
RECONFIGURABLE VIDEO CODING: OBJECTIVES AND TECHNOLOGIES

Christophe Lucarz, Ihab Amer, and Marco Mattavelli

Microelectronic Systems Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH–1015 Lausanne, Switzerland

{christophe.lucarz, ihab.amer, marco.mattavelli}@epfl.ch

ABSTRACT

The main objective of the MPEG Reconfigurable Video
Coding (RVC) standard is to establish a framework for a
more flexible usage of standard video coding technology.
The framework not only supports multiple standards and
new coding configurations, but also provides an incremental
and modular approach to innovation in video compression
development and design. This paper provides an overview
of the main objectives of RVC, standard accompanied with
a presentation of the components of the framework for both
normative parts and supporting tools useful for the final
implementation of RVC codecs. These elements include: the
Video Tool Library (VTL), the new standard RVC–CAL
language used for the specification of the library, the
Bitstream Syntax Description (BSD) used for the
specification of the compressed bitstreams, as well as the
Functional unit Network Description (FND) that constitutes
the specification of a modular library. Technologies and
tools that support the RVC standard are also briefly
introduced.

Index Terms— MPEG, Reconfigurable Video Coding,
RVC, CAL, BSD, FND, VTL

1. INTRODUCTION

Recent advances in digital video hardware/software,
together with the emergence of international standards for
digital video compression, have led to a wide variety of
digital video products [1]. Digital video compression has
become an essential component of broadcast and
entertainment media [2]. However, digital video
applications still need to satisfy a multitude of growing and
stringent requirements in order to achieve the desired
quality for real-time applications. Although the evolution of
video coding standards in the last two decades has produced
outstanding results, it has not been able to address all of
these application requirements [3]. Hence, continuous
improvements in digital video coding are required to help
narrowing the gap between the users’ demands and the
capabilities and performances of transmission networks,
storage devices, and terminals. This fact increases the
necessity of continuous releases of standards for

compressed video representation with aggressively
increased coding efficiency and enhanced robustness to
network environments [4].

The main aim of a video coding standard is to define the
syntax as explicitly and unambiguously as possible without
necessarily indicating practical constraints that a designer
should take into account [5]. Hence, typical systems’
specifications get composed of multi-format algorithms and
protocols with unbounded complexities. This would enable
a designer to produce the codec supporting any desired
functionality as well as any desired trade-off between
compression performance and implementation complexity.
Unfortunately, the conventional process of selecting such
algorithms and protocols is hardwired into the normative
descriptions of the codec, or at lower level, into a
predefined number of choices, known as “profiles”, codified
within each standard specification. Currently, the large
number and variety of available coding tools makes it
inadequate to follow on with such paradigm. On one hand,
it is difficult to identify the optimal combinations of tools
prior to, or soon after, the release of the standard. On the
other hand, it is often not possible to identify all of the
application scenarios in which a codec will be used, at the
time of its release. Nor it is feasible to provide a normative
profile for every scenario [6].

Nowadays, there is an increasing requirement for
decoding platforms capable of supporting multiple codecs
with multiple profiles. Although many of these codecs share
common and/or similar coding tools, there is currently no
standard way to exploit such commonalities at the level of
the specification or the implementation. This problem grows
as new standards are released and legacy formats continues
to be supported [7]. Ideally, implementers of a standard
should be able to select arbitrary combinations of the
available tools, in the way that best matches the
requirements of each application. The challenge with this
approach is ensuring interoperability [6]. These
considerations led to the birth of the MPEG RVC, a new
standard currently under development by ISO/IEC that aims
at providing a framework that allows for dynamic
development, implementation, and adoption of standardized
video coding solutions with features of higher flexibility
and reusability. In this paper, an overview of the RVC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147956398?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

standard is provided, surveying the main related tools and
supporting technologies.

The remainder of the paper is organized as follows:
Section 2 describes the concept of the MPEG RVC
standard, followed by a description of its components and
basic terminologies in Section 3. Section 4 briefly
overviews the supporting tools and technologies, and finally
section 5 concludes the paper.

2. CONCEPTS OF MPEG RVC

The MPEG RVC framework aims at offering a more
flexible use and faster path to innovation of video coding
standards. An additional challenge taken by the RVC
framework is to provide a high level specification formalism
that constitutes a starting point model for the direct software
and hardware synthesis. Moreover, the RVC framework
intends to overcome the lack of interoperability between
various video codecs that are deployed into the market.
Unlike previous standards, RVC does not itself define a new
codec. Instead, it provides a framework to allow content
providers to define a multitude of different codecs, by
combining together blocks, or Functional Units (FUs), from
a standard modular library (VTL). Such possibility clearly
simplifies the task of designing future multi-standard video
decoding applications and devices by allowing software and
hardware reuse across video standards. The MPEG RVC
framework defines two standards: ISO/IEC23001–4 (or
MPEG–B part 4), which defines the overall framework as
well as the standard languages that are used to describe
different components of the framework, and
ISO/IEC23002–4 (or MPEG–C part 4), which defines the
library of video coding tools employed in existing MPEG
standards.

The main strength of RVC is that, unlike the traditional
video coding standards, where decoders used to be rigidly
specified, a description of the decoder is associated to the
encoded data, enabling a reconfiguration and instantiation
of the appropriate decoder. Figure 1 shows three different
decoder types that can be constructed within the RVC
framework.

Figure 1: Different decoder types within RVC

All the three types of decoders are compliant with the

RVC framework and constructed using the specification
formalisms (i.e. languages) standardized by MPEG–B.. A

Type–1 decoder is constructed using the FUs within the
MPEG VTL only. Hence, this type of decoder conforms to
both the MPEG–B and MPEG–C standards. A Type–2
decoder is constructed using FUs from the MPEG VTL as
well as one or more proprietary libraries (VTL 1–n). This
type of decoder conforms to the MPEG–B standard only.
Finally, A Type–3 decoder is constructed using one or more
proprietary VTL (VTL 1–n), without using the MPEG VTL.
This type of decoder also conforms to the MPEG–B
standard only.

MPEG VTL is normatively specified using RVC–CAL
(see section 3.1). An appropriate level of granularity for
blocks within the standard library is important, to enable
efficient reuse within the RVC framework. If the library is
too coarse, modules will be too large to allow reuse between
different codecs. On the other hand, if the granularity is too
fine, the number of modules in the library will be too large
for an efficient and practical reconfiguration process, and
may obscure the desired high-level description and
modeling of the RVC decoder.

In the RVC framework, the receiver gets the Decoder
Description that fully specifies the architecture of the
decoder. In order to instantiate the decoder, the receiver
needs libraries of building blocks specified by MPEG–C.
Figure 2 illustrates how decoders are built from the Decoder
Description, which includes two main types of data:
• The Bitstream Syntax Description (BSD), which

describes the structure of the bitstream. The BSD is
written in RVC–BSDL (see section 3.2).

• The FU Network Description (FND) describes the
connections between the coding tools (i.e. FUs). It
contains also the values of the parameters used for the
instantiation of the different FUs composing the
decoder. The FND is written in FU Network Language
(FNL) (see section 3.3)
The model instantiation consists of assembling the video

decoder by picking up FUs from the MPEG VTL according
to the FND provided in the RVC bitstream. The assembly
results in the so called Abstract Decoder Model (ADM),
which is composed of the syntax parser (built from the
BSD) and the network of FUs (built from the FND).

The decoder implementation process consists of
implementing a true decoding solution from the ADM.
Device manufacturers are thus capable of providing any
alternative proprietary implementations of the standard
library that are optimized for their particular platform (i.e.
proprietary video tool box). Several tools are already
available, and others are in development to directly
synthesize the ADM into both hardware (HDL) and/or
software (C, C++…) implementations (see section 4).

3. COMPONENTS OF THE RVC FRAMEWORK

This section provides an overview of the constitutive

components of the RVC framework, briefly describing the
languages used for each component.

Figure 2: Overview of the RVC framework

3.1. Dataflow Actor-Oriented Language

CAL is a dataflow and actor oriented language that has been
recently specified as a subproject of the Ptolemy project at
the University of California at Berkeley. The final CAL
language specification has been released in December 2003
[8]. CAL models different algorithms by using a set of
interconnected dataflow components called actors (see
Figure 3).

Figure 3: The CAL Model of Computation

An actor is a modular component that encapsulates its

own state. The state of any actor is not shareable with other
actors. Thus, an actor cannot modify the state of another
actor. Interactions between actors are only allowed through
input and output ports. The behavior of an actor is defined
in terms of a set of actions. The operations an action can
perform are to consume input tokens, to modify internal
state and to produce output tokens. The topology of a set of
interconnected actors constitutes what is called a network of
actors. The transitions of an actor are purely sequential:
actions are fired one after another. At the network level, the
actors can work concurrently, each one executing their own

sequential operations. CAL allows also hierarchical system
design. Each actor can be specified as a network of actors.

The following points summarize some of the features of
the CAL language that makes it highly suitable to model
complex signal processing systems:
Parallelism Scalability: Writing programs such that their
parts execute concurrently without much interference is one
of the key problems in scaling traditional imperative
programs. Encapsulated actors allow exposing more
parallelism as applications grow in size.
Modularity: The strong encapsulation of actors along with
their hierarchical structure offers high potential of
parallelism. Thus, the internal specification of any actor can
be modified without impacting other actors.
Scheduling: Unlike procedural programming languages,
where control flow (sequence of execution of instructions)
is tightly coupled with the algorithm, the actor model allows
more flexibility in the scheduling process of the model (i.e.
determining the order of execution of the actions) by
allowing for various scheduling schemes depending on
optimization criteria.
Portability: For many highly concurrent programs,
portability has remained an elusive goal, often due to their
sensitivity to timing. The “untimedness” and asynchrony of
dataflow programming offers a solution to this problem.
Adaptivity: Each atomic firing of an action triggers the
actor in a well-defined state. Thus, every actor of the model
lies in a known state at any point of time. This is an
important feature knowing that the success of the dataflow
programming model depends on its ability to be
reconfigured dynamically.

3.2. Bitstream Syntax Description Language

The description of the bitstream syntax used for the encoded
data is written in RVC–BSDL which is a sub-set of the
BSDL language [9]. The reason why BSDL has been
restricted is to be sure that there is only one way to describe
bitstreams without losing any power of the language. This
description is passed to the RVC decoder in order to
generate the appropriate parser which in turn decodes the
corresponding input encoded data. BSDL was found to be
the most suitable, because:
• it is stable and defined by an international standard [9]
• its XML-based syntax integrates well with FNL
• parsers may be derived by transforming the BSD using

standard tools such as XSLT [10]
For further details about BSD and RVC–BSDL, the reader
can refer to [10].

3.3. FU Network Language

The FU Network Language is an XML dialect that describes
an interconnected network of standard library components
(FUs), which together represent a complete decoder. FNL

provides a facility for declaring parameters, and passing
parameters to the FUs. This is useful for declaring values
that are constant for a particular instantiation of an FU, but
may vary between different instantiations. For further
details about FND and FNL, the reader can refer to [11].

4. RVC SUPPORTING TECHNOLOGIES

Many technologies are introduced to support the RVC
standard. This includes (but is not limited to) the tools for
validating the BSDL schema versus a bitstream instantiation
[10], the CAL parser from a validated BDSL schema
description [10], the simulator that both verifies and
validates the behaviour of the ADM [12], tools that
automatically translate the ADM to C [13] and HDL [14]
code, targeting both software and hardware platforms
respectively. The scheduling of the ADM (i.e. the CAL
model) is also an important issue, and interesting works are
in progress [15]–[16].

Furthermore, the existence of RVC encoding tools
supports the evolution of the RVC standard by providing a
complete framework for testing the developed VTL
modules. Figure 4 provides an MPEG RVC typical
Encoding/Decoding Scenario [17].

Figure 4: MPEG RVC Encoding/Decoding Scenario

5. CONCLUSION

This paper provides an overview on the RVC video coding
standard, describing its objective, and surveying its basic
components. When finalized, the RVC is expected to
severely reduce the timescale between proposing a new idea
or concept in video coding and implementing it in practical
devices and systems. Moreover, other proposals to further
reduce the time lag between proposing a new coding tool,
and practically making use of it are evolving. Dynamically
Configurable Video Coding [7] is an example of such
initiatives, and more are expected to appear alongside with
the development of the RVC standard.

6. REFERENCES

[1] A. M. Tekalp, Digital Video Processing, Prentice-Hall, Inc.,

1995.
[2] I. E. G. Richardson, H.264 and MPEG–4 Video Compression:

Video Coding for Next-generation Multimedia, John Wiley &
Sons Ltd., December 2003.

[3] A. Tamhankar, and K. R. Rao, “An Overview of
H.264/MPEG–4 Part 10,” Proceedings of EURASIP

Conference focused on Video/Image Processing and
Multimedia Communications, Vol. 1, pp. 1-51, July 2003.

[4] “ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC,” Draft Text of
Final Draft International Standard for Advanced Video
Coding, [Online]. Available at:
http://www.chiariglione.org/mpeg/working_documents.htm,
March 2003.

[5] I. E. G. Richardson, Video CODEC Design: Developing
Image and Video Compression Systems, John Wiley & Sons
Ltd., April 2002.

[6] C. Lucarz, M. Mattavelli, J. Thomas-Kerr, and J. Janneck,
“Reconfigurable Media Coding: A New Specification Model
for Multimedia Coders,” Proceedings of IEEE Workshop on
Signal Processing Systems, pp. 481-486, October 2007.

[7] I. Richardson, M. Bystrom, S. Kannangara, and M. Lòpez,
“Dynamic Configuration: Beyond Video Coding Standards,”
Plenary Presentation, IEEE International System on Chip
Conference (SOCC08), Newport Beach, CA, September
2008.

[8] J. Eker and J. W. Janneck, “Cal language report,” University
of California at Berkeley, Tech. Rep. UCB/ERL M03/48,
December 2003.

[9] ISO/IEC 23001-5, “Bitstream Syntax Description Language.”
[10] M. Raulet, J. Piat, C. Lucarz, and M. Mattavelli, “Validation

of Bitstream Syntax and Synthesis of Parsers in the MPEG
Reconfigurable Video Coding Framework,” Proceedings of
IEEE Workshop on Signal Processing Systems, October
2008.

[11] Dandan Ding, L. Yu, C. Lucarz, and M. Mattavelli, “Video
decoder reconfigurations and AVS extensions in the new
MPEG reconfigurable video coding framework,” IEEE
Workshop on Signal Processing Systems, Washington DC,
US : 2008, pp. 164-169.

[12] Open DataFlow Sourceforge Project: http://opendf.sourceforge.net/
[13] G. Roquier, M. Wipliez, M. Raulet, J. Janneck, I. Miller, and

D. Parlour, “Automatic Software Synthesis of Dataflow
Program: An MPEG-4 Simple Profile Decoder Case Study,”
Proceedings of IEEE Workshop on Signal Processing
Systems, October 2008.

[14] J. Janneck, I. Miller, D. Parlour, G. Roquier, M. Wipliez, and
M. Raulet, “Synthesizing Hardware from Dataflow Programs:
An MPEG-4 Simple Profile Decoder Case Study,”
Proceedings of IEEE

[15] J. Boutellier, V. Sadhanala, C. Lucarz, P. Brisk, and M.
Mattavelli, “Scheduling of dataflow models within the
Reconfigurable Video Coding framework,” IEEE Workshop
on Signal Processing Systems, Washington DC, US : 2008,
pp. 182-187.

[16] Ruirui Gu, Jorn W. Janneck, Mickael Raulet, and Shuvra
Bhattacharyya, “Exploiting Statically Schedulable Regions In
Dataflow Programs,” IEEE International Conference on
Acoustics, Speech, and Signal Processing, 2009.

[17] I. Amer, H. Aman-Allah, E. Hanna, and K. Maarouf,
“Towards a Comprehensive RVC VTL: A CAL Description
of an Efficient AVC Baseline Encoder”, initially Proceedings
of IEEE International Conference on Image Processing,
Special Session on Reconfigurable Video Coding, Cairo,
Egypt, November 2009.

