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Lymphocytic choriomeningitis virus (LCMV) represents a useful

experimental model of murine infection with a non-cytopathic

virus, bearing resemblance to HIV and hepatitis C virus (HCV)

infections in humans. Recent data from the LCMV model

indicate that the humoral immune response that is induced by

non-cytopathic viruses is far more complex than previously

appreciated. LCMV-induced IgG production is largely

polyclonal, with more than 90% of the antibody repertoire

constituting non-relevant specificities. A delayed virus-

neutralizing antibody response is induced, including

specificities directed not only against the parental LCMV-strain

present in the host but also cross-specifically against LCMV-

variants isolated from other hosts. These findings provide novel

insights to aid our understanding of clinically relevant

observations that are recorded following human infection with

HIV, HCV and dengue viruses.
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Introduction
Viruses can be broadly divided into those that are cyto-

pathic to the host and those that are poorly or non-

cytopathic. Cytopathic viruses — including poliovirus

and vesicular stomatitis virus (VSV) — interfere with

essential cellular processes, ultimately resulting in cellu-
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lar death, and are capable of killing the host if the immune

response cannot control viral replication in a timely

fashion. This normally necessitates the rapid production

of neutralizing antibodies because, although effective,

cytolytic CD8+ T cell responses normally occur too late

to prevent viral spread [1,2]. Cytopathic viruses are often

classified into relatively few serotypes according to the

specificity of the host’s antibody response for surface

glycoprotein antigens. However, it is now clear that such

definitions are overly simplistic in light of the finding that

a greater genetic variability often exists at other loci

within the viral genome [3,4].

Poorly or non-cytopathic viruses, including murine lym-

phocytic choriomeningitis virus (LCMV), hepatitis C

virus (HCV), HIV and also dengue virus, have evolved

to replicate within host cells without interfering with

those processes that are essential for cellular survival

[5–7]. Instead, disease is largely caused by the host’s

own immune response, including CTL (cytotoxic lym-

phocyte)-mediated lysis of virus-infected cells [8] and

chronic immune activation [9�,10]. Clearance of poorly or

non-cytopathic viruses is usually mediated by CD8+ T

cells, and is reliant upon the gain of lytic function by these

cells, as demonstrated by the importance of molecules

such as perforin [11], granzymes [12] and Fas ligand [13].

Yet many poorly or non-cytopathic viruses tend to persist,

either as a consequence of their localisation in the per-

iphery, as a consequence of the formation of CTL-escape

viral mutants or as a result of viral-induced exhaustion of

the CTL response [14–16]. Neutralizing antibodies,

which are crucial for protection against cytopathic viruses,

are usually detectable only at late time-points after infec-

tion with poorly or non-cytopathic viruses and are more

prominent in situations of CD8+ T-cell non-responsive-

ness [17,18�,19,20]. Nevertheless, should a poorly or non-

cytopathic virus manage to escape CTL attack, the sub-

sequent neutralizing antibody response becomes crucial

for viral control. This can be demonstrated by the isola-

tion of neutralizing antibody viral escape mutants at late

time-points after infection of CD8�/� mice [21–23].

Poorly or non-cytopathic RNA viruses are normally

classified into different biological strains, genetic sub-

types or genetic clades [24–26]. Importantly, replicating

virus within one host should be regarded as a so-called

‘quasispecies’, reflecting a dynamic set of genetically

distinct viral subtypes [27,28]. As a general rule, a greater

number of viral serotypes can be distinguished for poorly
www.sciencedirect.com
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or non-cytopathic viruses than for cytopathic viruses;

however, correlations between genetic subtypes, biologi-

cal behaviour and neutralizing serotypes remain equivo-

cal [29].

Neutralizing antibody-escape variants
Despite their late appearance, neutralizing antibodies

represent a very effective means of controlling persistent

infections with poorly or non-cytopathic viruses. Indeed,

studies of simian immunodeficiency virus (SIV) infection

in macaques or LCMV infection of mice have demon-

strated that the passive transfer of monoclonal neutraliz-

ing antibody before viral infection results in rapid viral

clearance and protection from a productive infection

[30,31]. Neutralizing antibodies can also act to prevent

CTL exhaustion and the emergence of CTL-escape

variants, by virtue of their ability to limit viral replication

[32,33]. The formation of neutralizing antibody-escape

variants can be demonstrated by the ability of the host

serum to neutralize the parental viral strain (used to

inoculate the host) but not virus recovered from the host

at later time-points [21]. This finding presents a great

concern for clinical diagnosis of chronic viral infections;

most current technologies use monoclonal antibodies

directed against the parental viral strain for viral detec-

tion, and therefore do not account for the possible emer-

gence of antibody-escape variants [34].

The emergence of neutralizing antibody-escape variants

has been most widely studied in LCMV infection of

murine hosts. Using this model, experiments can be

performed in which pressure on the virus to develop

neutralizing antibody-escape variants is enhanced

through infection of CD8�/� mice [21]. These mice

exhibit a high initial rate of LCMV replication as a

consequence of the absent CTL response; however,

between days 40–60 post-infection, neutralizing antibo-

dies are generated and blood virus titers drop, indicating

viral control. In these mice, pressure on the virus to
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The in vivo generation of LCMV neutralizing antibody-escape mutants in CD
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develop escape mutants is mainly provided by the neu-

tralizing antibody response and not by CTL activity

(because CD8+ T cells are missing). Accordingly, by

day 80 post-infection, neutralizing antibody-escape var-

iants can be subcloned from the blood of CD8�/� mice,

and these correlate with viral re-emergence (Figure 1).

Such antibody-escape variants have been shown to pos-

sess acquired amino acid substitutions, clustered within

three distinct regions of the surface glycoprotein, sugges-

tive of a tertiary LCMV-glycoprotein structure in which

these three regions combine to form one conformational

antibody epitope [21]. However, this hypothesis awaits

formal confirmation by the crystallization of the LCMV-

glycoprotein. Recent evidence demonstrates that HIV

uses similar strategies in vivo to escape the pressure of

neutralizing antibodies [35��]. Here, mutations primarily

involved changes in N-linked glycosylation, suggesting a

‘glycan shield’ mechanism of neutralization escape,

whereby selected changes in glycan packing prevent

antibody but not receptor binding [35��].

Public and private antibody specificities
Neutralizing-escape viral variants can be isolated from

CD8�/� hosts, subcloned and used for infection of new

hosts. In this situation, the new host invariably develops a

neutralizing antibody response against the variant glyco-

protein and the virus is usually controlled in a manner

similar to the control of the wild-type variant in its original

host — possibly resulting in the generation of further

escape variants [21,36�]. This suggests that, within the

original host, a given viral escape mutant does not manage

to escape the genetically possible B cell repertoire, but

only the current neutralizing antibody response. Should a

new host be infected with a neutralizing-escape variant,

subcloned from a carrier mouse, the new host generates

antibodies that not only exhibit neutralizing activity

against the escape variant that was used for inoculation,

but also against the parental virus (which this host has

never seen). This cross-specific antibody response is
 antibody titer

tion

<- Escape variant
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8+ T-cell-deficient mice.
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Figure 2

M1 M2 M3 M4

LCMV- high dose (DBA/2 mice)

Isolated escape mutants V1,V3,V4Blood serum (S1–S4)

Neutralizing activities of S1–S4 against wild type virus and virus variants

S1 S2 S3 S4

Wild-type virus (   ),V1(   ),V3 (   ),V4(   )

0 25 50 75 100 125

<1.2

M1, V1 appeared

M2, controlled

M3, V3 appeared

M4, V4 appeared

Time after infection (days)

Time after infection (days)

V
iru

s 
bl

oo
d 

tit
er

0 25 50 75 100 125

Time after infection (days)

0 25 50 75 100 125

Time after infection (days)

0 25 50 75 100 125

Time after infection (days)

0 25 50 75 100 125

N
eu

tr
al

iz
in

g 
tit

er

2

3

4

5

6

7

<0.5

1
2
3
4
5
6
7
8

N
eu

tr
al

iz
in

g 
tit

er

<0.5

1
2
3
4
5
6
7
8

N
eu

tr
al

iz
in

g 
tit

er

<0.5

1
2
3
4
5
6
7
8

N
eu

tr
al

iz
in

g 
tit

er

<0.5

1
2
3
4
5
6
7
8

Current Opinion in Microbiology

Neutralizing antibody-escape mutants can also be induced in some inbred CD8+ T-cell-competent mice, if high viral doses of LCMV (strain WE)

are used. In contrast to CD8�/� mice, neutralizing-escape mutants are only induced in 75% of the cases. In mice with long-term controlled LCMV,

serum activity has a broader cross-neutralizing activity (tested against virus-escape mutants arising in other mice) than in mice where virus

re-emerges. Together, cross-specific neutralizing antibodies define a more ‘public’ or general neutralizing serotype. By contrast, neutralizing

activity of a host that is specific for the inoculated strain defines the ‘private’ serotype (adapted from [36]).
usually of a lower titer and reflects a more ‘general’ or

‘public’ response. By contrast, the initial neutralizing

antibody response against the inoculated strain is of a

high-titer and reflects a more private antibody specificity

(Figure 2). Public cross-reactive antibody specificities

have also been described recently for HIV [37�].

Although all CD8�/� mice develop a ‘carrier’ status

following LCMV infection, a proportion of DBA/2 mice

(which are CTL-competent, see later) that are infected

with parental virus do not allow the development of

neutralizing antibody-escape-variants (Figure 2). These

mice invariably generate an antibody response that exhi-

bits some neutralizing activity, directed not only against

the parental virus, but also against viral strains isolated

from littermates in whom neutralizing-escape variants did

emerge. This cross-neutralizing response, reflecting pub-

lic specificity, was typically lower in DBA/2 mice, where
Current Opinion in Microbiology 2004, 7:426–433
escape variants emerged, indicating a crucial role of

public specificities in long-term virus control. One pos-

sible explanation for this phenomenon is that, in a portion

of LCMV infected hosts, the rapidly replicating virus

acquires mutations and generates an array of quasi-spe-

cies over time, with each new clone inducing a specific

neutralizing antibody response. This possibility is sup-

ported by the observation that viral polymerases act in an

error-prone manner, due to the absence of fidelity-editing

functions, and thus generate many mutants over a rela-

tively short time-period [38]. However, cross-neutralizing

or ‘public’ antibody specificities often appear with the

same kinetics as the so-called ‘private’ neutralizing

antibody response [36�], indicating that the virus would

have to be mutating at a rapid rate from the very begin-

ning of the infection. But, in the absence of pressure from

a neutralizing antibody response, the LCMV-glycopro-

tein appears to be resistant to mutations [36�]. Genetic
www.sciencedirect.com
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Naive LCMV

Serum electrophoresis of naı̈ve serum and serum 12 days post-LCMV

infection. The gamma-globulin fraction is built of immunoglobulins.
reversions of acquired mutations back to wild-type con-

formations have been observed following the removal of

immunological pressure for both LCMV and HIV

[36�,39��], suggesting that the parental virus strain repre-

sents a state of optimal replication fitness and is likely to

be resistant to the acquisition of ‘unnecessary’ mutations.

One also has to bear in mind that every mutational event

can potentially decrease the replication fitness of the

virus, and might therefore be undesirable. Indeed, experi-

ments in which the rate of viral mutation was dramatically

increased by the co-administration of a chemical mutagen

led to a loss of replication-competent LCMV in vitro [40]

and in vivo [41�], a situation termed ‘error catastrophe’.

The rate of viral replication may also influence develop-

ment of a ‘public’ neutralizing antibody response if, for

instance, the presence of high antigen doses favours the

induction of a B cell response [42] generating antibody

cross-reactivity against both parental and escape-mutant

viral strains. In CD8�/� mice, both low- and high-dose

LCMV infection results in high viral replication at early

time-points, whereas, wild-type C57BL/6 mice mount

such an effective CTL response that both low- and

high-dose LCMV infection is rapidly controlled. Thus,

a new model was required to directly investigate the

influence of viral replication on the neutralizing antibody

response.

DBA/2 mice contain CD8+ T cells but mount a relatively

weak CTL response, which, in practical terms, means

that low-dose infection of DBA/2 mice is followed by

limited viral replication, whereas high-dose LCMV infec-

tion quickly exhausts CTL function, resulting in a high

level of viral replication [36�]. High-dose LCMV infec-

tion of DBA/2 mice results in a phenotype similar to that

observed in CD8�/� mice, with virus control occurring

between days 40–60 post-infection and correlating with

the appearance of neutralizing antibodies (Figure 2). In

contrast to CD8�/� mice, where neutralizing-escape var-

iants develop in 100% of mice, only 75% of DBA/2 hosts

allow re-emergence of virus in the form of escape variants.

Escape variants from these DBA/2 hosts exhibited amino

acid substitutions in the same region of the viral glyco-

protein as described for variants isolated from CD8�/�

mice [36�]. The remaining 25% of DBA/2 hosts achieved

long-term control of viral replication and developed an

initial neutralizing antibody response that was of a more

‘public’ nature (Figure 2 and [36�]). This finding indi-

cated that the cross-neutralizing or ‘public’ nature of the

initial antibody response prevented the development —

or sufficient replication of — escape variants. Interest-

ingly, serum taken from a subset of human patients

infected with HIV also exhibits broad, or cross-reactive,

neutralizing activity when tested against viral isolates

obtained from other patients [18�]. Because the DBA/2

experimental model of LCMV infection uses genetically

identical hosts, challenged with the same dose and strain
www.sciencedirect.com
of virus, differences that are exhibited by individual mice

(in terms of the repertoire of neutralizing antibodies

produced) suggest that the development of an antibody

response underlies stochastic mechanisms. This is remi-

niscent of the process of affinity maturation, which has

also been reported to be, at least partially, a stochastic

process [43,44]. Thus, it is likely that the development of

a neutralizing antibody response by individual hosts not

only varies considerably [21], but perhaps also reflects a

process of affinity maturation that involves somatic hyper-

mutation. As mentioned previously, low-dose LCMV

infection of DBA/2 mice results in the development of

an effective CD8+ T cell response [36�], which limits viral

replication. Strikingly, DBA/2 mice infected with a low

dose of LCMV were found to exhibit a more restricted or

‘private’ neutralizing antibody response [36�]. Together,

these observations indicate that the development of a

‘public’ or ‘private’ neutralizing antibody response can be

directly correlated to the level of virus replication.

Hypergammaglobulinemia
As discussed previously, hosts that exhibit long-term

control of LCMV also appear to develop a more cross-

specific or ‘public’ neutralizing antibody response. The

common failure of cross-neutralising antibody formation

can be partially explained by the finding that LCMV and

HIV-specific CD4+ T cell responses (required for the

production of neutralizing IgG [45]) are rapidly energised

in the presence of massive virus replication [46–48].

CD4+ T-cell function might also determine the nature

of the antibody response in another way. LCMV infection

is characterised by an early polyclonal, replication-depen-

dent and CD4+ T cell-dependent, hypergammaglobuli-

nemia [49��,50]. By day 12 post-LCMV infection, total

IgG levels are elevated 6–10-fold, and appear as a broad

gammaglobulin peak in serum electrophoresis, suggest-

ing a polyclonal nature (Figure 3). A similar hypergam-

maglobulinemia can be found associated with other
Current Opinion in Microbiology 2004, 7:426–433
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persisting infections, including chronic tuberculosis [51],

malaria [52], HIV [53�] and HCV [54].

Cytopathic viral infections are not typically associated

with an increased level of total serum immunoglobulins,

although B-cell responses might be somewhat polyclonal

in nature [49��,55�]. By contrast, LCMV infection results

in the production of an IgG response in which more than

90% of the total IgG can be said to be non-specific. The

dramatic polyclonal nature of the early IgG response that

is induced by LCMV infection is completely dependent

on the presence of virus-specific CD4+ T cells [50,56�]. It

was recently demonstrated that these virus-specific CD4+

T cells recognize LCMV-derived peptides presented by

MHC class II molecules that are present on the surface of

the B cell, despite the majority of stimulated B cells

exhibiting a non-relevant receptor specificity [49��].

The biological consequences of this apparent cognate T

helper (Th) cell-dependent polyclonal B-cell response

remain unclear [55�]. Antibodies that are protective

against other viral species, for example, VSV, are not

detectable at the peak of the LCMV-induced hypergam-

maglobulinemia (author’s own unpublished data), nor are

antibodies that are capable of neutralizing LCMV. By

contrast, IgG specificities that are directed against certain

auto-antigens and non-related pathogens are detectable

by ELISA [49��]. Nevertheless, apparent autoimmune

disease is rarely induced following LCMV infections,

arguing against a direct pathophysiological role for those

autoantibodies detected. CD4+ T cells are required for

development of both the early polyclonal hypergamma-

globulinemia and the later neutralizing antibody

response, however, it remains to be determined whether

subtle alterations in CD4+ T-cell function promote one

type of antibody response over another. Interestingly,

infection of mice lacking SAP (SLAM (signalling lym-

phocyte activation molecule)-associated protein, which is

involved in X-linked lymphoproliferative disease), among

other immunological alterations observed, resulted in

increased activation of CD4+ T cells, correlating with

an impaired LCMV-specific antibody response [57].

Cross-specific antibodies: protection or
disease enhancement?
As discussed, in LCMV infection, the neutralizing anti-

body response can be classified as ‘private’ or ‘public’; the

generation of a public response clearly requiring a high

level of viral replication and appearing to be a stochastic

process. This classification system might be also be

relevant to clinically important infections, such as dengue

virus, where cross-specific antibodies have been found

associated with severe hemorrhagic disease following

secondary infection [57,58]. Although severe disease after

secondary dengue virus infection is a complex process, it

is usually associated with enhanced viremia [59]. Inter-

estingly, dengue cross-specific antibodies can either be
Current Opinion in Microbiology 2004, 7:426–433
cross-protective (early after primary infection [57,60�]) or

disease-enhancing, possibly depending on cross-neutraliz-

ing affinity. If cross-neutralizing titers are high enough,

secondary dengue viremia is expected to be lower and

disease milder [60�]. However, low cross-neutralizing titers

may enhance dengue virus titers after secondary infection,

due to better virus delivery to macrophages or endothelial

cells via Fc-Receptors (receptor binding IgG antibodies via

the constant domain). Antibody-enhanced virus-replica-

tion, depending on the particular virus studied, seems to

involve not only accelerated delivery via Fc-receptors but

also complement-components, as well as suppression of

cellular antiviral genes by the replication of viruses enter-

ing cells via antibodies [61]. Low cross-neutralizing anti-

body titers could also allow the in vivo formation of dengue

neutralizing antibody-escape mutants [57].

In addition, cross-neutralizing antibodies could poten-

tially provide protection against unrelated pathogens

[62��]. Indeed, antibody responses induced by challenge

with Escherichia coli have been shown to provide protec-

tion against Haemophilus influenzae-induced meningitis

[63]. For potential antibody-based HIV vaccines, it will

be important to understand the mechanisms that result in

the formation of broad or cross-neutralizing antibodies,

especially with regard to the rapidly changing neutraliz-

ing epitopes [18�]. Conversely, polyclonal B-cell activa-

tion might generate a potentially harmful repertoire of

IgG specificities that could be potentially auto-reactive,

thereby enhancing the risk of auto-immunity or immune

complex disease [64,65]. Autoimmune thrombocytopenia

is a common complication of HIV infection in humans

[66], and antibody-dependent autoimmune haemolytic

anemia has been described following LCMV infection of

some mouse strains [67]. However, autoantibodies follow-

ing HIV infection were not found to be associated with

clinical autoimmune manifestations [68], indicating that

auto-reactive antibodies may often be of a low affinity or

avidity. Another potential biological consequence of poly-

clonal B-cell activation is that non-specific B cells might

compete with virus-specific B cells for space, survival

factors or access to T-cell help. Recent data obtained from

HIV infected patients [53�], as well as data obtained from

ongoing LCMV experiments in our laboratory, demon-

strate that competition might well occur between B cells

that bear unrelated or virus-specific specificities.

Conclusions
Dissecting the complex nature of the antibody response

induced by poorly or non-cytopathic viruses is crucial to

our understanding of how to manipulate this response for

the benefit of the host. The exact nature and determinates

of the antibody response — including any requirement for

CD4+ T cells in regulating the ‘private’ versus ‘public’

nature of the response, and the biological consequence of

viral-induced hypergammaglobulinemia — might reveal

novel mechanisms that are used by viruses for immune
www.sciencedirect.com
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evasion. A full understanding of such mechanisms will be

particularly important for the generation of new HIV

vaccines that are capable of inducing both protective

CTL and neutralizing-antibody responses.
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