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ABSTRACT
As privacy moves to the center of attention in networked sys-
tems, and the need for trust remains a necessity, an impor-
tant question arises: How do we reconcile the two seemingly
contradicting requirements? In this paper, we show that the
notion of data-centric trust can considerably alleviate the
tension, although at the cost of pooling contributions from
several entities. Hence, assuming an environment of privacy-
preserving entities, we provide and analyze a game-theoretic
model of the trust-privacy tradeoff. The results prove that
the use of incentives allows for building trust while keeping
the privacy loss minimal. To illustrate our analysis, we de-
scribe how the trust-privacy tradeoff can be optimized for
the revocation of misbehaving nodes in an ad hoc network.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and protection (e.g., firewalls); C.2.1 [Computer-
Communication Networks]: Network Architecture and
Design—Wireless communication

General Terms
Economics, Security, Theory

Keywords
Game theory, Privacy, Trust

1. INTRODUCTION
Security and privacy are often said to be at odds. Much of

this tension boils down to the cost of establishing the trust-
worthiness of entities (e.g., network nodes), which requires
them to disclose their private information. Typical solutions
to this problem propose trading privacy for trust [14], i.e.,
gradually revealing an entity’s private information to gain
a sufficient level of trust. But the majority of these works
address e-commerce environments where, rightfully, the em-
phasis is on establishing the trustworthiness of individual
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entities. Yet, with the emergence of collective intelligence
where only the opinion of a group matters, the data is be-
coming more important than its sources. In addition to
special instances of online environments (e.g., Wikipedia),
certain types of wireless networks are actually data-centric
by nature. For example, users of sensor networks require the
sensed data to be correct while completely abstracting the
sensing platform, i.e., the individual sensor nodes. Another
example is ephemeral networks, such as vehicular networks,
where encounters among nodes are often short-lived. Build-
ing entity-centric trust in such cases would be an overkill, if
not impossible altogether. This naturally calls for establish-
ing the trustworthiness of the data itself.

In a nutshell, data-centric trust is built by collecting all
the evidence corroborating a piece of information [11]. Intu-
itively, the more entities that corroborate the information,
the higher the resulting trust value is. This has a valuable
side effect if the required trust level is a threshold that is
independent of the number of participants: The individual
contributions of entities decrease as the number of entities
increases and hence the amount of privacy that needs to
be traded for trust also decreases. But this improvement
in privacy comes at a cost when privacy-preserving enti-
ties have to collectively contribute to the establishment of
data-centric trust in the presence of adversaries. In fact, a
privacy-preserving entity is rational by definition, from the
privacy point of view. This is because it optimizes its own
utility (actually, it minimizes its privacy loss) and hence
prefers contributing nothing to the system while getting all
the benefits, thus creating the free rider problem [4]. To ad-
dress this issue, we use game theory to model the strategies
of rational entities that try to establish data-centric trust
in the presence of rational adversaries. Based on the ini-
tial analysis, we prove that using incentives can enable trust
establishment and reduce the amount of disclosed privacy.

To illustrate the above problem, let us consider an exam-
ple scenario based on an important security primitive - the
revocation of credentials of misbehaving nodes. Whereas
in a system architecture with an online Certificate Author-
ity (CA), the latter takes care of revoking credentials, the
intermittent availability of the CA in wireless ad hoc net-
works calls for alternative solutions. A popular solution is
the use of a voting scheme whereby a set of nodes have
to contribute their individual votes to revoke a misbehav-
ing node [9]. These works assume that nodes vote by de-
fault. But as voting consists in sending private information,
such as credentials and location information, it is reasonable
to expect privacy-preserving (and hence rational) nodes to
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free-ride on the contributions of other voters. Consequently,
voters face a tradeoff between contributing to the collec-
tive vote, that is essentially the trust level in the revocation
decision, and preserving private information (especially real-
time location) that can be lost by casting a vote.

By addressing the trust-privacy tradeoff in a rational en-
vironment, we believe that this paper constitutes one of the
first steps towards studying privacy systems with “human”
properties (e.g., rationality), a necessary research area as
computers increasingly reflect the preferences of their own-
ers. We assume that users will try to rationally protect
their privacy, i.e., reveal only the minimum amount of pri-
vate information required to benefit from certain services
(e.g., location-based search). Obviously, people are not com-
pletely rational, but a properly configured software agent
will be able to better enforce the rational preferences of its
operator. For example, the Platform for Privacy Preferences
(P3P) Project [1] translates user privacy preferences to soft-
ware agents. Moreover, the recent success of startups that
use incentives to motivate users to reveal their locations and
contribute reviews confirms the assumption of rational par-
ticipants.1 Thus, our work is the extension to privacy of
the works bridging cryptography and game theory [7], and
notably rational multiparty computation [5].

This paper is organized as follows. Section 2 discusses
the related work. Section 3 describes the system and threat
models. Section 4 analyzes, using game theory, the tradeoff
problem. Section 5 concludes the paper.

2. RELATED WORK
Seigneur and Jensen [14] propose an approach to achieve

the tradeoff between trust and privacy in online transac-
tions where entities use pseudonyms. To preserve privacy,
entities use different pseudonyms for different transactions,
thus preventing the linkability of these transactions; a repu-
tation level is attributed to each of these pseudonyms. But
to increase the level of trust in an entity, the latter has to link
several pseudonyms, thus combining the corresponding rep-
utation levels. The number of pseudonyms to link depends
on the required trust level. Seamons et al. [13] describe sev-
eral solutions to the disclosure of private information during
trust negotiation between two entities, namely a client and
a server on the Internet. Yao et al. [15] formalize a point-
based trust management model that allows revealing the
least sensitive private information (with the least attributed
points), as long as the sum of points satisfies the threshold
for gaining access to the server resources. Lilien and Bhar-
gava [8] discuss the conflict between privacy preservation and
trust establishment in online interactions. They assume that
users have a set of private attributes that they want to con-
ceal and a set of corresponding credentials that are helpful
in establishing trust in these users. The tradeoff problem is
formulated as the choice of the minimum number of creden-
tials to be revealed for satisfying trust requirements, such
that the users’ privacy loss is minimized.

Online reputation systems, where users report the quality
of products, pose problems essentially of data-centric trust.
Jurca and Faltings [6] analyze incentive mechanisms for hon-
est reporting in these systems and propose payment schemes

1For example, by rewarding participants who check-in at
their favorite locations, the foursquare service has developed
a large user base much faster than its predecessors that were
based solely on non-remunerated contributions [3].

that rely on the correlation among the reports of different
reporters. Acquisti et al. address the use of incentives for
providing and using anonymity services [2].

Last but not least, there is a close similarity between
our problem and rational multiparty computation (MPC)
in cryptography [5]. Rational MPC can potentially solve
the trust-privacy games, but it incurs, due to its generality,
several modeling and efficiency constraints (general MPC
protocols typically require interactive computations, such
as the distribution and combination of secret shares). By
creating a customized model, we avoid these complications
and provide an efficient solution.

3. SYSTEM AND THREAT MODEL
We assume a wireless network where communication among

entities (i.e., network nodes) is locally broadcast and each
entity is able to receive an ongoing broadcast before send-
ing a new message, i.e., communication is sequential. We
also assume that there are deadlines on making decisions
and model this by making communications right before the
deadline simultaneous and not sequential, implying that col-
lisions may happen and some messages may not be received
by the deadline. Entities are computationally powerful and
are capable of using public-key cryptography. Hence, we as-
sume that messages are digitally signed and their senders
can be anonymously authenticated, e.g., using anonymous
public keys with valid credentials issued by a Certificate Au-
thority (CA). All entities are distinguishable, i.e., they have
different identifiers. If an entity has several legitimate iden-
tities, such as pseudonyms, we consider them as different
entities. This means that the CA is responsible for prevent-
ing the abuse of multiple identities. One way to achieve this
is to issue identities with non-overlapping validity periods
and make the obtention of new identities costly. In addition
to credentials, entities communicate other attributes, such
as their location. We assume that entities cannot lie about
these attributes without being detected. More specifically,
we assume that positioning (e.g., GPS) and secure location
verification systems [12] are in place, thus preventing nodes
from reporting false locations; the fulfillment of this assump-
tion is out of the scope of this paper, given the rich existing
literature on the subject. Last but not least, we assume that
entities are privacy-preserving (i.e., they are rational from
the privacy point of view) and hence minimize their privacy
losses (i.e., they optimize their own utilities).

The goal of the system is to disseminate truthful infor-
mation. Entities are divided into two groups: benign and
adversarial. Adversaries have the same properties as benign
nodes, but disseminate false information. This can be due
to an intended attack or merely a fault in an entity’s infor-
mation acquisition or generation systems. Adversaries can
also disseminate the same false information to increase its
trustworthiness. Entities reveal their attributes (e.g., cre-
dentials, precision of location, etc.) to increase the trust
level of the information they disseminate. But by reveal-
ing these attributes, entities also reduce their privacy. The
example information dissemination system that we use in
this paper is a revocation system where nodes locally broad-
cast votes against misbehaving nodes. Once a given vote
threshold (e.g., a fixed number of votes) is reached, the mis-
behaving node is revoked by its neighbors. We will not go
into further details of the revocation system as this is a well
covered subject in the literature [9, 16]. In the revocation
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Figure 1: The duality between the trust-privacy
games. GAD is between the two groups A and D,
whereas GTC determines how microplayers in each
group contribute to GAD. The winner of GAD is in-
dicated by the shaded rectangle (note that D reaches
a higher level of trust, by revealing more private in-
formation, than A). The dotted rectangles represent
the gains vA and vD of the macroplayers in the case
of winning the game. c is the minimum amount of
privacy required to reach the threshold trust θ.

example, the goal is to achieve a sufficient trust level (e.g.,
the vote threshold) in the revocation information. We as-
sume that an information verifier V , which can be any node,
needs to make a revocation decision based on the votes it
receives from the neighbors of a misbehaving node. Let θ

be the threshold trust level that the information verifier re-
quires to accept a piece of information.

In our model, we do not address the leakage of private in-
formation by mechanisms other than the trust establishment
mechanism. For example, individual entities may reveal
their network-layer identifiers, such as IP addresses, when
sending information. Although this constitutes a privacy
loss, it is orthogonal to our model. In fact, we model only
the loss of information that entities cannot conceal (they
need to provide evidence), whereas network-layer identifiers
can be anonymized.

4. TRUST-PRIVACY GAMES
By definition, privacy-preserving entities try to minimize

the loss of their private information, which implies that they
behave rationally (i.e., they try to optimize a given util-
ity function) from the privacy point of view. And given
that private information is traded for trust, rational entities
make data-centric trust establishment difficult because it has
to compromise conflicting requirements: Privacy-preserving
entities have to contribute a sufficient level of trust without
unnecessarily revealing too much private information. This
optimal level is obviously the threshold trust level in the ab-
sence of an adversary, but when an adversary tries to surpass
the benign entities, the latter have to enter a competition
with the adversary while trying to minimize the attributes
they reveal. In addition, as different combinations of entities
(from the total set of K) can reach the threshold trust level,

with each entity contributing an adjustable amount of its
private attributes, it becomes paramount to find and imple-
ment a mechanism that makes the individual contributions
both sufficient and fair. It is even questionable whether the
entities would contribute at all to trust establishment.

The above questions naturally call for the use of game
theory to solve two related games: the Attacker-Defender
Game GAD and the Trust Contribution Game GTC. GAD

captures the competition between attackers and defenders
to support their respective versions of the truth. In the
revocation example, the defenders would vote for revoking
a misbehaving node whereas the attackers would vote for
keeping this node in the system.2 GTC models the details
of GAD by defining the individual amounts of privacy to
be contributed by benign entities to collectively win GAD.
Put differently, GAD is on the macroscopic level where the
attacker and the defender represent the sets of adversar-
ial and benign entities, respectively. GTC analyzes at the
microscopic level how benign entities behave individually to
collect the defender’s trust level in GAD. Figure 1 illustrates
this duality. We refer to players in GAD as macroplayers
and to players in GTC as microplayers.

4.1 Game-Theoretic Model
To model the trust-privacy games, we need to make some

assumptions about the way the macroplayers interact (Sec-
tion 3 describes the model for microplayers). First, we as-
sume that the information verifier needs to make a decision
by a given deadline (e.g., it needs to decide based on the
revocation votes that it receives whether to trust the next
message from the misbehaving node). Second, we assume
that macroplayers can observe, before acting, the actions of
preceding macroplayers in all but the last stage of the game
(cf. Section 3). In this last stage, just before the deadline,
both macroplayers try to act in order to win the game and
are thus unaware of the actions of the other macroplayer.
As the action of only one macroplayer will be retained in
the last stage, we need to assign the probabilities of winning
to each macroplayer. The resulting game is called dynamic
Bayesian game where “dynamic”means that the game is se-
quential and “Bayesian” refers to the probabilistic nature of
the game. Dynamic games are represented by a tree where
the players occupy the nodes of the tree and their actions
are the branches descending from the respective nodes. Last
but not least, we assume that macroplayers have enough pri-
vacy to trade for trust. This assumption is reasonable in an
environment where new entities can appear, thus increasing
the available privacy resources. The information verifier has
two options of action when receiving information with an
insufficient trust level. The first option is to take the in-
formation with the highest, though insufficient, trust level.
The second option, if time permits, is to broadcast a request
for new evidence, thus restarting the trust games.

The solution concept for dynamic Bayesian games is called
Perfect Bayesian Equilibrium (PBE) and can be computed
by finding the best response of each player, i.e., the set of
actions that maximize the player’s utility given the actions
of the other players. We will not go into further conceptual
details here but refer the interested reader to [4].

2Obviously, the attackers in this case are not directly iden-
tified as misbehaving. The terms “defender” and “attacker”
merely refer to opposing sides in the game.



4.2 Attacker-Defender Game
In GAD, both the attacker and the defender try to prove

to the information verifier their respective versions of the
truth. It is worth reiterating here that the two macroplay-
ers (attacker and defender) actually represent the groups of
adversarial and benign nodes, respectively, on the macro-
scopic level. The winner is the macroplayer that succeeds
in providing the higher trust level before the game deadline.
As the game is dynamic, each macroplayer has the possibil-
ity to play more than once, each time surpassing the other
macroplayer’s previous action. As the attributes needed to
increase the trust level also diminish a macroplayer’s privacy,
each macroplayer should try to reveal as few attributes as
possible in surpassing the other macroplayer.

Figure 2 illustrates GAD. The two macroplayers are A

(attacker) and D (defender) with two possible actions: S

(send attributes to the information verifier V ) and W (wait
until the next stage). When sending, each macroplayer in-
creases the level of trust in its information but the oppo-
nent can surpass it in the next stage, thus requiring the first
macroplayer to disclose even more attributes in the subse-
quent stage.3 By waiting, a macroplayer has a probability
(pA for A and pD for D) of winning the game without the
escalation of attribute investment. The winner has to pro-
vide a trust level at least equal to a defined threshold, θ

as defined in Section 3. Let c be the privacy loss required
to reach θ. Hence, each macroplayer is required to invest
at least an amount c of privacy to win the game. Let δ

be the minimum increment required to surpass the previ-
ous action. Last but not least, let vA and vD be the gains
of macroplayers A and D, respectively, when winning the
game. vA represents how much the attacker benefits from
a successful attack, whereas vD represents the cost that the
defender avoids by preventing the attack.

In practice, pA and pD depend on the individual entities
that compose A and D. For example, in an IEEE 802.11
wireless network, if all entities have the same access prob-
ability, pA and pD are the fractions of entities in A and
D, respectively, out of the total number of entities. Learn-
ing pA and pD before the game is hard, but we will show
that it is actually possible to achieve the desired outcome
by selecting configurable parameter values independently of
these two probabilities. Hence, our model does not require
the knowledge of pA and pD.

4.2.1 Equilibrium
By solving GAD, we can find its equilibrium, i.e., the set

of player strategies from which none of the macroplayers
can unilaterally deviate while realizing a better payoff. We
assume that the defender plays first, as it has to establish
trust in the information it provides and may not be aware
of the attacker (this is its typical behavior when no attacker
is present). In the following solution of GAD, the tuple
(σD,σA) contains the strategies of D and A, respectively.

Theorem 4.1. The strategy (W, WW ) is a PBE of GAD.

This means that D’s best strategy is to play always W and
A’s best-response strategy is to play W when D plays either
W or S. All proofs of theorems are provided in [10]. In

3Although more stages can be included in the model, we
consider only 3 stages to keep the analysis tractable. We
leave the extension to a general number of stages n to future
work.

practice, both macroplayers wait until the last stage where
they rely on their respective probabilities pD and pA = 1 −
pD to win; both macroplayers actually play S in the last
stage.

4.2.2 Incentives
The previous result for GAD is not desirable because the

information verifier can decide on the information only at
the deadline. In addition, the defender can win only proba-
bilistically. Hence, it is beneficial to design a version of the
game where macroplayers send their attributes earlier (i.e.,
play S from the beginning). One way to achieve this is to
give both macroplayers incentives to play earlier. In this sec-
tion, we analyze the game with incentives GI

AD. Figure 3
illustrates this game. The only difference with respect to
GAD is that if a macroplayer plays S before the last stage,
it receives a reward r (this can be a bonus trust level) from
the information verifier regardless of whether it wins or loses
the game.4 The resulting equilibrium is not constrained to
waiting as the theorem below shows.

Theorem 4.2. The PBE of GI

AD is achieved by the fol-
lowing strategies:

(W, W ) if r ≤ min{pDc, pAc}
(S, S) if r > max{pD(c + δ), pAc + pDδ}
(W, S) if (pDc < r ≤ min{pD(c + δ), pAc − pDδ})

∨(pD(c + δ) < r ≤ pAc + pDδ)
(S, W ) otherwise

To enforce the strategy (S, S), we need r > max{pD(c +
δ), pAc+pDδ} ∀pD ≤ 1. This implies r > c+δ. If r = c+δ

and pD = 1, the best-response strategies are (S, W ), but as
there is only player D (because pA = 0), (S, W ) is equivalent
to (S, S) in this case. This justifies not requiring the strict
inequality r > c + δ and leads to the following corollary:

Corollary 4.1. The strategy (S, S) can be enforced by
choosing r ≥ c + δ.

As both the defender and the attacker can receive the reward
r, the amount of the reward should be minimal and still
satisfy the condition for enforcing (S, S).

The definition of the last stage in the attacker-defender
games merits some clarifications. One of the main questions
is “When does the last stage start?” As the probability of
successfully sending evidence is 1 until the last stage, we
assume that this stage begins when the above probability
becomes lower than 1. Determining this exact moment is
admittedly difficult, hence there is a possibility that, after
one macroplayer plays, the other macroplayer could suc-
ceed in transmitting more evidence and surpass the first
macroplayer. Although in this case the model of GAD does
not apply anymore, that of GI

AD does because macroplay-
ers actually send evidence before the last stage. Thus, GI

AD

implicitly models the case when macroplayers incorrectly es-
timate the beginning of the last stage.

4.3 Trust Contribution Game
The trust contribution game GTC captures how individ-

ual benign rational entities contribute to the defender trust
level in GAD. Let tk ≤ 1 be the entity-centric trust levels
contributed by K ≥ 2 entities. Each entity has to set the

4Further details about the reward mechanism are in [10].
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Figure 2: The Attacker-Defender Game GAD. The X in the last node indicates that both macroplayers play
in the last stage. The tuples at the leaves of the tree represent the payoffs of the macroplayers; the negative
values are the costs (invested privacy) and the positive values are the gains when winning the game. The
probabilities of winning are such that pD + pA = 1. For example, the rightmost leaf of the tree represents
the case where both macroplayers play S and A wins. A realizes a gain of vA at the cost of surpassing D’s
previous action (D revealed the minimum amount of privacy c) by the increment δ.

value of tk by providing some private information. Before
going into the details of the analysis, we need to define ex-
actly how private information (i.e., attributes) is converted
into trust. Let φk be the trust-privacy conversion factor : 1
unit of private information = φk units of trust. Assuming
identical entities, φk = φ = 1. Based on this, the threshold
trust and privacy levels are linked as follows: θ = φc = c.
We assume that entities play sequentially, i.e., they observe
the trust levels contributed by previous microplayers. We
also assume that entities know the target collective trust
level based on the analysis of GAD above.

4.3.1 Equilibrium
In GTC, the payoff of an entity, in private information

units, is:

∀k ∈ {1, . . . , K}, πk(t1, . . . , tK) =
vD

K
−

tk

φ
(1)

This means that winning GAD benefits all contributing enti-
ties equally (e.g., by avoiding the cost induced by a false in-
formation attack), but each one contributes a different level
of privacy. To solve GTC, we compute its Subgame-Perfect
Equilibrium (SPE).5 The resulting equilibrium is, unsurpris-
ingly:

Theorem 4.3. The SPE of GTC is defined by:

t
∗

k = 0

In practice, this result means that no entity will contribute
in GTC, thus making it impossible to collect the required
trust levels in GAD. We solve this problem in the next
section.

5The SPE is stronger than the typical Nash equilibrium be-
cause there is only one SPE equilibrium in a game, whereas
there can be several Nash equilibria.

4.3.2 Incentives
Adding incentives to GAD results in macroplayers sending

their attributes in earlier stages of the game (Section 4.2.2).
In this section, we investigate the effect of incentives on
GTC. Let GI

TC be the version of GTC with incentives;
GI

TC corresponds to GI

AD. The payoff of an entity, in pri-
vate information units, is:

∀k ∈ {1, . . . , K}, πk(t1, . . . , tK) =
vD

K
+ r

tk

K∑
i=1

ti

−
tk

φ
(2)

This payoff function takes into account the reward r at-
tributed to the early movers in GI

AD (i.e., the attacker or the
defender). Among the rewarded entities of one group (e.g.,
the entities constituting the defender), the reward should be
distributed proportionally to the individual contributions of
these entities to encourage high contributions. The resulting
equilibrium solves the problem in Theorem 4.3.

Theorem 4.4. The SPE of GI

TC is defined by:

∀k ∈ {1, . . . , K}, t
∗

k =
φr(K − 1)

K2

We still need to compute r while considering Corollary 4.1.
Back to GI

AD, if macroplayer D (the defender) wants to
win the game, it should contribute at least c + 2δ of private
information. This results in the following values for r and
t∗k:

K∑

k=1

t
∗

k ≥ φ(c + 2δ) (3)

Substituting t∗k from Theorem 4.4 and taking into account
the requirement that r should be minimal to prevent gener-
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AD. Macroplayers that play S before the last stage
of the game receive a reward r.

ously rewarding the adversary, we obtain:

r =
(c + 2δ)K

K − 1
(4)

t
∗

k =
φ(c + 2δ)

K
(5)

Equation (4) satisfies the lower bound condition on r. The
upper bound on δ can be computed, based on (5), as follows:

t
∗

k ≤ 1 ⇒ δ ≤
K − φc

2φ
(6)

5. CONCLUSION
In this paper, we optimize the trust-privacy tradeoff under

the assumption of privacy-preserving entities that rationally
minimize their privacy loss. Using game-theoretic models,
we show that individual players do not contribute to trust es-
tablishment, unless they receive appropriate incentives. For
example, in a network of privacy-preserving nodes, no misbe-
having nodes will be revoked by a voting mechanism unless
there are incentives for revocation. We believe that explic-
itly modeling the notion of privacy-oriented rationality will
shed additional light on the appropriate mechanisms, such
as incentives, for building privacy-preserving systems. We
also hope that this work is only the beginning of an effort to
bridge privacy and game theory, two fields that share their
main focus: realizing the preferences of the human in the
loop.
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