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ABSTRACT 

 

The Video Tool Library (VTL) is one of the major 

normative components of the Reconfigurable Video Coding 

(RVC) standard. It specifies the set of functional units (FUs) 

that may be interchangeably combined and connected to 

form different video codecs, with various compression 

performances and implementation complexities. In this 

paper, an efficient AVC baseline encoder that is described 

in CAL is introduced. The encoder is composed of many 

modules that also exist in other codecs of the same or 

different standards. This makes them highly reusable within 

the RVC framework. The main modules of the designed 

encoder include: Inter Prediction, Intra Prediction, and 

Entropy Coding. Brief descriptions of the designed 

modules, accompanied with CAL design issues are 

provided. 

  

Index Terms— Reconfigurable Video Coding, MPEG 

Video Tool Library, CAL Actor Language, AVC. 

 

1. INTRODUCTION 

 

The MPEG RVC aims “to offer a more flexible use and 

faster path to innovation of MPEG standards in a way that is 

competitive in the current dynamic environment” [1]. The 

RVC aims at simplifying the specification of new codecs by 

reusing components of earlier standards instead of 

redefining new ones. The existence of reconfigurable tools 

at the encoder side supports the evolvement of the RVC 

standard [2]. Figure 1 shows the RVC framework 

encoding/decoding scenario. 

The RVC framework consists of a normative video 

coding tool library (VTL), a normative language to describe 

the interconnections among the FUs, called the Functional 

unit Network Description Language (FND) and a normative 

language to specify the RVC decoder configuration, called 

the Bitstream Decoding Language (BSDL) [1]. The VTL 

bundles a set of Functional Units (FUs) that are common 

among different profiles/standards. The VTL is specified 

with a textual specification and a corresponding reference 

software, implemented in RVC-CAL, a language 

standardized by MPEG to describe the behavior of dataflow 

components. 

 

 

Figure 1 - RVC Encoding/Decoding Scenario 

CAL is a textual language that defines the behavior of 

dataflow components referred to as actors. An actor 

preserves its own state and the interaction between actors is 

done through token exchange. Tokens flow through I/O 

ports that are connected using FIFO channels. Actors are 

described in a set of actions that execute in sequences of 

transitions during which an actor may consume an input 

token, modify its internal state or produce an output token. 

Actions fire depending on the availability of input tokens, 

their values, the internal state of the actor and the priority 

corresponding to an action. CAL supports language 

constructs that describe the action firing process, including 

guards, finite state machines and priorities. CAL supports 

natural constructs that are identified by the RVC framework 

as essential elements for building MPEG codecs [3]. CAL 

exploits abstraction and encapsulation features of dataflow 

programming to define the FUs in a way that they can be 

interchangeably combined and connected to form different 

video codecs. CAL also facilitates concurrent development 

because it improves the maintainability and 

understandability of the code over other sequential models 

implemented in C/C++ for example [4]. 

This paper presents an AVC baseline encoder, 

described in the CAL actor language (targeting hardware 

implementation) as an example to demonstrate the concept 

of component reusability in the RVC standard. The rest of 

the paper is organized as follows: Sections 2, 3 and 4 

present the CAL description of inter/intra frame prediction 

and entropy coding modules respectively. Analysis of the 

proposed approach and comparison of results against other 
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development approaches is provided in Section 5. Finally, 

Section 6 concludes the paper. 

 

2. INTER FRAME PREDICTION 

 

2.1 Motion Estimation 

 

AVC motion estimation (ME) is based on block matching 

and transform coding. ME is used to estimate motion 

between successive frames resulting in high compression of 

a video sequence [4]. 

Figure 2 shows the CAL network for the ME module. 

Full search and Sum of Absolute Differences (SAD) are 

employed in the proposed implementation.  

 

 
 

Figure 2 - Motion Estimation CAL Network 

 

The module reads in the pixels of the reference and 

current frames and stores them in their corresponding 

memories. The current frame is then scanned by the Macro-

block Raster Scanner and a best match is selected from a 

search window calculated by the Search Algorithm Module. 

The selection is done by the Comparator and the SAD. A 

motion vector is then calculated and passed, along with the 

pixels of the current macro-block and the best match, to the 

motion compensation module. 

 

2.2 Motion Compensation 

 

Figure 3 shows the motion compensation (MC) module of 

the AVC inter prediction. The module takes as input the 

motion vector of the best matching macroblock from the 

ME module. The location of the best matching block is 

calculated by adding the motion vector to the macro-block 

location from the Macro-block Raster Scanner. The best 

matching block is retrieved from the ME module by 

Memory Controller 1 in order to calculate the compensated 

frame. The compensated frame and compensation error are 

calculated and used to reconstruct the current frame which 

is sent back to the ME module to be used as the new 

reference. 

 
 

Figure 3 - Motion Compensation CAL Network 

 

3. INTRA FRAME PREDICTION 

 

In intra prediction, predictors are formed from previously 

encoded and reconstructed MBs. Predictors are formed 

either for every 4x4 block in a MB (9 modes) or for the MB 

as a whole (4 modes). The encoder selects the mode which 

minimizes the difference between the predictor and the 

block to be encoded.   

Figure 4 shows the CAL network for an intra prediction 

module. 

 
 

Figure 4- Intra Prediction CAL Network 

 

The design is based on [5], where reconfigurable 

processing elements (PEs) are used to generate predictors 

for all the modes instead of one PE for each mode. A PE 

operates depending on the prediction mode. A four-parallel 

architecture is used, meaning that four predictors are 

generated per cycle. This achieves a good tradeoff between 

area and operating frequency. 

The network consists of a controller and four series of 

adders, registers and shifters, each representing one of the 

PEs. The main actor in the network is the PE Controller. It 



first receives tokens serially at its input port for the 

previously coded and reconstructed samples, which are used 

for prediction. For modes requiring no calculations (vertical 

and horizontal extrapolation), it produces a predictor token 

directly to the Bypass actor. In the DC modes, the predictor 

value is the mean of the surrounding previously coded 

samples. The PE Controller produces tokens to the Adders 

to calculate the sum of the samples. The sum is calculated 

over more than one cycle and is accumulated using the 

Direction actors, which produce tokens with the values of 

the intermediate addition results to the PE Controller. The 

division to produce the mean value is done at the Round 

Shift Clip. In other modes, the predictor is a weighted 

average of some of the samples. Depending on the position 

of the sample being predicted, its value is calculated as 

follows:  

((( ) ) )Pred Clip W X Y Z Round Shift  

The PE Controller produces tokens for the Adders and 

those for the Round Shift Clip values. At the Round Shift 

Clip, the sum from the Adders is added to a round value 

then shifted to get the average and finally clipped to be 

between 0 and 255. In plane mode, a linear function is fitted 

to the previously coded samples. A predictor is calculated as 

follows: 

[ , ] (( ( 7) ( 7)) 5)Pred y x Clip a b x c y  

Initial values, in the first row, are calculated using the above 

formula. The predictors in the other rows are calculated by 

adding c to each row to produce the next. This is done using 

the Direction actors to accumulate the addition results of 

each row in order to calculate the predictors for the next. 

 

4. ENTROPY CODING 
 

The AVC baseline profile uses Exp-Golomb to encode all 

syntax elements except for the residual data that are 

encoded using Context Adaptive Variable Length Coding 

(CAVLC).  
 

4.1. Exp-Golomb 
 

Exp-Golomb codes are constructed systematically as 

variable length binary codes. Figure 5 shows the CAL 

network implementing the Exp-Golomb. 

 

 
 

Figure 5 - Exp-Golomb CAL Network 

The Exp-Golomb first maps a parameter k to a 

code_num. There are four different modes to choose from, 

based on the parameter type. Each mode produces shorter 

codewords for values with higher probability of occurrence 

and longer codewords for less-frequent parameter values. In 

the implemented CAL network, the four actors performing 

the different mapping modes are moderated by a Mapping 

Controller actor. The mapped exponent is more involved; it 

communicates with a dedicated actor storing the lookup 

tables with the codewords, targeting a ROM implementation 

upon synthesis. The code_num is then used to construct the 

codeword using the equations provided in [6]. 

Implementing Exp-Golomb in CAL exploits the 

abstraction and encapsulation of dataflow programming, 

allowing for seamless integration of the module within the 

complete Entropy Coder. 

 

4.2. CAVLC 

 

CAVLC switches different VLC look up tables (LUTs) 

to encode the different syntax elements based on values of 

previously coded elements. Each LUT exploits the statistical 

properties of the syntax elements it is designed to encode. 

Figure 6 describes the proposed CAL implementation of 

CAVLC.  

 

 
 

Figure 6 - CAVLC CAL Network 

 

The CAVLC execution is distributed among the 

different actors shown in figure 6. The actions within an 

actor fire whenever the tokens they are anticipating are 

ready in the FIFO channels. Thus, unlike sequential models, 

the procedure exploits parallelism implicitly. The Assembler 

actor is then responsible for compiling the output tokens 

from the different actors and producing the encoded stream 

serially. 



5. RESULTS AND ANALYSIS 

 

The RVC framework accompanies its normative description 

language (CAL) with supporting tools for automatic code 

generation into both, software (CAL2C) and hardware 

(CAL2HDL) [7]. Table 1 compares between the proposed 

CAL implementation, the AVC reference software written 

in C/C++ [8] and a reference VHDL implementation. Table 

2 shows the gain factor for both the productivity (in terms 

of the average saving in lines of code) and the speedup in 

development time achieved by using the proposed CAL 

approach. 

 

Table 1 - Comparison between the different approaches 
 

  CAL C/C++ VHDL 

Lines of 

Code  

(LOC) 

Inter 

Prediction1 203 356 897 

Intra 

Prediction 
1239 2758 N/A* 

Entropy 

Coding 
922 1762 3784 

Development 

Time  

(MH) 

Inter 

Prediction 
56 

N/A* 

133 

Intra 

Prediction 
80 N/A* 

Entropy 

Coding 
72 116 

Number of 

Developers 

Inter 

Prediction 
1 3 1 

Intra 

Prediction 
1 5 N/A* 

Entropy 

Coding 
1 3 1 

 

1 The comparison relates to integer pel inter prediction 

implementing full search and SAD. 
* No precise data available at the time of comparison. 

 
Table 2 - The gain from using the CAL implementation 

 

 
Average 

Productivity Gain 

Average Speed-up 

in Development 

Time 

CAL over 

C/C++ 
1.96 N/A* 

CAL over 

VHDL 
4.20 1.99 

 

* No precise data available at the time of comparison. 

 

 

 

 

 

6. CONCLUSION 

 

In this paper, A CAL implementation of an AVC baseline 

profile encoder has been presented. The components 

presented are potential candidates for addition to the VTL, 

due to the abstract and encapsulated representation that was 

made feasible by CAL (refer to [9] for more details). The 

results presented in section 5 are also echoed in [10]. Such 

results demonstrate the advantage of using CAL as the RVC 

standard specification language due to its ability to exploit 

the reconfigurability, reusability, understandability and 

maintainability of a dataflow programming language. 

Furthermore, a CAL implementation needs less 

development time than its sequential or HDL counterparts 

and can target both software and hardware architectures. 
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