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Introduction

Mixed potential integral equation (MPIE) based algorithms stand as one of the most
accurate and efficient tools in computational electromagnetics, especially when deal-
ing with electromagnetic scattering and radiation problems from arbitrary perfect
conducting surfaces [1], [2]. The numerical solution of the surface MPIE via the
method of moments, using the linear Rao-Wilton-Glisson basis functions [1], calls
for the computation of the 4-D weakly singular integrals:

Ising
p,q =

∫

EP

ζp

∫

EQ

g(r, r′)ζ ′qdAQdAP , p, q = 1, 2, 3 (1)

and

Ising
s =

∫

EP

∫

EQ

g(r, r′)dAQdAP (2)

where the two triangular elements EP and EQ may coincide (coincident integra-
tion), share a common edge (edge adjacent integration), or share a common ver-
tex (vertex adjacent integration). AP , AQ are the associated triangular surfaces,
g(r, r′) = e−jkR/R is the free-space Green’s function, R = |r − r′| is the distance
function, k is the wavenumber of the medium and ζp, ζ

′

q are simplex coordinates
associated to arbitrary vertices of the triangular elements.

Here, a further extension of [3] for the edge adjacent and the vertex adjacent cases
is presented, thus, completing the semi-analytical treatment of weakly singular in-
tegrals on planar triangles via the direct evaluation method [4].

Direct Evaluation Method

The first step of the direct evaluation method is to introduce the equilateral param-
eter space {η, ξ}, where −1 ≤ η ≤ 1, 0 ≤ ξ(η) ≤

√
3(1 − |η|). The weakly singular

integrals in (1), (2) can be evaluated as a linear combination of the following terms:

Ip,q =

∫ 1

−1
dη

∫ ξ(η)

0
ψp(η, ξ)dξ

∫ 1

−1
dη′

∫ ξ(η′)

0
ψq(η

′, ξ′)
e−jkR

R
dξ′ (3)

ψ1(η, ξ) = 1, ψ2(η, ξ) = η and ψ3(η, ξ) = ξ.
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Edge Adjacent Case

In the edge adjacent integration, we employ two polar coordinate transformation to
cancel the line of singularity defined by ξ = ξ′ = 0 and η = −η′:

η′ = ρ cos (θ) − η, ξ′ = ρ sin (θ) and ρ = Λcos (Ψ), ξ = Λsin (Ψ). (4)

The distance function in the new parametric system takes the form R = ΛB(θ,Ψ)
and the original integral can be written as a sum of 3-D integrals,

Ip,q =

1
∑

l=0

1
∑

m=0

∫ 1

−1
dη

∫ Θl+1

Θl

dθ

∫ Ψm+1

Ψm

Ap,q(η, θ,Ψ)dΨ (5)

since the integral with respect to ρ,

Ap,q(η, θ,Ψ) =
cos (Ψ)

B(θ,Ψ)

∫ L(η,θ)

0
ψp(η,Ψ,Λ)ψq(η, θ,Ψ,Λ) e−jkB(θ,Ψ)ΛΛdΛ (6)

can be evaluated analytically.

Moving to the second analytical integration, it is convenient to consider η positive
and negative separately. In the following, we examine the integration over region η ≥
0. Moreover, in the implementation of this method, integration over positive values
of η suffices, since integration over region η ≤ 0 can be easily computed by flipping
the elements around and using the η ≥ 0 formulas. The additional complication
in the edge adjacent case is that both the θ and Ψ integrals are separated in two
pieces. In particular, the splitting in θ is 0 < θ ≤ Θ1 and Θ1 ≤ θ ≤ π. Finally,
after re-ordering the integral and integrating with respect to η analytically for both
cases, the weakly singular integrals for η > 0 have been reduced to the following
2-D smooth integrals:

Iη+

p,q =

∫ π

π/2
dθ

∫ Ψ+

1

0
Xa

p,qdΨ +

∫ π/2

π/3
dθ

∫ Ψ+

1

0
Xb

p,qdΨ +

∫ π

π/2
dθ

∫ π/2

Ψ+

1

Xc
p,qdΨ

+

∫ π/2

π/3
dθ

∫ π/2

Ψ+

1

Xd
p,qdΨ +

∫ π/3

0
dθ

∫ Ψ00

0
Xe

p,qdΨ +

∫ π/2

π/3
dθ

∫ Ψθ

0
Xf

p,qdΨ

+

∫ π/2

π/3
dθ

∫ Ψ00

Ψθ

Xg
p,qdΨ +

∫ π/3

0
dθ

∫ Ψ00

0
Xh

p,qdΨ +

∫ π/3

0
dθ

∫ π/2

Ψ00

Xi
p,qdΨ

+

∫ π/2

π/3
dθ

∫ Ψ00

Ψθ

Xk
p,qdΨ +

∫ π/2

π/3
dθ

∫ π/2

Ψ00

X l
p,qdΨ

(7)

where the integrands are well-behaved functions of (θ,Ψ). It is worth mentioning
in this point that the dimensionality reduction of the original 4-D integrals in both
the edge adjacent case and vertex adjacent case (as will be shown next) is limited
compared to the coincident case due to the algebraic complexity of the distance
function after the variable transformations. To be more precise, the dimensionality
of the final integrals is equal to the independent variables in the expressions α(θ) [3],
B(θ,Ψ) and Γ(θp, θq,Ψ) for, respectively, the coincident, edge adjacent and vertex
adjacent case.



Similarly to the coincident integration [3], the remaining case (integration over neg-
ative values of η) can be handled by simply flipping the master triangles (triangles in
the equilateral triangle parametric space) and employing the formulas for the η > 0
case. Finally, the weakly singular integrals Ip,q can be evaluated as a function of the
subintegrals I

η+
p,q and I

η−
p,q ,

I1,1 = I
η+

1,1 + I
η−
1,1 , I1,2 = I

η+

1,2 − I
η−
1,2 , I1,3 = I

η+

1,3 + I
η−
1,3 , I2,1 = I

η+

2,1 − I
η−
2,1 ,

I2,2 = I
η+

2,2 + I
η−
2,2 , I2,3 = I

η+

2,3 − I
η−
2,3 , I3,1 = I

η+

3,1 + I
η−
3,1 , I3,2 = I

η+

3,2 − I
η−
3,2 ,

I3,3 = I
η+

3,3 + I
η−
3,3 .

(8)

Vertex Adjacent Case

In this case, we orient the elements so that the singular point is η = −1 and η′ = −1
and we introduce the following separate polar coordinate systems for each element:

η′ = ρq cos (θq) − 1, ξ′ = ρq sin (θq), and η = ρp cos (θp) − 1, ξ = ρp sin (θp). (9)

The singularity is at the common vertex ρp = ρq = 0, justifying the use of one
further polar coordinate transformation,

ρp = Λcos (Ψ), ρq = Λsin (Ψ). (10)

After the new transformation, the distance function takes the formR = ΛΓ(θp, θq,Ψ).
The {ρp, ρq} domain is a rectangle and the Ψ integration must be taken in two pieces,
yielding, after some algebraic manipulation,

Ip,q =

∫ π/3

0
dθp

∫ π/3

0
dθq

[

∫ Ψ1

0
Ωp,q(L1)dΨ +

∫ π/2

Ψ1

Ωp,q(L2)dΨ

]

, (11)

where

Ωp,q(Lm) =

∫ Lm

0
cos (Ψ) sin (Ψ)ψp(θp,Ψ,Λ)ψq(θq,Ψ,Λ)

e−jkΛΓ(θp,θq,Ψ)

Γ(θp, θq,Ψ)
Λ2dΛ (12)

are analytically evaluated well-behaved functions.

The highly abbreviated derivation presented above will be discussed in detail at the
conference presentation.

Numerical Results

In this section, we will present representative numerical results for the assessment of
the direct evaluation method in tackling the problem of the weakly singular integrals
evaluation in Galerkin MPIE formulations. More specifically, in Figure 1(a) the
relative error in computing the real part (singular portion) of the weakly singular
integral (2) with k = 1 over the edge adjacent triangles defined by the vertices:
r1 = (1, 1, 0), r2 = (2, 1, 0), r3 = (1, 2, 0), r4 = (1, 0, 0) using the direct evaluation
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(a) Edge adjacent case.
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(b) Vertex adjacent case.

Figure 1: Relative error in calculating the real part of Ising
s .

method, the singularity cancellation method (here, the direct evaluation method
with only one analytical integration) and the fully-numerical method, is presented.
In the vertex adjacent case, we proceed to a comparison of the direct evaluation
method with the fully-numerical scheme for the computation of the weakly singular
integral Ising

s (k = 1) over the vertex adjacent triangles defined by the vertices: r1 =
(1, 1, 1), r2 = (2, 1, 1), r3 = (1, 2, 1), r4 = (0, 1, 1), r5 = (0, 2, 1), as shown in Figure
1(b). It is important to mention that for both examples the converged solution
of the direct evaluation scheme is taken as a reference. Again, as expected, the
direct evaluation method succeeds in an accurate evaluation together with a greatly
reduced computational burden. Therefore, the treatment of the edge adjacent and
vertex adjacent integration with the help of the direct evaluation method is fully
justified not only for the presentation of a unified approach (for coincident, edge
adjacent and vertex adjacent integrations), but also because of the overall superior
behavior.
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