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1 Introduction

1.1 Itô and Stratonovich SDEs

1-dimensional stochastic differentiable equation (SDE) is given by [6, 7]

dXt

dt
= f(Xt, t)dt+ g(Xt, t)dWt (1)

where Xt = X(t) is the realization of a stochastic process or random variable.
f(Xt, t) is called the drift coefficient, that is the deterministic part of the SDE
characterizing the local trend. g(Xt, t) denotes the diffusion coefficient, that
is the stochastic part which influences the average size of the fluctuations of
X. The fluctuations themselves originate from the stochastic process Wt called
Wiener process and introduced in Section 1.2. Interpreted as an integral, one
gets

Xt = Xt0 +
∫ t

t0

f(Xs, s)ds+
∫ t

t0

g(Xs, s)dWs (2)

where the first integral is an ordinary Riemann integral. As the sample
paths of a Wiener process are not differentiable, the Japanese mathematician
K. Itô defined in 1940s a new type of integral called Itô stochastic integral.
In 1960s, the Russian physicist R. L. Stratonovich proposed an other kind of
stochastic integral called Stratonovich stochastic integral and used the symbol
“◦” to distinct it from the former Itô integral. (3) and (4) are the Stratonovich
equivalents of (1) and (2) [1, 6].

dXt

dt
= f(Xt, t)dt+ g(Xt, t) ◦ dWt (3)

Xt = Xt0 +
∫ t

t0

f(Xs, s)ds+
∫ t

t0

g(Xs, s) ◦ dWs (4)

The second integral in (2) and (4) can be written in a general form as [8]

∫ t

t0

g(Xs, s)dWs = lim
h→0

m−1∑
k=0

g(Xτk
, τk)(W (tk+1)−W (tk)) (5)
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where h = (tk+1 − tk) with intermediary points τk = (1 − λ)tk − λtk+1,
∀k ∈ {0, 1, ...,m− 1}, λ ∈ [0, 1]. In the stochastic integral of the Itô SDE given
in (2), λ = 0 leads to τk = tk and hence to evaluate the stochastic integral
at the left-point of the intervals. In the definition of the Stratonovich integral,
λ = 1/2 and so τk = (tk+1 − tk)/2, which fixes the evaluations of the second
integral in (4) at the mid-point of each intervals [8].

To illustrate the difference between the Itô and Stratonovich calculi, lets
have a closer look at the stochastic integral

∫ T

t0

W (s)dWs = lim
m→∞

m−1∑
k=0

W (τk)(W (tk+1)−W (tk)) (6)

=
W (t)

2
+ (λ− 1

2
)T (7)

By combining the result of (7) with the respective values of λ discussed above
for both interpretations, we obtain [8]

∫ T

t0

W (s)dWs =
1
2
W (t)− 1

2
T (8)∫ T

t0

W (s) ◦ dWs =
1
2
W (t) (9)

If we solve (2) and (4) of which the stochastic integrals (8) and (9) are
respectively part of, one see that the Itô and Stratonovich representations do
not converge towards the same solution. Conversions from Itô to Stratonovich
calculus and inversely are possible in order to switch between the two different
calculi. This is achieved by adding a correction term to the drift coefficients [1].

dXt = f(Xt)dt+ g(Xt)dWt (10)
dXt = f(Xt)dt+ g(Xt) ◦ dWt (11)

f = f − 1
2
g′g (12)

where g′ = dg(Xt)
dXt

is the first derivative of g. If the relation (12) is used
(called the Itô-Stratonovich drift correction formula), the integration of the
Stratonovich SDE (11) leads now to the same result as the integration of the
Itô SDE (10) [1].

Both integrals have their advantages and disadvantages and which one should
be used is more a modelling than mathematical issue. In financial mathematics,
the Itô interpretation is usually used since Itô calculus only takes into account
information about the past. The Stratonovich interpretation is the most fre-
quently used within the physical sciences [6]. An excellent discussion of this
subject can be found in [10], in particular see Chapter IX, Section 5: The Itô-
Stratonovich dilemma.
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1.2 Standard Wiener process

A scalar standard Brownian motion, or standard Wiener process, over [t0, T ] is
a random variable W (t) that depends continuously on t ∈ [t0, T ]. For t0 6 s <
t 6 T , the random variable given by the increment W (t) −W (s) is normally
distributed with mean µ = 0 and variance σ2 = t − s. Equivalently, W (t) −
W (s) ∼

√
t− sN (0, 1) with W (t0 = 0) = 0 [4]. The conditions for the stochastic

process W (t) to be a Wiener process are [6]

1. [W (t), t > 0] has stationary independent increments dW

2. W (t) is normally distributed for t > 0

3. 〈W (t)〉 = t for t > 0

4. W (0) = 0

1.3 Discretized Brownian motion

Lets take t0 = 0 and divide the interval [0, T ] into N steps such as: h = T/N .
Lets also denote Wj = W (tj) with tj = jh [4].

Wj = Wj−1 + dWj W0 = 0 j = 1, 2, ..., N (13)

where each dWj is an independent random variable of the form
√
hN (0, 1)1.

The figure below displays the realizations of three independent Wiener processes.
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Figure 1: Three discretized, 1-dimensional Brownian paths with T = 1 and
N = 500. It is worth noting that when t → ∞, the process has an infinite
variance but still an expectation equal to zero. The trajectories have been
simulated with the Java tool libSDE (see Section 4).

1N (0, h) =
√

hN (0, 1)
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2 Numerical integration

2.1 Iterative methods

It is difficult to deal with the SDEs analytically because of the highly non-
differentiable character of the realization of the Wiener process. There are
different, iterative methods that can be used to integrate SDE systems. The
most widely-used ones are introduced in the following sections.

• Explicit order 0.5 strong Taylor scheme
Euler-Maruyama (EM) and Euler-Heun (EH)

• Explicit order 1.0 strong Taylor scheme
Milstein and derivative-free Milstein (Runge-Kutta approach)

• Explicit order 1.5 strong Taylor scheme
Stochastic Runge-Kutta (SRK)

2.2 Explicit order 0.5 strong Taylor scheme

2.2.1 Euler-Maruyama method

The simplest stochastic numerical approximation is the Euler-Maruyama method
that requires the problem to be described using the Itô scheme. For Stratonovich
interpretation, one can use the Euler-Heun method, see Section 2.2.2.

This approximation is a continuous time stochastic process that satisfy the
iterative scheme [9]

Yn+1 = Yn + f(Yn)hn + g(Yn)∆Wn Y0 = x0 n = 0, 1, ..., N − 1(14)

∆Wn = [Wt+h −Wt] ∼
√
hN (0, 1) (15)

where Yn = Y (tn), hn = tn+1 − tn is the step size, ∆Wn = W (tn+1) −
W (tn) ∼ N (0, hn) with W (t0) = 0. From now on, the following notation is
used: h = hn (fixed step size), fn = f(Yn) and gn = g(Yn). (14) becomes

Yn+1 = Yn + fnh+ gn∆Wn (16)

As the order of convergence for the Euler-Maruyama method is low (strong
order of convergence 0.5, weak order of convergence 1), the numerical results
are inaccurate unless a small step size is used. In fact, Euler-Maruyama rep-
resents the order 0.5 strong Taylor scheme. By adding one more term from
the stochastic Taylor expansion, one obtains a 1.0 strong order of convergence
scheme known as Milstein scheme [9].

2.2.2 Euler-Heun method

If a problem is described using the Stratonovich scheme, then the Euler-Heun
method has to be used instead of the Euler-Maruyama method that is only valid
for Itô SDEs [3, 6].
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Yn+1 = Yn + fnh+
1
2
[
gn + g(Ȳn)

]
∆Wn (17)

Ȳn = Yn + gn∆Wn (18)

∆Wn = [Wt+h −Wt] ∼
√
hN (0, 1) (19)

2.3 Explicit order 1.0 strong Taylor scheme

2.3.1 Milstein method

The Milstein scheme is slightly different whether it is the Itô or Stratonovich
representation that is used [3, 6, 7]. It can be proved that Milstein scheme
converges strongly with order 1 (and weakly with order 1) to the solution of the
SDE. The Milstein scheme represents the order 1.0 strong Taylor scheme.

Yn+1 = Yn + fnh+ gn∆Wn +
1
2
gng
′
n

[
(∆Wn)2 − h

]
(20)

Yn+1 = Yn + fnh+ gn∆Wn +
1
2
gng
′
n(∆Wn)2 (21)

∆Wn = [Wt+h −Wt] ∼
√
hN (0, 1) (22)

where g′n = dg(Yn)
dYn

is the first derivative of gn. The iterative method de-
fined by (20) must be used with Itô SDEs whether (21) has to be applied to
Stratonovich SDEs. Note that when additive noise is used, i.e. when gn is
constant and not anymore a function of Yn, then both Itô and Stratonovich
interpretations are equivalent (g′n = 0).

2.3.2 Derivative-free Milstein method

The drawback of the previous method is that it requires the analytic specifica-
tion of the first derivative of g(Yn), analytic expression that can become quickly
highly complexe. The following implementation approximates this derivative
thanks to a Runge-Kutta approach [6].

Yn+1 = Yn + fnh+ gn∆Wn +
1

2
√
h

[
g(Ȳn)− gn

] [
(∆Wn)2 − h

]
(23)

Yn+1 = Yn + fnh+ gn∆Wn +
1

2
√
h

[
g(Ȳn)− gn

]
(∆Wn)2 (24)

Ȳn = Yn + fnh+ gn
√
h (25)

∆Wn = [Wt+h −Wt] ∼
√
hN (0, 1) (26)

where (23) and (24) must be applied respectively to Itô and Stratonovich
SDEs.

2.4 Explicit order 1.5 strong Taylor scheme

2.4.1 Definition

By adding more terms from a stochastic Taylor expansion than in Milstein
scheme, higher strong orders can be obtained. A method to generate a strong
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order 1.5 method is introduced by Burrage & Platen [2, 5]. For the need of this
method, a random variable ∆Zn is introduced.

∆Zn =
∫ τn+1

τn

∫ τs2

τn

dWs1ds2 (27)

which is a Gaussian distributed with mean zero, variance 1
3h

3 and correlation
E(∆Wn∆Zn) = 1

2h
2 [2, 5].

2.4.2 Stochastic Runge-Kutta

This implementation allows to achieve a 1.5 strong order of converge. This is
the highest strong order obtained with a Runge-Kutta approach that keeps a
“simple” structure. This implementation makes use of the ∆Zn introduced in
(27) [2, 5]. Note that this method has been designed for Itô SDEs.

∆Yn+1 = Yn + fnh+ gn∆Wn +
1
2
gng
′
n

[
(∆Wn)2 − h

]
(28)

+ f ′ngn∆Zn +
1
2

[
fnf

′
n +

1
2
g2
nf
′′
n

]
h2 (29)

+
[
fng
′
n +

1
2
g2
ng
′′
n

]
[∆Wnh−∆Zn] (30)

+
1
2
gn
[
gng
′′
n + (g′n)2

] [1
3

(∆Wn)2 − h
]

∆Wn (31)

3 Convergence

An approximation Y converges with strong order γ > 0 if there exists a constant
K such that [2]

E (|XT − YN |) 6 K · hγ (32)

for step sizes h ∈ (0, 1), with XT being the true solution at time T and
YN the approximation. The symbol E stands for expectation. It appears that
Euler-Maruyama scheme converges only with strong order γ = 0.5. Strong
approximation is tightly linked to the use of the original increments of the
Wiener process [2]. However in several applications, it is not needed to simulate
a pathwise approximation of a Wiener process. For instance, one could be only
interested in the moments of the solution of a SDE. A discrete time approxi-
mation Y converges with weak order β > 0 if for any polynomial g(·) there exists
a constant Kg such that

|E(g(XT ))− E(g(YN ))| 6 Kg · hβ (33)

for step sizes h ∈ (0, 1). It turns out that Euler-Maruyama scheme converges
with weak order β = 1.0 [2].
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If a numerical method is convergent with order γ and the step size is made
k times smaller, then the approximation error decreases by a factor kγ . For
instance, if the order equals 1 and we want to decrease the error 100 times,
we have to make the step size 100 times smaller. If the order equals 0.5 and
we still want to decrease the error 100 times, we have to make the step size
1002 = 10000 times smaller.

4 libSDE

libSDE is an open-source Java library to simulate Stochastic Differential
Equations (SDEs). More in detail, the user can:

• simulate Itô and Stratonovich SDEs

• specify the integration method to be used among Euler-Maruyama, Euler-
Heun, derivative-free Milstein, and Stochastic Runge-Kutta methods.

• set the integration step-size

• set the number of trajectories (time series) to be simulated

• set the time interval to be considered [t0, T ]

• set the number of time points per time serie

• use the libSDE framework to implement other integration methods and
functions to be simulated

libSDE has been implemented to simulate intrinsic noise affecting gene ex-
pression in cells (both transcription and translation were modeled) and is now
part of GeneNetWeaver (GNW), a tool for the automatic generation of in silico
gene networks and reverse engineering benchmarks (http://gnw.sf.net).

5 Credits

Copyright (c) 2009-2010 Thomas Schaffter
The Java library libSDE has been released open source under an MIT license.
If this software or the present tutorial was useful for your scientific work, please
cite:

T. Schaffter, Numerical Integration of SDEs: A Short Tutorial, Swiss Federal
Institute of Technology in Lausanne (EPFL), Switzerland, 2010, Unpublished
manuscript.
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