Velocity and concentration profiles measurements in concentrated particle suspensions

S. Wiederseiner, N. Andreini, C. Ancey & M. Rentschler

Laboratoire d'Hydraulique Environnementale Ecole polytechnique fédérale de Lausanne

IMA conference on dense granular flows

January 5-9, 2008 - Cambridge

Geophysical flows

Geophysical flows

Complex fluids

- Particles
 - Material
 - Shape
 - Size distribution
 - Roughness
- Interstitial fluids
 - Viscosity

How do we measure the rheological properties?

- Yield stress
- Shear-thinning,
 Shear-thickening
- Thixotropy, rheopexy

Geophysical flows

Complex fluids

- Particles
 - Material
 - Shape
 - Size distribution
 - Roughness
- Interstitial fluids
 - Viscosity

How do we measure the rheological properties?

- Yield stress
- Shear-thinning,
 Shear-thickening
- Thixotropy, rheopexy

Wide gap (because of the size distribution)

T : Total Torque Ω : Angular velocity τ : shear stress $\dot{\gamma}$: shear rate

Solve the Couette inverse problem

$$\tau(r) = \frac{T}{2\pi r^2 h}$$

$$\Omega = \int_{R_{in}}^{R_{out}} \frac{\dot{\gamma}(r)}{r} dr$$

r : Radius h : Height of fluid

Rin/out: Radius of the inner/outer cylinder

Associated Couette inverse problem

Solving methods:

Infinite series approach

$$\dot{\gamma}(\tau) = \frac{\omega}{\ln s} \left[1 + \ln s \frac{d \ln \omega}{d \ln \tau} + \frac{(\ln s)^2}{3\omega} \frac{d^2\omega}{d(\ln \tau)^2} + \dots \right]$$

- Least square approach
- Projection approach
- Adjoint operator approach

$$\min ||\omega - \mathbf{K}\dot{\gamma}||$$

$$<$$
 $K\dot{\gamma}, u_i> = <\omega, u_i>$

$$\dot{\gamma} = \sum_{i \in J} \langle K\dot{\gamma}, u_i \rangle \Psi_i$$

$$K^*u_i = \Psi_i$$

Solving methods:

- Mooney (1931)
- Krieger & Maron (1952)
- Krieger & Elrod (1953)
- Krieger (1968)
- Yang & Krieger (1978)
- Mac Sporran (1986)(1989)
- Nguyen (1992)
- Yeow (2000)
- Ancey (2005)
- De Hoog & Anderssen (2005)(2006)

Example : an artificial Herschel-Bulkley fluid $\tau = \tau_V + K \dot{\gamma}^n$

$$s = \frac{R_{in}}{R_{out}} = 0.9$$

The same fluid with a wide-gap geometry

$$s = \frac{R_{in}}{R_{out}} = 0.2$$

Ancey, J. Rheology 49 (2005) 441-460

Ancey, J. Rheol. 45 (2001)1421-1439

S: adimensionalized shear stress Γ: adimensionalized angular velocity

S : adimensionalized shear stress

 $\boldsymbol{\Gamma}$: a imensionalized angular velocity

- Shear localization?
- Particle segregation?
- Particle migration?
- Ordering?

- Particle roughness?
- Particle Shape?
- Slipping?

Do we measure material's physical properties...

... or disturbing effects?

Classical and optical rheometry

Continuum mechanics approach Classical rheometry T and Ω Solve the Couette inverse problem au and $\dot{\gamma}$

Rheophysical approach Clear suspensions Particle motion (FPIV / FPTV) Differentiate the velocity profile au and $\dot{\gamma}$

Properties of the suspensions

Where do the properties come from?

Studied flows

concentrated particle suspensions (25mm thickness)

Properties of the suspensions

The simplest complex fluid

- Iso-index ⇒ transparency
- Iso-density ⇒ No gravity effects
- Molecular tagging of the particles ⇒ the laser excites fluorescence

Particles

- Shape : spherical
- Granulometry

Fluid

- Three fluids mixture
- Newtonian
- Viscosity : variable

Properties of the suspensions

Non colloidal and highly concentrated particle suspensions

- Spherical PMMA particles with a diameter of 50 to 350 μm
- Mixture of three newtonian fluids (Lyon & Leal 1997)

Wet sieving

Temperature and wavelength effects

Temperature effects

Wavelength effects

Temperature effects

Density

• Refractive

Temperature effects

Temperature effects

Density

Refractive index

Temperature effects

Temperature effects on light transmission

Temperature effects on light transmission

Measurement method

Wavelength effects

Flows

Effects of mismatch in the Refractive index on transmission

Wavelength effects

Wavelength effects

Wavelength effects

Wavelength effects

RGB picture with a color CCD camera:

Red component

Measurement method

•0000

Flows

Measurement method

00000

Flows

Measurement setup

Flows

The setup

Validation measurements

$$V_{\theta}(r) = \frac{A}{r} + Br \text{ with } A = \frac{R_{in}^2 R_{out}^2 \Omega}{R_{out}^2 - R_{in}^2}, \ B = \frac{R_{in}^2 \Omega}{R_{in}^2 - R_{out}^2}$$

Time evolution of the suspension

Bottom end effects

Flow curve derivation

Flows

Flow curve comparison

Conclusion

Future work

We want to use the same techniques to carry out experiments on the dam-break problem (sudden release of a finite volume of fluid down a plane) and measure the cross-stream velocity profile inside the bulk within the head.

Flows

Acknowledgment

- Christophe Ancey
- Nicolas Andreini, Martin Rentschler
- The Swiss National Science Foundation

- Iso-index ⇒ transparency
- Iso-density ⇒ No gravitation effects
- not toxic

Particles

- Sphericity
- Good optical properties
- Granulometry
- Fluorecent molecular tagging

Fluide

- No evaporation
- Wet the PMMA
- Should not disolve PMMA
- Low absorption
- No excitation
- Variable viscosity

Fluides

Lyon (1997)

Dibromohexane

Triton X 100

Huile UCON 75H

Transparent concentrated noncolloidal suspensions

- Spherical particles : 200 to 600 μ m
- Iso-index and iso-density fluid mixture

Why Rhodamine 6G?

Excitation du pyrromethene 597

How much rhodamine 6G?

High concentration

 \Downarrow

More fluorescence

COMPROMIS

 \uparrow

Lower effect on the refractive index

Low concentration

Produit brut

Produit tamisage par voie humide dans de l'?thanol

Choix de la Rhodamine 6G

- Excellent efficacit?
- suffisamment faible "Stokes shift"

Suspension properties

- Iso-index ⇒ transparency
- Iso-density ⇒ No gravitation effects
- Non toxic

Particules

- Sphericity
- Good optical properties
- Granulometry
- Fluorecent molecular tagging

Fluide

- No evaporation
- Wet the PMMA
- Should not disolve PMMA
- Low absorption
- No excitation
- Variable viscosity

