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ABSTRACT

This paper addresses the problem of state estimation inabe ¢
where the prior distribution of the states is not perfectipkn but
instead is parameterized by some unknown parameter. Tiuudén
to support the state estimator with prior information ongtages and
improve the quality of the state estimates, it is necessdgatn this
unknown parameter first. Here we assume a parameterizegi@aus
Markov random field to model the prior distribution of thetetaand
propose an algorithm that is able to learn its parameters iven
observations on these states. The effectiveness of thimagipis
proven experimentally by simulations.

Index Terms— Gaussian Markov random field, EM algorithm,
unsupervised learning, sum-product algorithm, factoplgra

1. INTRODUCTION

Many problems in Signal Processing can be cast into the frame
of state estimation, in which we have state variablgswhose val-
ues are not directly accessible and variahJg$ whose values are
available. Variables of the latter kind are also referredgmbser-
vations in this context. Usually there exists a statistiedhtion-
ship p(y|h) between the state variablé$i] and the observations
y[i] such that we can infer estimatg§] of the states from the ob-
servations. In many cases prior knowledge about the staitalsa
available (usally in form of a probability distribution(h) on the

state variables) and we can use that knowledge to refine dle st

estimate.

In a variety of interesting problems, however, neither ttee s
tistical relationship between the state variables and biseiwvations
nor the prior distribution are perfectly known and henceraoeleled
as parameterized distributiop$y|h, 6) andp(h|6) with unknown

parameterg. These parameters are then also subject to estimation.

Here we restrict the prior distribution on the hidden stad-v

ables to the form of a parametrized Gaussian Markov randduh fie

and assume a simple parametrized linear observation madfel.
shall propose an efficient algorithm to estimate the unknpanam-
eters. Our algorithm can be interpreted as an approximatidhe
well known expectation maximization (EM) algorithm.

An interesting example of an signal processing problem that

fits the framework of state estimation is channel estimatidhe
widely used wide sense stationary uncorrelated scattenodgl for
the communications channel neglects correlations betdement
multipath arrivals [1-3], but this seems to oversimplifg tieal chan-
nel in many cases. One example is the underwater acoustineha
whose impulse response is fairly continuous in delay andédéam
deed exhibits a certain correlation structure in delay.

the local nature of the statistical dependencies (in tintespace) of
the channel taps.

In order for the MRF model to fit the actual physical channel
well, its parameters must be adapted appropriately. Thigisopic
of the algorithm proposed in this paper. Once these paramate
known, the MRF model can then either be used for channel astim
tion [4] or it can be embedded into an iterative (turbo) reee[5],
where it is expected to improve the data estimation perfonaasig-
nificantly as the parameterized MRF carries prior knowlecig¢he
channel.

2. PARAMETER ESTIMATION

2.1. Problem Setup

We consider an incomplete data problem where some of theblas
are hidden and others are observable. The derivations Snpthi
per assume that the hidden variables are modeled by theigéater
tice shaped gaussian Markov Random Field model introducgt].i
However, with minor modifications the results hold for otl@aus-
sian graphical models as well. Due to the geometric natutatef
tices, we prefer to index the state variables by the two dgiveral
index pair[i, j]. The graphical model in [4] is illustrated by the fac-
tor graph in Figure 1, and completely characterized by thevfing
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Fig. 1. Factor graph based on MRF model

joint distribution

p(H|0) = Z(0)"" [ exp(—ay,|hliv, jo] — ulis]l*)

beB,

- TT exp(=agiy i), tmpm| (Blis, ] = plis])
bEBo

— (h[mw, ns) — pns])|*)

where the vector§ containes all the model parameters i.e the

Q[iy, 5], [ms,mp]» the ag;,) and thep[j]. The setB; comprises all

To address this shortcoming [4] introduced a novel channesingle cliques that correspond to state variabigsj] ati = 0
model that is based on a Gaussian Markov random field (MRF) foand the seB. contains all the pairwise cliques. S is jointly

the complex channel gains. This graphical model is usedptuoa

Gaussian distributed aridi, j] has meanu[j]. The structure of this
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lattice shaped graphical model also imposes a certainragtytion 2.2, Solution
the behavior of neighboring state variables,pda|i, j]|h[l, m] :
[l,m] € NJi,j]) for i # 0 then becomes a complex Gaussian
distibution with mean

One can bypass the requirement of exactly knowing the jmartit
function Z(6) by approximating the maximization step above by a
gradient ascent step. It should be noted, however, thatgail pa-
Z[l,m]eN[i,j] agi,g,1,m) (AL, m] — p[m]) rameters i@ as independent and distinct parameters would seriously
@) overparameterize our model, since there would be more peasn
than available observations. To tackle this problem werassihat
and variance all ay; 57,1,m)S that correspond to a vertical pairwise clique are the
1 same and equal, and similarly that albyj; ;;,;,mS that correspond
to a horizontal pairwise clique are the same and egualAlso we
( Z Q41,1 m])
[ (2,5

il +
Z[zm]eN[i,j] Qi 5, [L,m]

(2) takea[jb] = Q.
As mentioned above we substitute the maximization stepen th
EM algorithm with an gradient ascent step. So lets procetle the

I,m]eNJi,j

The mean ofi[¢, j] is shifted by a weighted sum of the differences

h[l,m] — u[m]. So if all the neighbors, for example, assumed valuescalculation of the gradient ap(6, 6™) with respect te.

above their meand[, j] is likely to assume a value that is above its M1

mean as well. They; j1,;1,m)'S determine what impact each neighbor 2 0, A <k)) M z (yli]

has onh[i, j]. aan o2 pare

The observationg[:] and the hidden variableH are assumed L B
to have the following statistical relationship S e g2
= > hli, jlafi, 5] ) p(E 1y .65 8
yli] = i @] + wli), i=0,...,M —1 (3) =0

wherew([i] denotes additive complex white Gaussian noise with zerd\nd the partial derivatives with respect to the MRF paramsefe
mean and circular symmetric varianeg, thex[i] are some complex have the following form

vectors andh[i] = H ;.. If we interpreti as a discrete time index, P A(k)
yl¢] could be considered as the output of a linear system that lihs a0, (o, 89 Z Vi (b)) p(r110)
as its input plus noise. We l@tnow also comprise the noise variance 7 beB
2
On. _
Our goal is to estimate the paramtérand we do so in a maxi- _<W Z Vb(b»p(my,g(k)) ©)
mum likelihood (ML) fashion. 7 beB
. where
6 = argmaax p(y|6) = wgmax [ ply.H) (@)
| [ o Ju L*Z%(B) :2(%(2}1[2‘,]'— 1] —M;t[j—l])
where it can easily be checked that oulj] beB 3
p(y, H|0) =p(y|H,0)p(H|0) ®) tao (3 bl + 1] = Mplj + 1))
The contribution of this section is the development of arcigffit . o )
algorithm for the estimation of these parameters. —2a ( z h[i, 5] — MH[J])
Numerical evaluation of maximume-likelihood estimatesfizn @
difficult. As a remedy we will use a powerful optimization et B P
that has been used with great success in many applications: T a(h[l’ﬂ “[J]) (10)
Expectation Maximization (EM) algorithm [6]. A short reweof Pl
this algorithm is in order: o > V(b Z |R[1L, 5] = pld]® (11)
. beB
1. Make some initial gues%(o)
2. Expectation step: calculate 804 ZVI’ Z' i, j] = ulj])
beB
5 (k)
Q0,0) = (logp(y, H|0)) 1. 500, (6) —(h[z,y +1] = plj + 1) (12)
. . . 2
3. Maximization step: compute Z Vo(b) = |(hli, ] — (hli + 1, 5])] (13)
bEB 1,7
H(k+1) (k)
0 argmaXQ(e 6™) ) and 5-=— denotes the Wirtinger derivative with respecttf]*.

Note that the partial derivatives OF, _, V4 (b) with respect to the
real and imaginary component of j] coincide with the real and
imaginary component cﬁ ZbeBVb( ), respectlvely Clearly

4. Repeat 6-7 until convergence or until the available time i
over.

(-)p represents expectation with respectpto Under rather gen-

eral conditions this algorithm is proven to yield a nondesieg se-
s &igortim IS p y =d know the moment(i, 4], Cov (h[i, 4]), Cov([hli, ], hli, j + 1]])

quencep(y|@ ). However, it is well known that due to the interac- T ) . NG

tion between thé/[i, j], the precise calculation of the partition func- @nd Cov([A[i, j], hli + {v(Jk])]) with respect top(H|6 ") and also

tion Z(0) and the integral in 6 is not computationally feasible [7]. with respect top(H|y,0 "). This can be achieved by use of the

in order to actually calculate the gradientat 9 We first need to



sum-product algorithm [8]. Note that the random variabheEli are .
jointly Gaussian and hence the messages that the sum-pridoe

rithm passes along the edges of a factor graph are Gaussiegilas
Gaussian messages are parameterized by a mean vector and a COe «
variance matrix and so the required moments are readily atedp

by the operation of the sum-product algorithm. The factapgrthe mg?_Lh
sum-product algorithm operates on for calculation of theraots ‘

with respect top(H |y, é(k)) is shown in Figure 2. The convenient
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Fig. 3. A closer look at the factor graph from Figure 2
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. cee Hmy,_ ¢z = Z 5 (14)
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where i, and ag are the mean and the variance of the message
. mg_n(h), respectively.

Fig. 2. Factor graph for MAP channel estimation update rule for messages of the second kind

factorization ofp(H |y, 8"’ that the MRF framework provides re- Hmy, . =R + pljn] — pliu] (15)

duces the complexity of the marginalization tremendoLiBhe fac-
tor graph corresponding MH|9(k)) coincides with the one in Fig-
ure 2 when the function®; are eliminated.

The remainder of this section is dedicated to the implementawhere ., and o2 are the mean and the variance of the message
tion of the sum-product algorithm for the calculation of th®-  m._v,(u), w € n(V,)\{h}, respectively, andfis,j,] and

ments. The factor graph corresponding)((H|9(k)) is contained  l%u, ju] are the coordinates of the nodesindu, respectively.
in the factor graph corresponding ﬁﬁH|y7é(k)) and hence the

. NONES .
message passing @i{ H|0" ) is just a special case of the one on

-2
o2 —_%u Mindnlliv.gul
my, ~nh —
ot o 4oy

insdnl[iusdul

update rule for messages of the third kind

p(Hly, 9(k)). For that reason it suffices to derive the message pass-

—2 . 12 _—2 -1
. . . N Om o=zt — o, (1+2 16
ing rules for the factor graph associated Vy)(kH|y,0(k)). Tinti) 7| ]l ( ) (16)
. . . L—-1
The message passing rules requllred for calculation of the mo R Z i2li — )0
ments(h[z, j]) andCov (h[i, j]) are equivalent to the ones presented n A1) —T;
in [4]. 1=0,t7
We see that the messages that are sent along the edges of our a1 Ll )
factor graph are of three different kinds. Messages of tis¢ Kind fme, g gy =2l =31 (yli] = Z wli = Upmpgi g r,)
come from a variable node, messages of the second kind come fr 1=0,1#7

one of the potential functions and messages of the third &imde
from one of the function3;. These three different types of messages
are illustrated in Figure 3. The type of the message is sappes!

in each case. The derivation of the update rules can be foupq i
and we summarize the results here.

In order to obtain the momentSov ([h[s, j], h[i, 5 + 1]]) and
Cov([h[i, 5], h[¢ + 1, 4]]) as well, we need to modify our current
factor graph setup slightly. We cluster the correspondiagsp
of nodesh[i,j].  Figure 4 shows what effect the clustering of
(h[i, 4], Rz, 5 + 1]) has on the factor graph in Figure 3. The update
rule for messages of the third kind as listed above must thken b
update rule for messages of the first kind modified as follows.
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Fig. 5. The absolute estimation error @f, over iterations

Fig. 4. factor graph

zero over the iterations. The convergence speed of theayiads-

cent algorithm depends on the step size and so does thethfgori
presented here.

update rule for messages of the third kind
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