
J Sign Process Syst
DOI 10.1007/s11265-009-0397-5

Synthesizing Hardware from Dataflow Programs
An MPEG-4 Simple Profile Decoder Case Study

Jörn W. Janneck · Ian D. Miller · David B. Parlour ·
Ghislain Roquier · Matthieu Wipliez · Mickaël Raulet

Received: 23 January 2009 / Revised: 7 June 2009 / Accepted: 18 June 2009
© 2009 Springer Science + Business Media, LLC. Manufactured in The United States

Abstract The MPEG Reconfigurable Video Coding
working group is developing a new library-based pro-
cess for building the reference codecs of future MPEG
standards, which is based on dataflow and uses an actor
language called Cal. The paper presents a code genera-
tor producing RTL targeting FPGAs for Cal, outlines
its structure, and demonstrates its performance on an
MPEG-4 Simple Profile decoder. The resulting imple-
mentation is smaller and faster than a comparable RTL
reference design, and the second half of the paper
discusses some of the reasons for this counter-intuitive
result.

Keywords Dataflow · Cal · Reconfigurable Video
Coding · MPEG · High-level synthesis

J. W. Janneck
Xilinx Inc., San Jose, CA 95124, USA
e-mail: jorn.janneck@xilinx.com

I. D. Miller
siXis Inc, Research Triangle Park, NC 27709, USA
e-mail: imiller@sixisinc.com

D. B. Parlour
Tabula Inc., Santa Clara, CA 95054, USA
e-mail: dparlour@tabula.com

G. Roquier
EPFL, 1015 Lausanne, Switzerland
e-mail: Ghislain.Roquier@epfl.ch

M. Wipliez · M. Raulet (B)
IETR/INSA. UMR CNRS 6164, 35043 Rennes, France
e-mail: mickael.raulet@insa-rennes.fr

1 Introduction

The growing complexity of video codecs has made it
more difficult to accompany video standards with reli-
able reference implementations built from scratch. For
this reason, MPEG has decided to explore a library-
based approach in which a modular library of video
coding modules defines the basic capabilities of a stan-
dard. Rather than building an independent new library,
future standards will incrementally extend the existing
code base with new functionality simply by adding new
modules to the library. MPEG’s Reconfigurable Video
Coding (RVC) effort [1] is in the process of construct-
ing and standardizing this library [2]. The reader can
refer to [1] for further information about the RVC
motivations.

In addition to the library itself, RVC is also con-
cerned with the language for describing individual mod-
ules, and the way in which they are composed into
working decoders. Adopting dataflow as the fundamen-
tal design methodology, they have decided to use the
Cal actor language [3] for building the modules, which
are composed using an XML format called FNL [4]
(FU Network Language formerly DDL [5, 6]).

The use of dataflow as a specification language for
video codecs opens interesting new opportunities. In
the past, the reference code was at best a starting point
for actual implementations. Especially hardware imple-
mentations could not directly be derived from the
sequential software that served as an executable refer-
ence. Dataflow programs, on the other hand, are nat-
urally concurrent, and a much better starting point for
a range of efficient implementations, from sequential
software, to multi-core architectures, to programmable
hardware to ASICs.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147956413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J Sign Process Syst

This paper presents a tool that translates dataflow
programs written in Cal into RTL descriptions suit-
able for implementation in programmable hardware,
and its application to the construction of an MPEG-4
Simple Profile decoder. After reviewing the dataflow
programming model and some basic properties of the
Cal actor language in Section 2 and the tools support-
ing MPEG’s RVC effort in Section 3, we present the
MPEG-4 decoder design and its translation to hard-
ware in Section 4, explaining the various stages in the
translation process. The quality of the resulting decoder
implementation turns out to be better than that of a
VHDL reference design, and Section 5 discusses how
some aspects of the dataflow design process contribute
to this surprising result. Finally, Section 6 closes with a
discussion of the work and some conclusions.

2 Dataflow and CAL

The dataflow programming model presented in this
paper composes systems from computational kernels
called actors by connecting them using lossless directed
FIFO channels. Through these channels they send each
other packets of data, called tokens. Depending on the
implementation platform, the FIFOs may be bounded
or unbounded, and size constraints may or may not
apply to individual tokens. Our model is a slight gener-
alization of the one presented in [7], permitting actors
that are non-deterministic and not prefix-monotonic.

Actors themselves are written in the Cal actor lan-
guage [3]. A detailed discussion of Cal is beyond the
scope of this paper, but for our purposes it is sufficient
to say that it provides the syntactical constructs to
specify the essential pieces of an actor, viz. its input
ports and output ports, a definition of the variables
containing its internal state, and a number of transition
rules called actions. Each actor executes by making
discrete, atomic steps or transitions. In each step, it picks
exactly one action from its set of actions (according to
the conditions associated with that action), and then
executes it, which consists of a combination of the
following things:

1. consume input tokens,
2. produce output tokens,
3. modify the state of the actor.

The state of an actor is strictly local, i.e. it is not visible
to any other actor. The absence of shared state is what
allows the actors in a system to execute their actions
without being concerned about race conditions on their
state.

Actors are similar to objects in object-oriented pro-
gramming in the sense that they encapsulate some state
and associate it with the code manipulating it (the
actions). They differ from objects in that actors cannot
call each other—there is no transfer of control from one
actor to another, each actor can be thought of as its own
independent thread.

3 Dataflow Tools for RVC

3.1 Simulator

Cal is supported by a portable interpreter infrastruc-
ture that can simulate a hierarchical network of actors.
This interpreter was first used in the Moses1 project.
Moses features a graphical network editor, and allows
the user to monitor actor execution (actor state and
token values). This project is no longer maintained
and has been superseded by the Open Dataflow envi-
ronment (OpenDF2 for short). Unlike Moses OpenDF
does not provide a graphical network editor. Networks
have been traditionally described in a textual language
called Network Language (NL), which can be automati-
cally converted to FNL and vice versa. It is also possible
to use the Graphiti editor3 to display networks in the
FNL format.

3.2 Hardware Synthesis

The work presented here is an available tool that
converts Cal to HDL. After parsing, Cal actors are
instantiated with the actual values for their formal
parameters. The result is an XML representation of
the actor which is then precompiled (transformation
and analysis steps, including constant propagation, type
inference and type checking, analysis of data flow
through variables...), represented as a sequential pro-
gram in static single assignment (SSA) form (making
explicit the data dependencies between parts of the
program).

Then follows the synthesis stage, which turns the
SSA threads into a web of circuits built from a set of
basic operators (arithmetic, logic, flow control, memory
accesses and the like). The synthesis stage can also be
given directives driving the unrolling of loops, or the
insertion of registers to improve the maximal clock rate
of the generated circuit.

1http://www.tik.ee.ethz.ch/∼moses/
2http://opendf.net/
3http://sourceforge.net/projects/graphiti-editor

http://www.tik.ee.ethz.ch/~moses/
http://opendf.net/
http://sourceforge.net/projects/graphiti-editor

J Sign Process Syst

The final result is a Verilog file containing the circuit
implementing the actor, and exposing asynchronous
handshake style interfaces for each of its ports. These
can be connected either back-to-back or using FIFO
buffers into complete systems. The FIFO buffers can
be synchronous or asynchronous, making it easy to
support multi-clock-domain dataflow designs.

3.3 Software Synthesis

It is important to be able to automatically obtain a con-
crete software implementation from a dataflow descrip-
tion. The C language is particularly well-suited as a
target language. The same code can be compiled on
any processor, from embedded DSPs and ARMs to
general-purpose microprocessors, which considerably
eases the task of writing a software synthesis tool. The
interest of having an automatic C software synthesis is
two-fold. The code obtained can be executed, in which
case it enables a considerably faster simulation of the
dataflow program and the ability to debug the pro-
gram using existing IDEs (Visual Studio, Eclipse CDT).
The C code description may be a basis for a tailor-
made decoder. For these reasons, we created the Cal2C
tool [8] that aims at producing functionally-equivalent,
human-readable C code from Cal descriptions.

The Cal2C compilation process has been successfully
applied to the MPEG-4 Simple Profile dataflow pro-
gram written by the MPEG RVC experts (Fig. 1). The
synthesized model is compared to Cal dataflow pro-
gram simulated with the Open Dataflow environ-
ment so as to validate the Cal2C tool. The synthesized
software is faster than the Cal dataflow simulated
(20 frames/s instead of 0.15 frames/s), and close to
real-time for a QCIF format (25 frames/s). It is inter-
esting to note that the model is scalable: the number
of macro-blocks decoded per second remains constant
when dealing with larger image sizes. The use of Cal2C
has identified actors with implementation-dependent
behavior to be corrected.

Figure 1 Top-level view of the MPEG decoder, depicting parser,
AC/DC reconstruction, IDCT, and motion compensation.

4 Synthesizing an MPEG-4 SP Decoder

The MPEG-4 Simple Profile decoder discussed in this
work is a computational engine consuming a stream of
bits on its input (the MPEG bitstream), and produc-
ing video data on its output. At 30 frames of 1080p
per second, this amounts to 30 ∗ 1920 ∗ 1080 = approx.
62.2 million pixels per second. In the common YUV420
format, each pixel requires 1.5 bytes on average, which
means the decoder has to produce approx. 93.3 million
bytes of video data (samples) per second.

Figure 1 shows a top-level view of the dataflow pro-
gram describing the decoder.4 The main functional
blocks include a parser, a reconstruction block, a 2-D
inverse discrete cosine transform (IDCT) block, and a
motion compensator. All of these large functional units
are themselves hierarchical compositions of actors—
the entire decoder comprises of about 60 basic actors.

The parser analyzes the incoming bitstream and ex-
tracts the data from it—such as the bloc type BTYPE,
the motion vectors MV and residual data B to be
reconstructed—that it feeds into the rest of the de-
coder. It is by far the most complex block of the de-
coder, more than a third of the code is used to build
the parser. The reconstruction block performs some
decoding that exploits the correlation of pixels in neigh-
boring blocks. The IDCT, even though it is the locus
of most of the computation performed by the decoder,
is structurally rather regular and straightforward com-
pared to the other main functional components. Finally,
the task of the motion compensator is to selectively
add the blocks issuing from the IDCT to blocks taken
from the previous frame. Consequently, the motion
compensator needs to store the entire previous frame
of video data, which it needs to address into with a
certain degree of random access. This data storage and
movement results in a few interesting design challenges,
some of which are discussed in Section 5.

4.1 Hardware Synthesis

While there is no reason why the standard RVC ref-
erence code could not be translated into hardware, at
present hardware synthesis does require some consid-
eration on the part of the programmer to achieve very
good results. Generally, for a system such as an MPEG
decoder, a designer will strive to keep actions simple
enough so that they can be executed in as few cycles as
possible, often in a single cycle. This means, e.g., that

4The decoder discussed in this paper is publicly available on
http://opendf.net.

http://opendf.net

J Sign Process Syst

performance-critical parts of the system will avoid the
use of loops inside actions. Also, in such cases, pro-
grammers will want to avoid deeply nested expressions,
which will result in either long combinatorial paths
(leading to low clock rates) or they require pipelining,
which introduces additional clock cycles.

When generating hardware implementations from
networks of Cal actors (specified in some format, such
as FNL mentioned above), we currently translate each
actor separately, and connect the resulting RTL de-
scriptions with FIFOs. Consequently, we currently do
not employ any cross-actor optimizations.

Actors interact with FIFOs using a handshake proto-
col, which allows them to sense when a token is avail-
able or when a FIFO is full. We also do not synthesize
any schedule between actors, which means that the
resulting system is entirely self-scheduling based on the
flow of tokens through it.

The translation of each Cal actor into a hardware
description follows a three-step process:

1. instantiation
2. precompilation
3. RTL code generation

This is followed by the synthesis of the network that
connects the actor instances.

Instantiation The elaboration of the network structure
yields a number of actor instances, which are references
to Cal actor descriptions along with actual values for its
formal parameters. From this, instantiation computes a
closed actor description, i.e. one without parameters, by
moving the parameters along with the corresponding
actual values into the actor as local (constant) dec-
larations. It then performs constant propagation on
the result.

Precompilation After some simple actor canonicaliza-
tion, in which several features of the language are
translated into simpler forms, precompilation performs
some basic source code transformations to make the
actor more amenable to hardware implementation,
such as e.g. inlining procedure and function calls. Then
the canonical, closed actors are translated into a collec-
tion of communicating threads.

In the current implementation, an actor with N ac-
tions is translated into N + 1 threads, one for each
action and another one for the action scheduler. The ac-
tion scheduler is the mechanism that determines which
action to fire next, based on the availability of tokens,
the guard expression of each action (if present), the
finite state machine schedule, and action priorities.

To facilitate backend processing for both hardware
and software code generation, the threads are repre-
sented in static single-assignment (SSA) form. They
interact with the environment of the actor through
asynchronous token-based FIFO channels. Their in-
ternal communication happens through synchronous
unbuffered signals (this is, for instance, how the sched-
uler triggers actions to fire, and how actions report
completion), and they also have shared access to the
state variables of the actor.

RTL code generation The next phase of the trans-
lation process generates an RTL implementation (in
Verilog) from a set of threads in SSA form. The first
step simply substitutes operators in expressions for
hardware operators, creates the hardware structures
required to implement the control flow elements (loops,
if-then-else statements), and also generates the appro-
priate muxing/demuxing logic for variable accesses,
including the � elements in the SSA form.

The resulting basic circuit is then optimized in a
sequence of steps.

1. Bit-accurate constant propagation. This step elim-
inates constant or redundant bits throughout the
circuit, along with all wires transmitting them. Any
part of the circuit that does not contribute to the
result will also be removed, which roughly cor-
responds to dead code elimination in traditional
software compilation.

2. Static scheduling of operators. By default, opera-
tors and control elements interact using a proto-
col of explicit activation—e.g., a multiplier will get
triggered by explicit signals signifying that both its
operands are available, and will in turn emit such
a signal to downstream operators once it has com-
pleted multiplication. In many cases, operators with
known execution times can be scheduled statically,
thus removing the need for explicit activation and
the associated control logic. In case operands arrive
with constant time difference, a fixed small number
of registers can be inserted into the path of the
operand that arrives earlier.

3. Memory access optimizations. Arrays are mapped
to RAM primitives for FPGA implementation.
Typical FPGA RAM resources range in size from
16 bits (lookup table memory) to 18 kBit or more
(block RAM). RAM primitives can be ganged up to
form larger memories, or a number of small arrays
may be placed into one RAM. Furthermore, these
RAM primitives usually provide two or more ports,
which allows for concurrent accesses to the same
memory region. Based on an analysis of the sizes of

J Sign Process Syst

arrays and the access patterns, the backend maps
array variables to RAM primitives, and accesses to
specific ports.

4. Pipelining, retiming. In order to achieve a desired
clock rate, it may be necessary to add registers to
the generated circuit in order to break combina-
torial paths, and to give synthesis backends more
opportunity for retiming.

Network synthesis The RTL implementations of all
the actors in the system are connected by a network
that is obtained from a straightforward translation of
the original graph structure into HDL, replacing every
dataflow connection with the appropriate handshaking
signals that mediate the token traffic between actors.
Also, during this step the FIFO buffers are instantiated,
sized according to the annotations the user provided in
the network description.

The network description also allows the user to add
annotations that declare actors to be running in dif-
ferent clock domains. Network synthesis will recognize
those and generate the appropriate clock network. It
will also use either synchronous or asynchronous FIFO
implementations depending on whether the two actors
connected by the FIFO are in the same or in different
clock domains.

Size Speed Code Time
slices, BRAM kMB/S kLOC MM

Cal 3872, 22 290 4 3
VHDL 4637, 26 180 15 12

The above table shows the quality of the result pro-
duced by the RTL synthesis engine for the MPEG
decoder. Note that the code generated from the high-
level dataflow description actually outperforms a com-
mercially produced VHDL design in terms of both
throughput and silicon area—and this in spite of the
relative simplicity of our synthesis engine. The next
section illustrates some of the reasons for this result.

5 Dataflow Development Process

In order to illustrate some of the practical aspects of
dataflow development, consider the motion compen-
sator subsystem in Fig. 2. Motion vectors come in
on its MV input port, and from those the address
actor generates addresses into the frame buffer (in
the framebuf actor), which retrieves the data, and
interpolate and add proceed to build the final
video data.

Figure 2 Basic motion compensator in an MPEG decoder.

The engineering challenge is the result of a number
of technical constraints. First, we need to produce no
fewer than 93.3 million bytes of video data per second
in order to do 1080p at 30 frame per second. Fur-
thermore, say we aim for a target clock rate of about
120 MHz. Together with the requirement of 93.3 mil-
lion samples per second for 1080p at 30 frames per
second, this leaves on average no more than 1.29 cycles
for each sample. Finally, let us assume we have DRAM
with a setup time of 10 cycles, followed by bursts of
4 bytes per cycle.5

Motion compensation happens on 8x8 blocks, sep-
arately for the Y, U, and V components. For each of
those blocks, we need to read a 9x9 block from the
frame buffer (because of potential half-pixel interpo-
lation). In a straightforward line-by-line frame buffer
organization, we thus need to read, for each block of
8 × 8 = 64 samples, 9 bursts of length 3 words (each of
those being 4 bytes). This takes at least 9 ∗ (10 + 3) =
117 cycles—with 64 samples produced, this comes to
1.83 cycles per sample, which is too much. In order
to meet the requirement of 1.29 cycles per sample, we
need to exploit the locality of the motion compensation,
i.e. the fact that adjacent blocks tend to refer to similar
regions in the previous frame.

5.1 Caching

One approach might be to use a cache in front of the
frame buffer, which reads data from the previous frame
in larger bursts and stores them in local memory. The
cached image data can be retrieved at a higher rate and
single-cycle latency, thereby reducing the impact of the
setup latency of the frame buffer memory. Figure 3a
shows the modified motion compensator design, with
the cache inserted in front of the frame buffer.

In order to test this design, we insert the test cache
in Fig. 3. This small actor is parametric in the cache size
(number and length of cache lines), logs cache accesses

5To simplify the discussion, we assume the DRAM is dual-
ported, so that reading and writing to it can be treated
independently.

J Sign Process Syst

Figure 3 Motion compensator with caching.

and records the percentage of misses for a given config-
uration. As a typical result, for 16 lines of 32 samples,
we thus obtain a miss rate of 8.3%. Because of the
relatively regular access patterns, that rate does not go
down significantly by increasing the cache size.

Unfortunately, each of these 8.3% cache misses in-
curs an 18 cycle penalty (10 cycles setup, 8 cycles per
32-sample burst). Even if the remaining 91.7% of cache
hits were infinitely fast, this amounts to 18 ∗ .083 = 1.49
cycles per sample—better than without the cache, but
still not good enough.

5.2 Prefetch

Besides statistical locality, motion compensation has
two other properties that we can exploit: (1) It is always
limited to a relatively small search window, and (2) it
happens in a predictable and fixed order as we scan
down the video frame block by block. In addition, the
search windows for neighboring frames mostly overlap,
which means that as the decoder advances from one
block to the next, the search window shifts some blocks
from the previous frame out, and some new ones in,
while most data remains.

In our case, the search window is 3 × 3 macroblocks,
where each macroblock consists of 6 blocks of 8 × 8
samples, or 384 samples. Reading a macroblock from
the frame buffer takes 10 + (384/4) = 106 cycles, thus
reading three macroblocks takes 318 cycles.6 This has
to be done once per macroblock of data, or once every
384 samples—consequently, we spend 318/384 = 0.83
cycles per sample reading data from the frame buffer,
which conveniently meets our requirements. Note that
reading the next set of macroblocks can be concur-
rent with the processing related to the current search
window.

6This assumes that the frame buffer is structured by macroblocks,
so that each macroblock can be read in one burst. This organiza-
tion would not have made much sense previously, but with the
complete prefetched search window in local storage, it can be
arranged in this manner.

5.3 Summary

The design narrative above is intended to illustrate
two important aspects of building systems such as the
MPEG decoder as dataflow programs. First, the analy-
sis of the cache approach, and its subsequent rejection,
happened without ever synthesizing the system to hard-
ware, purely by interactive and quick untimed simu-
lation. In this way we obtained quantitative data (the
cache miss rate), which together with some of the en-
gineering constraints (target clock, target sample rate)
led us to reject the cache approach. Using high-level
tools enabled us to quickly experiment with, and fal-
sify, a design idea without long development cycles, or
tedious analyses. The result of this as far as the develop-
ment process is concerned, is that the dataflow design
undergoes many more design cycles than the RTL
design—in spite of being done in a quarter of the time.
Most of the time in RTL design is spent on getting the
system to work correctly. By contrast, a much higher
proportion of the dataflow design time is spent on
optimizing system performance. At least in the current
case study, the positive effects of the shorter design
cycles seem to outweigh the inefficiencies introduced
through high-level synthesis, and the reduced control
of the designer over specific implementation details.

Second, comparing the original design of the motion
compensator in Fig. 2 with the design incorporating the
prefetched search window in Fig. 4, the difference is
exactly one actor, and a few slightly altered connec-
tions. None of the other actors in the motion compen-
sator, and of course none of those in the rest of the
decoder, were ever touched or modified by this design
change. The asynchrony of the programming model,
and its realization in hardware, assured that the rest
of the system would continue to work in spite of
the significantly modified temporal behavior. Any de-
sign methodology relying on a precise specification of
the timing aspects of the computation—such as RTL,
where designers specify behavior cycle-by-cycle—
would have resulted in changes rippling throughout
the design.

Figure 4 Motion compensator with prefetch block.

J Sign Process Syst

6 Discussion and Conclusion

The central points of this paper can be summarized
as follows:

1. We presented a tool that translates dataflow pro-
grams like those in the MPEG RVC framework
into efficient implementations in programmable
hardware.

2. The high-level design methodology based on data-
flow and the Cal actor language has been shown
to rival RTL design in terms of the implementation
quality, at least in the case we have studied here.

3. We have attributed the surprising quality of the
resulting implementation to properties of the data-
flow design process, rather than to, e.g., the quality
of the translation tool or any particularly sophisti-
cated set of optimizations.

The first point may change the role of the MPEG
reference code in future implementation flows—
especially when building designs on parallel machines
or hardware, dataflow-based reference code is a much
better starting point, and the existence of an effi-
cient translation to the target platform means that
future video codec implementations may be closer to
gradual refinement and optimization of the reference
code, rather than from-scratch redesigns of the same
functionality.

The other two points may be surprising to RTL de-
signers, so they merit closer inspection. Fundamentally,
the use of low-level tools seems to create an illusion
of optimality simply because of the range and detail
of control these tools provide to the designer: if we
can control every aspect of the design, how could the
result be anything but optimal? The answer seems to
be that for sufficiently complex designs, there are in
fact too many things that can be controlled. As a result,
a real-world designer with limited time and limited
resources will introduce abstractions to make the task
intellectually manageable (and, if a group of designers
is involved, modularizable), effectively waiving some
control in favor of design efficiency.

High-level tools do the same—however, their
abstractions are pervasive, consistent, enforced and
checked by the tools, and often presented in the form of
languages that make it difficult or impossible to break
the abstractions. The ad hoc abstractions created by
designers may be geared to the specific requirements
of an application, but they lack all of the other benefits
provided by high-level tools, and often exist only as
more or less informal conventions.

The key benefits of the dataflow methodology pre-
sented in this paper are the fast design cycles (mostly

through eliminating hardware synthesis from the cycle
by providing a high-level simulation capability), and a
model of strongly encapsulated asynchronously com-
municating components. Fast design cycles provide a
lot of feedback for the designer and frequent opportu-
nity for debugging and performance tuning. The design
gets functional sooner, and more time can be spent on
optimization.

The dataflow model of strongly encapsulated compo-
nents that communicate asynchronously has a number
of benefits for building complex concurrent systems. In
this paper we demonstrated one: asynchronous com-
munication makes components naturally less sensitive
to the timing properties of their environment, and con-
sequently changes in those properties are less likely to
ripple through the rest of the system. A related aspect
of the dataflow actor component model is that actors
are very flexible with respect to their implementation.
For instance, the parser might not need to run at
the same speed as the rest of the decoder, as it has
much less data to process. Therefore we might consider
implementing it in software on a processor. As long
as the overall throughput remains sufficient, we can
be confident that this choice will not affect the func-
tional correctness of the decoder; the thin FIFO-style
interfaces through which actors communicate provide
complete abstraction from the specific implementation
of an actor.

The work presented in this paper is only the start-
ing point for many potential directions of research.
As we have pointed out, the implementation tools
themselves provide many opportunities for improve-
ment, involving sophisticated analyses, static schedul-
ing of those parts of a system that can be statically
scheduled [9], cross-actor optimizations, folding, and
other program transformations and refactorings such
as automatic multi-channelization (i.e. multiplexing the
same design for multiple streams of data). Constructing
efficient software code generation for Cal (such as the
one in [8]), and combining it with the RTL generation
to build families of hardware/software systems from
one common source is another direction of work, as
is the construction of backends that translate dataflow
programs to other parallel platforms, such as multi-core
architectures.

References

1. Bhattacharyya, S. S., Eker, J., Janneck, J. W., Lucarz, C.,
Mattavelli, M., & Raulet, M. (2009). Overview of the MPEG
Reconfigurable Video Coding framework. Journal of Signal

J Sign Process Syst

Processing Systems (Special Issue on Reconfigurable Video
Coding).

2. ISO/IEC FDIS 23002-4 (2009). MPEG video technologies–
Part 4: Video Tool Library.

3. Eker, J., & Janneck, J. (2003). CAL language report. Tech.
rep., ERL Technical Memo UCB/ERL M03/48, University of
California at Berkeley.

4. ISO/IEC FDIS 23001-4 (2009). MPEG systems technologies–
Part 4: Codec Configuration Representation.

5. Thomas-Kerr, J., Janneck, J. W., Mattavelli, M., Burnett, I., &
Ritz, C. (2007). Reconfigurable Media Coding: Self-describing
multimedia bitstreams. In Proceedings of SIPS’07.

6. Lucarz, C., Mattavelli, M., Thomas-Kerr, J., & Janneck, J. W.
(2007). Reconfigurable Media Coding: A new specification
model for multimedia coders. In Proceedings of SIPS’07.

7. Lee, E. A., & Parks, T. M. (1995). Dataflow process networks.
Proceedings of the IEEE, 83(5), 773–801.

8. Roquier, G., Wipliez, M., Raulet, M., Janneck, J., Miller, I., &
Parlour, D. (2008). Automatic software synthesis of dataflow
program: An MPEG-4 simple profile decoder case study. In
Proceedings of SiPS’08.

9. Gu, R., Janneck, J. W., Raulet, M., & Bhattacharyya, S. S.
(2009). Exploiting statically schedulable regions in dataflow
programs. In IEEE Conference on International Conference on
Acoustics, Speech and Signal Processing.

Jörn W. Janneck graduated from the University of Bremen
in 1995, worked for the Fraunhofer Institute for Material Flow
and Logistics in 1996, and then pursued graduate studies at the
ETH Zurich, where he received his Dr. sc. techn. in 2000. From
2000 to 2003 he worked as a visiting scholar at the University of
California at Berkeley as a member of the Ptolemy group. In 2003
he joined the Xilinx Research Labs, where he focuses on high-
level programming methodologies for FPGAs, and in particular
on dataflow. His research interests include concurrency, pro-
gramming languages, compilers, and the engineering of parallel
computing systems. He has worked in a variety of application
areas, including material flow modeling and simulation, image
and video coding and processing, wireless communications, dis-
tributed algorithms and simulation, and discrete-event modeling
of complex electro-mechanical systems.

Ian D. Miller is currently working for Sixis Inc, a start-up
company based in Research Triangle Park NC USA, developing
silicon circuit board technology. Previously, he spent nearly 10
years working on the research and development of High Level
Language Compilers. In 1996, Ian Miller received his BS in
Electrical Engineering from Virginia Polytechnic Institute and
State University in Blacksburg VA USA.

David B. Parlour received the B.Eng degree from Carleton
University, Ottawa, ON, Canada, and the MS.EE degree from
the California Institute of Technology, Pasadena, CA. For more
than 20 years he has worked on many aspects of programmable
logic technology, ranging from circuits and architectures to appli-
cations, tools and design methodology. He is currently a Principal
Engineer with Tabula Inc.

Ghislain Roquier is currently a post-doc researcher in the GR-
LSM Multimedia group at Ecole Polytechnique Fédérale de

J Sign Process Syst

Lausanne in Switzerland. In 2005, he graduated from Univer-
sité de Rennes I, France, with a M.Sc. in signal processing.
He received the Ph.D. degree in electronics in 2008 from the
Institut National des Sciences Appliquées de Rennes, France.
His main research interests include design and implementation
of heterogeneous real-time embedded systems, rapid prototyping
methodologies, multimedia DSP.

Matthieu Wipliez is currently a Ph.D. student at the Institute
of Electronics and Telecommunications of Rennes (IETR) in
France. In 2006, he graduated from the National Institute of
Applied Sciences (INSA) of Rennes with a M.Sc. in computer sci-
ence. His main research interests include dataflow programming,
compilers, multiprocessing, and rapid prototyping.

Mickaël Raulet received his postgraduate certificate in signal,
telecommunications, images, and radar sciences from Rennes
University in 2002, and his Engineering degree in electronic
and computer engineering from National Institute of Applied
Sciences (INSA), Rennes Scientific and Technical University.
Next in 2006, he received a Ph.D. degree from INSA in elec-
tronic and signal processing in collaboration with the software
radio team of Mitsubishi Electric ITE (Rennes - France). He
is currently in the Institute of Electronics and Telecommuni-
cations of Rennes (IETR) where he is a research engineer in
rapid prototyping of standard video compression on embedded
architectures (multi DSP architecture). Since 2007, he is involved
in the ISO/IEC JTC1/SC29/WG11 standardization activities
(better known as MPEG) such as a Reconfigurable Video Coding
Expert.

	Synthesizing Hardware from Dataflow Programs
	Abstract
	Introduction
	Dataflow and CAL
	Dataflow Tools for RVC
	Simulator
	Hardware Synthesis
	Software Synthesis

	Synthesizing an MPEG-4 SP Decoder
	Hardware Synthesis

	Dataflow Development Process
	Caching
	Prefetch
	Summary

	Discussion and Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

