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ABSTRACT

This paper addresses the problem of state estimation in the case
where the prior distribution of the states is not perfectly known but
instead is parameterized by some unknown parameter. Thus inorder
to support the state estimator with prior information on thestates and
improve the quality of the state estimates, it is necessary to learn this
unknown parameter first. Here we assume a parameterized Gaussian
Markov random field to model the prior distribution of the states and
propose an algorithm that is able to learn its parameters from given
observations on these states. The effectiveness of this approach is
proven experimentally by simulations.

Index Terms— Gaussian Markov random field, EM algorithm,
unsupervised learning, sum-product algorithm, factor graph

1. INTRODUCTION

Many problems in Signal Processing can be cast into the framework
of state estimation, in which we have state variablesh[i] whose val-
ues are not directly accessible and variablesy[i] whose values are
available. Variables of the latter kind are also referred toas obser-
vations in this context. Usually there exists a statisticalrelation-
ship p(y|h) between the state variablesh[i] and the observations
y[i] such that we can infer estimatesĥ[i] of the states from the ob-
servations. In many cases prior knowledge about the states is also
available (usally in form of a probability distributionp(h) on the
state variables) and we can use that knowledge to refine the state
estimate.

In a variety of interesting problems, however, neither the sta-
tistical relationship between the state variables and the observations
nor the prior distribution are perfectly known and hence aremodeled
as parameterized distributionsp(y|h, θ) andp(h|θ) with unknown
parametersθ. These parameters are then also subject to estimation.

Here we restrict the prior distribution on the hidden state vari-
ables to the form of a parametrized Gaussian Markov random field
and assume a simple parametrized linear observation model.We
shall propose an efficient algorithm to estimate the unknownparam-
eters. Our algorithm can be interpreted as an approximationto the
well known expectation maximization (EM) algorithm.

An interesting example of an signal processing problem that
fits the framework of state estimation is channel estimation. The
widely used wide sense stationary uncorrelated scatteringmodel for
the communications channel neglects correlations betweendifferent
multipath arrivals [1–3], but this seems to oversimplify the real chan-
nel in many cases. One example is the underwater acoustic channel,
whose impulse response is fairly continuous in delay and hence in-
deed exhibits a certain correlation structure in delay.

To address this shortcoming [4] introduced a novel channel
model that is based on a Gaussian Markov random field (MRF) for
the complex channel gains. This graphical model is used to capture

the local nature of the statistical dependencies (in time and space) of
the channel taps.

In order for the MRF model to fit the actual physical channel
well, its parameters must be adapted appropriately. This isthe topic
of the algorithm proposed in this paper. Once these parameters are
known, the MRF model can then either be used for channel estima-
tion [4] or it can be embedded into an iterative (turbo) receiver [5],
where it is expected to improve the data estimation performance sig-
nificantly as the parameterized MRF carries prior knowledgeon the
channel.

2. PARAMETER ESTIMATION

2.1. Problem Setup

We consider an incomplete data problem where some of the variables
are hidden and others are observable. The derivations in this pa-
per assume that the hidden variables are modeled by the generic lat-
tice shaped gaussian Markov Random Field model introduced in [4].
However, with minor modifications the results hold for otherGaus-
sian graphical models as well. Due to the geometric nature oflat-
tices, we prefer to index the state variables by the two dimensional
index pair[i, j]. The graphical model in [4] is illustrated by the fac-
tor graph in Figure 1, and completely characterized by the following
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Fig. 1. Factor graph based on MRF model

joint distribution

p(H |θ) = Z(θ)−1
Y

b∈B1

exp(−α[jb]|h[ib, jb] − µ[jb]|
2)

·
Y

b∈B2

exp(−α[ib,jb],[mb,nb]|(h[ib, jb] − µ[jb])

− (h[mb, nb] − µ[nb])|
2)

where the vectorθ containes all the model parameters i.e the
α[ib,jb],[mb,nb], the α[jb] and theµ[j]. The setB1 comprises all
single cliques that correspond to state variablesh[i, j] at i = 0
and the setB2 contains all the pairwise cliques. SoH is jointly
Gaussian distributed andh[i, j] has meanµ[j]. The structure of this
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lattice shaped graphical model also imposes a certain continuity on
the behavior of neighboring state variables, asp(h[i, j]|h[l, m] :
[l, m] ∈ N[i, j]) for i 6= 0 then becomes a complex Gaussian
distibution with mean

µ[j] +

P

[l,m]∈N[i,j] α[i,j],[l,m](h[l, m] − µ[m])
P

[l,m]∈N[i,j] α[i,j],[l,m]
(1)

and variance
0

@

X

[l,m]∈N[i,j]

α[i,j],[l,m]

1

A

−1

. (2)

The mean ofh[i, j] is shifted by a weighted sum of the differences
h[l, m]−µ[m]. So if all the neighbors, for example, assumed values
above their means,h[i, j] is likely to assume a value that is above its
mean as well. Theα[i,j],[l,m]’s determine what impact each neighbor
has onh[i, j].

The observationsy[i] and the hidden variablesH are assumed
to have the following statistical relationship

y[i] = h[i]Tx[i] + w[i], i = 0, . . . , M − 1 (3)

wherew[i] denotes additive complex white Gaussian noise with zero
mean and circular symmetric varianceσ2

n, thex[i] are some complex
vectors andh[i] = H (i,:). If we interpreti as a discrete time index,
y[i] could be considered as the output of a linear system that hasx[i]
as its input plus noise. We letθ now also comprise the noise variance
σ2

n.
Our goal is to estimate the paramtersθ and we do so in a maxi-

mum likelihood (ML) fashion.

θ̂ = argmax
θ

p(y|θ) = argmax
θ

Z

H

p(y, H |θ) (4)

where it can easily be checked that

p(y, H |θ) =p(y|H , θ)p(H |θ) (5)

The contribution of this section is the development of an efficient
algorithm for the estimation of these parameters.

Numerical evaluation of maximum-likelihood estimates is often
difficult. As a remedy we will use a powerful optimization method
that has been used with great success in many applications: The
Expectation Maximization (EM) algorithm [6]. A short review of
this algorithm is in order:

1. Make some initial guesŝθ
(0)

2. Expectation step: calculate

Q(θ, θ̂
(k)

) = 〈log p(y, H |θ)〉
p(H |y,θ̂

(k)
)

(6)

3. Maximization step: compute

θ̂
(k+1)

= argmax
θ

Q(θ, θ̂
(k)

) (7)

4. Repeat 6-7 until convergence or until the available time is
over.

〈·〉p represents expectation with respect top. Under rather gen-
eral conditions this algorithm is proven to yield a nondecreasing se-

quencep(y|θ̂
(k)

). However, it is well known that due to the interac-
tion between theh[i, j], the precise calculation of the partition func-
tion Z(θ) and the integral in 6 is not computationally feasible [7].

2.2. Solution

One can bypass the requirement of exactly knowing the partition
functionZ(θ) by approximating the maximization step above by a
gradient ascent step. It should be noted, however, that taking all pa-
rameters inθ as independent and distinct parameters would seriously
overparameterize our model, since there would be more parameters
than available observations. To tackle this problem we assume that
all α[i,j],[l,m]s that correspond to a vertical pairwise clique are the
same and equalαv and similarly that allα[i,j],[l,m]s that correspond
to a horizontal pairwise clique are the same and equalαh. Also we
takeα[jb] = α.

As mentioned above we substitute the maximization step in the
EM algorithm with an gradient ascent step. So lets procede with the

calculation of the gradient ofQ(θ, θ̂
(k)

) with respect toθ.

∂

∂σ2
n

Q(θ, θ̂
(k)

) = −
M

σ2
n

−

M−1
X

i=0

〈|y[i]

−

L−1
X

j=0

h[i, j]x[i, j]|2〉
p(H |y,θ̂

(k)
)

(8)

And the partial derivatives with respect to the MRF parameters θj

have the following form

∂

∂θj

Q(θ, θ̂
(k)

) =〈
∂

∂θj

X

b∈B

Vb(b̄)〉p(H |θ)

−〈
∂

∂θj

X

b∈B

Vb(b̄)〉
p(H |y,θ̂

(k)
)

(9)

where

2
∂

∂µ[j]⋆

X

b∈B

Vb(b̄) =2

„

αv

“

X

i

h[i, j − 1] − Mµ[j − 1]
”

+αv

“

X

i

h[i, j + 1] − Mµ[j + 1]
”

−2αv

“

X

i

h[i, j] − Mµ[j]
”

−α
“

h[1, j] − µ[j]
”

«

(10)

∂

∂α

X

b∈B

Vb(b̄) =
X

j

|h[1, j] − µ[j]|2 (11)

∂

∂αv

X

b∈B

Vb(b̄) =
X

i,j

|(h[i, j] − µ[j])

−(h[i, j + 1] − µ[j + 1])|2 (12)

∂

∂αh

X

b∈B

Vb(b̄) =
X

i,j

|(h[i, j] − (h[i + 1, j])|2 (13)

and ∂
∂µ[j]⋆

denotes the Wirtinger derivative with respect toµ[j]⋆.

Note that the partial derivatives of
P

b∈B Vb(b̄) with respect to the
real and imaginary component ofµ[j] coincide with the real and
imaginary component of2 ∂

∂µ[j]⋆

P

b∈B Vb(b̄), respectively. Clearly

in order to actually calculate the gradient atθ = θ̂
(k)

we first need to
know the moments〈h[i, j]〉, Cov(h[i, j]), Cov([h[i, j], h[i, j + 1]])

andCov([h[i, j], h[i + 1, j]]) with respect top(H |θ̂
(k)

) and also

with respect top(H |y, θ̂
(k)

). This can be achieved by use of the



sum-product algorithm [8]. Note that the random variables in H are
jointly Gaussian and hence the messages that the sum-product algo-
rithm passes along the edges of a factor graph are Gaussian aswell.
Gaussian messages are parameterized by a mean vector and a co-
variance matrix and so the required moments are readily computed
by the operation of the sum-product algorithm. The factor graph the
sum-product algorithm operates on for calculation of the moments

with respect top(H |y, θ̂
(k)

) is shown in Figure 2. The convenient
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Fig. 2. Factor graph for MAP channel estimation

factorization ofp(H |y, θ̂
(k)

) that the MRF framework provides re-
duces the complexity of the marginalization tremendously.The fac-

tor graph corresponding top(H |θ̂
(k)

) coincides with the one in Fig-
ure 2 when the functionsTi are eliminated.

The remainder of this section is dedicated to the implementa-
tion of the sum-product algorithm for the calculation of themo-

ments. The factor graph corresponding top(H |θ̂
(k)

) is contained

in the factor graph corresponding top(H |y, θ̂
(k)

) and hence the

message passing onp(H |θ̂
(k)

) is just a special case of the one on

p(H |y, θ̂
(k)

). For that reason it suffices to derive the message pass-

ing rules for the factor graph associated withp(H |y, θ̂
(k)

).
The message passing rules required for calculation of the mo-

ments〈h[i, j]〉 andCov(h[i, j]) are equivalent to the ones presented
in [4].

We see that the messages that are sent along the edges of our
factor graph are of three different kinds. Messages of the first kind
come from a variable node, messages of the second kind come from
one of the potential functions and messages of the third kindcome
from one of the functionsTi. These three different types of messages
are illustrated in Figure 3. The type of the message is superscriped
in each case. The derivation of the update rules can be found in [4]
and we summarize the results here.

update rule for messages of the first kind

h[i, j]

h[i, j + 1]

Ti

V{h[i,j+1],h[i,j]}

m
(2)
V →h

m
(1)
h→V

m
(1)

h→
Ti

m
(3)
Ti→h

Fig. 3. A closer look at the factor graph from Figure 2

µmh→f
=

P

g∈n(h)\{f} σ−2
g µg

P

g∈n(h)\{f} σ−2
g

(14)

σ
−2
mh→f

=
X

g∈n(h)\{f}

σ
−2
g

whereµg and σ2
g are the mean and the variance of the message

mg→h(h), respectively.

update rule for messages of the second kind

µmVb→h
=µu + µ[jh] − µ[ju] (15)

σ
−2
mVb→h

=
σ−2

u α[ih,jh],[iu,ju]

σ−2
u + α[ih,jh],[iu,ju]

whereµu and σ2
u are the mean and the variance of the message

mu→Vb
(u), u ∈ n(Vb)\{h}, respectively, and[ih, jh] and

[iu, ju] are the coordinates of the nodesh andu, respectively.

update rule for messages of the third kind

σ
−2
mTi→h[i,j]

=|x[i − j]|2σ−2
n (1 + z)−1 (16)

z =σ
−2
n

L−1
X

l=0,l6=j

|x[i − l]|2σ2
mh[i,l]→Ti

µmTi→h[i,j]
=x[i − j]−1(y[i] −

L−1
X

l=0,l6=j

x[i − l]µmh[i,l]→Ti
)

In order to obtain the momentsCov([h[i, j], h[i, j + 1]]) and
Cov([h[i, j], h[i + 1, j]]) as well, we need to modify our current
factor graph setup slightly. We cluster the corresponding pairs
of nodesh[i, j]. Figure 4 shows what effect the clustering of
(h[i, j], h[i, j + 1]) has on the factor graph in Figure 3. The update
rule for messages of the third kind as listed above must then be
modified as follows.



(h[i, j], h[i, j + 1])
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Fig. 4. factor graph

update rule for messages of the third kind

Σ
−1
mTi→(h[i,j],h[i,j+1])

=

»

x[i − j]
x[i − j − 1]

–⋆ »

x[i − j]
x[i − j − 1]

–T

·σ−2
n (1 + z)−1 (17)

z =σ
−2
n

L−1
X

l=0,l6=j,j+1

|x[i − l]|2σ2
mh[i,l]→Ti

µmTi→(h[i,j],h[i,j+1])
=

»

1
0

–

x[i − j]−1

·(y[i] −

L−1
X

l=0,l6=j,j+1

x[i − l]µmh[i,l]→Ti
)

(18)

2.3. Analysis

As mentioned above it is well known that the EM algorithm yields

a nondecreasing sequence of likelihoodsp(y|θ̂
(k)

). This property
remains true even if the maximization step is replaced by a gradient
ascent step as proposed in this paper. A proof of this result can
be found in the appendix. Note, however, that the above algorithm
only approximates this gradient. As our factor graph does contain
cycles, the sum-product algorithm only approximately calculates the
moments required for setting up the gradient [9].

3. SIMULATION RESULTS

We chose to evaluate the performance of the proposed estimator on
synthetic data as this enables us to compare the obtained parame-
ter estimate against the actual value of the parameter. So wedraw
realisations of the state variables from the probability distribution
p(H |θ), observed some noisy observationsy and finally employed
the proposed algorithm on these observations to obtain an estimateθ̂

of θ. For our simulation we parameterized the MRF model with the
following values. The parametersα, αv, αh andµ were set to100,
100, 1000 and [0 0.6 0.4 1 0.2], respectively. Figure 5 shows how
the absolute estimation error of one of the parameters approaches
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Fig. 5. The absolute estimation error ofαv over iterations

zero over the iterations. The convergence speed of the gradient as-
cent algorithm depends on the step size and so does the algorithm
presented here.
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