
Towards Multi-Granular RVC Tool Libraries: A Case Study of CAL 
Transformations on the ISO/IEC MPEG Fixed Point IDCT 

 
Ihab Amer1, 2 

 
1Laboratory of Microelectronic Systems (GR-LSM), EPFL 

CH-1015 Lausanne, Switzerland 
ihab.amer@epfl.ch 

 
2Advanced Technology Information Processing Systems (ATIPS) Labs 

University of Calgary 
2500 University Dr., NW, Calgary, AB, Canada, T2N 1N4 

amer@atips.ca 
 

 
Abstract 

 
Recent advances in digital video hardware, software 
and coding standards have led to a wide variety of 
digital video products. However, such continuous 
evolution leads to the necessity of regular 
replacements of the available multimedia devices. To 
avoid this, a new initiative within the MPEG 
community, namely Reconfigurable Video Coding, has 
risen to provide the flexible framework that allows for 
the “simple” realization of highly-reconfigurable 
video coding solutions, without the need to wait for 
decades to replace the existing infrastructure. This 
paper illustrates the different design schemes to build 
various platform-specific proprietary libraries, at 
various granularity levels, together with a case study 
to prove the concept.  
 
1. Introduction 
 
The emergence of international standards for digital 
video compression (e.g., MPEG-2, MPEG-4 Visual, 
and Advanced Video Coding (AVC) of the MPEG 
community) has led to the existence of a wide variety 
of digital video products. In particular, homes are now 
equipped with various digital video products such as 
High-definition Television (HDTV) sets, set top boxes, 
Personal Video Recorders (PVRs), Digital Versatile 
Disc (DVD) and Video Compact Disc (VCD) players, 
laptops, mobile phones, etc. In this context, digital 
video compression has become an essential component 
of broadcast and entertainment media. However, 
digital video (and more generally multimedia) 
applications still need to satisfy a multitude of growing 
and stringent requirements in order to achieve the 

desired quality for real-time applications. Although the 
evolution of video coding standards in the last two 
decades has produced outstanding results, it has not 
been able to address all of these application 
requirements. Hence, continuous improvements in 
digital video coding are required to help narrowing the 
gap between the users’ demands and the capabilities 
and performances of transmission networks, storage 
devices, and terminals. In the meantime, such 
continuous evolution in the digital video coding field 
leads to the necessity of regular replacement of the 
multimedia devices. A fact that is no more acceptable 
by a typical citizen, especially when considering the 
unstable economic situation world wide.  
 
Reconfigurable Video Coding (RVC) is a new standard 
that is under development aiming at providing the 
suitable framework that allows for the realization of 
reconfigurable video coding solutions. RVC is 
supported with many technologies. This paper 
contributes to the development of such technologies by 
enhancing the tools to synthesize efficient software or 
hardware implementations out of the high-level 
specifications. 
 
The remainder of this paper is organized as follows: 
Section 2 overviews the RVC standard, followed by 
Section 3 that introduces the dataflow programming 
model by CAL. Section 4 introduces the concept of toll 
libraries’ granularity, while Section 5 provides a case 
study to prove the concept. Finally section 6 concludes 
the paper. 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147956405?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2. The RVC Standard 
 
The standardization efforts in the video coding field 
have to guarantee the interoperability. In fact, there 
exist many technologies that would enable 
reconfigurable solutions. This includes CPUs, Digital 
Signal Processors (DSPs), FPGAs, etc. Nevertheless, 
and in spite of the market demands for 
reconfigurability, there are still no clear success stories 
of fully reconfigurable solutions for multimedia 
applications. This can be explained by the fact that up 
till recently, there was no framework to enable the 
existence of such reconfigurable solutions. In fact, the 
current process of releasing a video coding standard, 
starting from the rise of the standard’s idea, passing 
through the specification and formalism of the 
standard, and ending with the physical 
implementations, is too rigid to allow for the evolution 
of such reconfigurable solutions. Change of the 
platform was the solution for any evolution towards 
new formats or standards. The same concept applied 
for the video coding standards that time to time were 
replaced by a new monolithic version. This was the 
case for MPEG-2, MPEG-4, AVC, and the recent SVC 
standard. However, such monolithic approach to both 
content processing and the platform support does not 
respond anymore to the current demand of adaptation, 
dynamicity of services and applications, introduction 
of new multimedia technologies, and to the demands of 
users. 
 
The observation of such drawbacks opened the door to 
extend the state-of-the art by raising a new initiative 
within the MPEG community, namely Reconfigurable 
Video Coding, calling for an “everlasting” video 
coding standard, that when adopted, will overcome 
many of the shortcomings of the traditional video 
coding standards and of the way they are specified and 
deployed. The MPEG RVC standard provides the 
flexible framework that allows for the realization of 
highly-reconfigurable solutions. It provides an 
incremental and modular approach to innovation in 
video compression development and design, opening 
the way for interoperability between various video 
codecs that are deployed into the market. Such 
possibility clearly simplifies the task of designing 
future multi-standard video decoding applications and 
devices by allowing software and hardware reuse 
across video standards. This offers a more flexible use 
and faster path to innovation of video coding standards 
opening the door to the evolutionary introduction of 
new emerging technologies such as multiview, 3–D 
TV services that can dynamically develop in terms of 
P2P clusters without the need to wait for decades 

before all system providers and users will be forced to 
replace the existing distribution, broadcast and 
terminals infrastructure. 
 
An additional challenge taken by the RVC framework 
is to provide a high-level specification formalism that 
constitutes a starting point model for the direct 
software and hardware synthesis. Moreover, the RVC 
framework intends to overcome the lack of 
interoperability between various video codecs that are 
deployed into the market. Unlike previous standards, 
RVC does not itself define a new codec. Instead, it 
provides a framework to allow content providers to 
define a multitude of different codecs, by combining 
together blocks, or Functional Units (FUs), from a 
standardized modular Video Tool Library (VTL). 
 
The MPEG RVC framework defines two standards: 
ISO/IEC23001–4 (or MPEG–B part 4), which defines 
the overall framework as well as the standard 
languages that are used to describe different 
components of the framework, and ISO/IEC23002–4 
(or MPEG–C part 4), which defines the library of 
video coding tools employed in existing MPEG 
standards. Thus, when finalized, the RVC is expected 
to severely reduce the time gap between proposing a 
new idea or concept in video coding and implementing 
it in practical devices and systems [1]. 
  
The main strength of RVC is that, unlike current video 
coding standards, where decoders used to be rigidly 
specified, a description of the decoder is associated to 
the encoded data, enabling reconfiguration and 
instantiation of the appropriate decoder. Figure 1 
provides a conceptual diagram of the abstract idea 
behind the RVC initiative [REF MPEG]. 
 

1. Bitstream syntax
2. Decoder configuration

Encoder Decoder
Decoder Description

Encoded Video Data

 
Figure 1: Conceptual diagram of RVC 

 
An RVC decoder (MPEG–B) is composed of coding 
tools described in VTLs according to the decoder 
description. The MPEG VTL is described by MPEG–C 
(specified using RVC–CAL), while other proprietary 
VTLs can be also used. In the RVC framework, the 
receiver gets the Decoder Description that fully 
specifies the architecture of the decoder. In order to 



instantiate the decoder, the receiver needs libraries of 
building blocks specified by MPEG–C.  
 
The abstract decoder description includes two main 
types of data:  
1. Bitstream Syntax Description (BSD), which 

describes the structure of the bitstream. The BSD is 
written in RVC–BSDL. It is used to generate the 
appropriate parser to decode the corresponding 
input encoded data [3]-[4]. 

2. FU Network Description (FND), which describes 
the connections between the coding tools (i.e. FUs). 
It also contains the values of the parameters used 
for the instantiation of the different FUs composing 
the decoder. The FND is written in FU Network 
Language (FNL). The syntax parser (built from the 
BSD), together with the network of FUs (built from 
the FND), form a CAL model called the Abstract 
Decoder Model (ADM) [5]-[6].  

 
Device manufacturers are capable of providing any 
alternative proprietary implementations of the standard 
library that are optimized for their particular platform. 
A few tools are already available, and others are in 
development to directly synthesize the ADM into both 
hardware (HDL) [7] and/or software (C, C++…) [6]. 
 
3. CAL Dataflow Programming Model 
 
A dataflow program is described by a directed graph, 
where the nodes represent computational units and the 
arcs represent the flow of data [8]. This makes it 
perfectly suitable to model video coding systems, 
which are typically described by diagrams of blocks 
connected by arcs that denote the flow of data. In 
addition, unlike sequential programming, dataflow 
programming provides simple, understandable, and 
powerful abstractions that allow the specification of as 
much or as little parallelism as is required. One of the 
major challenges taken by the RVC framework is to 
provide a new high-level specification model enabling 
direct and efficient software and hardware synthesis. 
This objective has been pursued by using the CAL 
actor dataflow model as the core computational model 
of the RVC standard specification. It is chosen to be 
the language of the reference model that specifies the 
normative I/O behavior of the modules of the RVC 
library of FUs. A CAL actor is a strongly encapsulated 
computational entity with input and output ports, 
internal state and parameters [9]. 
 
RVC-CAL is a subset of the original CAL language 
and is normalized by ISO/IEC as a part of the RVC 
standard. It slightly restricts the data types, operators, 

and features that could be used in the original CAL 
language. The main reason of such restrictions is to 
simplify the development of synthesis tools supporting 
both HW and SW synthesis. 
 
Figure 2 illustrates the principles of the CAL dataflow 
programming model. An actor is a modular component 
that encapsulates its own state. The state of any actor is 
not shareable with other actors. Thus, an actor cannot 
modify the state of another actor. Interactions between 
actors are only allowed through channels. The behavior 
of an actor is defined in terms of a set of actions. The 
operations an action can perform are to consume input 
tokens, to modify internal state, and/or to produce 
output tokens. The topology of a set of interconnected 
actors constitutes what is called a network of actors. 
The transitions of an actor are purely sequential, where 
actions are fired one after another. At the network 
level, the actors can work concurrently, each one 
executing their own sequential operations. CAL allows 
also hierarchical system design, in which each actor 
can be specified as a network of actors [10]. 
  

 
Figure 2: The CAL dataflow programming model 

 
4. Granularity of the Tool Libraries 
 
As the name implies, the ADM is intended to be as 
high-level as possible, mainly concerned with the 
behavioral description of the different modules of the 
decoder. The proprietary libraries play a vital role in 
mapping the ADM to a decoder implementation that 
meets the constraints of the target platform and the 
requirements defined by the designer for a specific 
application. Such libraries contain the proprietary 
implementation of the FUs composing the ADM. By 
definition, the usage of proprietary FUs should not 
alter the behavior of the overall decoder model. 
Instead, it allows it to execute efficiently on specific 
target platform(s). 
 
Hence, there is a clear need for the existence of 
advanced methodologies and tools targeting the 



implementation of ADMs on various types of 
platforms. Such methodologies should be able to 
impose a set of operations on the FUs that composes 
the ADM, in a development process that transforms it 
to another set of functionally-equivalent FUs, which 
are more appropriate for the target platform. These 
various operations on the FUs are performed according 
to the characteristics of the target platform as well as 
the required degree of parallelism.  
 
The development process consists of modifying the 
internal structure of the FU that may be composed of 
one or more actors.  Such transformation operation 
results in a functionally-equivalent (in terms of 
input/output behavior) FU(s), which is more adapted to 
the target platform architecture. Splitting or merging 
actors within the set of FUs are examples of 
transformation operations that allow exposing more or 
less parallelism respectively. One distinguishing 
feature of the dataflow model is that it is able to expose 
different levels of parallelism by representing 
algorithms in the form of graphs. For example, as an 
extreme, parallelism may almost diminish from the 
system if the decoder model is composed of a single 
actor that fires its atomic actions sequentially. On the 
other hand, parallelism can be more exposed if the 
decoder model is composed of reasonably sized 
networks that are composed of several simple actors.  
 
The definition of an “appropriate model” depends on 
the target application. For instance, if the target 
application scenario is a programmable hardware 
processing element (i.e. an FPGA), it is advisable to 
expose the maximum (and at the same time reasonable) 
level of parallelism/concurrency in the decoder model, 
and vice versa if the target application scenario is a 
single sequential processing unit.  
 
Discrete Cosine Transform (DCT) is the primary 
transform coding tool for many image and video 
coding standards such as JPEG and MPEG–2. The 
most commonly used block size in most of the video 
and image coding standards is 8×8, due to the 
reasonable compromise it presents between 
compressibility and computational requirements. The 
Inverse DCT (IDCT) reconstructs a block of image 
samples (pixels) from an array of DCT coefficients 
(usually quantized and scaled) [11]-[13]. 
 
Due to its existence in many video decoders, the 
MPEG-standardized 2D fixed-point 8×8 IDCT module 
has been chosen as the case study to observe the effects 
of the granularity of the tool library on the 
implementation performance targeting various 

platforms. Figure 3 summarizes the performed 
experiment. CAL2C and CAL2HDL are available tools 
that synthesize the RVC specifications to software and 
hardware respectively [6]-[7]. 
 
5. Case Study – MPEG Fixed Point IDCT 
 

 
Figure 3: Testing scheme to examine the effect of 

granularity levels of the video tool libraries 
 
 
In the initial (or reference) CAL model, the granularity 
is said to be one dimensional “1D” as the 2D IDCT is 
performed separably, by applying the MPEG 
standardized fixed-point 1D-IDCT to the coefficients, 
first in the horizontal direction, followed by a transpose 
operation, and then finally another MPEG standardized 
fixed-point 1D-IDCT in the vertical direction is 
applied. Figure 4 shows a block diagram of this “1D” 
CAL model. Each of the 1D-IDCT modules is 
described as a single actor, composed of three actions. 
The first action is to read 8 coefficients; the second 
action performs all the required operations, while the 
third action writes back the 8 coefficients. 
 

 
Figure 4: Block diagram of 2D IDCT with 1D 

granularity level 
 
CAL transformations are applied to this model to 
change the granularity of actor(s), to either the “2D” 
granularity or to the “sample” granularity. 
 
From “1D” to “2D” Granularity 
 



This transformation is represented by merging actors 
into a single “2D-IDCT actor”.  Due to its static 
behaviour, it is possible to automatically merge actors 
into a single actor without changing the structure of 
actions and tokens.  
 
The Cal2C tool is applied to both models (the initial 
and the transformed one) to generate C-code. The 
performance is then compared by executing the code 
on a single-processor platform. The results are 
normalized according to the initial CAL model (“1D”). 
The achieved speedup is around 2.5. This is mainly due 
to the savings in the overhead of static scheduling of 
actors, which is more efficient than the dynamic 
scheduling (actors are translated by threads). 
 
 
From “1D” to “sample” Granularity 
 
CAL transformations are applied to the reference 
model to transform it to another model with “sample”-
level granularity of actor(s). This transformation is 
done mainly by splitting each “1D-IDCT” actor into a 
network of 12 actors. This transformation intends to 
exploit the parallelism intrinsic in the algorithm. Figure 
5 shows the top level of the resulting CAL model. 
 

 
Figure 5: Top-level view of 2D IDCT with sample 

granularity level 
While the second level of the model that shows the 
composition of each 1-D IDCT from smaller actors is 
shown in Figure 6. 
 

 
Figure 6: Second-level view of 2D IDCT with 

sample granularity level 
 

The effect of the CAL transformations is further 
emphasised by the results obtained on a single FPGA 
target platform. The Cal2HDL tool is used to translate 
the CAL model into the HDL model. Then the 

generated HDL model is synthesised and mapped onto 
a Xilinx Virtex 5 XC5VLX50T FPGA. The results are 
normalized according to the initial CAL model (“1D”). 
In case of “1D to sample” transformation, the 
throughput is increased by 176.6% compared to the 
synthesised 1D CAL model. This is mainly because the 
target FPGA platform exploits the parallelism in the 
sample model more efficiently. On the other hand, the 
synthesised sample model consumes 252.7% more 
Slice Registers, and 19.58% more Slice LUTs than the 
initial model. The increase in the required hardware 
resources is due to the overhead obtained by the finite 
state machines and the interfaces between the multiple 
actors. 

 
6. Conclusion 
 
In this paper, MPEG-RVC is introduced with an 
emphasis on the various possible granularity levels of 
the video tools libraries. A case study of the ISO/IEC 
MPEG fixed point 2D IDCT is introduced. The results 
helped in proving some concepts such as the 
preference to represent the decoder model as a 
multitude of networks, each composed of simple 
actors, when targeting HW platforms where exposing 
high level of parallelism is desirable. While on the 
other hand, when targeting single-processor SW 
platforms, it is preferable to represent the decoder 
model as complex actors with complex state machines 
  
7. Acknowledgements 
 
The author would like to thank Ghislain Roquier, 
Christophe Lucarz, Marco Mattavelli, and Mickael 
Raulet for all their valuable contributions to obtain and 
report this work. The author would also like to thank 
the GR-LSM lab at EPFL as well as ATIPS Labs at the 
University of Calgary for funding this research. 
 
8. References 
 
[1] C. Lucarz, I. Amer, and M. Mattavelli, 
“Reconfigurable Video Coding: Concepts and 
Technologies”, initially accepted in IEEE International 
Conference on Image Processing, Special Session on 
Reconfigurable Video Coding, Cairo, Egypt, 
November 2009. 
[2] ISO/IEC N10165, “Text of ISO/IEC FDIS 23001-4: 
Codec Configuration Representation”. 
[3] ISO/IEC 23001-5, “Bitstream Syntax Description 
Language”. 
[4] M. Raulet, J. Piat, C. Lucarz, and M. Mattavelli, 
“Validation of Bitstream Syntax and Synthesis of 



Parsers in the MPEG Reconfigurable Video Coding 
Framework,”  Proceedings of IEEE Workshop on 
Signal Processing Systems, October 2008. 
[5] Dandan Ding, L. Yu, C. Lucarz, and M. Mattavelli, 
“Video decoder reconfigurations and AVS extensions 
in the new MPEG reconfigurable video coding 
framework,” IEEE Workshop on Signal Processing 
Systems, Washington DC, US : 2008, pp. 164-169. 
[6] G. Roquier, M. Wipliez, M. Raulet, J. Janneck, I. 
Miller, and D. Parlour, “Automatic Software Synthesis 
of Dataflow Program: An MPEG-4 Simple Profile 
Decoder Case Study,” Proceedings of IEEE Workshop 
on Signal Processing Systems, October 2008. 
[7] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. 
Wipliez, and M. Raulet, “Synthesizing Hardware from 
Dataflow Programs: An MPEG-4 Simple Profile 
Decoder Case Study,” Proceedings of IEEE Workshop 
on Signal Processing Systems, October 2008. 
[8] S. Bhattacharayya, G. Brebner, J. Janneck, J. Eker, 
C. Von Platen, M. Mattavelli, and M. Raulet, “OpenDF 
– A Dataflow Toolset for Reconfigurable Hardware 
and Multicore Systems”, First Swedish Workshop on 
Multi-Core Computing, MCC 2008, Ronneby, 
Sweden, November 27-28, pp. 43-49. 
[9] J. Eker and J. W. Janneck, “Cal language report,” 
University of California at Berkeley, Tech. Rep. 
UCB/ERL M03/48, December 2003. 
[10] I. Amer, C. Lucarz, M. Mattavelli, G. Roquier, M. 
Raulet, O. Deforges, and J.-F Nezan, “Reconfigurable 
Video Coding: The Video Coding Standard for Multi-
core Platforms”, initially accepted in IEEE Signal 
Processing Magazine, Special Issue on Signal 
Processing on Platforms with Multiple Cores. 
[11] I. E. G. Richardson, Video CODEC Design: 
Developing Image and Video Compression Systems, 
John Wiley & Sons Ltd., April 2002. 
[12] A. Tamhankar, and K. R. Rao, “An Overview of 
H.264/MPEG–4 Part 10,” Proceedings of EURASIP 
Conference on Video/Image Processing and 
Multimedia Comm., Vol. 1, pp. 1-51, July 2003. 
[13] R. Gonzalez and R. Woods, Digital Image 
Processing, Addison-Wesley Pub (Sd), March 2002. 


