
mark for spatial models [6].

Aggregation is the underlying mechanism of a broad va-
riety of distributed robotic systems where long-range com-
munication is unfeasible or where a particular task requires
more than one robot to collaborate in a coordinated man-
ner. For instance, the stick-pulling experiment described
in [12] relies on stochastic aggregation between pairs of ro-
bots, which are unable to achieve the task (i.e., pulling a
stick out of a hole in the ground) alone. The present paper
investigates a variation of this experiment in which the ro-
bots must not only achieve collaborative manipulation, but
also collaborative perception and decision-making.

From a modeling perspective, both aggregation (e.g., [1])
and self-assembly (e.g., [9]) have been extensively studied
using probabilistic models. Deterministic models of aggre-
gation and flocking (which is conceptually similar to aggre-
gation, but involves coordinated motion of the aggregate)
such as [7] as well as graphical models of multi-robot sys-
tems such as [18] are interesting approaches from a system
and control perspective, but do not take explicitly into ac-
count the intrinsic randomness of self-assembly processes.
More recently, a series of works [9, 13, 14] proposed macro-
continuous models of group robotic systems based on the
Chemical Reaction Network (CRN) framework, and sim-
ulated using Gillespie’s exact algorithm (or its optimized
variations) [4]. The present paper discusses in further detail
the importance of proper modeling for distributed robotic
systems; in particular, it outlines the limitations of both
deterministic ODE models and stochastic simulations.

3. MATERIALS AND METHODS

3.1 Case study and algorithm
The case study investigated in this paper involves collec-

tive decision-making in a group of minimalist robots, namely
the Alice mobile robot, which is described in further details
in Section 3.2. The environment is populated with Ns spots
which can be either good or bad and Nr robots whose goal
is to seek and destroy bad spots while preserving the good
ones. Each time a spot is destroyed, it is immediately recre-
ated at another location within the environment. In order
to have a quantitative method of reporting system perfor-
mance, we define a metric functionM in terms of the number
of good and bad spots destroyed:

M(α) =
Dbad

(Dgood)α + 1
(1)

where Dbad is the number of bad spots destroyed, and Dgood

is the number of good spots destroyed. The coefficient α



may be balanced according to the penalty one wishes to
associate with the destruction of a good spot; the higher
the coefficient, the higher the penalty. Hereafter, we always
set α = 2 since we want to emphasize the ability of the group
to discriminate between good and bad spots.

In our current setup, the spots are colored circles of dia-
meter dspot drawn on an arena by an overhead projector;
good spots are green and bad spots are red. The robots
are equipped with a light sensor that can be used to assess
a spot’s type. However, the measure provided by the light
sensor is noisy (see Figure 2(a)); therefore, the robots may
mistakenly trigger the destruction of a good spot. We de-
note pw,good the probability that a robot believes a good
spot to be a bad one (false positive) and pw,bad the prob-
ability that a robot believes a bad spot to be a good one
(false negative). Depending on the distribution of light sen-
sor measurements, these probabilities can be different. Since
we assume the robots to be purely reactive, they form their
belief on the basis of a single measurement and in a purely
deterministic manner, by using a simple decision threshold
whose value is td = (µgood + µbad)/2. We assume that the
robots can always determine whether they are exploring a
spot or not in a perfect manner.

As mentioned earlier, collective decision-making is a way
of overcoming the limitations of the individuals in terms
of sensing. The question is, how can we achieve collective
decision-making without communication? Here, we exploit
aggregation as an implicit communication scheme that al-
lows the robots, uniquely through their physical presence,
to share their estimate of the type of the spot they are in.
When two robots encounter each other in a spot, they form
an aggregate only if both have the same estimate (e.g., this
spot is a bad spot); otherwise they perform obstacle avoid-
ance, and eventually leave the spot. Consequently, no ag-
gregate is formed if the robots have differing estimates.

Therefore, one important parameter of our controller is k,
which denotes the number of aggregated robots required to
trigger the destruction of a spot. For k = 1, there is basically
no collaboration: a single robot can destroy the spot it is
exploring. For k = 2, the spot is destroyed as soon as a robot
aggregates with another robot (Figure 2(b) depicts a typical
experiment with k = 2). For k = 3, an aggregate can remain
in a spot for a while without triggering its destruction, which
therefore introduces a further parameter pleave,aggr, that is,
the probability that a robot leaves the aggregate it is part
of. Note that, while we do not study models for k > 3, these
are relatively easy to derive from the model for k = 3.

The optimal value of k depends on the difficulty of the
task, i.e., the amount of noise characterizing the light sensor
readings as well as their separability. Note that even in
absence of noise, i.e., with pw,good = pw,bad = 0, more than
one robot may be required to trigger the destruction of a
spot (e.g., when individual robots are too small or limited
for carrying out the task on their own).

As mentioned earlier, we assume our robots to be endowed
with a reactive controller (Figure 3), and minimalist capa-
bilities. Namely, nearby robots can detect each other (and
distinguish other robots from obstacles), but they cannot
actually communicate, nor can they carry out complex com-
putation. Also, the robots do not have any reference to a
global coordinate system. The robots explore the environ-
ment by performing a simple random walk with collision
avoidance. After entering a spot, a robot will remain inside
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Figure 2: (a) Histogram of light sensor measure-
ments (1000 values) in good spots (in green, left),
and in bad spots (in red, right). Fitted gaussian
distributions are also shown (continuous lines). The
scenario of low difficulty is based on these data,
with pw,good = 0.0743 and pw,bad = 0.0017. Hereafter,
we also study a scenario of medium difficulty with
pw,good = 0.271 and pw,bad = 0.2224. (b) Sketch of a
typical experiment with 4 spots and 5 robots for
k = 2. Trajectories of the robots are denoted by
black lines. Robot A explored a good spot, made
one wrong decision, but eventually left the spot. Ro-
bot B is exploring a bad spot, waiting for one mate.
Robot C avoided an obstacle while exploring the en-
vironment. Robots D and E encountered each other
in a bad spot, and decided to aggregate; this spot is
therefore about to be destroyed, and re-located at
some other location in the arena.

of it, “bouncing” off of its edges by performing a U-turn.
At each bounce, a robot will decide to leave the spot with
probability pleave,good or pleave,bad, depending on whether
it is exploring a good or bad spot, respectively. When a
robot encounters an obstacle while exploring a spot, it as-
sumes that it is another robot, and stops in order to form an
aggregate. A robot may leave an aggregate with a probabil-
ity pleave,aggr, if it does no longer detect a nearby obstacle,
or if the spot it is in was destroyed.

Since the aim of the group is to destroy bad spots while
preserving good spots, typical values for these probabilities
are pleave,good ≈ 1 and pleave,bad ≈ 0. While this intuition is
optimal in some cases, it may prove suboptimal when collab-
oration is introduced (when k > 1). Table 1 summarizes the
different parameters of the system as well as their default
value.
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Figure 3: Schematic overview of the robots’ con-
troller. Each state has an associated action (in
italic). Some transitions are probabilistic; in this
case, the value of pleave is either pleave,good or pleave,bad
depending on the robot’s estimate.



Table 1: Parameters of the system, their domain
of definition, and their default value (if not stated
otherwise).

Parameter Domain Default value
Nrobots N

∗ 5
Nspots N

∗ 4
k N

∗ Always specified
pleave,good [0, 1] 1.0
pleave,bad [0, 1] 0.0
pleave,agg [0, 1] 0.001 (only for k > 2)
pw,good [0, 1] 0.271 (medium)
pw,bad [0, 1] 0.2224 (medium)

3.2 Experimental Setup
The Alice 2002 mobile robot has a size of 2cm×2cm×2cm,

a differential wheel drive that reaches speed up to 4cm/s,
and four infrared sensors that allow the detection of pas-
sive obstacles at ranges up to 3cm simultaneously with 4bps
bidirectional communication up to 6cm. The testing envi-
ronment is a 50cm square arena. Local infrared commu-
nication allows aggregated robots to exchange some bits of
information, albeit with poor reliability. In this case study,
we assume the robots to be unable to implement an actual
communication protocol; instead, we use local infrared com-
munication merely as a way of discriminating between ob-
stacles and other robots. Furthermore, robots are equipped
with one epoxy-encapsulated photo-sensitive sensor (A 9950
11 photocell, Perkin Elmer, maximal spectral sensitivity at
530 nm) that allows robots to determine if they are inside
of a spot and form an estimate of its type.

Obviously, robots cannot interact physically with spots
that are pictured on the arena by an overhead projector. To
overcome this problem, we employ one overhead camera in
conjunction with SwisTrack, an open-source object tracking
tool targeted to multi-agent systems [11]. In order to obtain
an accurate measure of both the position and the orienta-
tion of the robots, we use markers that consist of two LEDs
of different colors (red and green). Our system constantly
integrates the trajectory of each robot and updates the envi-
ronment accordingly, i.e., it detects aggregates, and modifies
the display by relocating destroyed spots.

We carried out two types of experiments with k = 1
and k = 2; each experiment involved 5 robots and 4 spots,
and was monitored automatically using the system described
above. We repeated each experiment three times; all runs
were performed in darkness, in order to minimize perturba-
tions due to environmental lightning. The main objective of
these experiments was to demonstrate the performance gain
provided by collaboration.

3.3 Realistic simulation
We additionally implement the above experimental setup

and hardware in Webots [15], a realistic simulator that is
able to accurately model the non-linear sensor characteris-
tics of the Alice robot, including noisy response of the sen-
sors as well as wheel slip. Webots is particularly useful be-
cause it allows us to perform fast, automatic data collection
and analysis over various parameter sets. For our system-
atic experiments, we used a computational cluster of 50 ma-
chines, each with an Intel Pentium 4 3.00 GHz and 1GB
RAM. Transitions between experiment states (i.e., changes

in the total number of aggregates of each size) were stored
on disk for later analysis. Our Webots simulations execute
over ten times faster than real time, and system analysis is
much easier as we have access to the internal state of the
robots. Hereafter, we employ Webots simulations as a ref-
erence for evaluating both qualitatively and quantitatively
the faithfulness of our models at higher abstraction levels.

3.4 Macroscopic models
Herefater, we construct a series of macroscopic models

where interactions between robots and spots are modeled
as a Chemical Reaction Network (CRN). A set of reactions
can be represented as a directed graph G = (V,E). The
set of vertices V represents the complexes, i.e., state vari-
ables that denote the number of robots in a given state.
The set of directed edges E represents the reactions between
complexes, i.e., the transition of a robot from one state to
the other. Each reaction can be denoted by an ordered
pair (i, j) ∈ V × V, meaning that one complex i transitions
complex j. Furthermore, each reaction is associated with a
rate constant.

Since we are interested in the ability of aggregation to deal
with the noise in decision-making, we explicitly incorporate
beliefs representation in our model. More specifically, the
state of a robot is not only defined by its internal state,
i.e., whether it is wandering, exploring a spot, or part of an
aggregate, but also whether its internal state is a correct rep-
resentation of the reality. Note that, even though obstacle
avoidance is a state of the robot, it is not explicitly modeled
as such; rather, we assume that a robot seamlessly switch be-
tween wandering and obstacle avoidance states. Hereafter,
we present three models, each corresponding to a different
value of k. Since these models are built in an incremental
fashion, we shall start by describing in details the model
for k = 1, which is the basis for other models where k > 1.

3.4.1 Model for k = 1

In the case of k = 1, a robot can trigger the destruction of
a spot on its own. Therefore, we shall distinguish between
the following state variables:

• Robots searching for spots: Xo

• Robots in spot i with a correct estimate of the type
of i: Xc,i ∀i ∈ S

• Robots in spot i with a wrong estimate of the type
of i: Xw,i ∀i ∈ S

• Number of destructions of spot i: Xd,i ∀i ∈ S

where S denotes the set of spots in the system. Equation 2
provides a complete view of the 6 · |S| reactions of the CRN.

Xo

ec
i

⇋
lc
i
+sc

i

Xc,i, Xo

ew
i

⇋
lw
i
+sw

i

Xw,i,

Xc,i

sc
i−→ Xd,i, Xw,i

sw
i−−→ Xd,i, ∀i ∈ S (2)

where eci and ewi are the rates at which a robot encounters
a spot i and correctly or wrongly identifies its type, respec-
tively. Similarly, lci and lwi is the rate at which a robot leaves
the spot it is exploring and believes to be of a given type,
either correctly or wrongly, respectively, without destroying
it. sci and swi are the same as lci and lwi , except that the
robot destroys the spot in this case.



3.4.2 Model for k = 2

Hereafter, we update the model for k = 1 in order to ac-
count for aggregation-mediated collaboration (k = 2). The
fact that two robots are now needed to trigger the destruc-
tion of a spot has two main implications: (i) robots can
change their belief about the type of the spot they are ex-
ploring at a ratemw

i (from a correct to wrong belief), andmc
i

(from a wrong to a correct belief), and (ii) aggregation intro-
duces non-linear reactions, i.e., reactions that involve more
than one robot, whose rate is ai. Equation 3 provides a
complete view of the CRN.

Xo

ec
i

⇋
lc
i

Xc,i, Xo

ew
i

⇋
lw
i

Xw,i,

Xc,i

mw

i

⇋
mc

i

Xw,i 2Xc,i
ai−→ 2Xo,

2Xw,i
ai−→ 2Xo, Xc,i +Xw,i

2 ai−−→ 2Xo

2Xc,i
ai−→ Xd,i, 2Xw,i

ai−→ Xd,i

Xc,i +Xw,i
2 ai−−→ Xd,i ∀i ∈ S (3)

3.4.3 Model for 3-Agg
If more than two robots are needed to trigger the destruc-

tion of a spot, it means that those robots that are part of a
pair Xa,i may remain idle in spot i, waiting for a third robot
to join up, which is an event that happens at a rate ti. The
robots can also decide to leave the aggregate they are in at
a rate lai .

Xo

ec
i

⇋
lc
i

Xc,i, Xo

ew
i

⇋
lw
i

Xw,i,

Xc,i

mw

i

⇋
mc

i

Xw,i, 2Xc,i
ai−→ Xa,i,

2Xw,i
ai−→ Xa,i, Xc,i +Xw,i

2 ai−−→ Xa,i,

Xc,i +Xa,i
2 ti−−→ 3Xo, Xw,i +Xa,i

2 ti−−→ 3Xo,

Xa,i

la
i−→ 2Xo, Xc,i +Xa,i

2 ti−−→ Xd,i,

Xw,i +Xa,i
2 ti−−→ Xd,i, ∀i ∈ S (4)

3.4.4 Simulation of Chemical Reaction Networks
We shall emphasize that CRNs merely provides a for-

mal, yet detailed, description of the system at the macro-
scopic level; however, in order to yield quantitative predic-
tions, CRNs need to be converted into either (i) macroscopic
(macro-discrete) models, i.e., a continuous-time Markov pro-
cesses whose states represent discrete numbers of robots, or
(ii) macroscopic continuous (macro-continuous) models of
ordinary different equations (ODE) whose state variables re-
present continuous fractions of the robotic population. How-
ever, these two approaches are not equivalent; while one can
perform an exact simulation of macro-discrete models using
Gillespie’s algorithm [4], macro-continuous models of ODEs
rely on an approximation, which we call hereafter the ODE
approximation, that becomes exact if we scale the system
such that the reaction rates become large and the effects of
those reactions small, i.e., the system implies a large number
of small changes. We discuss in further detail the validity of
the ODE approximation in Section 4.2.

In this paper, we use the StochKit toolbox [10] in order to
efficiently perform stochastic simulations of macro-discrete

models. We convert CRNs into macro-continuous models
using the relation ẏ = S · p(y) where S = (sij) is the sto-
ichiometry matrix, with the stoichiometric coefficient sij of
the j-th species in the i-th reaction, and is the propensity
vector p(y), which depends on the reaction rates and the
population of reactants for each reaction. Then, we nu-
merically integrate this system of ODEs using MATLAB’s
ode15s function.

3.5 Rates identification
One of the crucial tasks when constructing macroscopic

models is the identification of the different reaction rate
constants. In our case, some of them are determined by
using geometric approximations; other are measured using
systematic Webots simulations. In order to use geometric
approximations, we assume that our system is well-mixed,
i.e., the probability that a robot is at a given position is in-
dependent of time and uniformly distributed over the arena
space. Therefore, the encountering probability of a robot
and another object (which, in our case, would be either an-
other robot or a spot) is given by

pc ∼
v̂ wd

Atot

(5)

where v̂ is the average velocity of a robot, wd is the diameter
of the object, and Atot is the total area of the region in which
the robot is moving.

As a result, we can write

eci = pc,spot · (1− pw,good)
ewi = pc,spot · pw,good

}
if i is a good spot

eci = pc,spot · (1− pw,bad)
ewi = pc,spot · pw,bad

}
if i is a bad spot

with

pc,spot =
v̂ · dspot
Atot

(6)

where v̂ is the average velocity of a robot, dspot is the dia-
meter of a spot, and Atot is the area of the arena.

Similarly, the encountering rates between robots can be
written

ai = σa

v̂ drobot
Aspot

ti = σt

v̂ 2 drobot
Aspot

(7)

where v̂ is the average velocity of a robot, drobot is the dia-
meter of a robot, Aspot is the area of the spot i, and σi and σt

are two parameters that account for the poor IR coverage of
the Alice robot, which may sometimes prevent aggregation.
We set hereafter σi = 0.6 and σt = 0.5; these values were
measured in systematic Webots simulations.

The identification of the rates mw
i , m

c
i , l

w
i , l

c
i , s

w
i , and sci

is slightly more difficult because they depend on the prob-
ability pb that a robot encounters the border of the spot
while exploring it. Using again a geometric approximation,
we can write

pb =
v̂

dspot/2
=

1

Tt

(8)

where Tt is the average time taken by a robot to traverse a
spot of diameter dspot. Now, we can write

mw
i = pb · (1− pleave,good) · pw,good

mc
i = pb · (1− pleave,bad) · (1− pw,good)



lwi = pb · pleave,bad swi = pb · (1− pleave,bad)

lci = pb · pleave,good sci = pb · (1− pleave,good)

where i denotes a good spot.
If i denotes a bad spot, pleave,good, pleave,bad, and pw,good

must be changed to pleave,bad, pleave,good, and pw,bad, respec-
tively.

4. RESULTS AND DISCUSSION

4.1 Experiments with real robots
We present hereafter a series of experiments with real Al-

ice robots in order to demonstrate the feasibility of our ap-
proach. Given the intrinsically stochastic nature of the in-
vestigated processes, a large number of runs is required in or-
der to obtain statistically relevant data, which results in ex-
tremely time-consuming experiments if real robots are used.
We provide experimental results (see Table 2) that suggest
the relevance of collective perception and action as a mech-
anism for coping with unreliable sensing at the individual
level. In spite of the high variability of the results obtained
with real robots (> 100% of variability on the performance
metric), collaboration seems to provide a non-negligible per-
formance gain (as defined in Equation 1), up to two orders
of magnitude in these particular experiments.

Furthermore, experiments with real robots provide cru-
cial insights into the dynamics of the system, and features
that one should account for in models at higher abstrac-
tion level. In particular, we observe that real robots tend
to “loose” track of the spot they are exploring; because of
noisy locomotion (due to both unreliable motors and wheel
slip), robots do not perform exact U-turns, which can lead
them to exit a spot involuntarily. Similarly, real robots tend
to spend slightly more time around obstacles and walls than
in the rest of the arena due to obstacle avoidance. While
these effects are captured in realistic simulations, which ac-
count for spatiality, friction, and sensor and actuator noise,
macroscopic models assume perfect mixing and uniform dis-
tribution of the robots throughout the environment.

4.2 Validation of macroscopic models
In order to validate our macroscopic models, we use realis-

tic simulations (Webots) as a baseline. Figures 4(a) and 4(b)
compare the predictions of both stochastic simulations (500
runs) and deterministic ODE model with those of Webots
simulations (50 runs) with Nr = 5 and Ns = 4. Global,
qualitative trends of all metrics are correctly captured by
both models. Note that quantitative discrepancies in the
performance metric are mainly due to the squared term of
Equation 1. Also, macroscopic models do not account for
a few effects observed in experiments with real robots, and
captured by realistic simulations (see Section 4.1).

Experimental time, on the other hand, is greatly reduced
as the level of abstraction increases. Stochastic simulations
are four orders of magnitude faster than realistic simula-
tions, which are in turn one order of magnitude faster than
real time; ODE are roughly as fast as stochastic simulations
(for a single run), but the former do not require multiple runs
since they are solved using deterministic methods. These
statistics are valid for small systems such as those investi-
gated here; we discuss in further details the scalability of
macroscopic models in Section 4.3.

The limits of the ODE approximation.
One observation from Figure 4(b) is that the ODE mo-

del is somewhat inaccurate for k > 1, due to (i) the small
number of robots and spots involved in the system, and
(ii) the compartmentation caused by spots, which act like
vesicles in cell biology, i.e., they form weakly dependent
subsystems characterized by even smaller numbers of ro-
bots, and whose reactions are usually very slow, and effect
very large. The latter cause is arguably the most impor-
tant one, and is also found in biology as a strong limita-
tion of the use of macro-continuous models. In particular,
the strong irregularity in the landscape of spot destructions
around pleave,good = pleave,bad = 0 for k = 3 is not cap-
tured at all by the ODE model (Figure 4(b)), because it
does not account for the situation where all robots are ei-
ther aggregated or exploring different spots, thus leading
to deadlocks. This result is similar to that obtained in the
stick-pulling experiment [12], which involved, however, a de-
terministic timeout for controlling the waiting time rather
than a leaving probability.

This type of situation is even better illustrated in scenarios
where the robots have a perfect estimate of the type of the
spots and the spots outnumber the robots (Figure 5). In
this case, since there is no “intrinsic” randomness due to the
noise, a robot with pleave,bad = 0 may explore indefinitely
a spot, waiting for a mate. If there are more spots than
robots, the situation where each robot is waiting for another
one in a different spot may arise, thus leading to a deadlock.
As a result, the optimum shifts towards non-zero leaving
probabilities as the ratio of spots to robots increases. This
situation is not captured at all by the ODE model, which
does not predicts any significant variation of the optimum.

In practice, however, the robots may involuntarily leave
the spot they are exploring, essentially preventing leaving
probabilities from being below a certain threshold, regard-
less of the actual value of pleave,good and pleave,bad. As a
result, the drop in performance predicted by stochastic sim-
ulations for very small leaving probabilities in the case high
ratios of spots to robots is not observed in Webots simula-
tions. However, the ODE model does not account for any
drop in performance whatsoever; even worse, it predicts a
slight increase of the performance as the number of spots
increase. This finding emphasizes the importance of multi-
level modeling when studying distributed systems; abstrac-
tions that seem correct a priori may actually be revealed to
be error-prone. In our particular case, neglecting the effect
of robots that“lose”track of the spot they are exploring leads
to inaccuracies at the macroscopic level when leaving prob-
abilities become very small. More importantly, the small
number of robots and spots in the system as well as the
compartmentation effect caused by spots render the ODE
approximation invalid, and predictions of macro-continuous
models very inaccurate, in particular when the ratio of spots
to robots increases.

4.3 Scalability
Hereafter, we discuss the scalability of our models, i.e., their

ability to capture the dynamics of systems that involve grow-
ing numbers of robots and spots while preserving affordable
requirements in terms of memory and computation. We
believe that, in the future, this problem will be crucial to
the design and the control of massively distributed systems,
composed of a multitude of ultra-small robots.



Table 2: Summarized results of two experiments (with and without collaboration) using 5 real Alice robots
and 4 spots (2 of each kind). Destruction rates are given in number of spots destroyed per minute. The
performance of the swarm (Equation 1) is two orders of magnitude higher when collaboration is introduced.

Destruction rate
Without collaboration (k = 1) With collaboration (k = 2)
Bad spots Good spots Bad spots Good spots

Run 1 4.93 3.85 0.68 0.09
Run 2 5.28 2.68 0.55 0.00
Run 3 5.12 2.95 1.56 0.20

Performance Without collaboration (k = 1) With collaboration (k = 2)
Run 1 2.9 · 10−2 2.8
Run 2 7.0 · 10−2 9.0
Run 3 5.8 · 10−2 1.76
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Figure 4: Predictions of Webots simulations (top), stochastic simulations (middle), and ODE models (bottom)
for (a) k = 2, and (b) k = 3. For k = 2, the qualitative trends of the performance metric are correctly captured.
The number of spot destructions are correctly predicted by both macroscopic models, even though ODE
models tend to overestimate it for pleave,good = 0. For k = 3, while both models exhibit excellent qualitative
agreement, stochastic simulations yield much better quantitative predictions than ODE models, which not
only overestimate the number of spot destructions, but are also unable to capture some of the irregularities
that appear in the landscape of spot destructions, especially around pleave,good = pleave,bad = 0.
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Figure 5: Predicted performance of the group
with k = 2 for Nspots = 4 (left), and Nspots = 10
(right), and a constant number of robots Nrobots = 5
that have a perfect estimate of the type of the spots.
Stochastic simulations and the ODE model are con-
sistent with Webots simulations when there are less
spots than robots, but their predictions diverge for
Nspots = 10.

Realistic simulations become rapidly intractable as the
number of robots increases (as a rule of thumb, simulations
with more than 50 robots become prohibitively expensive
in terms of computational resources). At a slightly higher
abstraction level, microscopic simulations (e.g., agent-based
models) may represent a potential solution for intermediate
group sizes, but they remain heavily memory and computa-
tion intensive.

Therefore, macroscopic models seem the most suitable
tools to study massively distributed robotic systems. In our
case, the number of reactions in the CRN is proportional to
the number of spots Ns in the system, which therefore slows
down both stochastic simulations and ODE models. Our
experiments showed that simulation times scale in O(N3

s )
for ODE models, and in O(eNs) for stochastic simulations.
In terms of memory usage, ODE models also scale up much
better than stochastic simulations. Stochastic simulations
used 8GB of RAM for Ns = 2000 and Nr = 4000 whereas



our ODE models only required 1GB for the same parame-
ters. Finally, the accuracy of our ODE models is expected
to increase as the number of robots Nr, and therefore the
number of events, increases; indeed, we measured a 4-fold
decrease of the mean square error of ODE models with re-
spect to stochastic simulations by increasing Ns from 10 to
200 and Nr from 20 to 400. These findings motivate the
use of ODE models for the study of very large distributed
systems, or the use of hybrid approaches that preserve the
stochastic behavior of the CRN, yet enable scalability [8].

5. CONCLUSION
In this paper, we presented a novel case study concerned

with the screening of an environment by a group of minia-
turized robots, whose goal is to seek and destroy bad spots
while leaving good spots untouched. We proposed an algo-
rithm that relies on collective perception and action in order
to achieve this task with purely reactive robots. We demon-
strated the feasibility of this approach by implementing it
on a real group of Alice mobile robots. Building up models
at different abstraction levels, starting with realistic simula-
tions up to macroscopic models based on the Chemical Re-
action Network (CRN) framework, we performed systematic
searches of the parameter space that demonstrated the exis-
tence of optimal control parameters. An important finding
of our research is that even simplistic robots endowed with
very poor sensing capabilities can achieve a good perfor-
mance in this type of case study by relying on collaboration.

Another very important conclusion of our work is the rele-
vance of multi-level modeling for optimizing both the design
and the control of distributed robotic systems, especially in
the case of self-organized strategies such as the one employed
in this paper. Indeed, on the one hand, realistic simulations
are very useful tools in robotics, but they are prohibitively
expensive for performing fine-grained systematic searches,
or for investigating the dynamics of systems that involve a
large number of robots. On the other hand, macroscopic
models can be extremely fast, but their underlying abstrac-
tions (e.g., spatiality, ODE approximation) can sometimes
lead to intolerable inaccuracies, if not validated properly.
Multi-level modeling allows fulfillment of both requirements
in a very efficient way by building up models at further ab-
straction levels in order to capture the relevant features of
the system.
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