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Abstract

Classical techniques for analysing multivariate extremes can often be framed in
terms of the point process representation of de Haan (1985). Amongst other things,
this representation provides a characterisation of the limiting distribution of the
normalised componentwise maxima of independent and identically distributed unit
Fréchet variables, i.e. the class of multivariate extreme value distributions. The de-
pendence structures accommodated within this class correspond only to asymptotic
dependence or to exact independence, and so are rather restrictive.

In this paper, an alternative limiting point process representation is studied that
holds regardless of whether the underlying data generation mechanism is asymp-
totically dependent or asymptotically independent. Through the use of the usual
pseudo-polar coordinates, we characterise the intensity function of this point process
in terms of the coefficient of tail dependence η ∈ (0, 1] and a non-negative measure
that has to satisfy a simple normalisation condition but is otherwise arbitrary. We
use this point process representation to derive an analogue of the standard compo-
nentwise maxima result that holds for both asymptotically dependent and asymp-
totically independent cases. We illustrate our results using a flexible parametric
example and provide methods for simulating from both the limiting point process
and the limiting componentwise maxima distribution.
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1 Introduction

1.1 Classical background

The classical results of multivariate extremes can often be framed in terms of the point
process representation of de Haan (1985), see for example Coles and Tawn (1991, 1994).
To illustrate this, in the following we concentrate on the 2-dimensional case and consider
independent and identically distributed (i.i.d.) bivariate random variables (X1, Y1) , . . . ,
(Xn, Yn) with unit Fréchet distributed margins, so that Pr(X ≤ x) = Pr(Y ≤ x) =
exp(−1/x) on x > 0, and joint distribution function F (x, y) where F is assumed to be in
the domain of attraction of a bivariate extreme value (BEV) distribution (Resnick, 1987).
The choice of unit Fréchet distributed margins admits no loss of generality here, as prob-
ability integral transformations may be used to derive corresponding results for arbitrary
marginal distributions. Defining the componentwise maxima MX,n = max(X1, . . . , Xn)
and MY,n = max(Y1, . . . , Yn), it is clear Pr(MX,n/n ≤ x) = Pr(MY,n/n ≤ x) = exp(−1/x)
so that MX,n/n and MY,n/n are both exactly unit Fréchet distributed, or more loosely, a
normalisation of n−1 is required in order to stabilise the componentwise maxima.

Following de Haan (1985), it can be shown that the point process Pn defined by

Pn =

{(

Xi

n
,
Yi

n

)

; i = 1, . . . , n

}

converges weakly in the limit as n → ∞ to a non-homogeneous Poisson process P on
[0,∞) × [0,∞) \ (0, 0). Furthermore, by changing variables to the pseudo-radial and
angular coordinates R = X + Y and W = X/R, it can be shown that P has a point
intensity µ that factorises as

µ(dr × dw) = r−2 dr dH(w)

where H is a non-negative measure on [0, 1] that is arbitrary apart from having to satisfy

∫ 1

0

w dH(w) =

∫ 1

0

(1 − w) dH(w) = 1. (1.1)

An equivalent but more straightforward way to express the conditions (1.1) is that H/2
is the cumulative probability distribution function of any random variable on [0, 1] that
has mean equal to 1/2.

As an illustration of how P can be used to derive classical multivariate extreme value
results, we use it here to derive the general characterisation of a BEV distribution with
unit Fréchet distributed margins. Following the set up above, let G denote any non-
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-degenerate limiting bivariate distribution function of (MX,n/n,MY,n/n) and define the
set Axy = {(0, x] × (0, y]} for fixed positive x and y. Then

G(x, y) = lim
n→∞

Pr

(

MX,n

n
≤ x,

MY,n

n
≤ y

)

= lim
n→∞

Pr(all points of Pn are in Axy)

= lim
n→∞

Pr(no points of Pn are outside Axy)

= Pr(no points of P are outside Axy)

= exp(−1 × Expected number of points of P outside Axy)

= exp

{

−

∫ 1

0

∫ ∞

rxy(w)

r−2 dr dH(w)

}

(1.2)

where rxy(w) = min{x/w, y/(1 − w)}. On performing the r-integration in equation (1.2)
we obtain G(x, y) = exp{−V (x, y)} where V is a function that determines the dependence
structure of G(x, y) and is given by

V (x, y) =

∫ 1

0

max

(

w

x
,
1 − w

y

)

dH(w) (1.3)

for H satisfying the regularity conditions (1.1). This is the classical representation of a
BEV distribution with unit Fréchet distributed margins, see de Haan and Resnick (1977)
and Pickands (1981). It is easy to see from equation (1.3) that V is a homogeneous
function of order −1, that is V (nx, ny) = n−1V (x, y). Hence we have that G is max-
stable since Gn(nx, ny) = G(x, y), and G is also in its own domain of attraction since if
each (Xi, Yi) ∼ G in the above then (MX,n/n,MY,n/n) ∼ G for each n ≥ 1.

1.2 Limitations of the classical theory

The notions of asymptotic dependence and asymptotic independence are important for
describing the limitations of the classical theory and so are now defined. Letting κ denote
the limiting conditional probability in

lim
u→∞

Pr(X > u|Y > u) = κ

then X and Y are said to be asymptotically dependent if κ > 0 and asymptotically
independent if κ = 0 (Sibuya, 1960). Asymptotic independence is an important feature
that arises in both practical data modelling applications and the study of the dependence
features of most classical families of distributions, see de Haan and de Ronde (1998),
Ledford and Tawn (1997), Capéraà et al. (2000) and Heffernan (2000).

When the components of the underlying (Xi, Yi) pairs in Section 1.1 are asymptotically
dependent then the de Haan (1985) limiting point process representation provides a sound
foundation for modelling the observed joint tail dependence structure, and consequently
constructions derived from this representation such as the class of BEV distributions are
well motivated and typically useful in practice. This is not the case when the (Xi, Yi)
components are asymptotically independent because then the limiting point process P is
degenerate as the measure H(w) is identically zero on the interior of [0, 1] and places unit
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masses at w = 0 and w = 1. In this case equations (1.2) and (1.3) give that the resulting
BEV distribution has exactly independent margins since G(x, y) = exp{−(1/x + 1/y)}.
The fact that the limiting point process and hence constructions derived from it such
as the class of BEV distributions all correspond either to exact independence or asymp-
totic dependence leads to non-regular inference issues, see Tawn (1988), Ledford and
Tawn (1996) and Ramos and Ledford (2005), and considerable difficulties in situations
where asymptotic independence is apparent, as neither exact independence nor asymptotic
dependence may be adequate for describing the observed joint tail dependence structure,
see Ledford and Tawn (1996, 1997) and Coles et al. (1999). The crux of the problem is
that the currently available underlying limit theory is degenerate for cases of asymptotic
independence. It is our view that an alternative limit theory is required that provides
useful results for both asymptotic dependence and asymptotic independence. This is what
is provided in this paper.

1.3 Alternatives to the classical approach

Over the last decade or so there has been progress on developing extremal dependence
models that accommodate both asymptotic dependence and asymptotic independence.
Ledford and Tawn (1997) proposed a method based on joint survivor functions that could
be applied to both asymptotically dependent and asymptotically independent data but
overlooked some necessary regularity conditions and used a parametric form that was not
guaranteed to correspond to a valid probability model. More recently, Ramos and Led-
ford (2009) extended the Ledford and Tawn (1997) results by establishing the required
regularity conditions, developing a flexible parametric model that satisfied these and de-
riving a censored likelihood approach for estimation. Coles and Pauli (2002) developed
a different approach based on a parametric copula that describes dependence through-
out the entire domain rather than just the extremes, and Heffernan and Tawn (2004)
derived a method with a more empirical flavour based on combining normalised limiting
conditional distributions. However none of these developments has provided a modelling
framework with generality and depth comparable to those of the de Haan (1985) point
process and its encapsulation of other classical extreme results such as the characterisa-
tion (1.2). Resnick (2002) and Maulik and Resnick (2004) also gave a characterization and
representation of distributions possessing a property they called hidden regular variation,
which is a property of the subfamily of distributions possessing both multivariate regular
variation and asymptotic independence, and is based on an elaboration the coefficient of
tail dependence of Ledford and Tawn (1996, 1997). In these two works hidden regular
variation is represented in terms of a non-negative measure called the hidden angular (or
spectral) measure, which was estimated by Heffernan and Resnick (2005) using the rank
transform. We construct a similar representation via our point process approach and
thereby obtain a simple normalization condition that the hidden angular measure must
satify. This condition is missing in the hidden regular variation papers cited above.

The starting point for the developments of this paper is the limiting Poisson process
result Ledford and Tawn (1997) outlined but did not explore in any detail. Focusing
on the bivariate case, we derive regularity conditions on the intensity function of this
point process in Section 2. In Section 3 we use our point process results to derive the
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analogue of the classical componentwise maxima results given in Section 1.1. A flexible
parametric example is introduced in Section 4 that is used to illustrate the new point
process and componentwise maxima results, and also to demonstrate how the joint tail
modelling approach of Ramos and Ledford (2009) can be derived from the point process
results developed in this paper. Methods for simulating from both the underlying point
process and the limiting distribution of componentwise maxima are given in Section 5.
In Section 6 we provide some concluding remarks and show how the bivariate results
discussed in this paper can be extended to the multivariate case. In the appendices we
provide some proofs and discuss a possible extension of our results that may be useful for
further relating our approach to the classical extreme values one.

2 A unified point process framework

In this section we build on the limiting Poisson process results of Ledford and Tawn (1997)
and show that the intensity function which arises can be written in terms of a non-negative
measure that is arbitrary apart from having to satisfy some regularity conditions. Our
treatment unifies the asymptotically dependent and asymptotically independent cases.
The convergence of the relevant sequence of point processes to a Poisson process on the
cone (0,∞)2 and the convergence of the associated intensity measure can also be obtained
from the results of Resnick (2002), Maulik and Resnick (2004) and Heffernan and Resnick
(2005).

2.1 Derivation

Let (X1, Y1) , . . . , (Xn, Yn) denote independent and identically distributed bivariate ran-
dom variables with unit Fréchet distributed margins and joint survivor function that is
bivariate regularly varying with index −1/η for some η ∈ (0, 1] so that

F (x, y) = Pr(X > x, Y > y) =
L(x, y)

(xy)1/(2η)
(2.1)

where L is a bivariate slowly varying (BSV) function. Following Ledford and Tawn (1996,
1997) we refer to the parameter η ∈ (0, 1] as the coefficient of tail dependence. The
representation (2.1) accommodates a wide spectrum of dependence behaviour, including
asymptotic independence, asymptotic dependence, complete dependence and exact in-
dependence. As a modelling framework, it also provides a smooth transition between
complete dependence and exact independence, and allows negative dependence between
the marginal extremes, yielding a very flexible and broadly applicable statistical model,
see Ramos and Ledford (2009). Let g denote the limit function of L, so that for all
(x, y) ∈ (0,∞) × (0,∞) and c > 0 we have

g(x, y) = lim
r→∞

L(rx, ry)

L(r, r)
and g(cx, cy) = g(x, y). (2.2)

A consequence of equation (2.2) is that for any x > 0 and y > 0

g(x, y) = g{x/(x + y), y/(x + y)} = g{w, 1 − w} ≡ g∗(w) (2.3)
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where w = x/(x + y) ∈ (0, 1), and thus it is clear that the bivariate function g(x, y)
depends only on the univariate quantity w ∈ (0, 1).

Following Ledford and Tawn (1997), we consider the sequence of point processes

P∗
n =

{(

Xi

bn

,
Yi

bn

)

: i = 1, . . . , n

}

(2.4)

where the normalising constants bn are defined implicitly as satisfying nF (bn, bn) = 1,
so that typically bn = O(nη). Clearly when η < 1 the normalising constants satisfy
bn = o(n) and are therefore too light to stabilise the componentwise maxima MX,n and
MY,n within P∗

n, see Section 1. In contrast, when the componentwise maxima are asymp-
totically dependent then bn = O(n) and MX,n and MY,n are stabilised. The impact
of this distinction is that P∗

n converges weakly to a non-homogeneous Poisson process
P∗ in the limit as n → ∞ with domain (0,∞) × (0,∞) when η < 1 and domain
{[0,∞) × [0,∞)}\{(0, 0)} when the componentwise maxima are asymptotically depen-
dent. The first case is discussed in more detail in Ledford and Tawn (1997) and the latter
case in de Haan (1985), however for our purposes we will restrict attention to the domain
(0,∞) × (0,∞) as then our results will hold regardless of whether the componentwise
maxima are asymptotically dependent or asymptotically independent.

We start by deriving the intensity function Λη{(x,∞) × (y,∞)} of P∗ for any x > 0
and y > 0, that is the expected number of points of P∗ within a set of the form {(x,∞)×
(y,∞)}. By definition, and substituting according to equations (2.1) and (2.2), we have

Λη{(x,∞) × (y,∞)} = lim
n→∞

nF (bnx, bny)

= lim
n→∞

nF (bn, bn)
F (bnx, bny)

F (bn, bn)
=

g(x, y)

(xy)1/(2η)
(2.5)

since nF (bn, bn) = 1. Substituting into equation (2.5) according to the pseudo-polar
coordinates r = x + y and w = x/r and exploiting equation (2.3), it is clear that

Λη{(x,∞) × (y,∞)} = r−1/ηg∗(w)/{w(1 − w)}1/(2η)

and thus for any x > 0 and y > 0 we have Λη{(x,∞) × (y,∞)} factorises into separate
terms involving r and w. We now derive an alternative expression for Λη{(x,∞)×(y,∞)}
as the integral of its point intensity µη over the set {(x,∞) × (y,∞)} and then exploit
the above factorisation by changing variables to (r, w), and so obtain

Λη{(x,∞) × (y,∞)} =

∫

{(x,∞)×(y,∞)}

µη(dx × dy)

=

∫

w∈(0,1)

∫ ∞

r=r′xy(w)

r−(1+1/η) dr dHη(w) (2.6)

= η

∫

(0,1)

{

min

(

w

x
,
1 − w

y

)}1/η

dHη(w) (2.7)

where r′xy(w) = max{x/w, y/(1−w)} and Hη(w) is a non-negative measure on (0, 1) (see
Ramos and Ledford, 2009 or Beirlant et al., 2004) that is arbitrary apart from having to
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satisfy a simple normalisation condition that we now derive. Since limn→∞ nF (bn, bn) = 1
implies that the expected number of points of P∗ within (1,∞)× (1,∞) is 1 also, then η
and Hη are related via

1 = Λη{(1,∞) × (1,∞)} = η

∫

(0,1)

{min (w, 1 − w)}1/η dHη(w),

or equivalently Hη must satisfy the following normalisation condition:

η−1 =

∫ 1/2

0

w1/η dHη(w) +

∫ 1

1/2

(1 − w)1/η dHη(w). (2.8)

The measure Hη is a particular case of the hidden angular measure considered by Resnick
(2002) and Maulik and Resnick (2004), however these papers omit the normalisation
condition (2.8)

The results obtained above add significant rigour to the treatment provided by Led-
ford and Tawn (1997) and extend the hidden regular variation results of Resnick and
collaborators to include the integral constraint (2.8). The normalisation condition (2.8)
is identical to that obtained in Ramos and Ledford (2009) but is different to that which
arises in the de Haan (1985) classical point process treatment of multivariate extremes,
see equation (1.1). Condition (2.8), although necessary, is not sufficient to ensure that an
(η,Hη)-pair defines the intensity of a point process that can arise via construction (2.4)
from a bivariate random variable (X,Y ) with unit Frechét distributed marginals. As in
Theorem 1 of Ramos and Ledford (2009), additional conditions are required for this so
that the marginal tails of the point process are not heavier than those of a unit Frechét
variable. See Appendix A for details.

In order to provide a brief illustration we here examine a simple discrete model. Fol-
lowing Ramos and Ledford (2009), suppose initially that Hη has two atoms of equal
mass a at positions w1 and (1 − w1) in the interior of (0, 1) so that 0 < w1 < 1/2. The

normalisation condition (2.8) implies a = (2η)−1 w
−1/η
1 . Generalising this to the case

of an asymmetric discrete measure with positive masses a1, . . . , aq, . . . , an at positions
0 < w1 < · · · < wq < · · · < wn < 1, where q is such that wq−1 ≤ 1/2 < wq, the
normalisation condition (2.8) is satisfied if and only if

q−1
∑

i=1

aiw
1/η
i +

n
∑

i=q

ai (1 − wi)
1/η = η−1.

The additional conditions in Appendix A are satisfied for any η ∈ (0, 1). We do not
examine this model any further in this paper but instead concentrate later on a smooth
and flexible parametric form for Hη that is more suited to applications.

3 Componentwise maxima revisited

In this section we study an analogue of result (1.2) based on the sequence of point processes
P∗

n of Section 2. This topic was examined briefly by Ledford and Tawn (1997), however
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the more detailed treatment given here makes clear some issues that are not apparent
within their treatment. Our approach is to obtain the limiting distribution of normalised
componentwise maxima of points that occur within a region bounded away from the axes
and then examine the behaviour of this distribution as the bounds approach the axes.

Under the same setup as Section 2, we additionally define Rε = {(x, y) : x > ε, y > ε}
and Rε(x, y) = Rε \ {(ε, x)× (ε, y)}, and let MX,n,ε and MY,n,ε denote the componentwise
maxima of those points out of (X1, Y1), . . . , (Xn, Yn) that occur within Rε. Then for any
x > ε and y > ε we have

Pr

(

MX,n,εbn

bn

≤ x,
MY,n,εbn

bn

≤ y

)

= Pr {no (Xi, Yi) pair occurs within Rεbn(xbn, ybn)}

= Pr {every (Xi, Yi) pair occurs outside Rεbn(xbn, ybn)}

=
{

1 − F (xbn, εbn) − F (εbn, ybn) + F (xbn, ybn)
}n

=

[

1 −
1

n

{

F (xbn, εbn)

F (bn, bn)
+

F (εbn, ybn)

F (bn, bn)
−

F (xbn, ybn)

F (bn, bn)

}]n

since nF (bn, bn) = 1. Substituting according to equation (2.5) and taking the limit as
n → ∞ gives

lim
n→∞

Pr

(

MX,n,εbn

bn

≤ x,
MY,n,εbn

bn

≤ y

)

= exp

[

−

{

g(x, ε)

(xε)1/(2η)
+

g(ε, y)

(εy)1/(2η)
−

g(x, y)

(xy)1/(2η)

}]

(3.1)

= exp{−1 × Expected number of points of P∗ that occur in Rε(x, y)}. (3.2)

To examine the terms in equation (3.1) as ε → 0 we recall equations (2.5) and (2.7) and
so obtain

g(x, y)

(xy)1/(2η)
= η

∫

(0,1)

{

min

(

w

x
,
1 − w

y

)}1/η

dHη(w). (3.3)

From equation (3.3) we therefore have

g(x, ε)

(xε)1/(2η)
= η

∫ x/(x+ε)

0

(w

x

)1/η

dHη(w) + η

∫ 1

x/(x+ε)

(

1 − w

ε

)1/η

dHη(w)

and hence

lim
ε→0

g(x, ε)

(xε)1/(2η)
= ηx−1/η

∫

(0,1)

w1/η dHη(w) + η lim
ε→0

ε−1/η

∫ 1

x/(x+ε)

(1 − w)1/η dHη(w).

Similarly, equation (3.3) gives

lim
ε→0

g(ε, y)

(εy)1/(2η)
= η lim

ε→0
ε−1/η

∫ ε/(ε+y)

0

w1/η dHη(w) + ηy−1/η

∫

(0,1)

(1 − w)1/η dHη(w).
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Thus provided the measure Hη satisfies the normalisation condition (2.8) and is finite
then both limits on the right hand side of the above equations equal zero for any x > 0
and y > 0 respectively, and therefore taking the limit of equation (3.1) as ε → 0 gives a
non-degenerate result and

Gη(x, y) ≡ lim
ε→0

lim
n→∞

Pr

(

MX,n,εbn

bn

≤ x,
MY,n,εbn

bn

≤ y

)

= exp{−Vη(x, y)} (3.4)

where

Vη(x, y) = Expected number of points of P∗ that occur in limε→0 Rε(x, y)

= η

∫

(0,1)

{

max

(

w

x
,
1 − w

y

)}1/η

dHη(w). (3.5)

It is straightforward to see that the dependence function Vη defined in equation (3.5) is
homogeneous of order −1/η, that is, Vη(tx, ty) = t−1/ηVη(x, y) for all t > 0. Thus we have
Gn

η (nηx, nηy) = Gη(x, y) and so Gη is max-stable. Examining now the marginal behaviour
implied by equations (3.4) and (3.5) we obtain

lim
ε→0

lim
n→∞

Pr (MX,n,εbn/bn ≤ x) = exp
{

−Vη(1,∞) x−1/η
}

and

lim
ε→0

lim
n→∞

Pr (MY,n,εbn/bn ≤ y) = exp
{

−Vη(∞, 1) y−1/η
}

,

that is, Fréchet distributions with shape parameter η and scale parameters equal to
Vη(1,∞) = η

∫ 1

0
w1/ηhη(w) dw and Vη(∞, 1) = η

∫ 1

0
(1 − w)1/η hη(w) dw respectively. So,

unlike for the classical results given in Section 1.1, the limiting marginal distributions here
are not unit Fréchet. However, by adopting different normalising conditions in the point
process, it is possible to obtain a limiting distribution that has Fréchet margins with the
same shape parameter but scale parameters equal to 1. Specifically the point process

P#
n =

{(

Xi

V η
η (1,∞)bn

,
Yi

V η
η (∞, 1)bn

)

: i = 1, . . . , n

}

achieves this.
Equations (3.4) and (3.5) give the joint distribution of componentwise maxima for

pairs of variables which are simultaneously large regardless of whether the underlying de-
pendence structure is asymptotically dependent or asymptotically independent, and thus
considerably extend the standard componentwise maxima result given in equation (1.2).
It is hoped that this asymptotically motivated framework will provide versatile and im-
proved modelling and extrapolation capabilities compared to the classical BEV paradigm,
especially in cases where neither exact independence nor asymptotic dependence is ap-
propriate. The above also clarifies the point process results of Ledford and Tawn (1997)
and makes clear the convergence issues. We remark that the limiting point process P ∗

of Section 2, in contrast to the de Haan (1985) approach, is based on a normalisation
that stabilises the joint tail rather than the componentwise maxima and a domain that
excludes the axes x = 0 and y = 0. If these key differences are omitted, then we are back
in the classical BEV case and result (1.2) holds. This point seems to have been overlooked
in the statement of the result given in Section 3.2.1 of Kotz and Nadarajah (2000).
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The constraint of Hη being finite causes some restriction since, as noted by Maulik
and Resnick (2004), the class of regularly varying multivariate distributions with infinite
hidden angular measure is at least as large as the class of distributions on [1,∞) which
have infinite mean. Thus an infinite measure Hη which is valid for the point process P∗ of
Section 2 will yield the degenerate limit of zero as ε → 0 for the componentwise maxima
distribution in equation (3.4). We will see an explicit example of this later. This em-
phasises that the point process representation in Section 2 accommodates a wider class
of dependence behaviour than that captured by the componentwise maxima results of
this section. Geometrically, what is happening when the componentwise maxima results
are degenerate is that MX,n,εbn and MY,n,εbn grow too fast to be stabilised by the bn nor-
malisation. We illustrate this later through simulation results for a particular parametric
example.

3.1 Obtaining Hη from Vη

In equation (3.5) the dependence function Vη is defined in terms of a given measure Hη.
Restricting ourselves here to the class of models for which Vη is differentiable, we now show
how Hη, or more specifically its measure density hη, can be recovered from a given Vη. Our
approach is similar to that of Coles and Tawn (1991). Using, for example, equations (2.7)
and (3.5), it is clear that

Λη{(x,∞) × (y,∞)} = Vη(x,∞) + Vη(∞, y) − Vη(x, y), (3.6)

so taking the mixed derivative of equation (3.6) with respect to x and y we obtain

∂2Vη

∂x ∂y
= −r−(2+1/η)hη(w) (3.7)

where r = x + y and w = x/(x + y). Thus provided the density hη exists, equation (3.7)
describes the relationship between the pseudo-angular measure Hη and the exponent
measure Vη. This extends part of the Coles and Tawn (1991) result to the asymptotically
independent case, however their result is more wide-ranging as it also covers the rela-
tionship between the lower dimensional pseudo-radial and exponent measures in higher
dimensional cases.

4 A parametric example

In order to examine the properties of estimators and to undertake applied statistical
modelling it is useful to have a tractable parametric model that is flexible enough to
exhibit a wide range of behaviours and also allows straightforward simulation. Here we
introduce such a model via a particular parametric Hη family. This model will be the
focus for much of the remainder of the paper.

4.1 The η-asymmetric logistic model

This is similar to the BEV-asymmetric logistic dependence structure of classical bivariate
extremes, see Tawn (1988). As defined in Ramos and Ledford (2009), consider Hη with
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density hη given by

hη(w) =
η − α

αη2N%

{

(%w)−1/α +

(

1 − w

%

)−1/α
}α/η−2

{w ( 1 − w)}−(1+1/α) (4.1)

for w ∈ (0, 1) where N% = %−1/η+%1/η−(%−1/α+%1/α)α/η and η ∈ (0, 1], % > 0 and α ∈ (0, 1].
It is straightforward to show that hη satisfies both the normalisation condition (2.8) and
the conditions mentioned in Appendix A.

4.2 Point process intensity

For the η-asymmetric logistic model with measure density hη satisfying equation (4.1),
equation (2.7) gives that the intensity function of the limiting Poisson point process P ∗

satisfies

Λη {(x,∞) × (y,∞)} = N−1
%



(%x)−1/η +

(

y

%

)−1/η

−

{

(%x)−1/α +

(

y

%

)−1/α
}α/η





(4.2)
where x > 0 and y > 0.

4.3 Limiting distribution of componentwise maxima

For the η-asymmetric logistic model defined by equation (4.1), the limiting componentwise
maxima distribution given in equation (3.4) satisfies

Gη(x, y) = lim
ε→0

lim
n→∞

Pr (MX,n,εbn ≤ xbn,MY,n,εbn ≤ ybn )

=











exp

[

−N−1
%

{

(%x)−1/α +
(

y
%

)−1/α
}α/η

]

for α < η,

0 for α ≥ η.

(4.3)

The marginal distributions of Gη are easily obtained from equation (4.3) by substituting
x = ∞ or y = ∞ and hence satisfy

lim
ε→0

lim
n→∞

Pr (MX,n,εbn ≤ xbn) =

{

exp
(

−N−1
% %−1/ηx−1/η

)

for α < η,
0 for α ≥ η,

and

lim
ε→0

lim
n→∞

Pr (MY,n,εbn ≤ ybn) =

{

exp
(

−N−1
% %1/ηy−1/η

)

for α < η,
0 for α ≥ η.

The degenerate α ≥ η case in the above arises when the measure Hη is infinite, as discussed
in Section 3. We return to this in Section 5.4.
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4.4 Limiting model for the joint tail

Let Ast denote a set of the form {(x′, y′) : x′ > s, y′ > t} for some fixed s > 0 and t > 0.
Following the notation of Section 2 and writing bnAst for {(x′, y′) : x′ > bns, y

′ > bnt},
then on x > s and y > t we have that

lim
n→∞

Pr{(X,Y ) ∈ bnAxy|(X,Y ) ∈ bnAst} = lim
n→∞

Pr(X > bnx, Y > bny)

Pr(X > bns, Y > bnt)

=
Λη {(x,∞) × (y,∞)}

Λη {(s,∞) × (t,∞)}
. (4.4)

The normalisation condition (2.8) and the conditions in Appendix A ensure the existence
of a bivariate random variable (X,Y ) with unit Fréchet distributed margins such that
equations (2.7) and (4.4) hold.

Substituting the η-asymmetric logistic intensity function given in equation (4.2) into
equation (4.4) we obtain the limiting joint tail model

lim
n→∞

Pr{(X,Y ) ∈ bnAxy|(X,Y ) ∈ bnAst} =

N−1
st%



(%x)−1/η +

(

y

%

)−1/η

−

{

(%x)−1/α +

(

y

%

)−1/α
}α/η



 (4.5)

for x > s and y > t where Nst% = (%s)−1/η + (t/%)−1/η −
{

(%s)−1/α + (t/%)−1/α
}α/η

.

This is the basis of the modelling approach and likelihood methods adopted by Ramos
and Ledford (2009) who chose the s = t = 1 special case of this more general result.
Clearly, since the α ≥ η case gives rise to a non-degenerate model in equation (4.5) and
a degenerate limiting distribution in equation (4.3), the joint tail modelling approach of
this section has more generality and wider applicability than an approach based on the
componentwise maxima results.

5 Simulation

Methods for simulating from both the limiting point process and the limiting distri-
bution of componentwise maxima are examined here. Most discussion focuses on the
η-asymmetric logistic model introduced in Section 4.

5.1 The η-asymmetric logistic limiting point process

The simulation scheme here is similar to that in Ramos and Ledford (2009). Differenti-
ating equation (4.5) yields the joint density

η − α

αη2Nst%

{

(%x)−1/α +

(

y

%

)−1/α
}α/η−2

(xy)−(1+1/α) (5.1)
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for x > s, y > t, Nst% as defined in Section 4.4 and fixed s > 0 and t > 0. Similarly to Shi
et al. (1992), we construct (X,Y ) pairs with joint density (5.1) by transforming a pair
of easily simulated variables, V and Z say. This is achieved via X−1 = %Zη cos2α V and
%Y −1 = Zη sin2α V where V and Z satisfy

V =























arccos
[

{

1 − Nst%(%s)1/ηU1

}
η

2(η−α)

]

if 0 < U1 ≤ u∗

arcsin















(

t
%

)1/η





Nst%U1 − (%s)−1/η +
{

(%s)−1/α +
(

t
%

)−1/α
}α/η









η
2(η−α)











if u∗ < U1 < 1

(5.2)
and

Z =

{

U2(%s)−1/η cos−2α/η V if 0 < U1 ≤ u∗

U2

(

t
%

)−1/η

sin−2α/η V if u∗ < U1 < 1
(5.3)

where U1 and U2 are independent uniformly distributed on [0, 1] and

u∗ = N−1
st%



(%s)−1/η − (%s)−1/α

{

(%s)−1/α +

(

t

%

)−1/α
}α/η−1



 .

A derivation is given in Appendix B. The above construction generalises the Ramos and
Ledford (2009) simulation method which deals with the s = t = 1 case only. Illustrative
data sets generated using this scheme together with contours of the underlying joint
density are given in Figure 1. Note that α > 1 in equation (5.1) is a valid density function
however this is not a density that can arise for (Xi, Yi) with unit Fréchet marginals in
definition (2.4) since the constraints in Appendix A are then violated.

5.2 More general limiting point process simulation

The approach described here is similar to that of Nadarajah (1999) and enables simulation
of the limiting point process P∗ over a region bounded away from the axes and the origin.
From equation (2.6), the conditional density of the pseudo-polar transforms (R,W ) of
(X,Y ) in region A = {(r, w) : r > r0, w ∈ (k, 1 − k)} where r0 > 0 and 0 < k < 1 satisfies

f{r, w|(R,W ) ∈ A} =
r−(1+1/η) dHη(w)

∫ 1−k

k

∫∞

r0
r−(1+1/η) drdHη(w)

=
r
1/η
0 r−(1+1/η)

η

dHη(w)
∫ 1−k

k
dHη(w)

(5.4)

for r > r0 and w ∈ (k, 1 − k). The factorisation in equation (5.4) means that the R- and
W -components can be simulated independently. Since the R-component has distribution
function 1− (r0/r)

1/η it can be generated via R = r0U
−η where U is uniformly distributed

on [0, 1]. Simulation of the W -component may be undertaken by inverting its distribution

function
∫ w

k
dHη(w

′)
/ ∫ 1−k

k
dHη(w

′), or alternatively via the rejection method (see Ripley,
1987, Section 3.2) when Hη has bounded measure density hη over (0, 1). In this latter

case the W -component has density h∗
η(w) = hη(w)/

∫ 1−k

k
hη(w

′) dw′ for w ∈ (k, 1− k), so
to apply the rejection method we require a density g(w) from which it is straightforward
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to simulate and a constant M such that h∗
η(w)/g(w) ≤ M for w ∈ (k, 1 − k). In practice

it is often convenient to take g(w) as uniform on (k, 1−k) and M = sup
{

(1 − 2k)h∗
η(w)

}

,
see Nadarajah (1999). Simulation of (X,Y ) over a region A0 bounded away from the
axes and the origin but not of the form of A may be undertaken by first applying the
procedures above for a region A with A0 ⊂ A and then discarding those points falling
outside A0.

5.3 The η-asymmetric logistic limiting componentwise maxima
distribution

Our approach here is similar to the methods given by Shi et al. (1992) and Stephen-
son (2003) for generating from the logistic and asymmetric logistic multivariate extreme
value distributions. Let (X,Y ) denote a random variable with joint distribution function
Gη as in equation (4.3) in the non-degenerate case where α < η. Then we may write
X−1 = % (N%Z)η cos2α V and %Y −1 = (N%Z)η sin2α V where Z and V are independent
with easily characterised distributions: V may be represented as arcsin(U 1/2) where U is

uniform on [0, 1], while Z is a
(

1 − α
η

)

: α
η

mixture of a unit exponential random variable

and the sum of two independent unit exponential random variables. See the derivation in
Appendix C. Figure 2 shows examples of points generated using this approach with the
corresponding densities superimposed.

5.4 Simulation based examination of the α ≥ η case

In Section 4.3 we saw that Gη for the η-asymmetric logistic model is degenerate for
the case α ≥ η, i.e. when the parametric measure Hη is infinite, whereas the point
process P∗ is non-degenerate for all η ∈ (0, 1] and α ∈ (0, 1]. This suggests that when
α ≥ η the componentwise maxima of those points in region Rεbn grow faster than bn and
therefore occur in separate observations. This effect can be seen in the simulation results
in Figure 1, since as α increases the points tend to concentrate towards the boundaries
and furthermore tend to be larger in magnitude than the points towards the w = 1/2
region of the domain. This behaviour is also consistent with the results in Section 4.4
since by writing x = s or y = t in equation (4.5) it is straightforward to show that the
marginal variables there have shape parameter α when α ≥ η, corresponding to marginal
tails heavier than the joint tail which has shape parameter η.

6 Conclusions and extension to the multivariate case

We have derived non-degenerate point process results for bivariate tails that hold un-
der the mild regularity condition of bivariate regular variation and regardless of whether
the underlying data generation mechanism exhibits asymptotic dependence or asymp-
totic independence. This is a considerable extension of the available point process theory
of de Haan (1985) which is degenerate for asymptotically independent cases. We have
exploited our point process framework to derive non-degenerate limit results for compo-
nentwise maxima that again hold for both asymptotically dependent and asymptotically
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independent cases. This provides a clear extension of the currently available models for
componentwise maxima. The normalisation condition (2.8) also extends existing hidden
regular variation results.

The point process approach developed here has important consequences for statistical
data analysis and provides an alternative theoretical underpinning of the modelling frame-
work detailed by Ramos and Ledford (2009). In contrast to existing classical approaches,
which tend to be based on weak convergence results concerning the limiting behaviour
of normalised componentwise maxima and are non-degenerate only for asymptotically
dependent cases, our methods focus directly on the tail behaviour of the joint survivor
function of the underlying observations and capture within the same apparatus both the
asymptotically dependent and asymptotically independent cases.

We have illustrated our results using the flexible η-asymmetric logistic model of Ramos
and Ledford (2009) and have provided efficient methods for simulating from both the lim-
iting point process and the limiting componentwise maxima distribution associated with
this model. Likelihood based estimation is straightforward using this parameterisation
and is discussed in Ramos and Ledford (2009) where tests of asymptotic dependence ver-
sus asymptotic independence (H0 : η = 1 versus H1 : η ≤ 1), tests of symmetry versus
asymmetry (H0 : % = 1) and tests of ray-independence (H0 : α = 2η) are all examined.
Deriving further parametric models and semi-parametric methods that satisfy both the
normalisation condition (2.8) and the conditions in Appendix A remains an important
open topic for further research.

6.1 Extension to the multivariate case

It is relatively straightforward to extend the previous results to deal with higher dimen-
sions. Let X denote a d-dimensional random variable with unit Fréchet marginal distri-
butions and joint survivor function that is multivariate regularly varying in d-dimensions
with index −1/η, so that for all x = (x1, . . . , xd) with each xi > 0 we have

lim
u→∞

Pr(X > ux)

Pr(X > u1)
= g(x)

(

d
∏

i=1

xi

)−1/(dη)

where g(cx) = g(x) for all c > 0.

Then for bn satisfying n Pr(X > bn1) = 1, we have that the point process

P⊗
n =

{(

X1j

bn

, . . . ,
Xdj

bn

)

: j = 1, . . . , n

}

converges weakly in the limit as n → ∞ to a non-homogeneous Poisson process P⊗ on
(0,∞)d with intensity function

Λ⊗
η {(x1,∞) × · · · × (xd,∞)} = η

∫

Sd

min
1≤i≤d

(

wi

xi

)1/η

dHη(w) (6.1)

where wi = xi/
∑d

j=1 xj for i = 1, . . . , d and Hη(w) is a non-negative measure on the open
(d − 1)-dimensional unit simplex

Sd =
{

w ∈ R
d :
∑

wi = 1, each wi > 0
}
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that is arbitrary apart from having to satisfy the normalisation condition

η−1 =

∫

Sd

min
1≤i≤d

w
1/η
i dHη(w). (6.2)

Defining in the obvious notation Rεbn = {x : x > εbn1} and denoting by Mn,εbn the
d-vector of componentwise maxima of those points which occur within Rεbn , we have

Gη(x) ≡ lim
ε→0

lim
n→∞

Pr

(

Mn,εbn

bn

≤ x

)

= exp

[

−η

∫

Sd

{

max
1≤j≤d

(

wj

xj

)}1/η

dHη(w)

]

= exp {−Vη(x)} (6.3)

which is non-degenerate provided that Hη is finite.
The extension of result (3.7) to the multivariate case can be obtained from equa-

tion (6.1), the inclusion-exclusion principle and the definition of Vη in equation (6.3),
giving

Λ⊗
η {(x1,∞) × · · · × (xd,∞)} =

=
d
∑

i=1

η

∫

Sd

(

wi

xi

)1/η

dHη(w) −
d−1
∑

i=1

d
∑

j=i+1

η

∫

Sd

{

max

(

wi

xi
,
wj

xj

)}1/η

dHη(w) +

+ · · · + (−1)d+1η

∫

Sd

max
1≤i≤d

(

wi

xi

)1/η

dHη(w)

=
d
∑

i=1

Vη(∞, . . . ,∞, xi,∞, . . . ,∞) −
d−1
∑

i=1

d
∑

j=i+1

Vη(∞, . . . ,∞, xi,∞, . . . ,∞, xj ,∞, . . . ,∞) +

+ · · · + (−1)d+1Vη(x). (6.4)

So taking the mixed derivative of equation (6.4) with respect to x1, . . ., xd, we obtain

∂dVη

∂x1 · · · ∂xd

= −r−(d+1/η)hη(w)

where r =
∑d

j=1 xj and wi = xi/r for i = 1, . . . , d.

Example: To illustrate the above, we provide a multivariate version of the η-asymmetric
logistic model of Section 4. Consider the d-dimensional measure density

hη(w) =

∏d−1
i=1 (iη − α)

ηdαd−1N%

{

d
∑

i=1

(

wi

%i

)−1/α
}α/η−d

×

(

d
∏

i=1

wi

)−1/α−1

on w ∈ Sd where %i > 0,
∏d

i=1 %i = 1, η, α ∈ (0, 1] and N% =
∑

b∈B(−1)|b|+1
(

∑

i∈ b %
1/α
i

)α/η

where B represents the set of all non-empty subsets of {1, . . . , d} and |b| represents the
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number of elements in the set b. Then hη(w) as above satisfies the normalisation condi-
tion (6.2). For example, when d = 3 we have that hη(w1, w2) is given by

hη(w1, w2) =
(η − α)(2η − α)

η3α2N%

{

(%1%2w1)
−1/α +

(

w2

%1

)−1/α

+

(

1 − w1 − w2

%2

)−1/α
}α/η−3

×

{w1w2 (1 − w1 − w2)}
−1/α−1

where η, α ∈ (0, 1], %1 > 0, %2 > 0, and

N% = (%1%2)
−1/η + %

1/η
1 + %

1/η
2 −

{

(%1%2)
−1/α + %

1/α
1

}α/η
−
{

(%1%2)
−1/α + %

1/α
2

}α/η
−

{

%
1/α
1 + %

1/α
2

}α/η
+
{

(%1%2)
−1/α + %

1/α
1 + %

1/α
2

}α/η
.
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A Sufficient conditions for an (η, Hη)-pair satisfying

(2.8) to define a valid limit intensity for P∗
n in (2.4)

These conditions require that for a large u there exists a small λ = Pr(X > us, Y > ut) ∈
(0, 1) for some fixed s > 0 and t > 0, such that

exp(−1/x) + λΛη{(x/u,∞) × (1,∞)}/Λη{(s,∞) × (t,∞)} and

exp(−1/x) + λΛη{(1,∞) × (x/u,∞)}/Λη{(s,∞) × (t,∞)}

are both monotonic increasing in x > us and x > ut, respectively. These are similar
to the conditions in Theorem 1 of Ramos and Ledford (2009) where the s = t = 1 spe-
cial case is considered. Under the above conditions, and providing (2.8) holds, then it is
straightforward to show by a minor extension of the proof of Theorem 1 of Ramos and
Ledford (2009) that there exists a bivariate random variable (X,Y ) with unit Fréchet mar-
gins that satisfies equation (4.4). Simulating independent copies of (X,Y ), we construct
the sequence of point processes P∗

n as defined by equation (2.4). Kallenberg’s theorem
(Resnick (1987), Proposition 3.22) can then be used to show that P ∗

n converges weakly
(i.e. in distribution) to a non-homogeneous Poisson process, P∗ say. By construction P∗

has the required intensity on (0,∞) × (0,∞).

B The simulation scheme in Section 5.1

Changing variables in the conditional density function of (X,Y ) for x > s and y > t in
equation (5.1) according to X−1 = %Zη cos2α V and %Y −1 = Zη sin2α V , the density of
(Z, V ) is given by

fZV (z, v) =
η − α

ηNst%

2 sin v cos v

with domain
{

0 < z ≤ (%s)−1/η cos−2α/η v if 0 < v ≤ v∗ and

0 < z ≤ (t/%)−1/η sin−2α/η v if v∗ < v < π/2

where v∗ = arctan %1/α. Noting that V has distribution function

FV (v) =











N−1
st%(%s)−1/η

(

1 − cos2(1−α/η) v
)

if 0 < v ≤ v∗

N−1
st%

[

(%s)−1/η −

{

(%s)−1/α +
(

t
%

)−1/α
}α/η

+
(

t
%

)−1/η
sin2(1−α/η) v

]

if v∗ < v < π/2

and that the conditional variable Z|V = v is uniformly distributed with density function

fZ|V =v(z) =

{

(%s)1/η cos2α/η v if 0 < v ≤ v∗

(

t
%

)1/η

sin2α/η v if v∗ < v < π/2,

it follows that Z and V can be represented as in equations (5.2) and (5.3).

18



C The simulation scheme in Section 5.3

Let fη denote the density function associated with Gη in equation (4.3). Then

fη(x, y) = N−1
% η−2 exp



−N−1
%

{

(%x)−1/α +

(

y

%

)−1/α
}α/η



 (xy)−(1+1/α)

×

{

(%x)−1/α +

(

y

%

)−1/α
}α/η−2



N−1
%

{

(%x)−1/α +

(

y

%

)−1/α
}α/η

+
η − α

α



 .

The transformation X−1 = % (N%Z)η cos2α V and %Y −1 = (N%Z)η sin2α V is such that the
bivariate random variable (Z, V ) has density

fZV (z, v) = exp(−z)

{

α

η
z +

(

1 −
α

η

)}

sin 2v

for z > 0 and 0 < v < π/2. From this representation the simulation approach of Sec-
tion 5.3 follows immediately.

D The role of open and closed integration intervals

The point process derivation in Section 2 relies on the bivariate regular variation of F (x, y).
Since by equation (2.1) this is a property that requires both x > 0 and y > 0, it is clear
that our previous results cannot be extended to a domain that includes the axes unless
additional assumptions are made. Equivalently, when our results are expressed in terms
of the (r, w)-pseudo-polar coordinates, then it is the properties of the w-component over
the open interval w ∈ (0, 1) rather than the closed interval w ∈ [0, 1] that are captured
by our analysis. Accordingly, the w-integrations up until now have all been over open
intervals. In this section we discuss one possible reason why making the leap from open-
to closed-intervals for the w-integrations might be useful, however at this stage we do not
have any well reasoned theoretical justification for this leap.

We suppose that Hη(w) is as before but additionally has finite masses at the end-
points of the w-interval, that is at w = 0 and w = 1. Due to the zeros of the integrand
at w = 0 and w = 1, there is no impact on the normalisation condition (2.8) when the
domain of integration is replaced by the closed interval [0, 1]. This is not the case for
the componentwise maxima results of Section 4.3, where replacing the integration region
in equation (3.5) with a closed interval enables a direct connection to existing classical
bivariate extremes results to be made. To illustrate this, we will examine the relation-
ship between the classical asymmetric logistic bivariate extreme value (BEV) distribution
(Tawn, 1988) and this extended version of our componentwise maxima representation.
We define Hη as follows: for w ∈ (0, 1) we assume the alternatively parameterised version
of the η-asymmetric logistic density measure of Section 4.1 given by

hη(w) =
η − α

αη2θφNθφ

{

(w

θ

)−1/α

+

(

1 − w

φ

)−1/α
}α/η−2

{

w

θ

(

1 − w

φ

)}−(1+1/α)
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where Nθφ = θ1/η + φ1/η − (θ1/α + φ1/α)α/η, and for w = 0 and w = 1 respectively we add
masses of (1− φ1/η)/(ηNθφ) and (1− θ1/η)/(ηNθφ). Note that Hη as defined here satisfies
the normalising condition (2.8) regardless of whether the regions of integration are open
or closed at w = 0 and w = 1.

Performing the integration in equation (3.5) over the closed interval [0, 1] gives

Gη(x, y) =











exp

{

−N−1
θφ

[

{

(

x
θ

)−1/α
+
(

y
φ

)−1/α
}α/η

+ 1−θ1/η

x1/η + 1−φ1/η

y1/η

]}

for α < η,

0 for α ≥ η.
(D.1)

Setting η = 1 here yields a joint distribution with the classical asymmetric logistic BEV
dependence structure and common scaled unit Fréchet marginal distributions where, for
example, Gη(x,∞) = exp(−N−1

θφ x−1). Thus under this extended version of our previ-
ous results the classical asymmetric logistic BEV dependence structure arises though the
η = 1 special case of the measure Hη given above. Simulation from Gη in equation (D.1)
in the non-degenerate case for general η is straightforward. Taking Z1 = NθφX

1/η

and Z2 = NθφY
1/η, it follows that Z1 and Z2 are unit Fréchet random variables with

classical asymmetric logistic BEV dependence structure with dependence parameters
α∗ = α/η ∈ (0, 1], θ∗ = θ1/η ∈ [0, 1] and φ∗ = φ1/η ∈ [0, 1]. Points from this latter
distribution can be generated using the methods given by Stephenson (2003).
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Figure 1: Simulated (X, Y ) pairs from the η-asymmetric logistic point process in region
A = {(x, y) : x > 1, y > 1} obtained using the algorithm of Section 5.1, with density contours
superimposed. Panels a)–f) all have % = 1 so correspond to symmetric cases and take η = 0.4
throughout, with α = {0.2, 0.4, 0.6, 0.8, 1, 1.3} respectively. Panels g)–i) each have α = 0.4 and
η = 0.7, and show the effect of changing asymmetry with % = {0.2, 1.5, 5} respectively. Note the
axes are not all to the same scale. The α = 1.3 panel illustrates an α > 1 case of equation (5.1),
see Section 5.1.
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Figure 2: Simulated points from the η-asymmetric logistic componentwise maxima distribution

Gη in equation (4.3), with densities superimposed. Panels a)–d) all have % = 1 so correspond to

symmetric cases and take η = 0.7 throughout, with α = {0.1, 0.4, 0.6, 0.7 − 1e−8} respectively.

Panels e)–f) each have α = 0.4 and η = 0.7, and show the effect of changing asymmetry with

% = {0.3, 3} respectively. Since Gη is degenerate for α ≥ η = 0.7, the biggest value used for α

was η − 1e−8.
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