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Abstract—Various weakly singular integrals over triangular
and quadrangular domains, arising in the mixed potential integral
equation formulations, are computed with the help of novel gener-
alized Cartesian product rules. The proposed integration schemes
utilize the so-called double exponential quadrature rule, originally
developed for the integration of functions with singularities at the
endpoints of the associated integration interval. The final formulas
can easily be incorporated in the context of singularity subtrac-
tion, singularity cancellation and fully-numerical methods, often
used for the evaluation of multidimensional singular integrals.
The performed numerical experiments clearly reveal the superior
overall performance of the proposed method over the existing
numerical integration methods.

Index Terms—Double exponential quadrature rule, generalized
Cartesian product rules, method of moments, mixed potential in-
tegral equations, weakly singular integrals.

I. INTRODUCTION

IXED potential integral equation formulations have
been extensively used over the last years for solving
a wide variety of practical electromagnetic radiation and
scattering problems [1]-[3]. A typical numerical solu-
tion of the mixed potential integral equations using the
Rao-Wilton-Glisson basis functions [1] and a Galerkin method
of moments approach [2], calls for the computation of 4-D inte-
grals over surface subdomains (triangles, rectangles or general
polygons), according to the selected discretization scheme.
The aforementioned multidimensional integrals can be clas-
sified as smooth, near-singular and weakly singular (though in-
tegrable) integrals, depending on the behavior of the integrand,
which is also strongly related to the proximity of the discretized
subdomains. To be more specific, the weakly singular cases
arise when the two surface elements coincide (coincident in-
tegration), share a common edge (edge adjacent integration),
or share a common vertex (vertex adjacent integration). Corre-
spondingly, the near-singular integrals arise when the outer and
inner elements don’t share any common points but their distance
is very small, while the smooth integrals cover all the other pos-
sible cases.
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Since the very first applications of the mixed potential inte-
gral equation formulations, the weakly singular integrals over
triangular domains appeared to be the most challenging of all,
as the discretization into triangular elements is considered to be
the most flexible one, being able to model surfaces of arbitrary
shape. In general, weakly singular integrals are treated by using
mainly the singularity subtraction method [4]-[9] or the singu-
larity cancellation method [10]-[12]. Despite their widespread
usage, both singularity subtraction and singularity cancellation
methods fail to meet the requirements for an accurate and effi-
cient numerical integration of weakly singular integrals.

On the other hand, some very promising new methods have
appeared in the literature that seem to outperform the traditional
techniques. In [13], for instance, a method originated in the con-
text of mechanics, which utilizes a series of coordinate trans-
formations followed by an appropriate Duffy transform [14]
is presented. Similarly, a direct approach for the evaluation of
hyper-singular static surface integrals has been introduced in
[15]. Moreover, the later direct evaluation method was gener-
alized by the first author for the case of the weakly singular in-
tegrals over coincident triangular elements [16]. The only draw-
back of these methods is their limited applicability together with
their highly analytical complexity. Hence, it is quite difficult
to generalize them in order to deal with different types of in-
tegrands and/or integration domains.

The present work is motivated mostly by our recent results
presented in [16], where it is obvious that in both singularity
subtraction and singularity cancellation methods the accuracy as
well as the efficiency are limited by the remaining numerical in-
tegrations of smooth functions (without blow up singularities).
Moreover, in some recent publications [11], [12], [17]-[19] it
was clearly demonstrated that in many cases the near-singular
potential integration (the inner 2-D integration) is more chal-
lenging than the singular one. Therefore, a reasonable resolution
in the never ending quest for a machine precision general-pur-
pose code, not only for 4-D weakly singular integrals but also for
4-D hyper-singular and general near-singular integrals, could
be given by the combination of semi-analytical formulations to-
gether with appropriate cubature rules [20].

In this manuscript, we present generalized Cartesian product
rules based on the double exponential quadrature formulas.
These formulas are well known in the mathematical literature
since their introduction in the mid-seventies by Takahasi and
Mori [21]-[24]. In a recent paper, they have been compared
with other numerical alternatives and hailed as one of the most
promising high precision quadrature schemes [25]. However,
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they remain mostly unknown and unused by the computational
electromagnetics community. In this paper, we first briefly
recall for the sake of completeness and internal coherence the
main steps of the technique, following the excellent summary
given in [25]. Then, the double exponential formulas are in-
tegrated with classic methods for the computation of weakly
singular and near-singular 2-D and 4-D integrals. The resulting
overall scheme is compared with the most representative
alternatives based on Gauss formulas, showing a significant
improvement in almost all of the most challenging cases.

II. THE DOUBLE EXPONENTIAL QUADRATURE RULE

Standard interpolatory quadrature rules like Newton-Cotes
and Gauss formulas can normally be used for integrands that are
regular at the endpoints of the integration interval. On the other
hand, although Gauss-Jacobi formulas have been widely used
for integrands with infinite derivatives or integrable singulari-
ties at the endpoints, the type of singularity that can be treated
by such formulas is quite limited. Coming to fill this gap, the
double exponential quadrature rule is not based on ad hoc trans-
formations or very specific weight functions, but on an appro-
priate variable transformation which results in general purpose
quadrature formulas so robust and efficient that deserve a promi-
nent place in standard mathematical subroutine libraries.

As it is well known, the trapezoidal rule with an equal mesh
size h gives highly accurate results for analytic functions over
(=00, 00). In fact, it was proved in [26] that for an integral of
an analytic function over (—oo, 00) the trapezoidal rule with an
equal mesh size is asymptotically optimal among formulas with
the same density of sampling points. The optimality of the trape-
zoidal formula turned out to play a crucial role in the process of
the discovery by Takahasi and Mori [21] of the double expo-
nential formula. We now briefly outline the main steps leading
to the development of a practical implementation of the double
exponential quadrature formula. Additional details can be found
in [25].

A. Double Exponential Transformation

Without loss of generality, we will confine ourselves to the
following integral over (—1,1):

1
1= | ) da. (1)

Since Takahasi and Mori had already proved the optimality of
the trapezoidal formula over (—o0, 00), it was quite natural that
they focused on a variable transformation which maps the orig-
inal interval of integration onto (—o0, c0) [21], i.e.,

x = ¢(t) 2

which we assume is analytic over —oo < ¢ < oo and satisfies

¢(—o00) = -1, ¢(+o0) =L ©)

1981

Hence, the original integral is given by

1= [ row o @
which is solved with the help of the trapezoidal formula
Lf=h Y f(p(kh)¢'(kh). ()
k=—oc0

The remaining point is now the optimal selection of the
change of variables = ¢(t). The main idea, based on the
Euler-Maclaurin formula [27], is to select a transformation
¢(t) such as all its derivatives tend exponentially to zero for
large values (positive and negative) of ¢. Then, even if f(x) or
its derivatives have an integrable algebraic singularity at one
or both endpoints, they will disappear within the smooth and
fast convergence of the new integrand f(4(t))¢’(t) at infinity.
In these cases, according to the Euler-Maclaurin argument, the
quadrature error should decrease faster than any power of h.

As described in [25], based on the above reasoning, Takahasi
and Mori came out with a very interesting variable transforma-
tion

& = ¢(t) = tan h (g sin h(t)) ©®)
P'(t) = - h%? C(Ogss}igi(t)) ~ 0 (exp (—g exp (|t|))) @)

as [t| — oo. Due to this double exponential decay, (6) is called
the double exponential (DE) transformation. An alternate fre-
quently used name, based again on (6), is the “tanh-sinh” tech-
nique. If we truncate (5) at k = +n, we get the DE formula,

5 cosh(kh)
cosh” (% sinh(kh))
(®)

where N = 2n + 1 is the number of the quadrature rule’s ab-
scissas. The key feature of the DE formula’s superior perfor-
mance compared to other quadrature rules designed to handle
endpoint singularities lies in the fact that via the DE transfor-
mation one can approach the endpoint singularity as close as
one wants, because the DE rule has an infinite number of points
in the neighborhood of the endpoints [22]. In cases where the
integrand has a blow up singularity at an endpoint, this scheme
permits one to sum terms with abscissas very close to the end-
points until the rapidly decreasing weights overwhelm the large
function values [25].

Mg zn: f (tanh (5 sinh(kn) ) )

k=—n

B. On the Implementation of the Double Exponential
Quadrature Rule

Although it is very easy to compute the weights and abscissas
of the DE quadrature rule, we encounter two significant prob-
lems in the actual coding process. According to [24], the prob-
lems arising from the careless coding may be one of the reasons
that prevented the spread of the DE formula. More specifically,
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TABLE 1
NUMBER OF INTEGRATION POINTS (V') FOR THE DE RULE IN TERMS OF THE
ASSOCIATED LEVEL OF THE QUADRATURE RULE (M)

MJ0o 1 2 3 4 5 6 7
N |7 13 25 51 101 203 405 809

the first and most severe problem is the loss of significant digits:
If f(z) has a singularity at the endpoint like (1£2)~1T#, where
1 is a small positive constant, we often encounter a large error
due to the loss of significant digits for = very close to £1. One
way to overcome the aforementioned problem is to compute and
store the values = = 1 4+ 2 and H = 1 — z in addition to the ac-
tual weights and abscissas. Of course, this modification requires
the a priori identification of those binomials in the integrand, re-
ducing the overall generality of the DE scheme.

The second problem is the numerical underflow and overflow
which arises in the denominator of the weights in (8). More
specifically, the constraints that are imposed due to the double
precision format lead, after some algebraic manipulation, to the
following (safe) choice in the construction of the DE quadrature
rule:

max ([t|) = nh = 6. 9

C. Final Double Exponential Formulas

Taking into account the aforementioned constraints we pro-
ceed to the construction of the DE formula, according to the fol-
lowing parametrization, which is slightly different from the one
adopted in the numerical experiments presented in [25] (aiming
at 400 significant digits)

n=6-2M
h=1/2™ (10)
where M is the so-called level of the quadrature rule. This
choice fulfils the constraint (9) to avoid numerical underflow
and overflow. Besides the parametrization, one could follow
different strategies in the final algorithms. The most suitable
candidate for a general purpose integration scheme, though,
is based on truncating the series of weights and abscissas at
the point z, k > 0 for which the following inequality holds:
1 — z;, < eps, where eps stands for the machine precision in
double precision arithmetic, ensuring that 1 — z and 1 + z are
never equal to zero. The final truncated number of points is
equal to N = 2k + 1, as shown in Table I, for each level of the
rule.

Another possible variant could be derived without the afore-
mentioned truncation together with the pre computation of =
and H. In that case, the number of integration points is given
by N = 2n+ 1 = 2(6 - 2M) + 1, almost double compared to
our preferred choice. This formula guaranties much higher accu-
racy in some specific problems, but its problem oriented nature
is limiting dramatically the repertoire of possible applications
and, hence, will be excluded from our study.
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D. Extension to Generalized Cartesian Product Rules

As described above, DE quadrature rule does not integrate
exactly any polynomial and therefore it doesn’t belong to the
family of the interpolatory quadrature formulas like Newton-
Cotes, Gauss, Radau, Lobatto and many others. Nevertheless,
it turns out to be highly accurate for the integration of analytic
functions with algebraic or/and logarithmic singularities at the
endpoints of the integration interval, as will be shown in the
sample test integrals following in the next section. This is ex-
actly the reason that engages us in the quest for the construc-
tion of multidimensional integration schemes based on sophis-
ticated quadrature formulas like DE rule, which are suitable for
the treatment of functions with boundary weakly singular be-
havior.

A first attempt for the generalization of the DE quadrature
rule in 2-D and 3-D integration formulas was given in [28]. More
specifically, a progressive strategy was utilized where the inte-
gration interval is divided into subdomains and, after a specific
search pattern, the optimal abscissas and weights are found. The
main drawback, though, of this method is its problem oriented
nature, since the progressive search has to be performed for each
new integrand.

On the other hand, another research group followed a dif-
ferent approach while trying to find optimal cubatures for
weakly singular, strongly (or Cauchy) singular and hyper-sin-
gular multidimensional integrals [29], [30]. In [29], a com-
bination of Gauss product rules and DE formulas for the
integration of 2-D singular integrals, arising in the context of
computational mechanics, was implemented. Later, the same
team in [30] focused on various 4-D singular integrals. The 4-D
integrals are treated in the following way: First, an analytical
integration is performed for the inner 2-D integral. Then, the
type of singularity of the aforementioned analytical results as
a function of the outer variables of integration is studied, in
order to give some indications about the integration formulas
needed for the remaining outer 2-D integral. In the end, again,
generalized 2-D Cartesian product rules for the integration
of at most boundary weakly singular functions are proposed
based on a combination of 1-D Gauss product rules and DE
quadrature rule.

As a general comment, we could add that a hybrid scheme
with analytical 2-D inner integrations and numerical 2-D outer
integrations, as in [30], clearly reduces the computation cost and
increases the accuracy. Furthermore, the study of the analytical
results as function of the outer variables helps significantly in
the suitable choice of the basic quadrature rules used for the con-
struction of optimal multidimensional integration formulas. Of
course, DE quadrature rule stands as one of the most appealing
choices due to its unmatched precision in integrating functions
with endpoint algebraic or/and logarithmic singularities.

In the computational electromagnetics community there are
generally two main families of methods for the solution of
weakly singular integrals arising in the mixed potential integral
equation formulations. Starting with the singularity subtraction
method, it is well known that the integrand of the final 4-D
integral may be non-singular, but with infinite derivatives.
Also, the subtracted function can only be evaluated for specific
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geometries, leading to limited applicability. On the other hand,
in the singularity cancellation method only the computation of
the potential (inner) integrals to machine precision has been
studied, and most of the authors imply that this is enough in
order to assure highly accurate results for the original 4-D inte-
grals. Unfortunately, this is not the case, since a simple study
reveals that the integrand of the outer integral may still have
infinite derivatives at the endpoints of the integration interval.
In this manuscript, following the basic philosophy in [30], we
utilize a DE rule as the main building block in the generalized
Cartesian product rules for the solution of the aforementioned
shortcomings.

III. NUMERICAL RESULTS

In this section, various numerical results will be presented
in order to illustrate the worthiness of incorporating the DE
quadrature rule in the construction of generalized Cartesian
product rules for the solution of multidimensional weakly sin-
gular integrals arising in the mixed potential integral equation
formulations. After some test 1-D and 2-D problems, we will
show the results of some representative numerical experiments
including different approaches, like singularity cancellation
and singularity subtraction methods.

A. Sample 1-D and 2-D Test Integrals

In the beginning, it would be intuitive to give some results for
a selection of 1-D test integrals found in [25]. The importance of
such numerical experiments is twofold: first we validate the DE
quadrature rule, as proposed in Section II, and, second, we ob-
serve its limitations for various types of endpoint singularities.
The selected groups of test integrals (keeping the same num-
bering as in [25]) are listed below:
¢ 5:continuous function on finite interval, but with an infinite
derivative at an endpoint;
* 7,8, 10: functions on finite intervals with an integrable
singularity at an endpoint.

YVt
/2
8: /lnz(t)dt, 10 : / Vtan (t)dt.  (11)
0 0

A straightforward application of the DE formulas as well as
the Gauss-Legendre formulas leads to the relative error pre-
sented in Fig. 1, in terms of the associated level M of the quadra-
ture rule. For a fair comparison, we keep obviously the same
number of integration points in both Gauss and DE formulas.
Clearly, for the case of the test integral #5, function with infi-
nite derivative at an endpoint, the DE formulas converge to the
exact solution, while Gauss based formulas give very poor re-
sults. The same behavior is also observed for the test integral
#8. For the other two test integrals #7 and #10, functions with
an integrable singularity at an endpoint, the DE formulas cannot
converge to the exact solution, but in any case their performance
is by far superior to the performance of the Gauss rules.

1
5: / Vitln (t)dt,
0
1
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Fig. 1. Relative error in calculating the test integrals in (11). (a) Test integral
#5. (b) Test integral #7. (c) Test integral #8. (d) Test integral #10.
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Fig. 2. Relative error in calculating the test integral (12).

Finally, we choose a 2-D test integral #2 with endpoint sin-
gularities (z = y = £1) found in [28]:

I 22D dxdy

1,1 1
B [1 .[1 v/ 1 — 2292

M, M-

~ chlcjf(xl7yj)

where My = My = Mj, is the level of the 1-D quadrature rules
(M5 is also called level of the cubature) used in the construction
of the 2-D Cartesian product rule. Hence, each cubature utilizes
the same quadrature rule for each of the dimensions. As shown
clearly in Fig. 2, again, DE based cubatures succeed in giving
highly accurate results compared to the Gauss based cubatures.
To account for the incidental presence of error propagation ef-
fects, we cautiously assume a result to be numerically exact if
its relative error is lower than 10713, as suggested in [12].

12)

B. Weakly Singular Potential Integrals

Moving to some more challenging problems, we choose the
weakly singular potential integral

—jkR
Ipotential _ / €
s =
D EQ R

where Ej is the unit triangle defined by the following vertices:
r; = (0,0,0), ro = (1,0,0), r3 = (0,1,0), R is the dis-
tance function and £ = 1. The observation point is given by
r = (0.1,0.1,0). The singularity lies in the integration interval,
for which case is very hard to find efficient cubatures. Hence,
we split the integral into three subintegrals, isolating the singu-
larity only at one vertex of the new triangles. Next, we proceed
to the fully numerical integration of all three 2-D integrals via
generalized Cartesian product rules based on Gauss-Legendre
and DE formulas.

dAg (13)
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The reference solution of the integral (absolute error less than
10~1%) is directly copied from [12],

Lot = 1.89857266176847 — j0.309643085636859.  (14)
In Fig. 3 the relative error in calculating the real part (singular
portion) and the imaginary part (nonsingular portion) of the
weakly singular potential integral (13) using the DE quadra-
ture rule as well as basic Gauss formulas in 2-D generalized
Cartesian product rules, is shown. The level of cubature M,
is equal to the level of the 1-D quadrature rules M, M, i.e.,
My5 = M7 = M>. By a simple inspection of the figures, it is
easy to come to the conclusion that DE cubatures converge to
the numerically exact solution for the most challenging case (the
singular real part). As it could be expected, there is no interest in
using DE rules for non-singular functions (the imaginary part)
where Gauss-Legendre is optimally suited.

C. 4-D Weakly Singular Integrals Over Triangles via
Singularity Cancellation

Next, we deal with the far more interesting 4-D weakly sin-
gular integral arising in the mixed potential integral equation
formulations solved via a Galerkin triangular discretization to-
gether with the linear Rao-Wilton-Glisson basis functions. More
specifically, the contribution due to the scalar potential is given

by
e—JkR
I, = / / 7 dAqdAp
Ep JEq

where Ep = E( is the unit triangle defined by the following
vertices: r1 = (0,0,0), ro = (1,0,0), r3 = (0,1,0) and
k = 1. Following the basic idea of the singularity cancellation
method, we get

5)

Is — / Iésotential dAP (16)
JEp

where the outer integration over the triangle Ep is numerically
computed using a generalized Cartesian product rule. On the
other hand, the inner or potential integral is reduced to a 1-D
smooth integral via an appropriate coordinate transformation
and a further analytical evaluation. The remaining 1-D inner in-
tegral is computed via a simple quadrature rule.

The reference solution of the integral (absolute error less than
10~16) is directly copied from [13],

Lot = 0.952716973790348 — 50.240945897671652. (17)
In Figs. 4 and 5 the relative error in calculating the real part
(singular portion) of the 4-D weakly singular integral (15) using
the singularity cancellation method together with a generalized
Cartesian quadrature rule based on the DE quadrature rule and
the Gauss-Legendre formulas, is shown. More specifically, for
the results in Fig. 4 we used a standard Gauss-Legendre quadra-
ture rule for the remaining 1-D integral, while for the results in
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Fig. 3. Relative error in calculating the weakly singular potential integral
Ipetential jp (13) using a combination of triangle splitting and 2-D generalized
Cartesian product rules based on Gauss-Legendre and DE quadrature rules. (a)
Real part. (b) Imaginary part.

Fig. 5 we utilized the DE quadrature rule, again for the inner
1-D integration. The level of the outer cubature M3 is equal to
the level of each quadrature rule employed in the construction of
the 2-D formulas, i.e., M3 = My = M3. A simple comparison
of the aforementioned figures leads to the safe conclusion that
only the 3-D generalized Cartesian product rule which is solely
based on DE quadrature rules (DE2 —DE) can give numerically
exact results, as is clearly depicted in Fig. 5(b).

The performance of the scheme that is presented in this man-
uscript is of paramount importance, since it is the first time that
the singularity cancellation method can produce results close to
the machine precision with a reasonable number of integration
points. A major factor that affects crucially the accuracy of the
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‘== DE*-GL
0 . . . T
0 1 2 3 4 5
Level of outer cubature (M23)
(@
Real part (Inner 1D quadrature = GL, M1 =5)
16 T

14 1

S 12 i
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; 8 ’/ -------- = 3
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©
€
5]
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?’é
p=y
@

0 . |
0 1 2 3

Level of outer cubature (M

(b

23)

Fig. 4. Relative error in calculating the real part of the 4-D weakly singular
integral I in (15) via singularity cancellation and 3-D generalized Cartesian
product rules based on Gauss-Legendre and DE quadrature rules. For the inner
1-D integral a Gauss-Legendre rule is utilized. (a) Level of inner integration
rule: My = 4. (b) Level of inner integration rule: M; = 5.

3-D numerical integration seems to be the behavior of the inner
integral as a function of outer’s integration variables. Generally,
the outer integration hasn’t been thoroughly studied in previous
publications, where it was believed that machine precision re-
sults of the inner integral would physically lead to highly ac-
curate results also for the final 4-D weakly singular integral by
a straightforward implementation of Gaussian cubatures. One
could easily jump to the conclusion that although the singularity
is canceled, numerical shortcomings are encountered in the in-
tegration of the remaining function due to the non smooth be-
havior of its higher order derivatives.
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Fig. 5. Relative error in calculating the real part of the 4-D weakly singular
integral I, in (15) via singularity cancellation and 3-D generalized Cartesian
product rules based on Gauss-Legendre and DE quadrature rules. For the inner
1-D integral a DE rule is utilized. (a) Level of inner integration rule: M; = 4.
(b) Level of inner integration rule: M; = 5.

D. 4-D Weakly Singular Integrals Over Quadrangles via
Semi-Analytical Method

As afinal test, we shall present sample numerical results in the
context of the 4-D weakly singular integrals over quadrangular
domains for the static kernel. More specifically, the 4-D integral
to be solved is written as follows:

1
AMﬁczt/ ‘/ = dAqdAp (18)
EP'EQ

where Ep and Eg are general quadrilaterals and R is the dis-
tance function. The most common approach for treating the
aforementioned integral is the so-called semi-analytical method.
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The key feature of this method is the analytical evaluation of the
potential (inner) integral,

. "~
Ipot(.entlal — / —dA 19
static Fo R Q ( )
as explained in [4] and [5]. The second and final step is the
numerical computation of the remaining 2-D integral,

Loic = [ 132 dap. 20)
JEp

Without loss of generality, we confine ourselves to the case
of square domains (with sides equal to 2). Fig. 6 depicts the
relative error in calculating the 4-D weakly singular integral
(18) utilizing the analytical expressions provided in [4] together
with a 2-D generalized Cartesian product rule based on the DE
quadrature rule and the Gauss-Legendre formulas. More specif-
ically, in Fig. 6(a), (b) and (c)—(d), we examine respectively the
self-term case (coinciding squares), the orthogonal case (orthog-
onal squares sharing one edge) and the parallel case (parallel
squares separated by distance d). The reference results are de-
rived with the help of the complete analytical formulas provided
in [9].

As with the previous examples, generalized Cartesian product
rules based on the DE formula outperform the standard Gauss-
Legendre cubatures for the solution of the most challenging
cases, i.e., the self-term case (Fig. 6(a)) and the parallel case
when the distance between the elements is very small (Fig. 6(c)).
Obviously, for non-singular cases Gauss-Legendre still remains
the optimal solution. Trying to give a fair explanation for the
poor results of the Gauss-Legendre cubatures or the superior
performance of the proposed DE based schemes, we analyze the
behavior of the analytically evaluated results of the inner 2-D in-
tegral in terms of the observation point, i.e., the point given by
the outer cubature in the final computation of the 4-D integral.

For example, the potential integral for the observation points
ro, = (—1,0,¢) and ro, = (¢,0,0), where ¢ = —2 : 2, due to
the source square with the following vertices: r1 = (—1, —1,0),
re = (1,-1,0), r3 = (1,1,0) and rq4 = (—1,1,0), is pre-
sented in Fig. 7. Clearly, in the second case (encountered in
the evaluation of the self-term), the potential has infinite deriva-
tives as the observation point passes from one edge of the source
square. The aforementioned behaviors, together with the overall
discussion in previous sections, come to elucidate the actual
causes for the performance of the integration schemes used in
our numerical experiments.

IV. CONCLUSION

Novel generalized Cartesian product rules are presented for
the computation of various multidimensional weakly singular
integrals, arising in mixed potential integral equation formu-
lations. The proposed formulas utilize the double exponential
quadrature rule, ideally suited for the integration of functions
with endpoint singularities. Due to the use of such non interpo-
latory quadrature rules, the algorithms presented in this manu-
script can lead, together with common singularity subtraction
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Fig. 6. Relative error in calculating the 4-D weakly singular integral (18) (with
k = 1) utilizing the analytical expressions provided in [4] together with a 2-D
generalized Cartesian product rule based on DE and Gauss-Legendre quadrature
rules. (a) Self-term. (b) Orthogonal cells. (c) Parallel cells (d = 0.00001). (d)
Parallel cells (d = 0.01).
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Fig. 7. Behavior of the analytically derived potential integral (20) for a

square with the following vertices: ry = (—1,—1,0), r2 = (1,—1,0),
(1,1,0) and r4 = (—1,1,0) and different observation points

I'3 = =
ro, = (—1,0,¢) andro, = (c,0,0), respectively.

and cancellation techniques, to unmatched accuracy. The supe-
rior performance of the proposed method is verified in compar-
ison with standard interpolatory cubatures through a series of
representative numerical experiments. Moreover, in many cases
the accuracy of the integration via double exponential based
formulas is close to the machine precision, working on typical
double precision arithmetic. Finally, the detailed analysis pre-
sented herein forms the backbone for the treatment of a plethora
of cumbersome integrals, like strongly singular and hyper-sin-
gular integrals arising in various integral equation formulations,
always in the context of computational electromagnetics.

REFERENCES

[1] S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic scat-
tering by surfaces of arbitrary shape,” IEEE Trans. Antennas Propag.,
vol. 30, no. 5, pp. 409-418, May 1982.

[2] R.F.Harrington, Field Computation by Moment Methods.
Macmillan, 1983.

[3] J. R. Mosig, R. C. Hall, and F. E. Gardiol, “Numerical analysis of Mi-
crostrip patch antennas,” in Handbook of Microstrip Antennas, James
and Hall, Eds. London: IEE-Peter Peregrinus, 1989.

[4] D. R. Wilton, S. M. Rao, A. W. Glisson, D. H. Schaubert, O. M.

AL-Bundak, and C. M. Butler, “Potential integrals for uniform and

linear source distributions on polygonal and polyhedral domains,”

IEEE Trans. Antennas Propag., vol. 32, no. 3, pp. 276-281, Mar. 1984.

R. D. Graglia, “On the numerical integration of the linear shape func-

tions times the 3-D Green’s function or its gradient on a plane triangle,”

IEEE Trans. Antennas Propag., vol. 41, no. 10, pp. 1448-1455, Oct.

1993.

[6] T.F. Eibcrt and V. Hansen, “On the calculation of potential integrals

for linear source distributions on triangular domains,” I[EEE Trans. An-

tennas Propag., vol. 43, no. 12, pp. 1499-1502, Dec. 1995.

P. Arcioni, M. Bressan, and L. Perregrini, “On the evaluation of the

double surface integrals arising in the application of the boundary inte-

gral method to 3-D problems,” IEEE Trans. Microw. Theory Tech., vol.

45, no. 3, pp. 436—439, Mar. 1997.

S. Jarvenpid, M. Taskinen, and P. Y14-Oijala, “Singularity subtraction

technique for high-order polynomial vector basis functions on planar

triangles,” IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 42-49,

Jan. 2006.

New York:

[5

=

[7

—

[8

—

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 02,2010 at 08:52:41 UTC from IEEE Xplore. Restrictions apply.



1988

[9] S.Lépez-Pefia and J. R. Mosig, “Analytical evaluation of the quadruple
static potential integrals on rectangular domains to solve 3-D electro-
magnetic problems,” IEEE Trans. Magn., vol. 54, no. 3, pp. 1320-1323,
Mar. 2009.

[10] L. Rossi and P. J. Cullen, “On the fully numerical evaluation of the
linear-shape function times the 3-D Greens function on a plane tri-
angle,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 4, pp. 398-402,
Apr. 1999.

[11] M. A. Khayat and D. R. Wilton, “Numerical evaluation of singular and
near-singular potential integrals,” IEEE Trans. Antennas Propag., vol.
53, no. 10, pp. 3180-3190, Oct. 2005.

[12] R.D. Graglia and G. Lombardi, “Machine precision evaluation of sin-
gular and nearly singular potential integrals by use of Gauss quadrature
formulas for rational functions,” IEEE Trans. Antennas Propag., vol.
56, no. 4, pp. 981-998, Apr. 2008.

[13] D. J. Taylor, “Accurate and efficient numerical integration of weakly
singular integrals in Galerkin EFIE solutions,” IEEE Trans. Antennas
Propag., vol. 51, no. 7, pp. 1630-1637, July 2003.

[14] M. G. Duffy, “Quadrature over a pyramid or cube of integrands with
a singularity at a vertex,” SIAM, J. Numer. Anal., vol. 19, no. 6, pp.
1260-1262, 1982.

[15] L.J. Gray, A. Salvadori, A. V. Phan, and A. Mantic, “Direct evaluation

of hypersingular Galerkin surface integrals. II,” Electronic Journal of

Boundary Elements, vol. 4, no. 3, pp. 105-130, 2006.

[16] A. G. Polimeridis and T. V. Yioultsis, “On the direct evaluation of

weakly singular integrals in Galerkin mixed potential integral equa-

tion formulations,” IEEE Trans. Antennas Propag., vol. 56, no. 9, pp.

3011-3019, Sep. 2008.

Ismatullah and T. F. Eibert, “Adaptive singularity cancellation for effi-

cient treatment of near-singular and near-hypersingular integrals in sur-

face integral equation formulations,” IEEE Trans. Antennas Propag.,

vol. 56, no. I, pp. 274-278, Jan. 2008.

[18] M. A. Khayat, D. R. Wilton, and P. W. Fink, “An improved trans-
formation and optimized sampling scheme for the numerical evalua-
tion of singular and near-singular potentials,” IEEE Antennas Wireless
Propag. Lett., vol. 7, pp. 377-380, 2008.

[19] P. W. Fink, D. R. Wilton, and M. A. Khayat, “Simple and efficient
numerical evaluation of near-hypersingular integrals,” IEEE Antennas
Wireless Propag. Lett., vol. 7, pp. 469-472, 2008.

[20] Z. Wang, J. Volakis, K. Saitou, and K. Kurabayashi, “Comparison
of semi-analytical formulations and Gaussian-quadrature rules for
quasi-static double-surface potential integrals,” IEEE Antennas
Propag. Mag., vol. 45, no. 6, pp. 96-102, Dec. 2003.

[21] H. Takahasi and M. Mori, “Double exponential formulas for numerical
integration,” Publ. RIMS, Kyoto Univ., no. 9, pp. 721-741, 1974.

[22] M. Mori, “Quadrature formulas obtained by variable transformation
and the DE-rule,” J. Comput. Appl. Math., no. 112, pp. 119-130, 1985.

[23] M. Mori and M. Sugihara, “The double exponential transformation in
numerical analysis,” J. Comput. Appl. Math., no. 127, pp. 287-296,
2001.

[24] M. Mori, “The discovery of the double exponential transformation and
its developments,” Publ. RIMS, Kyoto Univ.,no. 41, pp. 897-935, 2005.

[25] D. H. Bailey, K. Jeyabalan, and X. S. Li, “A comparison of three high-
precision quadrature schemes,” Exp. Math., vol. 3, no. 14, pp. 317-329,
2005.

[17]

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 58, NO. 6, JUNE 2010

[26] H. Takahasi and M. Mori, “Error estimation in the numerical integra-
tion of analytic functions,” Rep. Comput. Centre Univ. Tokyo, no. 3, pp.
41-108, 1970.

[27] A.R. Krommer and C. W. Ueberhuber, Computational integration.
Philadelphia, PA: SIAM, 1998.

[28] V. U. Aihie and G. A. Evans, “A comparison of the error function and
the tanh transformation as progressive rules for double and triple sin-
gular integrals,” J. Comput. Appl. Math., no. 30, pp. 145-154, 1990.

[29] A. Aimi, M. Diligenti, and G. Monegato, “Numerical integration
schemes for the BEM solution of hypersingular integral equations,”
Int. J. Numer. Methods Eng., vol. 45, pp. 1807-1830, 1999.

[30] A. Aimi and M. Diligenti, “Hypersingular kernel integration in 3D
Galerkin boundary element method,” J. Comput. Appl. Math., no. 138,
pp. 51-72, 2002.

Athanasios G. Polimeridis was born in Thessaloniki, Hellas, in 1980. He re-
ceived the Diploma degree in electrical engineering and the Ph.D. degree from
the Department of Electrical and Computer Engineering, Aristotle University of
Thessaloniki (AUTh), Thessaloniki, Hellas, in 2003 and 2008, respectively.

Since October 2008, he has been a Postdoctoral Research Fellow with the
Laboratory of Electromagnetics and Acoustics, Ecole Polytechnique Fédérale
de Lausanne (EPFL), Lausanne, Switzerland. His research interests include
computational electromagnetics, with emphasis on the development and
implementation of integral-equation based algorithms.

Juan R. Mosig (S’76-M’87-SM’94-F’99) was born in Cadiz, Spain. He
received the Electrical Engineer degree from the Universidad Politécnica
de Madrid, Madrid, Spain, in 1973, and the Ph.D. degree from the Ecole
Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland, in 1983.

In 1976, he joined the Laboratory of Electromagnetics and Acoustics, EPFL.
Since 1991, he has been a Professor with EPFL, and since 2000, he has been
the Head of the Laboratory of Electromagnetics and Acoustics (LEMA), EPFL.
In 1984, he was a Visiting Research Associate with the Rochester Institute of
Technology, Rochester, NY, and Syracuse University, Syracuse, NY. He has also
held scientific appointments with the University of Rennes, Rennes, France,
the University of Nice, Nice, France, the Technical University of Denmark,
Lyngby, Denmark, and the University of Colorado at Boulder. He is currently
the Chairman of the EPFL Space Center and is responsible for many Swiss re-
search projects for the European Space Agency (ESA). He has authored five
book chapters on microstrip antennas and circuits and over 100 reviewed pa-
pers. His research interests include EM theory, numerical methods, and planar
antennas.

Dr. Mosig has been a member of the Swiss Federal Commission for Space
Applications. He is currently a member of the Board of the Applied Computa-
tional Electromagnetics Society (ACES), the chairman of the European COST
Project on Antennas ASSIST (2007-2011), and a founding member and acting
chair of the European Association and the European Conference on Antennas
and Propagation (EurAAP and EuCAP).

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on June 02,2010 at 08:52:41 UTC from IEEE Xplore. Restrictions apply.



