
TOWARDS A COMPREHENSIVE RVC VTL:

A CAL DESCRIPTION OF AN EFFICIENT AVC BASELINE ENCODER

Hussein Aman-Allah, Ehab Hanna, Karim Maarouf, Ihab Amer

Laboratory of Microelectronic Systems, EPFL

CH-1015, Lausanne, Switzerland

ABSTRACT

The Video Tool Library (VTL) is one of the major

normative components of the Reconfigurable Video Coding

(RVC) standard. It specifies the set of functional units (FUs)

that may be interchangeably combined and connected to

form different video codecs, with various compression

performances and implementation complexities. In this

paper, an efficient AVC baseline encoder that is described

in CAL is introduced. The encoder is composed of many

modules that also exist in other codecs of the same or

different standards. This makes them highly reusable within

the RVC framework. The main modules of the designed

encoder include: Inter Prediction, Intra Prediction, and

Entropy Coding. Brief descriptions of the designed

modules, accompanied with CAL design issues are

provided.

Index Terms— Reconfigurable Video Coding, MPEG

Video Tool Library, CAL Actor Language, AVC.

1. INTRODUCTION

The MPEG RVC aims “to offer a more flexible use and

faster path to innovation of MPEG standards in a way that is

competitive in the current dynamic environment” [1]. The

RVC aims at simplifying the specification of new codecs by

reusing components of earlier standards instead of

redefining new ones. The existence of reconfigurable tools

at the encoder side supports the evolvement of the RVC

standard [2]. Figure 1 shows the RVC framework

encoding/decoding scenario.

The RVC framework consists of a normative video

coding tool library (VTL), a normative language to describe

the interconnections among the FUs, called the Functional

unit Network Description Language (FND) and a normative

language to specify the RVC decoder configuration, called

the Bitstream Decoding Language (BSDL) [1]. The VTL

bundles a set of Functional Units (FUs) that are common

among different profiles/standards. The VTL is specified

with a textual specification and a corresponding reference

software, implemented in RVC-CAL, a language

standardized by MPEG to describe the behavior of dataflow

components.

Figure 1 - RVC Encoding/Decoding Scenario

CAL is a textual language that defines the behavior of

dataflow components referred to as actors. An actor

preserves its own state and the interaction between actors is

done through token exchange. Tokens flow through I/O

ports that are connected using FIFO channels. Actors are

described in a set of actions that execute in sequences of

transitions during which an actor may consume an input

token, modify its internal state or produce an output token.

Actions fire depending on the availability of input tokens,

their values, the internal state of the actor and the priority

corresponding to an action. CAL supports language

constructs that describe the action firing process, including

guards, finite state machines and priorities. CAL supports

natural constructs that are identified by the RVC framework

as essential elements for building MPEG codecs [3]. CAL

exploits abstraction and encapsulation features of dataflow

programming to define the FUs in a way that they can be

interchangeably combined and connected to form different

video codecs. CAL also facilitates concurrent development

because it improves the maintainability and

understandability of the code over other sequential models

implemented in C/C++ for example [4].

This paper presents an AVC baseline encoder,

described in the CAL actor language (targeting hardware

implementation) as an example to demonstrate the concept

of component reusability in the RVC standard. The rest of

the paper is organized as follows: Sections 2, 3 and 4

present the CAL description of inter/intra frame prediction

and entropy coding modules respectively. Analysis of the

proposed approach and comparison of results against other

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147956409?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

development approaches is provided in Section 5. Finally,

Section 6 concludes the paper.

2. INTER FRAME PREDICTION

2.1 Motion Estimation

AVC motion estimation (ME) is based on block matching

and transform coding. ME is used to estimate motion

between successive frames resulting in high compression of

a video sequence [4].

Figure 2 shows the CAL network for the ME module.

Full search and Sum of Absolute Differences (SAD) are

employed in the proposed implementation.

Figure 2 - Motion Estimation CAL Network

The module reads in the pixels of the reference and

current frames and stores them in their corresponding

memories. The current frame is then scanned by the Macro-

block Raster Scanner and a best match is selected from a

search window calculated by the Search Algorithm Module.

The selection is done by the Comparator and the SAD. A

motion vector is then calculated and passed, along with the

pixels of the current macro-block and the best match, to the

motion compensation module.

2.2 Motion Compensation

Figure 3 shows the motion compensation (MC) module of

the AVC inter prediction. The module takes as input the

motion vector of the best matching macroblock from the

ME module. The location of the best matching block is

calculated by adding the motion vector to the macro-block

location from the Macro-block Raster Scanner. The best

matching block is retrieved from the ME module by

Memory Controller 1 in order to calculate the compensated

frame. The compensated frame and compensation error are

calculated and used to reconstruct the current frame which

is sent back to the ME module to be used as the new

reference.

Figure 3 - Motion Compensation CAL Network

3. INTRA FRAME PREDICTION

In intra prediction, predictors are formed from previously

encoded and reconstructed MBs. Predictors are formed

either for every 4x4 block in a MB (9 modes) or for the MB

as a whole (4 modes). The encoder selects the mode which

minimizes the difference between the predictor and the

block to be encoded.

Figure 4 shows the CAL network for an intra prediction

module.

Figure 4- Intra Prediction CAL Network

The design is based on [5], where reconfigurable

processing elements (PEs) are used to generate predictors

for all the modes instead of one PE for each mode. A PE

operates depending on the prediction mode. A four-parallel

architecture is used, meaning that four predictors are

generated per cycle. This achieves a good tradeoff between

area and operating frequency.

The network consists of a controller and four series of

adders, registers and shifters, each representing one of the

PEs. The main actor in the network is the PE Controller. It

first receives tokens serially at its input port for the

previously coded and reconstructed samples, which are used

for prediction. For modes requiring no calculations (vertical

and horizontal extrapolation), it produces a predictor token

directly to the Bypass actor. In the DC modes, the predictor

value is the mean of the surrounding previously coded

samples. The PE Controller produces tokens to the Adders

to calculate the sum of the samples. The sum is calculated

over more than one cycle and is accumulated using the

Direction actors, which produce tokens with the values of

the intermediate addition results to the PE Controller. The

division to produce the mean value is done at the Round

Shift Clip. In other modes, the predictor is a weighted

average of some of the samples. Depending on the position

of the sample being predicted, its value is calculated as

follows:

((()))Pred Clip W X Y Z Round Shift

The PE Controller produces tokens for the Adders and

those for the Round Shift Clip values. At the Round Shift

Clip, the sum from the Adders is added to a round value

then shifted to get the average and finally clipped to be

between 0 and 255. In plane mode, a linear function is fitted

to the previously coded samples. A predictor is calculated as

follows:

[,] (((7) (7)) 5)Pred y x Clip a b x c y

Initial values, in the first row, are calculated using the above

formula. The predictors in the other rows are calculated by

adding c to each row to produce the next. This is done using

the Direction actors to accumulate the addition results of

each row in order to calculate the predictors for the next.

4. ENTROPY CODING

The AVC baseline profile uses Exp-Golomb to encode all

syntax elements except for the residual data that are

encoded using Context Adaptive Variable Length Coding

(CAVLC).

4.1. Exp-Golomb

Exp-Golomb codes are constructed systematically as

variable length binary codes. Figure 5 shows the CAL

network implementing the Exp-Golomb.

Figure 5 - Exp-Golomb CAL Network

The Exp-Golomb first maps a parameter k to a

code_num. There are four different modes to choose from,

based on the parameter type. Each mode produces shorter

codewords for values with higher probability of occurrence

and longer codewords for less-frequent parameter values. In

the implemented CAL network, the four actors performing

the different mapping modes are moderated by a Mapping

Controller actor. The mapped exponent is more involved; it

communicates with a dedicated actor storing the lookup

tables with the codewords, targeting a ROM implementation

upon synthesis. The code_num is then used to construct the

codeword using the equations provided in [6].

Implementing Exp-Golomb in CAL exploits the

abstraction and encapsulation of dataflow programming,

allowing for seamless integration of the module within the

complete Entropy Coder.

4.2. CAVLC

CAVLC switches different VLC look up tables (LUTs)

to encode the different syntax elements based on values of

previously coded elements. Each LUT exploits the statistical

properties of the syntax elements it is designed to encode.

Figure 6 describes the proposed CAL implementation of

CAVLC.

Figure 6 - CAVLC CAL Network

The CAVLC execution is distributed among the

different actors shown in figure 6. The actions within an

actor fire whenever the tokens they are anticipating are

ready in the FIFO channels. Thus, unlike sequential models,

the procedure exploits parallelism implicitly. The Assembler

actor is then responsible for compiling the output tokens

from the different actors and producing the encoded stream

serially.

5. RESULTS AND ANALYSIS

The RVC framework accompanies its normative description

language (CAL) with supporting tools for automatic code

generation into both, software (CAL2C) and hardware

(CAL2HDL) [7]. Table 1 compares between the proposed

CAL implementation, the AVC reference software written

in C/C++ [8] and a reference VHDL implementation. Table

2 shows the gain factor for both the productivity (in terms

of the average saving in lines of code) and the speedup in

development time achieved by using the proposed CAL

approach.

Table 1 - Comparison between the different approaches

 CAL C/C++ VHDL

Lines of

Code

(LOC)

Inter

Prediction1 203 356 897

Intra

Prediction
1239 2758 N/A*

Entropy

Coding
922 1762 3784

Development

Time

(MH)

Inter

Prediction
56

N/A*

133

Intra

Prediction
80 N/A*

Entropy

Coding
72 116

Number of

Developers

Inter

Prediction
1 3 1

Intra

Prediction
1 5 N/A*

Entropy

Coding
1 3 1

1 The comparison relates to integer pel inter prediction

implementing full search and SAD.
* No precise data available at the time of comparison.

Table 2 - The gain from using the CAL implementation

Average

Productivity Gain

Average Speed-up

in Development

Time

CAL over

C/C++
1.96 N/A*

CAL over

VHDL
4.20 1.99

* No precise data available at the time of comparison.

6. CONCLUSION

In this paper, A CAL implementation of an AVC baseline

profile encoder has been presented. The components

presented are potential candidates for addition to the VTL,

due to the abstract and encapsulated representation that was

made feasible by CAL (refer to [9] for more details). The

results presented in section 5 are also echoed in [10]. Such

results demonstrate the advantage of using CAL as the RVC

standard specification language due to its ability to exploit

the reconfigurability, reusability, understandability and

maintainability of a dataflow programming language.

Furthermore, a CAL implementation needs less

development time than its sequential or HDL counterparts

and can target both software and hardware architectures.

7. REFERENCES

[1] Jang, E. S., Ohm, J., Mattavelli, M. (January 2008).

Whitepaper on Reconfigurable Video Coding (RVC). ISO/IEC

JTC1/SC29/WG11 document N9586.

[2] Lucarz, C., Amer, I., Mattavelli, M., (November 2009).

Reconfigurable Video Coding: Objectives and Technologies.

Proceedings of IEEE International Conference on Image

Processing, Special Session on Reconfigurable Video Coding.

[3] Mattavelli, M. (2008). Reconfigurable Video Coding (RVC) a

new Specification and Implementation Paradigm for MPEG

Codecs. The 12th Annual IEEE International Symposium on

Consumer Electronics. [Keynote Presentation].

[4] Yang, W. (2003). An Efficient Motion Estimation Method for

MPEG-4 Video Encoder. IEEE Transactions on Consumer

Electronics, 49(2).

[5] Huang, Y., Hsieh, B., Tung-Chien C., Chen, L. (2005).

Analysis, Fast Algorithm, and VLSI Architecture Design for

H.264/AVC Intra Frame Coder. IEEE Transactions on Circuits and

systems for Video Technology, 15(3), 378-401.

[6] Silva, T., Vortmann, J., Agostini, L., Bampi, S., Susin, A.,

(2007). FPGA Based Design of CAVLC and Exp-Golomb Coders

for H.264/AVC Baseline Entropy Coding. 3rd Southern

Conference on Programmable Logic (SPL07).
[7] Lucarz, C., Mattavelli, M., Wipliez, M., Roquier, G., Raulet,

M., Janneck, J., et al. (2008). Dataflow/Actor-Oriented language

for the design of complex signal processing systems. Conference

on Design and Architectures for Signal and Image Processing

(DASIP 2008).

[8] Joint Video Team (JVT) reference software, version 14.2.

[Online]

http://iphome.hhi.de/suehring/tml/download/old_jm/jm14.2.zip

[9] Aman-Allah, H., Maarouf, K., Hanna, E., Amer, I., Mattavelli,

M. (2009). CAL Dataflow Components For an MPEG RVC AVC

Baseline Encoder. Submitted to Springer Journal of Signal

Processing Systems, Reconfigurable Video Coding Special Issue.

[10] Janneck, J., Miller, I. D., Parlour, D. B., Roquier, G., Wipliez,

M., Raulet, M. (2008). Synthesizing hardware from dataflow

programs: An MPEG-4 simple profile decoder case study. IEEE

Workshop on Signal Processing Systems (SiPS 2008).

