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Abstract

In the forward problem of acoustic tomography, one needsetalile to implement the wave equation numerically and find
the values at each receiver point. In this research the lgessolutions are studied and their properties are disduasd one
proposed algorithm is selected as the satisfactory resuhe sense of less numerical dispersion. Stability cammitifor these
algorithms are also investigated.

I. INTRODUCTION

The wave equation is one of the most used partial differbetjaations. Its various applications include acousticagraphy
for sound propagation models, seismology and oceanogr&uinge the modeling of wave equation analytically is notgiue
so many efforts has been devoted during the last 30 yearsdmiimerical implementations for the wave equation to mimic
the exact result as much as possible. We are interested fiméhgrid size case of its implementation which is used foruatio
tomography of breast cancer. Since this is a medical didignestup the accuracy is of most importance, and results brais
reliable. Previous works by Jovanovic [1] has been doneoteesthe problem using ray theory and through this projeds it
tried incorporate the wave equation and ray-theory and inymeays improve the results:
« Use the easy reconstruction of the ray-theory and improgedbults by doing the forward problem with wave equation
to recognize false sensor readings.
« Use the reconstruction of the ray-theory as an initial apipnation for an iterative algorithm to reconstruct the stdun
speed.
« Use the wave equation by itself to do the inverse reconstruct
for all of these applications, there is a need to numericatlplement the forward problem. In the following some method
are investigated to do this accurately. the outline is aevd; first the problem is introduced, then the Leap-Frog B
scheme is studied in more details and absorbing boundangiteams are derived and after introducing a better methad th
feasibility of usage of implicit methods is shown. Finallgnse simulation results are presented.

Il. PROBLEM DEFINITION AND IMPLEMENTATION

The goal in the first phase of the project has been to modeldhgafd problem in wave-based tomography. Namely,
assuming that the inside object is available and then trynib thie wave values propagated from a source in the receilers.
do this one needs to incorporate the wave equation
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whereu(r, t) is the sound pressure measured at locati@md timet, ¢(r, ¢) is the source term ane(r) is the sound speed at
each positionr. For this problem, assuming that the changes along thirééion of the object are negligible, we are going
to restrict ourself tar € R? in space. For the forward problem to be solved analyticale needs to find a close solution for
the above wave equation which is not possible for the inha@megus medium inside.

A. Numerical Implementation

To be able to find the results of wave propagation one can ateitl numerically knowing the characteristics of the ie-th
middle object. For this purpose the region of interest incepia divided into (in our case) rectangular cells in each biciv
the value for sound speed is known and also the time axis éisdidxretized to equally distant samples.

Thus doing the following second order central finite diffeze approximation

Qu(r,t)  wu(r,t+ At) — 2u(r,t) + u(r,t — At)
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where
u"(r) = u(r,nAt), n=0,1,2,---

and putting it in (1), leads to
u" T (r) = At (r)[V2u(r) — g(r)"] + 2u™(r) — u" " (r) ®)

In our problem the source is assumed to be a point source arsdthle response in space is a dirac and in time a desired
signal to be sent towards the receivers

s(r,t) = s(t)0(r — rspe) (4)

So assuming that the source is changing very smoothly inespad time as in [2] we can implement it as a hard source and
get rid of theq(r) in (3) and impose the source valuesufr,,..,t) during the simulations.

Now the only remaining part to make the approximation is ta ffngood replacement fov2u(r). In this regard many
efforts has been done and several schemes introduced tenrapt the second derivatives in space. one can name Legf®2Fro
(LF2), Leap-Frog 4 (LF4), Crank-Nicolson (CN), Optimal MgaAnalytic Discrete Method (ONADM), implicit methods and
Alternative Direct Implicit (ADI) method. In the sequel thd-2 and ONADM are discussed in details and implicit methods
are introduced and the reason of why they cannot be used iprobiem is discussed.

B. Leap-Frog 2 Scheme
One method to replace the laplacian operator in (3) to useebend order central difference with respect:tandy.
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r=(iAz,jAy) Ax2 (5)
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Putting the above expression in (3), one gets the updatimguia for the wave equation to be

+
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Ui,j = At Ci,j Al’Q + AyQ
Advantage of this method is that it is simple and assuming tha= Ay, which is a natural assumption in simulations, one
can rewrite it in a matrix form. Assuming th&"™ contains all values of;; ; at timenAt, and C contains the sound speed
values in each grid point, (6) can be written as

]+ 2u; — 7t (6)
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whereC" is the component-wise square afdis component-wise multiplication and
0O 1 0
h=|1 -4 1|. (8)
0 1 0

Thus as the above formula implies most complexity of the fétlgm is due to filteringU.

1) CourantFriedrichsLewy Stability Condition: For the moment suppose the wave equation is studied in hameogs
medium. According to [3], we will derive the stability cotidin for LF2 scheme.

If one rearranges (6) in the following way

Tt =201 = 20l + NP (whi+ L g ut g L)) — (9)
can define
\_ cAt (10)
T Az

Equation (9), allows one to find the value ofat point P = (zo, yo, o) uniquely as a function of the initial values of the
function at planes = 0 and¢ = 1.

The grid points that influence the value ofat P lie inside a pyramid with base oh= 1 which is of the form of a
rhombus. They call this rhombus as tii@main of dependence of the difference scheme. Obviously the domain of deperglenc
of the wave equation by itself is a circle in the same planaur@at, Friedriche and Lewy in [4] showed that for the diffece
scheme in (9) to be convergent for all smooth initial datadbedition is that the rhombus of dependence of the diffezenc
scheme must contain the circle of dependence of the diffi@etexguation in its interior. With this condition and assamthat
P = (0,0,nAt), the domain of dependence as illustrated in Fig.1 is théecirt+ > < (cnAt)?2. Also as shown in the same
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Fig. 1 — Domain of dependence of a point P = (0,0,nAt) for wave
equation (circle) and the difference scheme (rhombus) for LF2.
the C.F.L. condition implies that the domain of dependence of
the numerical scheme contain the domain of dependence of
the wave equation.

figure, the rhombus of dependence of the difference schemdiameters equal tnAx. So the C.F.L. condition is satisfied
provided that

cAt 1

A= — < —. 11

Az — /2 (11)

Actually it can be shown that the C.F.L. condition for a LFheme of s-dimensional wave equation is
1
A< —. 12
=75 (12)
It can be deduced form the above discussions that if the meditnot homogeneous the C.F.L. condition will be

Crmax AL 1

< = 13

Az~ /2 (13)

As we will see in the following this condition poses some nieSbns in the use of numerical schemes.

C. Absorbing Boundary Condition

In the acoustic tomography problem, ideally we do not hawelibundary conditions and the medium is assumed to be
infinitely large. But this assumption is not possible in nuited implementations, since the cost of the problem goesfioity.

For this purpose one can take the region of simulation lattgem the real region of interest such that the effect of réfias
from the boundaries do not appear at the time of receivingltégéred signal in the receivers.

On the other hand it is possible to introduce artificial baanes to limit the area of computation in a manner that they
approximate the free space response. One needs boundalijiamn at these artificial boundaries to guarantee a unémeke
well-posed solution to the wave equation [5].

To find the artificial boundaries that mimic the absorbing faries, according to [5] first assume that the conditioes ar
applied to the left wall of the region at = 0. The plane waves traveling to left can be formalized as

u(z,y,t) = od (EkaztLhyy+wt) "

Wherek, = ,/kZ — w?.
These waves satisfy the following condition for fixéd, &)
= 0. (15)

(5 -2y =),

This formulation means that if one has the above conditiontie waves near the left wall, they are going only to the left
direction and ideally no reflections happen. The same proeedan be done for wave packets of several frequencies and
derive the relations, but the problem is such a conditiortierboundary is non-local in space and time. So one needsdo fin
boundary condition which is first local in space and time aacbsad leads to well-posed mixed boundary value problem for
the wave equation.




The trick is to simplify the expression in (15) with the apgiroation | /1 — k2/w? = 1 — k2 /2w* + O(k, /w") made at
k, = 0 (perpendicular incidence angle). Thus the first approxonaill be

d jw
= = 16
(dl‘ C )U =0 0 ( )
recalling thatjw corresponds to first derivative in time, one gets
15t approximation
(3 - i)u =0. (17)
Jx  cOt/) lz=0
2" approximation
0? 0? 0? 0 18
(83@51& 02t + 2082y)u z=0 (18)

It is shown in details in [5] that the above formulations ofsatbing boundary conditions are both well-posed for wave
equation.
Now for the numerical implementation of above formulas oae assume to have the gritl( x;,yx), where:
n=0,1,..., ez t"=nAt
1=0,1,....0nae a1 =1Ax
k=0,1,....knax Yx = kAy

defining:

2h

Equation (6) can be rewritten as
(D!, D" — DLD* — DYDY )uj', =0 (19)

And for the absorbing boundary conditions
15t app.
n 1 n n
DY (ug + u@,?) - EDi(Uo,k +ufy) =0
Which leads to:

n 1 n n n
uojgl = m[ulfgl(cAt — Az) +ug p (Ax — cAt) + uf  (Az + cAt)] (20)

The second approximation can also be formalized as

2" app.
T n 1 n n ¢ n— n
DoDiug - Q_CDZLDt— (g +uie) + ZDiDE (uo,kl + Uﬂ:l) (21)
This leads to the relation:
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Fig. 2 — Dispersion plot of LF2, the horizontal axis is k, and the vertical
one is ky. the lines are the fixed-w curves starting from w =
m/8At to w = 117 /8At. the curves are getting more and more
farther from a circle as the frequency goes larger. Image taken
from [6].

For our case since the difference between the outpuaf'aind2™ is not significant comparing the complexity, we preferred
to use thelst approximation.

D. Numerical Dispersion Analysis
Assume that the following plane wave is the solution of aiphdifferential equation.

u(r,t) = /@K (23)
and assume that for each real wave number vdctdhere exists a real frequenceysuch that (23) is a solution. The relation
w=w(k) (24)

is called thedispersion relation for the corresponding differential equation [6].
The energy associated with wave numkemoves asymptotically at thgroup speed

C,(k) = Viw (25)

It is shown [6] that in the numerical implementation of theveaquation, the signals are moving with their group vejocit
rather than the phase velocity. Now let us consider the 2Dewsyuation (1) implemented by LF2 scheme as in (6). The
dispersion relation for the analytical wave equation is

w? = k2 +k, (26)
But for LF2 this relation becomes [6]

At kyA kyA
sin? WT = \*[sin” Tx + sin? y_z] (27)

2
This relation is plotted in Fig.2. In [6], it is assumed thgplane wave is traveling witll as the angle from the axis of the
normal to it. Then the group speed and traveling angle become

Ay /sin? ky Az + sin? kyAx

= 2
Cal sin wAt ’ (28)
.y (sink,Ay
0 - (SRt @
The above expressions to the second order are
k|Az)? 3+ cos40
|Cy| =~ ¢ — ( |8 ) [ 1 — N7, (30)
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These equations show that with small choicgldfAz, the numerical dispersion can be canceled.

sin 46. (31)

E. Limitations

As illustrated before, one can easily see that numericg@led$son is a non-separable fact from numerical implemgmtst
In LF2 as will be depicted in next chapter (Fig.7), this effeauses very bad artifacts which make the simulation inateu
for our application. The goal is to overcome this effect. @atural idea can be to make the space grid sixe)(smaller. But
as illustrated in the beginning of the chapter this meansrtttae number of samples should be collected and larger ceatri
must be used in the simulations, therefor the computati@ghraemory cost grows exponentially with this factor.

Even if one overcomes this problem with simulations, the.lC.Eondition implies that the space steps can’t be arlilgrar
small while the time steps are kept fix. The ratio between thamst be constant and less thaf/2. Which means that one
would also need to decreagg as well, and this would imply iterations and complexity ire thlgorithm.

F. ONADM Scheme

This recently proposed method by Yang et al. as indicated7]nig called Optimal Nearly Analytic Discrete Method
(ONADM). For computational purposes they define

u
u, = 3_%

Jy i.j
Obviously all of components of this matrix satisfy the waggiation provided that satisfies it. If one writes the Taylor series
expansion ofu]t' anduf'; ' as

du At? 0%u
n+1l __ At n = (2 Ty\n
i =g AT+ S (5 -
A_ﬁ&n LA ot
6 o3’ T 24 ogpd D
du At? 0%u
w st = - AN+ = ()
J ot . 24 ot2 ' (33)
Atg(ag )+ A_t(a_u)
6 ot 24 ot/
Adding (32) and (33) together one gets
0%u Att 10%u\n
n+1 n 1 2 - ([
ut = ouy, + At (a#) (aﬁ)” (34)
After substituting the appropriate values f()at2 ) and ( 8t4) according to wave equation, the result will be
uilt =2up; —uiy
0%*u, n o%u, n
A2 z -
+ (i, At) Kaxz)i,j + (ayz)m’] (35)
(CiyjAt)zl 8411 n 8411 8411 n

12 [(@)i,j+2(ax2ay2)i,j+ (8—y4)”]
The values of the derivatives are derived in [7] and the kdfedince of this method with other ones is that first it usas al
first derivative ofu in space for updating the values in time, which causes one ramter of approximation accuracy, and
second the way these derivatives are updates, which inaigsothe previous values of du/dx and du/dy.
For computing the higher order derivativeswfaccording to [8] they define an interpolation function

5

1 d d
G(Az, Ay) =) = 5 (Axa— + Ay ay) (36)
r=0

and higher order derivative af are defined in relation to higher order derivativestfAx, Ay) with respect toAz and Ay.
So if one imagines that the values fa} ;, (0u/0z)}; and(du/dy); ;are stored inU™, V" andH" respectively, would have
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At? o . A .
+ 5—C7 0 [(H" « D) + 5 5C7 @ (H" + Do),
where we have
0 2 0 1/6  —4/3 1/6
Ag=12 -8 2|, Ap=|-4/3 14/3 —4/3
0 2 0 1/6  —4/3 1/6
0 0 0 0 0 0
Bu=|-1/2 0 1/2|, Buw=1[1/2 0 —1/2
0 0 O 0 0 0

D.. =B, D, =BL,.

The procedure for updating the derivative matricésandH is the same and but with different filters and coefficients.
1) Sability Criteria: As indicated in [7], the stability condition in this methoéquires that

A= CmaxB o (38)
Az

Which is less than what we have seen for LF2 scheme and thdasiomuparameters are more restricted, but as the order of
approximation is more here and also the use of higher demstit is expected to get better results which is confirmed b
the simulations.

G. Implicit Methods
For these schemes we will just give an small example and wdlify the impossibility of their usage in our case. For
simplicity consider a 1D wave equation
Pu  ,0%
52 = c 922 (39)
One of the implicit methods used is the backward differenethad. According to this scheme we approximate the wave

equation as
n+l n n—1 n+l n+1 n+1
u 2uj + uj Uiy 2uj +u

J j—1
= 40
c2 A2 Ax? ’ (40)
which can be rearranged as
(1422 ul ™+ — N +ult)) = 2uf — ™ (41)
Following one can write this as a system &f — 1 equations withA/ — 1 unknowns, wherg = 0,1,--- , M. In the matrix
format e \2 -
—+ — r.o.n+17 r n n—1 7
32 2 2 Uy 2uf — uy
A 142\ A it 2up — ul !
= . . (42)
_)‘2 1 + 2)‘2 _)‘2 n+1 n n—1
“X2 14222 [ [2ufy 1 — Ups ]

Thus solving this set of equations is equal to finding theentrvalues of the sound pressure from previous time samples.
The biggest advantage of implicit methods is that they dbatte the stability condition and they are unconditionatabte.

But the limitation for these schemes comes immediately lokilg to the updating matrix. The boundary values are not

updated in this process and assumed to be zero so these metteodnly usable for initial boundary value problems, where

the boundary values for different times are known and fixadceésthe nature of problem is not boundary value problem, we

are unable to use these algorithms in finding wave equatisultse
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Fig. 3 — The measurement setup for acoustic tomography of breast.
Sensors are deployed on a 20 c¢m diameter circle. For the
simulations we used a phantom that is illustrated in figure.
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Fig. 4 — The source signal used in the simulations.

IIl. SIMULATIONS AND DISCUSSIONS

For the simulations two possible media are assumed. One isdmogeneous medium with sound speed 4% m/s and
the other one the same medium but containing a breast phatit@massumed that there are 256 sensors deployed around the
phantom on a circle with diametef cm. The temporal step size is taken to he¢ = 3.2 x 10~ s and the spatial step size
is Ax =1 x 10~* m. So that the ratio\ = cAt/Az = 0.479 is satisfying the stability condition for both LF2 and ONADM
schemes. The shape of the phantom and the sensors is ddpi¢tied3. The sent signal is chosen to be a smooth version of
what is sent in real measurements and is depicted in Fig.4.

A. LF2 Scheme
As discussed in the previous chapter, the LF2 scheme caniternnin matrix format as
n+1 n n—1 At2 O n
U™t =2U0"-U""" + —C- ©(U"xh) (43)
Ax?

The sent signal is the same as illustrated in Fig.4. The eowgghout assumption of absorbing boundary condition igsiliated
in Fig.5. As can be seen in the figure, the waves are gotteasr fatid high frequency parts of the signal are behind andlinave
with lower speed.

B. Absorbing Boundary Condition

For this part the absorbing boundary condition is imposedlit@d walls of the region of interest. The first approximation
is used for the walls and the results are depicted in Fig.@. Mhaximum peak of the reflected waves are less than 5% of the
incident waves in the reflection point. It is also worth mening that since the approximation was doné:jn= 0, namely
perpendicular to the walls, the waves hitting the wall wigihgler angles get more reflected and most of the reflectanees ar
due to these angles.



Fig. 5 — The waves propagating as the result of LF2 scheme.
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Fig. 6 — (a) field values as the result of LF2 scheme without implemen-
tation of absorbing boundary condition, (b)Field values after
implementation of absorbing boundary conditions. It is seen
that most part of the reflectances occur due to the direct signal
from source and in large degree angles.

C. ONADM Scheme

For this purpose the ONADM scheme was implemented and thitseomparing to those of LF2 is shown in Fig.7. as can
be seen from the figure, there is no more numerical dispefsgible and the shape of propagation is preserved as expecte
This implies that although the stability of ONADM is more tiésted than LF2, the results for higher step sizes comgensa
this problem and the choice of smaller step sizes is not densdl any more. Another experiment is also depicted in Fig.8
In this figure we are considering two cases, in the above figheetwo signals correspond to the signals received in vecei
for homogeneous and inhomogeneous cases respectivelse Wieetransmitter is sensor number 1 and the receiver i©sens
number 150. In the below figure, the two signals are the sitadlaorresponds of the above ones. Please pay attentioe to th
rightmost part of the signals below which shows the effecteffiectance which comes behind the signal.
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Fig. 7 — (a) field values as the result of LF2 scheme, (b)Field values as
the result of ONADM scheme. The numerical dispersion effects
is not visible anymore in (b) and the circle shape of traveling is

preserved.
1+ —hom.
—inhom.
OF Sia e - % Sumar-
_1. E
1.3 1.35 1.4
1(s) x10™*
(@
0.02f —hom. |
0.01f ——inhom. {
0 \"
-0.01}f ]
-0.02¢ | ] . ]
1.3 1.35 1.4 1.45
1s) x10™*

(b)

Fig. 8 — (a) Received signals in homogeneous medium and inhomo-
geneous case in the real setup of experiment, (b) Received
signals in homogeneous medium and inhomogeneous case in
the simulations.
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