
MPEG RVC AVC Baseline Encoder Based on a Novel Iterative Methodology

Hussein Aman-Allah, Ehab Hanna, Karim Maarouf, Ihab Amer
Laboratory of Microelectronic Systems (GR-LSM), EPFL

CH-1015 Lausanne, Switzerland
{hussein.aman-allah, ehab.hanna, karim.maarouf, ihab.amer}@epfl.ch

Abstract

With the emergence of new generations of multicore
architectures, the need for efficient multimedia
algorithm implementations has become critical. This
paper describes a new methodology for efficient
implementations of algorithms targeting
reconfigurable architectures. The Reconfigurable
Video Coding (RVC) standard aims to provide a
framework allowing a dynamic development,
implementation and adoption of standardized video
coding solutions with features of higher flexibility and
reusability. RVC-CAL actor language is a dataflow
language that makes better use of the multicore and
parallel architectures. The proposed design flow
methodology follows an iteration-based
implementation model rather than the traditional
sequential model. Analysis, design, development,
simulation, testing and adaptation are performed with
every iteration ending up with a functional “version”
of the algorithm. A case study is conducted to illustrate
the productivity of the proposed methodology in which
the implementation of an AVC baseline encoder on a
Xilinx Virtex 5 XC5VLX50T FPGA demonstrated for
intra prediction architecture search space co-
exploration.

1. Introduction

The increasing complexity of video coding
standards has led to the development of the platforms
corresponding to these standards and their evolution
into multicore and multiple component parallel
architectures. Nevertheless, algorithms are still being
specified in the same monolithic sequential models,
mostly in C/C++ that are unable to exploit the full
capabilities featured by the advances in the target
architectures. Thus, the MPEG RVC standard while
addressing the reusability and reconfigurability of the
different MPEG standards, defines RVC-CAL to be
the normative language of its video tool library (VTL).
The nature of RVC-CAL as a dataflow language

allows it to exploit the parallelism offered by the new
platforms while at the same time allowing for the
reusability and reconfigurability of the FUs provided
in the RVC VTL.

Simulating parallelism is one of the main advantages
of using dataflow programming over sequential
programming, making it more suitable for
implementations targeting multicore architectures [1].
Unlike C/C++ implementation where parallelism has to
be explicitly defined; the developer has more time to
focus on algorithm-specific details and architecture-
related optimizations. Nevertheless, the inconsistency
arising from starting with an RVC-CAL description
and following the sequential implementation
methodology often leads to unpredictable results.

This paper presents an iterative design flow
methodology for the implementation of efficient
reconfigurable architectures as opposed to sequential
models that do not suit parallel architectures, supported
by a case study of an MPEG RVC AVC baseline
encoder [2].

The paper is structured as follows: Section II
presents the proposed methodology. In section III, the
case study covering AVC inter prediction, intra
prediction and entropy coding modules is examined to
demonstrate this methodology. The modeling and
synthesis results are presented and analyzed in section
IV. Finally, section V concludes the paper.

2. An iterative methodology

The proposed methodology recommends a design
flow, along with tools and practices that when applied
precisely on a given algorithm, results into an
optimized implementation of the target architecture.

Given an algorithm to be implemented, first the
appropriate FUs are selected from the VTL. An RVC-
CAL description is then provided to assemble the FUs
and reconfigure them by adding new functionalities
that are not yet provided by the VTL. Test cases are

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147956408?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

fed to the RVC-CAL description to verify it against the
standardized reference SW.

Once the RVC-CAL description is validated, the
CAL2HDL tool performs resource scheduling and
optimizations that result in an efficient HDL
description [3] 0. A test bench is provided to verify that
the generated HDL functionality sustains the one
provided by the RVC-CAL description in the previous
step. In case of any anomalies, a revision of the RVC-
CAL description is performed to make sure that the
definitions are unambiguous for the CAL2HDL tool.
Optimizations are possibly applied to the RVC-CAL
description to allow for the generation of HDL code of
better exploitation for the available hardware
resources, based on observations of the previously
generated HDL code.

The next step is to synthesize the generated HDL
code into hardware implementation targeting a specific
architecture. The output is simulated and examined. If
after the mapping, and routing performed by the
synthesis tool the implementation does not meet the
target architectural specifications, in terms of resource
consumption, throughput, frequency or other
parameters, a revision of the RVC-CAL description is
performed for optimizations. When the synthesized
implementation meets its target architecture design
goals, the process terminates and the implementation is
ready.

The main advantage provided from the proposed
design flow and the associated tools is that several
iterations of the steps described in Figure 1 can be
performed in considerably less time than the traditional
sequential models for several reasons.

Figure 1 - The proposed design flow

First, the bottlenecks and anomalies are detected
early in the process, because of RVC-CAL’s ability to
simulate parallel and multicore architectures. Second,
the implementation passes through several
optimizations on different levels. Third, the
modifications are always performed on the RVC-CAL
level. Thus, it needs less time and frequent
architectural adaptations are feasible because of the
strong abstraction and encapsulation properties
exhibited by CAL. The proposed methodology allows
for exploration of the resources/throughput search
space. A set of transitions are explored until the
implementation meets the algorithm/architecture
design goals [4].

The initial RVC-CAL description is usually a direct
implementation of the algorithm that aims at creating a
starting point for simulation. The synthesis result may
not meet the target specifications, since no
optimization iterations have been performed. Several
optimization cycles are performed which moves the
implementation closer and closer to the target
specifications.

3. RVC AVC baseline encoder case study

The proposed methodology along with the tools and
practices are applied to a case study of an MPEG RVC
AVC baseline profile encoder. The aim of the case
study is to demonstrate the contribution of the
proposed approach on the efficiency of the
implementation.

3.1. Inter prediction

The AVC Inter prediction module is used to estimate
the motion occurring between frames. This module
aims at removing the temporal redundancy that exists
between frames in order to achieve a high compression
of the video sequence 0[5]. Figure 2 shows the inter
prediction RVC-CAL Network. The two main steps in
inter prediction are motion estimation and motion
compensation. The motion estimation calculates the
motion between frames via full search macro-block
matching and returns a motion vector describing the
displacement between the current block and the best
matching reference block. The motion compensation
uses the current block and the best matching reference
block to calculate the residual error. The residual error
is then passed to the transform coding module to be
compressed, reconstructed and finally sent back to the
motion compensation module to reconstruct the current

block. The motion compensation module then stores
the reconstructed blocks in the memory to be used as a
reference for the next frame to be encoded.

Figure 2 – Inter prediction RVC-CAL network

As shown in Figure 2, the video reader reads
individual frames from a video sequence and either
passes them directly to the memory as P-frames or to
the intra prediction module, which first encodes and
reconstructs the I-frame before storing it in the
memory. Finally, inter prediction calculates the
differential motion vectors based on the difference
between the actual and predicted motion vectors [6].
The modules are moderated by the inter prediction
control unit (IPCU).

3.2. Intra prediction

In intra prediction, predictors are formed from
previously encoded and reconstructed Macro Blocks
(MBs). In AVC luma prediction, predictors can be
produced either for every 4x4 block in a MB (9
modes) or for the MB as a whole (4 modes). The
encoder selects the mode which minimizes the
difference between the predictor and the block to be
encoded [6].

Figure 3 - Intra prediction RVC-CAL network

Figure 3 [7] shows the RVC-CAL network for an

intra prediction module.
The design is based on [7], where reconfigurable

processing elements (PEs) are used to generate
predictors for all the modes instead of one PE for each
mode. There are four PEs, which generate four
predictors in parallel. Using this four-parallel
architecture achieves a good tradeoff between
throughput and resource usage. Each PE consists of a
series of Adders, Registers and Shifters which
calculate the value of the predictor. The inputs to the
PEs are determined by the main actor in the network:
the PE Controller. It selects the suitable inputs
depending on the prediction mode and the position of
the sample to be predicted. A more detailed
explanation of this module can found in [8].

3.3. Entropy coding

The AVC baseline profile uses Exp-Golomb to
encode all syntax elements except for the residual data
that are encoded using Context Adaptive Variable
Length Coding (CAVLC). Exp-Golomb codes are
variable-length binary codes that are constructed
systematically as thoroughly explained in [9]. Figure 4
[2] shows the RVC-CAL network implementing the
Exp-Golomb.

Figure 4 - Exp-Golomb RVC-CAL network

The Exp-Golomb module shown in Figure 4 is

implemented in RVC-CAL as a simple network with
one input port, which receives the parameter token to
be encoded and one output port which outputs the
codeword serially. The Exp-Golomb network connects
nine different actors, out of which four actors perform
the tasks of the four different mapping modes. A
controller moderates the mapping actors and performs
the mapping mode decision. The different mappings
can be executed in parallel since a different actor is
responsible for each. Thus, with pipelining at the
controller, and parallel execution at the mapping
actors, the throughput improves significantly.

Similarly, the RVC-CAL CAVLC model shown in
Figure 5 [2] is implemented with slightly more actors.
Since CAVLC switches different VLC look up tables
(LUTs) to encode the different syntax elements based
on values of previously coded elements. Each LUT
exploits the statistical properties of the syntax elements
it is designed to encode. Accessing the LUTs can be
sometimes performed in parallel and the different
actors execute and prepare their output independent of
the sequential flow of the algorithm. The Assembler
actor is then responsible for compiling the output
tokens from the different actors and producing the
encoded stream serially.

Figure 5 - CAVLC RVC-CAL network

4. Results and analysis

The results of applying the proposed methodology
to the RVC encoder can be presented on two levels;
the modeling level including the development efforts
consumed and the productivity gained, and the
implementation level in which the RVC-CAL
implementation is synthesized and implemented on an
FPGA.

4.1. Modeling results

One of the major RVC advantages is that it
accompanies its normative description language (RVC-
CAL) with many supporting tools that enable
automatic code generation into software (CAL2C) and
hardware (CAL2HDL) [8]. The results section in [2]
shows the lines of code, development time and number
of developers consumed in the RVC-CAL, C and
VHDL implementations correspondingly. Although
the number of iterations performed on the RVC-CAL
implementation exceed the other two implementations
with a factor of four or five, the development effort
consumed is much less. Such saving reflected in
Figure 6 contributes directly to production costs and
Time to Market (TTM).

Figure 6 - Gain from using the RVC-CAL

implementation

Figure 6 shows a comparison, normalized with
respect to the VHDL implementation. The RVC-CAL
implementation is as double as productive as the
C/C++ sequential model and four times as productive
as the VHDL behavioral implementation. Additional
enhancements to RVC-CAL will embed built-in
functions that would even double the RVC-CAL
productivity.

4.2. Search space co-exploration

Figure 7 - Intra prediction search space co-

exploration

Following the proposed methodology, the intra
prediction module initial design was validated against
the AVC reference software. However, upon synthesis,
the resulting FPGA implementation did not achieve
throughput requirements for real-time SDTV
(720x480). Therefore, optimization iterations were
needed. Figure 7 and Table 1 show the
resource/throughput states at the end of the
optimization iterations. Optimization proceeds by
searching for the critical path and splitting it. This
could be done by dividing actors or actions. In the first
iteration, the PE Controller was split into two actors
and their outputs multiplexed to the PEs. However, this
multiplexing increased the critical path which made the
throughput worse. Therefore, in the second iteration
cycle, instead of multiplexing, the PEs were
duplicated. In the third and fourth iterations, the PE
Controller was split into three and four actors.
Splitting into four actors resulted in an implementation
that exceeded the FPGA resources. However, having
three PE Controllers resulted in the best tradeoff
between throughput and resources. Therefore, the fifth
iteration targeted the actions in each of the three PE
Controllers. There is a tradeoff between the number of
actions and size of the state machine. A large number
of small actions complicate the state machine, which
increases the control logic for it. On the other hand, a
small number of actions simplify the state machine, but
the control logic in the actions themselves is
complicated. This means that the right balance
between action and state machine size must be found
for each actor. Therefore, in the fifth iteration, the
simple actions were grouped and the complicated
actions were divided to achieve a balance between
state machine size and action size. This led to meeting
both throughput and resource requirements.

4.3. Synthesis results

The gain achieved on the modeling level in terms of
lines of code is echoed as well on the hardware
implementation level. The HDL model is generated
from the presented RVC-CAL model using the
CAL2HDL tool. The HDL code is synthesized using
Xilinx ISE targeting a Xilinx Virtex 5 FPGA.

Table 1 shows an example of the proposed
optimization iterations applied to the intra prediction
module showing synthesis results at the end of each
iteration. The methodology performs several
optimization iterations until the target design goals are
achieved.

Table 1 - Intra prediction exploratory iterations

Iteration
CLK

Frequency
(MHz)

of
Registers

of
LUTs

Throughput
(Frames/s)

0 49.615 5533 7761 10
1 46.755 6892 9021 9
2 85.69 4554 5079 21
3 110.011 5755 4586 27
4 Exceeded Available Resources
5 120.221 5477 6293 30

5. Conclusion

In this paper, a methodology for efficient
implementation of algorithms targeting reconfigurable
architectures was presented. The methodology defines
an iterative design flow, a set of tools and practices for
architecture exploration and optimization. The use of
RVC-CAL as the modeling language for the proposed
methodology, exploits parallelism and
reconfigurability supported by the newer generations
of multimedia platforms. In addition, the strong
abstraction and encapsulation properties exhibited by
RVC-CAL allow for faster optimization iterations.

An MPEG RVC AVC baseline encoder case study
was provided to demonstrate the gain achieved from
using the proposed methodology, on both the modeling
and implementation levels. The results show that the
proposed approach minimizes the time and effort
consumed during development. The results are also
reflected on the hardware implementation level, taking
Intra prediction as example.

6. References

[1] Bhattacharyya, S., Brebner, G., Janneck, J., Eker, J., von
Platen, C., Mattavelli, M., Raulet, M. OpenDF – A Dataflow
Toolset for Reconfigurable Hardware and Multicore Systems.
First Swedish Workshop on Multi-Core Computing, 2008.

[2] Aman-Allah, H., Hanna, E., Maarouf, K., Amer, I. Towards
a Comprehensive RVC VTL: A CAL Description of an Efficient
AVC Baseline Encoder. IEEE International Conference on
Image Processing (ICIP 2009), 2009.
[3] Janneck, J., Miller, I. D., Parlour, D. B., Roquier, G.,
Wipliez, M., Raulet, M. Synthesizing hardware from dataflow
programs: An MPEG-4 simple profile decoder case study. IEEE
Workshop on Signal Processing Systems (SiPS 2008), 2008.
[4] Lucarz, C., Faure, P., Roquier, G., Mattavelli, M., Noel, V.,
Amer, I., and Alisafee, M. “ACTORS” European Project,
technical report, 2009-01, Micro-Electronic Systems Laboratory,
Ecole Polytechnique Federale de Lausanne (EPFL), 2009.
[5] Yang, W. (2003). An Efficient Motion Estimation Method
for MPEG-4 Video Encoder. IEEE Transactions on Consumer
Electronics, 49(2).
[6] Richardson, I. E. G. H.264 and MPEG-4 Video
Compression. Aberdeen. Wiley, 2003.
[7] Huang, Y., Hsieh, B., Tung-Chien C., Chen, L. Analysis,
Fast Algorithm, and VLSI Architecture Design for H.264/AVC
Intra Frame Coder. IEE Transactions on Circuits and systems for
Video Technology, 15(3), 2005, 378-401.
[8] Lucarz, C., Mattavelli, M., Wipliez, M., Roquier, G., Raulet,
M., Janneck, J., et al. Dataflow/Actor-Oriented language for the
design of complex signal processing systems. (DASIP, 2008)
[9] Silva, T., Vortmann, J., Agostini, L., Bampi, S., Susin, A.
FPGA Based Design of CAVLC and Exp-Golomb Coders for
H.264/AVC Baseline Entropy Coding. 3rd Southern Conference
on Programmable Logic (SPL07), 2007.

