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Abstract

This work considers our approach to robot motion control learning from the stand-
point of multiple data sources. Our paradigm derives data from human teachers
providing task demonstrations and tactile corrections for policy refinement and
reuse. We contribute a novel formalization for this data, and identify future direc-
tions for the algorithm to reason explicitly about differences in data source.

1 Introduction

The problem of learning for robot control naturally lends itself to learning from multiple sources,
as frequently numerous sources for training data are available. For example, a robot might observe
the world through multiple sensing modalities, or have multiple teachers demonstrating the target
behavior under development. We present in this paper multiple novel training data sources that arise
from our approach that learns motion control from a human teacher, who provides both demonstra-
tions and tactile corrections for the purposes of policy refinement and reuse. Data thus derives from a
variety of teachers and teaching techniques, as well as multiple target behaviors under development.

Our work addresses the challenge of robot motion control, which is fundamental to many robotics
applications. Development initially was motivated by the goal of reducing the requirements placed
on a policy developer, by increasing policy robustness through refinement and transferring existing
knowledge through reuse. One consequence of our policy development techniques is the presence
of several novel data sources. We are interested in addressing the different sources explicitly within
our algorithm, and this paper provides a first step in that direction.

To begin, we present our algorithm and its initial empirical validation on a high degree of freedom
humanoid. We then frame our work to date within the context of multiple sources, formalizing what
it means to be a distinct data source under our paradigm. Many of the design decisions related to
explicitly addressing the multiple data sources of our characterization are highlighted, and potential
formulations are hypothesized.

2 Learning from Demonstration and Tactile Corrections

Within Learning from Demonstration (LfD), teacher executions of a desired behavior are recorded
and a policy, or mapping from world state to robot action, is derived from the resultant dataset. LfD
has seen success on a variety of robotics applications, and has many attractive characteristics for
both teacher and learner [3]. Even so, policy development typically still is non-trivial, and to have
a robot learn from its execution performance, or experience, can be a valuable policy improvement
tool [1]. Our work employs tactile corrections to modify a policy learned through demonstration,
for the purposes of both policy refinement and reuse.
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2.1 The Tactile Policy Correction Algorithm

Under our Tactile Policy Correction (TPC) algorithm [2], a policy is initially derived from task
demonstration by a teacher. We formally define the world to consist of actions A ∈ R` and observa-
tionsZ ∈ R(m+n) of world state. An observation z ∈ Z consists of two components, z = (zϕ, z¬ϕ),
where zϕ ∈ Rm describes the robot pose, and z¬ϕ ∈ Rn describes any other observables that are of
interest to the policy. We define a demonstration to consist of a sequence of T observations {zj}Tj=1,

recorded during teacher execution of the task. The collected set D = {zj}Nj=1 of demonstrations,
totaling N recorded observations, is then provided to the robot learner. From this set a policy
π : Z → A is derived. We decompose policy execution into two steps: pose prediction and action
selection. Pose prediction is accomplished via regression techniques, based on state observations.
Action selection is accomplished via a robot-specific controller.

Following demonstration and policy derivation, the robot executes with its policy and receives tactile
corrections from the human teacher. Tactile corrections are used within two capacities, either to
refine the existing policy or to build a new policy bootstrapped on the demonstrated policy. The
robot learner translates tactile feedback into an incremental shift δt ∈ Rm in the robot pose. The
form taken by the feedback is platform-specific, depending both on the tactile sensors employed to
detect human touch and how the sensor feedback is processed. The robot controller is then passed the
new adjusted pose, for which the incremental shift δt is added to the current robot pose ϕt ∈ Rm.
The timestep concludes with the recording of observation zt =

(
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ϕ, z
t
¬ϕ

)
, that encodes within zt

ϕ

the current pose ϕt corrected by tactile feedback, into the set of corrected execution points Dc.

Upon completion of the entire execution, policy π is rederived from demonstration setD and the set
of corrected executions Dc; the corrected execution thus is treated as a new demonstration for the
policy. Policy derivation gives greater importance to the corrected data, through a weight wj
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for point zj ∈ D ∪Dc, where N is the number of datapoints in D, and Nc the number in Dc, and
w̄(zj

¬ϕ) is a global weight function dependent on execution time τ , which we encode within zj
¬ϕ.

The TPC algorithm is agnostic to the regression techniques used for pose prediction and action selec-
tion. In our empircial validation, pose prediction is accomplished through the regression technique
of GMM-GMR, and action selection through an inverse kinematic controller.

2.2 Empirical Validation

We have implemented [2] the TCP algorithm on a small 57-DoF humanoid, the iCub robot. In the
validation task, the robot learns to position the end-effector of its 7-DoF arm for the grasping of
different objects at various locations. Task demonstration was performed via teleoperation of the
robot arm by a human teacher, during which the robot recorded observations from its own sensors;
observations zt ∈ R8 consisted of the robot pose ϕt (i.e. zϕ) and time τ t (i.e. z¬ϕ). Tactile
corrections were provided through a touch pad interface that allowed for translational and rotational
adjustments at the wrist and hand of our 7-DoF manipulator (Fig. 1A). Corrections were employed
to refine the demonstration policy, and to build other policies able to accomplish alternate tasks;
namely, to arrive at a different location or with a different end-effector orientation.

Policy refinement resulted in improved grasp quality, measured as the number of fingers in contact
with the object, as well as an increase in the number of successful grasps able to lift the object
from the table. Policy reuse enabled the development of policies able to execute undemonstrated
position-object combinations (Fig. 1B,C).

3 Multiple Data Sources within TCP

We now consider our TCP algorithm from the viewpoint of multiple data sources, and contribute a
novel formulation by which to characterize source. We further identify the design decisions currently
under consideration for an algorithm that explicitly addresses data source under our formulation.
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Figure 1: Top: (A) Schematic of the touch pads controlling the robot wrist and hand. Fingers
sliding on opposite pads can result in both rotational or translational arm motions. Bottom: Grasp
trajectories in Cartesian space, with the corrected trajectories showing policy (B) refinement and (C)
reuse. (D) The axes of our data source characterization.

3.1 Formalism

We formalize the definition of a data source under our paradigm according to three axes (Fig. 1D).
The first axis is the teacher, where multiple teachers might be involved in policy development. The
second axis is the control technique, where different mechanisms might control the platform from
which data is being recorded. The third axis is task, where data intended to accomplish different
tasks are assumed to derive from different sources. Given n demonstration Teachers, m control
Techniques and ` Tasks, the total possible number of sources that might provide data is n×m× `.
The empirical implementation just presented utilized two different human teachers (Teacher A, B),
one for demonstration and one for correction. Similarly two control techniques were employed
(Technique A, B): teleoperation of the robot for the purpose of demonstration, and kinesthetic repo-
sitioning through a tactile interface for the purpose of correction. Policies for three tasks were
developed (Task A, B, C): to grasp a ball at the demonstrated location (refinement) and at a new
location (reuse), and to grasp a bottle (reuse).

Under our proposed data source formalism, the work of the previous section therefore had the po-
tential to produce data from 12 sources (2 × 2 × 3).1 The current TCP algorithm however does
not distinguish between Teachers, Techniques or Tasks, 2 and rather distinguishes between only old
versus new data, with new data being weighted more heavily during policy rederivation.

3.2 Open Questions

Data derived from each source potentially differs in quality, as well as task appropriateness. For
example, one teacher might be more adept at demonstrating the task and thus provide higher quality
demonstration data, or one task might be more similar to the task under development and thus its
correction data more appropriate for reuse. Our goal is to develop an algorithm able to determine
these differences and fuse the multiple data sources automatically. There are many open design
decisions for the development of such an algorithm, a handful of which we identify here.

One design decision is the choice of data source representation. We have delineated three axes along
which our data can differ in source, but whether or not to include all of these axes within a given
problem formulation is open for debate. Instead of all three, one could choose to split along only two

1Only 4 of the 12 sources produced data however (demonstration: TeacherA-TechniqueA-TaskA, refine-
ment: TeacherB-TechniqueB-TaskA, reuse: TeacherB-TechniqueB-TaskB and TeacherB-TechniqueB-TaskC).

2Any separation along these lines was coincidental or external to the algorithm: the old-new data split
happened to also separate the two Teachers and Techniques, and different Tasks were learned separately.
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axes; for example, to consider each unique Teacher-Technique3 combination to be a distinct source,
regardless of task. One could even choose to split along a single axis only; for example along the
Technique axis, and thus to have models that are agnostic to differences in teacher or task. Note that
to split along no axes would be to treat all data as if from a single source.

To what extent the algorithm reasons about the different sources, along with the amount of informa-
tion that it is provided to do so, is a second decision. For example, the learner might be provided
with a model of the relationships between data sources, and labels indicating from which source
each datapoint derives. Perhaps the sources are partly labeled (e.g. by teacher only) or entirely
unlabeled, and models are provided that enable the learner to infer data source from sensor readings.

Given a set of identified sources, a third decision is the manner of integration between the multiple
data sources. For example, one approach could bootstrap a policy for a new task by incorporat-
ing data from prior Task sources based on nearness within the observation space (as in [4]). An-
other approach could attach some sort of reliability measure to different sources, and then use this
measure during integration (similar to [6]). A reliability measure would require a mechanism by
which the performance of each source is evaluated, for example accumulated state reward or credit
from a human teacher. Depending on the data source representation, a measure that discriminates
between sources could indicate data quality (e.g. between different Teachers) or appropriateness
(e.g. transfer to another Task), or both, and thus be used for the purposes of policy refinement or
reuse. Another option could leverage the multiple data sources against each other, for example to
extract the important characteristics of a particular Task by comparing data produced from different
Teacher-Technique combination sources (similar to [5]).

A fourth design decision is the level - individual datapoints, entire sources - at which integration
occurs. For example, consider that the data sources are to be combined into a single prediction. At
one extreme, a model is developed for each source and the predictions from all models are combined
into a single prediction. At the other extreme, data from all sources are combined into a single model,
which then makes the single prediction.

3.3 Conclusions

We have considered our approach for policy development, via demonstration and tactile corrections,
from the standpoint of multiple data sources, and contributed a novel formulation by which to char-
acterize data source within this approach. Some of our criteria are particular to LfD (e.g. multiple
teachers), while other criteria are particular to our correction paradigm (e.g. control technique).
Future work will develop an algorithm that reasons explicitly about these different sources.
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