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Abstract 

i 

Abstract 

The durability of concrete is a major challenge for the construction, which devotes one third to 
one half of its annual investment to building maintenance. The lack of field data regarding 
concrete durability, especially in the case of exposure to sulfate ions (“sulfate attack”) makes 
it difficult to determine the appropriate test methods and performance criteria. Additionally, 
the increased use of blended concretes (cement with mineral admixtures) suffers from a lack 
of experience regarding their long-term performance. Most results for sulfate resistance are 
derived from accelerated laboratory tests where performance criteria are based only on 
macroscopic properties, especially expansion. 
To fill this gap and better understand the mechanisms of sulfate attack under real conditions, a 
parallel study of laboratory micro-concrete and field concrete samples under sulfate exposure 
was undertaken, focussing on microstructural changes in addition to the typical macroscopic 
characterisation. 

Four exposure regimes were designed in the laboratory: full immersion (traditional test in 
“ponding”), pH-control, semi-immersion and wet/dry cycles. Pure Portland blends and slag 
blends with high level of slag replacement (70 wt.-%) were investigated. The exposure regime 
has been found to play a main role in the damage process. In ponding conditions, the damage 
process takes place three stages characterised by a first period of induction, followed by 
surface damage that finally extends to the bulk of the material. Paradoxically, the w/c-ratio 
does not seem to have much impact on the ionic transport phenomena but might be more 
decisive in the microstructure mechanical strength against local stresses. The slag blends, 
considered as sulfate resistant in ponding exposure, revealed bad performance under wet/dry 
cycles. This behaviour was attributed to poor proper physical resistance of the slag hydrates to 
the applied drying. 
Field observations tend to confirm the laboratory results and validate the test settings. 

It has been underlined that a direct relationship between the damage (e.g.; cracking/expansion) 
and the phase assemblage was not evident. However, the study highlights that sulfate 
combination with the hydrates of cement (e.g.; C-S-H) and to those of slag was found to play 
a role in the initiation of expansion, which would be initiated either by a swelling of the 
hydrates or by the precipitation of fine ettringite when the saturation level in sulfate of the 
hydrates has been reached. 
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Zusammenfassung 
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Zusammenfassung 

Die Dauerhaftigkeit von Betonbauwerken steht für eine der wichtigsten Herhausforderung im 
Bausektors dar, in welchem ein Drittel zur Hälfte der jährlichen Unterhaltsinvestitionen 
aufgebracht werden. Das Fehlen von Daten aus Feldstudien bezüglich der Dauerhaftigkeit von 
Beton, insbesondere im Hinblick auf den Einfluss von Sulfat-Ionen („Sulfatangriff“) 
erschwert die Ausarbeitung von geeigneten Tests und die Festlegung von Leistungskriterien. 
Außerdem werden immer mehr Portlandkompositzemente Mischungen (Zement mit 
Mineralzusatzstoff) eingesetzt, jedoch gibt es keine fundierten langfristigen Erkenntnisse über 
den Eigenschaften. Die meisten Ergebnisse zum Sulfatwiderstand kommen aus beschleunigten 
Labortesten, deren Leistungskriterien nur auf makroskopischen Eigenschaften basieren, 
besonders hinsichtlich Expansion. 
Um diese Lücken zu schließen und die Sulfatangriffmechanismen in realen Bedingungen 
besser zu verstehen, wurde eine parallele Studie an Labor Mikro-Betonen und anFeldbetonen 
durchgeführt. Der Schwerpunkt lag dabei auf mikrostrukturalen Änderrungen, zusätzlich zur 
klassischen makroskopischen Charakterisierung. 

Vier Expositionssysteme wurden im Labor erarbeitet: völliges Eintauchen (herkömmliches 
Verfahren in „Ponding“), pH-Überwachung, halbes Eintauchen und nass/trocken Zyklen. Die 
Expositionen wurden an reinen Portlandzementmischungen Systemen so wie an 
Hochofenzemente, mit hohem Schlackeanteil (70 M.-%), angewandt. Die durchgeführten 
Tests zeigen, dass es einen direkten Einfluss auf dem Schädigungsvorgang gibt. Bei völligem 
Eintauchen folgte der Schädigungsprozess einem dreistufigen Verhalten, das gekennzeichnet 
wird durch eine erste Induktionsperiode, gefolgt durch eine Oberflächenschädigung, welche 
sich letztlich bei bis in den Kern des Materials ausdehnt. Es konnte gezeigt werden, dass der 
W/Z-Wert keinen großen Einfluss auf die ionischen Transportsphänomene hat, aber den 
mechanischen Widerstand der Mikrostruktur gegenüber im Material vorhandenen lokalen 
Spannungen beeinflusst. Die Hochofenzemente, welche bei völligem Eintauchen als 
sulfatbeständig anzusehen sind, geben ein vermindertes Leistungsvermögen bei nass/trocken 
Zyklen, dem ein geringer Eigenwiderstand der Hydratphasen beim Trocknen zuzuschreiben ist. 
Die Beobachtung der Feldproben zielen darauf die Laborergebnisse zu bekräftigen und die 
vorgelegten Testparameter zu bestätigen. 

Es wurde betont, dass sich eine direkte Beziehung zwischen der Schädigung 
(e.g; Rissbildung/Expansion) und des Phasenverbunds nicht so einfach feststellen lässt. Die 
Studie zeigt weiterhin, dass die Schwefeladsorption in den Hydratphasen des Zements (e.g.; 
C-S-H Phase), als auch der Schlacke, eine Rolle zu Beginn der Expansion spielt. Die Ursache 
ist eine Expansion der Hydratphasen oder die Feinettringitausfällung bei Erreichen der 
Schwefelsättigung in der C-S-H Phasen. 
 

Schlüsselwörter: Sulfatangriff, Expositionsbedingungen, Beton, Laborverfahren, Feld, 
Phasenverbund, Mikrostruktur, XRD, REM, SCM, Schlacke 
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Version abrégée 

La durabilité des ouvrages en béton est un défi important pour le domaine de la construction 
qui alloue du tiers à la moitié de ses investissements annuels à la maintenance. Le manque de 
données concernant la durabilité des bétons sur le terrain, en particulier en cas d’exposition 
aux ions sulfate (« attaque sulfatique »), complexifie l'élaboration de tests et la définition de 
critères de performance appropriés. Par ailleurs, les bétons composés (ciment avec ajout 
minéral) sont de plus en plus utilisés tandis que leurs formulations souffrent d'un manque de 
recul vis-à-vis de leur comportement sur le long terme. La plupart des résultats concernant la 
résistance aux sulfates sont issus de tests accélérés en laboratoire où les critères de 
performance sont basés uniquement sur des propriétés macroscopiques telles que l’expansion. 
Afin de combler ce fossé et de mieux comprendre les mécanismes d'attaque sulfatique en 
conditions réelles, une étude parallèle menée sur des micro-bétons exposés en laboratoire et 
sur des bétons de terrain a été entreprise, agrémentant la caractérisation macroscopique 
classique d’une recherche approfondie des évolutions microstructurales. 

Quatre régimes d'exposition ont été élaborés en laboratoire : en immersion totale (test 
traditionnel en « ponding »), à pH contrôlé, en semi-immersion et suivant des cycles 
sec/humide. Les expositions ont été appliquées à des systèmes de ciment Portland pur et à des 
liants composés avec laitier à taux de substitution élevé (70 pds.-%). Il apparaît que le régime 
d'exposition considéré influence directement le processus de dégradation. En immersion 
totale, le processus de dégradation suit un comportement en trois étapes caractérisé par une 
première période d'induction, suivie d'une période de dégradation de surface qui est finalement 
étendue à une dégradation au cœur du matériau. Le ratio e/c n’apparaît paradoxalement pas 
avoir un impact majeur sur les phénomènes de transport ionique mais semble être décisif dans 
la résistance mécanique de la microstructure aux contraintes développées localement dans le 
matériau. Les systèmes avec laitier, considérés comme résistants aux sulfates lorsqu'exposés 
en immersion totale, révèlent une performance réduite lors de cycles sec/humide, attribuée à 
une faible résistance physique propre des hydrates au séchage appliqué. 
Les observations des échantillons de terrain tendent à confirmer les résultats obtenus en 
laboratoire et valident les paramètres des tests proposés. 

Il a été souligné qu’une relation directe entre dégradation (e.g. ; fissuration/expansion) et 
assemblage de phases ne peut être si simplement établie. L’étude permet de mettre en 
évidence que la combinaison du soufre aux hydrates du ciment (e.g. ; C-S-H), ainsi qu’à ceux 
du laitier, semble jouer un rôle dans l'initiation de l'expansion, laquelle serait amorcée soit par 
un gonflement des hydrates soit par la précipitation d’ettringite fine lorsque le niveau de 
saturation en soufre des hydrates est atteint. 
 
 
 
 
 
 
 
 
 
 
 

Mots clefs : attaque sulfatique, conditions d’exposition, béton, test de laboratoire, 
terrain, assemblage de phases, microstructure, DX, MEB, SCM, laitier 
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Glossary and nomenclature 
 

GLOSSARY 
 

CEMENT NOTATIONS 

C CaO, free lime 

c CO2 

A Al2O3 

F Fe2O3 

S SiO2 

$ SO3 

H H2O 

M MgO 

K K2O 

C3S Tricalcium silicate (3CaO.SiO2) 

alite, impure form of C3S found in commercial Portland clinker 

C2S Dicalcium silicate (2CaO.SiO2) 

belite, impure form of C2S found in commercial Portland clinker 

C3A Tricalcium aluminate (3CaO.Al2O3) 

C4AF Ferrite (4CaO.Al2O3.Fe2O3) 

solid solution between C2F and C2A 

C-S-H Calcium silicate hydrate 

XRD-amorphous phase of non-stoichiometric composition, 

close to jennite and tobermorite structures 

major hydration product of Portland cement 

C-S-Hd Decalcified C-S-H 

CH Calcium hydroxide (Ca(OH)2) 

portlandite, hexagonal phase, 

second major hydration product of Portland cement 

C/S-ratio Atomic (molar) ratio of Ca/Si (CaO/SiO2) 
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CEMENT ABBREVIATIONS 

AFm  Alumino ferrite monosubstituted - monosulfoaluminate 

(C3A.C$.12H = Ca4Al2(SO4)(OH)12·5(H2O))  

usually with substitution of Al by Fe 

AFt  Alumino ferrite trisubstituted - ettringite 

(C3A.3C$.H32 = Ca6Al2(SO4)3(OH)12·26(H2O)) 

usually with some substitution of Al by Fe 

typical product of sulfate attack 

ASR Alkali-silica reaction of the aggregates 

one of the main durability problem on concrete 

“cancer” of concrete 

FA Fly ash 

ITZ Interfacial transition zone 

In concrete, zone around aggregates characterized by a packing 

discontinuity at the surface of aggregate particles, "wall effect” 

PC Portland cement 

commercial cement of type I (§ below) of 95-100 wt.-% clinke; 

often abusively described as OPC – ordinary Portland cement – 

which is of a specific pure composition of 100 wt.-% clinker 

SCM Supplementary cementitious material 

see “mineral admixture” 

SF Silica fume 

SRPC Sulfate Resisting Portland Cement 

with reduced C3A content compared to PC 

w/c- or w/b-ratio Mass ratio of water to cement or water to binder 
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CEMENT VOCABULARY 

Binder Paste possessing binding capacities as cement alone does 

cement plus mineral admixtures 

Brucite Magnesium hydroxide (MH = Mg(OH)2) 

typical product of sulfate attack in magnesium environment 

Cement Pulverized clinker with sulfate added during grinding 

Clinker Partially fused nodular product from cement manufacturing kiln 

consisting essentially of hydraulic calcium silicates 

Concrete Mix of sand, aggregates (Ø > 2 mm), cement and water 

Ettringite See “AFt” 

Fly ash Fine residue from the combustion of ground or powdered coal 

Friedel’s salts Hydrocalumite (C3A.CaCl2.10H2O) 

chloride-bearing AFm 

Gypsum Calcium sulfate hydrate (C$H2 = CaSO4.2H2O) 

typical product of sulfate attack 

Hemicarboaluminate Calcium aluminate carbonate hydrate 

(Ca4Al2(CO3)0.5(OH)13·5.5(H2O)) 

carbonate-bearing AFm 

Hydrotalcite Magnesium aluminate carbonate hydrate 

(Mg6Al2(CO3)(OH)16·4(H2O))  

magnesium-bearing hydration product of slag 

Limestone Calcium carbonate (CaCO3) 

Mineral admixture Ground mineral added to cement 

used to reduce the clinker factor (CO2 reduction) 

Monocarboaluminate Calcium aluminate carbonate hydrate 

(C3A.Cc.12H = Ca4Al2(CO3) (OH)12·5 (H2O)) 

carbonate-bearing AFm 

Monosulfoaluminate See “AFm” 



Glossary and nomenclature 

xxx 

Mortar Mix of sand (Ø ≤ 2 mm), cement and water 

Paste Mix of cement and water 

Portland Standard cement of colour of the stone of the Portland Isle 

see “PC” 

Pozzolan Natural/industrial siliceous or siliceous and aluminous material 

of little cementitious value but able to react with portlandite to 

 form compounds with cementitious properties (e.g.; C-S-H) 

Quintinite Hydrotalcite type with Mg/Al = 2 

magnesium-bearing hydration product of slag 

Slag Glassy granular material from quenching of blast-furnace slag 

by-product of the iron manufacture 

chemical composition close to that of cement 

Thaumasite Calcium sulfate carbonate hydrate 

(C3Sc$H15 = Ca3[Si(OH)6]CO3.SO4.12H2O) 

typical product of sulfate attack 

U-phase Calcium aluminate sodium sulfate hydrate 

(4CaO.0.9Al2O3.1.1SO3.0.5Na2O.16H2O) 

sodium-substituted AFm 

product of sulfate attack 

 

INVESTIGATION TECHNIQUES 

AAS Atomic absorption spectroscopy

BSE Back scattered electron

EDS Energy dispersive spectroscopy

Micro-XRF Micro X-ray fluorescence

MIP Mercury intrusion porosimetry

PIXE Proton induced X-ray emission

RH Relative humidity

SEM Scanning electron microscopy

XRD X-ray diffraction

XRF X-ray fluorescence
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NOMENCLATURE OF CEMENT TYPES 
 

Cement types and primary compositions, after the European standard EN 197-1 
 

Cement 
type 

Designation Notation 
Clinker 
(wt.-%) 

Mineral addition 
(wt.-%) 

CEM I Portland cement I 95-100 - 
II/A-S 80-94 6-20 

Portland slag cement 
II/B-S 65-79 21-35 

Portland silica fume cement II/A-D 90-94 6-10 
II/A-P 80-94 6-20 
II/B-P 65-79 21-35 
II/A-Q 80-94 6-20 

Portland pozzolans cement 

II/B-Q 65-79 21-35 
II/A-V 80-94 6-20 
II/B-V 65-79 21-35 
II/A-W 80-94 6-20 

Portland fly ash cement 

II/B-W 65-79 21-35 
II/A-T 80-94 6-20 

Portland burnt shale cement
II/B-T 65-79 21-35 
II/A-L 80-94 6-20 
II/B-L 65-79 21-35 

II/A-LL 80-94 6-20 
Portland limestone cement 

II/B-LL 65-79 21-35 
II/A-M 80-94 6-20 

CEM II 

Portland composite cement 
II/B-M 65-79 21-35 
III/A 35-94 35-65 
III/B 20-34 66-80 CEM III Blastfurnace cement 
III/C 5-19 81-95 
IV/A 65-89 11-36 

CEM IV Pozzolanic cement 
IV/B 45-64 36-55 
V/A 40-64 36-60 

CEM V Composite cement 
V/B 20-38 61-80 
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Chapter I - Introduction 
 

 

 

 

 

 

 

The penetration of sulfate ions into hardened cement can lead to expansion and cracking 

resulting in a reduced service life of the concrete structure. 

 

The durability problem for construction in the frame of the development of new blended 

cements is exposed. Degradation of concrete by external sulfate ions is introduced. 

Motivations, objectives and innovations of the thesis are explained. 

Preliminary notions on cement chemistry in relation to additional sulfate source are 

introduced. 
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I.1.  BACKGROUND 

I.1.1.  DURABILITY OF CONCRETE STRUCTURES 

Cement industry is facing the challenges of society in terms of environment, economy and 

technical development. 

One third to one half of the annual investments of construction are devoted to 

maintenance. Concrete durability issues are, therefore, a key problematic for cement 

industry. 

Durability problems are made more complex by the increased use of blended cements 

which suffer from a lack of experience concerning their long-term performance on the 

field, especially in sulfate environment. The motivation for using more blended cements is 

the challenge of sustainability to reduce CO2 emissions from clinker production. Among 

others, this can be done employing supplementary cementitious materials (SCMs) to 

reduce the clinker factor. SCMs must be either hydraulic or react with cement hydrates to 

contribute to the binding properties (pozzolanic reaction). They can be by-products from 

other industries (e.g.; slag from iron industry, fly ashes from coal burning), raw minerals 

(e.g.; limestone, silica fume) or industrial or natural minerals with pozzolanic activity 

(e.g.; pozzolans, activated clays). Over the past decades, cement types have been 

diversified from the original PC to 27 possible primary cement compositions (§ Glossary 

and nomenclature). But in practice, the CEM I (PC) and CEM II cover 80 % of the 

market. However, slag is particularly interesting for cement producers, primarily due to its 

chemical composition very close to that of Portland cement. It has a latent hydraulicity 

allowing high levels of replacement. Slag replacement in cement has a great CO2 

reduction potential, and is cost-saving regarding clinker production. Mixing of slag with 

cement is simple due to the close chemistries of both materials. Slag replacement in 

cement presents however the advantage of valorising industrial wastes. This makes of 

CEM III a high value perspective for cement producers both in terms of environment and 

technical development but also in terms of costs. Durability studies are, hence, an essential 

step to validate such blends over the long-term. 
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I.1.2.  DEGRADATION OF CONCRETE BY EXTERNAL SULFATE IONS 

Loss of strength of concrete structures in a wet sulfate-bearing environment, such as 

ground water, rivers and seawater, has been widely reported [1]. Sulfate concentrations 

typically reach 0.02-3.0 g.l-1 (0.2-30 mmol.l-1) and pH 7-8. The loss of mechanical 

performance has been attributed to the formation of secondary sulfate-bearing phases from 

sulfate penetration at the surface of the cementitious materials. “Sulfate attack” can be 

defined as a set of mineralogical changes with physical effects. “Sulfate attack” is 

generally attributed to the formation of ettringite from the interaction between sulfate and 

alumina-bearing phases in the cement. 

Different approaches were developed by engineers and researchers over the past century to 

overcome and understand the mechanisms behind the degradation of concrete by external 

sulfate sources. In a first time, owing to different usages and raw materials availability, 

most countries have established national prescription standards (§ II.2.1) concerning the 

type of cement to be used and the w/c-ratio according to the type of exposure [2]. But with 

the increased use of SCMs, there was a drive towards a much analytical approach ground 

on the idea to set tests to evaluate the sulfate resistance of such new blends. The 

parameters of such a performance approach have found to be neither realistic, nor 

repeatable (§ II.2.2) and no EU standard for sulfate resistance testing could be drawn up to 

now. 

Degradation of concrete by external sulfate ions involves both chemical and physical 

aspects that remain unclear and highly controversial. Moreover, the chemical and physical 

changes implied by the SCMs on the binder are still matter of open questions and, as a 

result, their relative chemical and physical influences on the sulfate resistance of the 

binder are far to be understood. 
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I.2.  MOTIVATIONS OF THE THESIS 

The non-representative conditions in the laboratory are for a large part at the origin of the 

development of the large panel of theories concerning the mechanisms of sulfate attack 

and especially the mechanisms of expansion. 

 

Despite the extensive studies carried out on the question of external sulfate attack, there is 

no clear understanding of the mechanisms involved and most of the researchers do not 

come to a general agreement. This is due mainly to: 

 a highly fragmentation of data on field cases; 

 non-representative chemical (especially high sulfate concentration) and physical 

(exposure setting influence underestimated) testing conditions; 

 a lack of data at the microstructural level. 

In particular, laboratory data report that expansion phenomenon under sodium sulfate 

exposure attack follows a two-stage process [3] (Fig. I-1). To understand sulfate attack, 

the mechanisms occurring in the first stage and the transition between the stages need to 

be elucidated. This can only be done considering a microstructural approach. 

 

 
 

Fig. I-1. Evidence of a two-stage process in expansion phenomenon of sulfate attack in the case of 
sodium sulfate exposure, after Santhanam et al. (2002). 

 

Regarding what authors previously did, it is evident that there is a lack of laboratory 

investigation on concrete and with a w/c-ratio below 0.40. There are also only separate 

studies focussed on the different exposure conditions and parameters: there is a need for a 

unique study comparing the different transport processes that may be involved in external 

sulfate attack. Additionally, other macroscopic control of the damage must be 

implemented since sulfate attack cannot only be described and evaluated through 

expansion. 
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I.3.  OBJECTIVES AND INNOVATIONS OF THE THESIS 

I.3.1.  OBJECTIVES 

Considering the lack of field data on sulfate attack cases, the fact that there is no reliable 

EU test for sulfate resistance and the gap between the field and the laboratory, the 

objective of the present work is multiple: 

 defining phase assemblages and deterioration mechanisms in field concrete under 

different environmental regimes; 

 developing a testing reference for sulfate induced damage as a function of the 

environmental exposure conditions; 

 evaluating the laboratory tests with comparison to the field results. 

 

A subsidiary objective is also to be considered regarding the increased used of SCMs in 

cement mix-design without having any retrospect of their durability: 

 understanding the influence of SCMs, notably slag at high replacement level, over 

long-term sulfate exposure. 

 

 

 

I.3.2.  INNOVATIONS 

To better understand the mechanisms of sulfate attack under real conditions, the present 

thesis proposes: 

 a parallel study of field and laboratory concretes under sulfate exposure; 

 a transversal study from the macro to the micro (damage, ion ingress, microstructure); 

 a monitoring of the macroscopic damage using different methods; 

 a focus on microstructural changes; 

 

A subsidiary innovation is to be considered: 

 the implementation of low w/c and w/b-ratio below the percolation threshold (0.40). 
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I.4.  SYNOPSIS OF THE THESIS 

In order to answer the defined objectives, the thesis is organised around seven chapters. 

 

 Chapter I – Introduction 

presents the durability framework in relation with the development of new cements 

and introduces preliminary notions on cement chemistry and additional sulfate. 
 

 Chapter II – State-of-the-Art 

exposes the duality of sulfate attack in terms of chemical and physical effects, 

develops the different approaches to the problem over the twenty pas years and 

reviews the main mechanisms of degradation proposed. 
 

 Chapter III – Research strategy 

presents the materials, describes the methodology and details the analysis parameters 

adopted. 
 

 Chapter IV – Ponding 

makes the link with the situation most commonly studied in the literature and proposes 

a mechanism of degradation of concrete under ponding exposure. 
 

 Chapter V – Effect of different testing conditions 

investigates the influence of the exposure setting on the sulfate attack mechanism 

compared to the ponding exposure. 
 

 Chapter VI – Field exposures 

analyses the damage process on available representative field concretes. 
 

 Chapter VII – Discussion, conclusions and perspectives 

concludes on the possible mechanisms of external sulfate attack on concrete according 

to the exposure type with an emphasis on the influence of high level slag replacement, 

evaluates the test settings proposed regarding the field results and introduces direct 

perspectives of the work and future investigations. 
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I.5.  PRELIMINARY NOTIONS: CEMENT CHEMISTRY AND SULFATE PHASES 

I.5.1.  CHEMICAL AND PHYSICAL ASPECTS IN CEMENT CHEMISTRY 

I.5.1.A. SULFATE-BEARING PHASES 

Portland cement (PC) can be simply described as powder composed of calcium silicate 

(C2S and C3S) and calcium aluminate phases (C3A) with calcium aluminate ferrite (C4AF) 

present in smaller amount, also called clinker, that reacts in presence of water and sets. 

The so-called binder possesses both good cohesive and compressive strength properties. 

Cement hydration has been widely studied [4]. If some points are still under research, 

several statements can be made concerning the hydrates formed. 

 

 
 

Fig. I-2. Schematic view of cement hydrates formation, after Young et al. (1998). 
 

Hardened cementitious matrix is largely constituted of the hydration products of the main 

phases C3S (alite) and C2S (belite): ~ 15 vol.-% of the crystalline calcium hydroxide (CH 

– portlandite –) and ~ 50 vol.-% of the XRD-amorphous calcium silicate hydrate (C-S-H). 

The minor C3A (aluminate) and C4AF (ferrite) phases are interstitial between alite and 

belite grains. Ferrite phases are very slow in terms of reactivity, whereas aluminate is, on 

the contrary, a highly reactive phase (~ 10 min). The drawbacks of C3A flash set are that 

the calcium hydroaluminate (C2AH8, C4AH13, C3AH6) massively formed possesses neither 

the binding nor the compressive strength qualities required but also spatially prevents the 

development of other essential hydrates (e.g.; portlandite and C-S-H). Traditionally, 

calcium sulfate additions (CaSO4.xH2O, C$Hx; x = 0, 0.5, 2: respectively anhydrite, 

hemihydrate, gypsum) are used by cement producers as C3A set retarder. Indeed, sulfate 
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can be substituted in the calcium hydroaluminate phases, as well as iron from the C4AF 

dissolution. This results in a two-stage reaction forming first (after ~ 18 h) a hydrated 

calcium aluminium sulfate hydroxide (Ca6(Al,Fe)2(SO4)3(OH)12.26H2O – Alumino ferrite 

trisubstituted (AFt) – ettringite –) which, due to sulfate depletion, then reacts with the 

remaining anhydrous C3A to form a calcium monosulfoaluminate hydrate 

(3CaO.(Al,Fe)2O3.CaSO4.12H2O – Alumino ferrite monosubstituted (AFm) – 

monosulfoaluminate –). The sulfate introduced is therefore shared in hardened cement 

between these two main sulfate-bearing hydrates: ettringite and monosulfoaluminate. 

Nevertheless, these two hydrates are present in minor quantities (Fig. I-2). Ettringite may 

dissolve over the long term. The two phases are finely intermixed to the C-S-H. 

 

 

I.5.1.B. PORE NETWORK 

Cement hydration is accompanied by the formation of a pore network of different scales 

(Fig. I-3): disconnected macro-pores, connected capillary pores and structural gel pores 

between C-S-H foils. 

The overall porosity represents ~ 15 vol.-%. 

 

 
 

Fig. I-3. Pores types in concrete, after Setzer (1977). 
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I.5.2.  IMPLICATIONS IN PRESENCE OF ADDITIONAL SULFATE SOURCE 

The capillary pore network represents a connection with the surrounding environment and 

it serves as network for transport processes between the cementitious microstructure and 

the outside. 

Sulfate from the surrounding environment can diffuse through the pore network, provided 

saturated conditions. As known from the hydration mechanisms, some phases from the 

cementitious microstructures are very sensitive to sulfate: monosulfoaluminate especially 

can easily be destabilised and transform back to ettringite in presence of sulfate. Ettringite 

molar volume (707 cm3.mol-1) is more than twice molar volume of monosulfoaluminate 

(309 cm3.mol-1) [5]. Thus, the secondary formation of ettringite from monosulfoaluminate 

can develop stresses in the set microstructure. This provides a first approach on the 

possible consequences of sulfate ingress in cement. 

However, in aged microstructures additional phases are accessible (e.g.; ferrite) and could 

react with additional sulfate. 

 

These first simplistic considerations point out the necessary condition for possible 

interactions between an additional source of sulfate and an aged cementitious 

microstructure, which is the presence of water as support for the transport process. 

Two types of sulfate attack are distinguished: internal and external, depending on whether 

the sulfate ions are provided respectively from the concrete itself (aggregates  with case of 

pyrite inclusions leading to sulfides liberation) or cement paste (mineral additions, SO3 

from clinker with the typical case of delayed ettringite formation – DEF – in presence of 

thermal activation) or from the surrounding environment. This thesis concerns the external 

type of sulfate attack. 
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Chapter II - State-of-the-Art 
 

 

 

 

 

 

 

The literature with regards to the chemical and physical aspects of sulfate attack is 

reviewed. Then, an overview is given on the different approaches to avoid external sulfate 

attack on concrete that have been developed by engineers and researchers over the twenty 

past years. The failures of these approaches introduced. Finally, the mechanisms of 

damage proposed in the literature are described. 
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II.1.  CHEMICAL AND PHYSICAL ASPECTS OF EXTERNAL SULFATE ATTACK 

II.1.1.  CHEMICAL ASPECTS: REACTIONS 

Sulfate attack can be studied as a reaction between sulfate ions and cement hydrates 

(Fig. II-1). The reaction products are crystalline and mainly of three types: 

 ettringite (Ca6(Al,Fe)2(SO4)3(OH)12.26H2O; hexagonal); 

 gypsum (CaSO4.2H2O; monoclinic); 

 thaumasite (3CaO.SiO2.SO4.CO3.15H2O; hexagonal). 

 

 
 

Fig. II-1. Scheme of the reactions between sulfate ions and cement hydrates. 
 

Ettringite formation is the subject of most papers because of its supposed expansive 

behaviour. This compound forms from aluminate-bearing sources in the cement paste for 

instance, C3A and its hydration products (monosulfoaluminate - AFm) or even 

aluminate-bearing glass in fly ash. Gypsum can form from CH while thaumasite needs 

more specific conditions to form C-S-H and at low temperature and in presence of 

carbonate. However, carbonate presence in cement among other causes the formation of 

monocarboaluminate (3CaO.(Al,Fe)2O3.CaCO3.11-12H2O) from monosulfoaluminate. 
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Fig. II-2. Sulfate attack reaction products in the C3A-CaSO4-CaCO3 three components system. 
 

The whole of these phases can be represented in the same three components system with 

respect to cement hydrates and pore solution (Fig. II-2). 

At this stage, it is worth noting that sulfate attack can be approached from thermodynamic 

perspective. Thermodynamic modelling describes phases stability (Table II-1) according 

to the phase rule based on Gibb’s energy minimisation [6-9]. The main problem is the 

choice of the more realistic system; field data are therefore a considerable input for such 

theoretical approaches. 

 
Table II-1. Thermodynamic properties at 25 °C of the main phases involved in sulfate attack, after 

Matschei et al. (2007) and Schmidt et al. (2008). 
 

Phase 
Solubility constant (1) 

- log Ksp 
Gibbs formation energy 

ΔfG0 
(kJ.mol-1) 

Molar volume 
V0 

(cm3.mol-1) 
Portlandite 5.2 - 897.01 33 

C3A - - 3382.3 89 
Jennite C1.67SH2.1 13.2 - 2480.81 78 

C-S-H 
Tobermorite C0.83SH1.3 8.0 - 1744.36 59 

Monocarboaluminate 32.5 - 7337.50 262 
Monosulfoaluminate 29.3 - 7778.5 309 

Ettringite 44.9 - 15205.94 707 
Thaumasite 49.4 - 15128.46 663 

Gypsum 4.6 - 1797.76 75 
(1): with respect to the species Al(OH)4-, Si(OH)3-, OH-, H2O, Ca2+, Mg2+, CO32-, SO42-. 
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II.1.2.  PHYSICAL ASPECTS: TRANSPORT PROCESSES 

External sulfate attack on concrete is supposed to be based on transport processes 

implying mineralogical changes between the surface and the core regions that can be 

directly related to the uptake of sulfate combined with leaching [10, 11]. Most studies are 

nevertheless carried out in saturated conditions while in the field there may exist different 

types of exposure to a wet sulfate source involved in different transport processes. Aside 

from the water saturated conditions, other settings can be envisaged: wetting and drying 

cycles, wet and dry sides for instance. 

 

II.1.2.A. POSSIBLE TRANSPORT PROCESSES 

Water saturated conditions: diffusion-based transport 

In full immersion the concrete structure is water saturated. Ions may diffuse either inwards 

the cementitious system (case of SO4
2-) or outwards (case of OH- and Ca2+) [10]. Before 

interaction with the environment, the pore solution of concrete predominantly consists of 

K+, Na+ and OH- ions and is saturated with respect to Ca(OH)2; its pH is therefore 

buffered to the value of portlandite pka of 12.6. The presence of alkaline rises the pH up to 

higher values in the range of 13. Relative to cement paste, any natural environment is acid. 

As a consequence, alkali ions are quickly leached out. When K+, Na+ have leached, 

portlandite plays its role of pH buffer: Ca(OH)2 dissolves and Ca2+ ions are in turn leached 

out. In similar fashion, C-S-H may decalcify and form a C-S-Hd poor in calcium up to 

leave eventually its silicate skeleton (“SiO2 gel”) that does not possesses any binding 

capacity. Ettringite and monosulfoaluminate are unstable below pH 10-11 and therefore 

very sensitive to CH and C-S-H decomposition. Cements hydrates decompose along the 

pH gradient from the surface to the bulk of the material (Fig. II-3). This simple zonation 

through leaching, whose modelling has been developed by Kamali et al. [12, 13], is 

however superposed with the ingress of ions and subsequent interactions with the cement 

paste. The works of Gollop and Taylor using a Na2SO4 exposure solution summarize well 

the different effects due to SO4
2- supply combined with leaching effect [14]. Successive 

changes were observed from the unaltered bulk material to the damaged surface: 

replacement of monosulfoaluminate by ettringite, dissolution of portlandite, partial 

decalcification of C-S-H, precipitation of gypsum in veins sub-parallel to the surface 

associated to cracks, and further decalcification and leaching (Fig. II-4). 
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Fig. II-3. Zonation through leaching as of OPC in pure, after Kamali et al. 
 

 

 
 

Fig. II-4. Zonation through combined sulfate attack and leaching as exposed for OPC in 
Na2SO4 solution at 20°C, after Gollop and Taylor (1992). 

 

 

Wetting and drying cycles: absorption-based transport 

Weathering in the field, among others, is characterised by wetting and drying cycles. A 

porous material such as concrete can absorb liquid during the wet phase, which may 

evaporate during the dry phase, allowing the precipitation of the salts it contains. A case of 

particular interest is the damage caused by sodium sulfate (Eq. II-1). This salt exists as an 

anhydrate called thenardite, Na2SO4, or as a decahydrate called mirabilite, Na2SO4.10H2O. 

At room temperature and at relative humidity RH < 75 %, mirabilite decomposes to 

thenardite. In presence of wetting and drying cycles this implies repeated thenardite 

recrystallization (Eq. II-2) [15]. This temperature and humidity dependent process causes 

repeated increase in volume leading to fatigue of the cement paste causing a cohesion loss. 
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Wet and dry sides (semi-immersion): “wick” action 

At foundation level or at tidal zone level, concrete structures are respectively semi-buried 

in the soil or semi-immersed in the water. In such semi-immersion case, rates of capillary 

rise and evaporation are in competition (Fig. II-5) and at a specific height hs the rate of 

evaporation equals the rate of capillary rise. As a result the solution that has diffused 

through the concrete may become supersaturated, so that crystal efflorescence occurs, 

characterised by crystal growth in the external water film. Above that location, the water 

evaporates inside the material, resulting in subflorescence, characterised by crystal growth 

below the material surface. Subflorescence may be critical if the crystallization pressure 

exceeds the tensile strength of the material [16]. 

 

 
 

Fig. II-5. Competition between capillary rise and evaporation from concrete in semi-immersion, 
after Scherer (2004). 

 

 

II.1.2.B. THE ROLE OF W/C-RATIO 

The w/c-ratio controls the capillary porosity of cement [17]. Monteiro and Kurtis [18] 

pointed out a ‘‘safe region’’ in terms of time to failure for mixtures with w/c-ratio below 

0.45 (Fig. II-6). It appears that the relationship between the time to failure and the 

w/c-ratio follows a step function. This tends to controvert the hypothesis owing to which 

sulfate attack would be controlled by diffusion mechanisms. The value of w/c-ratio of 0.45 

may be related to percolation threshold. 
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Fig. II-6. Time to failure as a function of w/c-ratio, after Monteiro and Kurtis (2003). 
 

 

II.2.  APPROACHES TO AVOID SULFATE ATTACK 

II.2.1.  THE PRESCRIPTIVE APPROACH 

II.2.1.A. CHEMICAL CHANGES 

Sulfate attack is often commonly defined by secondary ettringite formation leading to 

expansion. Therefore, from the 1930s, the availability of C3A in cement has been limited 

to prevent from secondary ettringite formation. C3A content of cements were reduced and 

sulfate resisting Portland cements (SRPCs) were introduced on the market. According to 

the country, the C3A content determined by Bogue calculation was reduced to down to 

5 wt.-% (ASTM C 1157-03), 3 wt.-% (EN 196, 197) and even 0 wt.-% for some countries. 

But the result of Monteiro and Kurtis (Fig. II-6) and studies of other authors [18, 19] point 

out that that expansion and failure can occur with low C3A contents (Fig. II-7). 

 

 
 

Fig. II-7. Influence of C3A content on sulfate resistance of CEM I, after [2]. 
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II.2.1.B. PHYSICAL CHANGES 

Physical effects, especially reduction of permeability, are more and more considered to be 

important in addition to chemical effects. 

For the most used cements a w/c or w/b-ratio lower than 0.45 is traditionally 

recommended to decrease permeability and limit the transport phenomena. 

 

From the 1980s, with the appearance on the market of new blended cements, new 

prescriptions were developed. 

Especially, fly ash and slag blends were considered to be sulfate resistant providing 

replacement levels exceeding respectively 20 and 65 wt.-% [2]. 

However, Irassar pointed out that concretes containing high volume of mineral admixtures 

can be more susceptible to the so-called “physical attack” where evaporation is believed to 

be involved with subsequent salt precipitation without much change in the cementitious 

matrix (typically related to semi-immersion case) than to so-called “chemical attack” 

where changes strictly concern the chemistry stability of the system with any physical 

effect (thought to be dominant in full immersion case) [20, 21]. Most severe deterioration 

occurred for slag concrete specimen with a replacement level of 80 wt.-%. Slag seems to 

enhance C-S-H decalcification and some works showed that slag blends fail rather through 

disintegration and softening than through expansion and cracking [14, 22, 23]. 

 

 

II.2.1.C. NEEDS FOR ANOTHER APPROACH 

Prescriptions are not necessary a reliable answer to sulfate attack issues. Sulfate attack 

mechanism is not simple and may not exclusively be attributed to ettringite formation 

while prescriptions are typically based upon this hypothesis. The physical and chemical 

aspects of sulfate attack cannot be so simply dissociated and may feed each other. 

Prescriptions clash against the increased use of diverse cements. The mechanisms of 

degradation of blended cements in sulfate environments are still a subject of debate: what 

is the relative importance of chemical versus physical effects of SCMs? 

There is therefore there is a drive towards performance approach with the idea of 

elaborating an EU standard for sulfate resistance. 

 



State-of-the-Art 

19 

II.2.2.  THE PERFORMANCE APPROACH 

The performance approach is based on the need do develop fast, realistic and repeatable 

tests to evaluate sulfate resistance of concrete. 

 

II.2.2.A. ACCELERATION METHODS 

Sulfate attack is a slow process occurring in the field within decades. The main problem is 

to simulate this at the laboratory scale within a few months. Traditional methods to 

accelerate the tests for sulfate resistance consist of: 

 using high sulfate concentrations (e.g.; 30 g.l-1 which corresponds to about 10 times 

the maximum values found in the field) to increase the ionic strength and thus 

accelerate the transport process; 

 storing at high temperatures (e.g.; > 25 °C while typical water temperature in the field 

reaches 10-20 °C) to promote the reaction kinetics; 

 reduced curing time (e.g.; few days) before the exposure start to have a more porous 

material that increases the transport flow (and this reduces the time of pre-exposure). 

 

 

II.2.2.B. SIMPLE SETTING 

To enhance the test reproducibility and let it assessable to most people, its set-up must be 

simple. Common sulfate resistance tests implement the following simplified conditions: 

 liquid exposure because it is easier to control in terms of chemical composition and 

transport process while in the field exposure often implies contact with a soil; 

 full immersion because easier to set up but in the field most of the structures are 

partially immersed in the sulfate environment; 

 Na2SO4 solution because it is of the limited interactions of the counter cation Na+ and 

therefore a better isolation of the SO4
2- effect while various species are present in the 

field; 

 no control of the pH because it is easier to set up while the pH is in the range of 7-8 in 

the field but regular renewal of the solution (monthly after ASTM C1012) to lower the 

pH and simulate the continuous ionic supply as it is the case in the field; 

 mortar or cement paste to simplify the diffusion process and the analysis (quantitative 

XRD easy implementable) while concrete structure are exposed in the field; 

 high w/c or w/b-ratios (e.g.; in the range of 0.60 while < 0.50 for field concrete) to 

have a more porous microstructure and thus increase the diffusion flow. 
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II.2.3.  LIMITATIONS OF THE PERFORMANCE APPROACH 

Nevertheless, there is at this time no harmonized CEN standard (i.e.; no reliable laboratory 

test for sulfate resistance): the draft for establishing an EN test method failed because of a 

too large dispersion of results between the participating laboratories (Fig. II-8). 

 

 
 

Fig. II-8. Robin tests expansion results, after [24]. 
 

Such dispersion in the results is essentially due to non-reproducible testing conditions. 

 

 

II.2.3.A. CHEMICAL ASPECTS 

Sulfate concentration 

According to the phases equilibrium at 25 °C [25], the high sulfate concentrations 

commonly employed in tests (in the range of 300 mmol.l-1) may lead to gypsum formation 

in addition to ettringite while the sulfate concentration in the field (0.2-30 mmol.l-1) would 

hardly stabilise gypsum and the attack should be dominated by ettringite formation 

(Fig. II-9). Indeed, gypsum is rarely observed under typical field conditions [14, 26, 27]. 
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Fig. II-9. Phases equilibrium in the SO4-Ca-Al ternary system at 25°C, after Damidot and Glasser 
(1992). 

 

 

Temperature 

The stability of sulfate-bearing phases with temperature [28, 29] reveals that gypsum 

becomes stable at lower sulfate concentrations with increasing temperature (Fig. II-10). 

Within the range of 10 to 25 °C this effect is not great: it starts to be significant above 

50 °C. 

 

 
 

Fig. II-10. Effect of temperature on sulfate-bearing phases stability, after Damidot and Glasser 
(1992-1993). 

 

However, if temperature is low enough (i.e.; below 15 °C) thaumasite can form from 

C-S-H and the incoming sulfate in presence of calcite [30]. 
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Counter ions and other species 

“Pure” sulfate attack never happens since SO4
2- anions are always associated to a counter 

cation. The nature of the associated cation (e.g.; Mg2+, Ca2+ Na+), has a direct influence on 

the type of products formed and on the attack process. Magnesium is present in non 

negligible amount in most waters and a typical consequence is the formation of a layer of 

brucite (magnesium hydroxide, Mg(OH)2) as the concrete surface as well as the formation 

of a magnesia rich silica gel at the edge of the exposed sample [14]. CaSO4 exposure 

causes a reduction of leaching compared to Na2SO4 exposure since calcium ions from the 

pore solution are counterbalanced by calcium ions from the surrounding solution. 

Leaching is claimed to accelerate sulfate attack since it provides a more porous 

microstructure where sulfate can ingress more easily. 

Some studies also focus on the combined effects of SO4
2- and Cl- to simulate marine 

environment [31]. But in most cases, sulfate and chloride penetration into cement are 

treated separately, chloride attack being directly connected with corrosion problems [32]. 

From a chemical point of view, Cl- ions are partially absorbed by the C-S-H and can be 

bound to monosulfoaluminate as revealed by 35Cl NMR in the study of Yu and 

Kirkpatrick [33] to form Friedel's salts (chloride-bearing AFm phase also named 

hydrocalumite) and tend to limit the stability of ettringite [34]. 

Another species that can influence sulfate attack is carbonate, in the case of external 

sulfate attack coming from the surrounding air, water or soil. Carbonate causes 

carbonation which is generally characterised by the transformation of portlandite into 

calcite. The calcium from the C-S-H can also form calcite. The basic pH of the 

cementitious matrix is controlled by portlandite and alkali ions at ~ 12.5-13. When CO2 

dissolves, it leads to the formation of H2CO3, whose pka is 6.35. The pH of pore solution 

inside the carbonated zone is thus reduced. Carbonated concrete has a pH < 9 [35], which 

is below the stability range of ettringite (pH 10.5-13). In the case of sulfate exposure, 

sulfate and carbonate ions may be in solution in the carbonated zone. Carbonate is more 

likely to react than sulfate due to the higher electronegativity of carbon compared to 

sulfur. Consequently, carbonate compounds will be more stable than sulfate compounds, 

which explains the better stability of monocarboaluminate over monosulfoaluminate in 

presence of carbonate. It has indeed been observed that monocarboaluminate is formed 

from monosulfoaluminate and can further breakdown into calcite and gypsum. 
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An important effect of carbonation is that the carbonated zone is characterised by a higher 

density than the rest of the cementitious material. This higher density external layer might 

play a role of a barrier to transport-based processes such as sulfate attack. Although 

carbonation occurs in field concretes, in the laboratory an effort is made to minimize the 

potential for carbonation so as to not limit sulfate attack from occurring. 

 

 

pH 

The pH plays a major role in sulfate attack since it controls the leaching effect and the 

phases solubility. It should therefore be as close to field conditions as possible. But in the 

laboratory, even if the solution is regularly renewed according to ASTM C1012 

prescription, there is a cycling pH rise from 7 to 12-13 owing to the solution renewal 

frequency (Fig. II-11). Moir suggested making a test at constant pH 7.5. Few authors have 

worked at a constant pH but in the case of limestone-blends [36], adding a titration 

solution which did not ensure a constant concentration in sulfate. 

 

 
 

Fig. II-11. pH cycles along solution renewal cycles, after Moir. 
 

The renewal of the solution prescribed in ASTM C1012 is bad to control the pH but good 

to renew the ionic species and simulate the unlimited sulfate source from the field. 
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II.2.3.B. PHYSICAL ASPECTS 

Curing time and conditions 

A too short curing (in saturated lime water) implies that the samples present a low degree 

of hydration when placed in a sulfate environment. In the field, due to its slow reactivity, 

sulfate attack concerns mature materials. A young microstructure is differs from a mature 

microstructure in terms of hydrate development. The further reactions with sulfate ions 

might be influenced, notably in terms of available space. 

 

Full immersion 

In lab models a pure diffusion process (i.e.; full immersion) is assumed while in the field 

semi-immersion and/or to wetting and drying cycles may occur. In such more complex 

exposures, the diffusion process may be more controlled by capillary forces that can play a 

major role in the field that might be underestimated in the laboratory. 

 

w/c and w/b 

The increased w/c and w/b-ratios implemented in most tests compared to field cases leads 

to a change in the microstructure especially in terms of porosity and density. 

There is little literature on tests using a low w/c or w/b-ratio especially below the 

percolation threshold (0.40), while prescriptions in the field encourage the use of such low 

values. 

 

Interfacial transition zone (ITZ) 

Tests involving cement paste or mortar are not comparable to field cases involving 

concrete structures in terms of transport process. 

The interface between the aggregates and the cement paste, the so-called ITZ, shows a 

higher porosity due to the “wall” effect of packing of cement grains [37]. The ITZ thus 

plays a role in any transport process involved in concrete. Nevertheless, all of these 

impacts seem to be counteracted by other factors which generally lead to a reduction of 

transport rates with increasing aggregate contents (i.e.; increasing ITZ proportion) if all 

other variables are held constant [38]. 
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II.3.  DAMAGE MECHANISMS 

Three kinds of macroscopic damage due to sulfate ion interaction with the cementitious 

matrix have been reported: expansion (cracking, spalling), softening and decohesion [39]. 

 

II.3.1.  EXPANSION 

Sulfate attack is generally associated with, and even defined, in the literature as the 

formation of sulfate-bearing products within the cement paste leading to macroscopic 

expansion [40]. Expansion is generally attributed to ettringite formation. 

Ettringite forms from cement hydrates when SO4
2- is supplied. However, even in the 

absence of external sulfate, ettringite tends to recrystallize according to an Ostwald 

ripening process in any available cavities, when water is present for transport. Thus, the 

presence of ettringite in a distressed concrete observed by petrography, SEM or XRD does 

not necessarily mean that the ettringite has caused the distress. Nevertheless, ettringite is 

believed to be the first cause of sulfate induced macroscopic damages and especially of 

cracking [23]. Due to its formation from the dispersed monosulfoaluminate, ettringite 

formed during sulfate attack is also finely intermixed to the cement hydrates. This type of 

ettringite present as very small crystals within the paste may be more likely responsible of 

distress in cement paste than the most obviously detectable large crystals precipitated in 

cavities [41]. 

Cement is known to perform very well in compression but very badly under tension with a 

failure criterion in the range of few MPa (e.g.; in the order of 4 MPa). Hence, any 

microstructural effects responsible of macroscopic expansion should be able to generate 

stresses in such a range. Various different theories exist regarding the mechanism of 

expansion: 

 increase in solid volume; 

 topochemical reaction; 

 swelling; 

 crystal growth pressure. 
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II.3.1.A. INCREASE IN SOLID VOLUME 

The increase in solid volume [42] is based on the idea that the solid volume of the 

secondary sulfate-bearing phases is higher than that of their respective reactants. In 

particular, owing to this theory, the formation of such phases would put the surrounding 

set microstructure in tension. Nevertheless, such differences between the solid volume of 

the products and the reactants is common in cement chemistry in the case of other 

reactions (e.g.; C-S-H and CH formation from C3S) that are not accompanied by any 

expansion. Indeed, such reactions only proceed to the extent that sufficient space is 

available. Therefore, ettringite formation does not necessarily lead to primary expansion 

owing to the theory of the increase in solid volume since pores and voids in the 

microstructure provide space for ettringite precipitation especially in the beginning of 

sulfate exposure. The amount of porosity available stands therefore for the critical 

criterion for expansion to occur following the increase in solid volume theory. 

 

II.3.1.B. TOPOCHEMICAL REACTION 

Some authors [43] support the idea owing to which expansive ettringite forms in-situ from 

C3A. Nevertheless, C3A and ettringite possess two different crystalline structures 

(respectively cubic or orthorhombic and hexagonal) and such a process without any 

intervening layer and any passage of ions in solution cannot be envisaged. 

 

II.3.1.C. SWELLING 

Swelling theory of expansion considers ettringite as colloid. Owing to Mehta [44], the 

agglomeration of ettringite crystals of colloidal size would imbibe water and would 

thereby cause expansion. In over sulfated cement systems at early ages, interparticular 

forces can generate swelling pressure. But this is unlikely in hardened cement systems 

since ettringite is not colloidal but a fine dispersed phase. Ettringite is not a gel-like 

material that could be able to expand without breaking, ettringite is on the contrary a 

highly crystalline phase. 
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II.3.1.D. CRYSTAL GROWTH PRESSURE 

Crystal growth theory requires two conditions: supersaturation and confinement. 

Considering a crystal growth from solution inside a cylindrical pore [45], the 

crystallization pressure is related to the supersaturation and the size of the pore according 

to the Laplace’s equation (Eq. II-3). For the typical liquid and crystal characteristics 

expected of a crystal such as ettringite [46], in order to exert a pressure of 3 MPa, which 

corresponds to the range of tensile strength of concrete, a pore radius smaller than 50 nm 

is necessary. This underlines, that large ettringite crystals observed ins cracks and pores 

have probably recrystallised inside pre-existing cracks because of the space available with 

little constraint and do not therefore generate any significant expansive pressure. 
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lc pp −  represents the difference between the crystal and the liquid pressure, 
corresponding to the crystallization pressure exerted on the surrounding pore wall; 
 

clγ  is the crystal surface energy at the crystal/liquid interface; 
 

pr
)cos(2 θ

−  is the optimal (crystal energy minimization) curvature clκ  of the advancing 

surface of a crystal growing inside a cylindrical pore of radius pr  with a contact angle 
θ ; 

 

cg vTR ,,  are the specific invariant parameters of the system, respectively gas constant, 
absolute temperature and molar volume of the crystal; 
 

0, CC  concentration of the solute and equilibrium solubility, their quotient defines the 
supersaturation magnitude (if activity coefficients are ignored). 
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II.3.2.  SOFTENING 

Gypsum is mainly found as precipitates in macroscopic cracks. Nevertheless, it may also 

be found intermixed in the cement matrix. This suggests that gypsum can form from 

portlandite and also from calcium in C-S-H which becomes decalcified. 

Monosulfoaluminate is usually assumed to be the source of aluminium for ettringite 

formation but a source of calcium is also needed. In ordinary Portland cement paste, the 

experimentally determined Ca/Si-ratio is around 1.7-1.8 [47] compared to the upper limit 

of synthetic C-S-H of 1.5. This implies that in real cement matrix the C-S-H has an excess 

of calcium, which become available for gypsum and ettringite formation. 

Both gypsum and ettringite formation therefore lead to a relative decalcification of C-S-H, 

which is the main hydrate of cement matrix and stands for its cohesive property. This 

would result in a softening of this phase. 

 

 

 

II.3.3.  DECOHESION 

Decohesion mainly occurs when thaumasite formation is observed. Thaumasite is indeed a 

very brittle material whose fracture produces small conchoidal fragments: it does not 

possess the cohesive properties proper to the cementitious matrix. 

Thaumasite forms in presence of carbonate from a sulfate source and drawing silicon from 

the C-S-H, the consumption of the silica of the C-S-H can lead to a loss of its binding 

properties. 

There is no evidence that ettringite is theoretically required as a precursor to thaumasite 

formation, but thermodynamically as sulfate concentration increases, ettringite forms first 

[48]. Ettringite and thaumasite can also enter into partial solid solution [49]. 
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II.3.4.  KEY OPEN QUESTIONS 

Softening and decohesion occurrence is understood and their mechanisms are agreed by 

the scientific community. 

On the contrary, the mechanism(s) of expansion is still a subject of controversy. The 

crystal growth pressure theory appears to be the most possible one but there is still no 

evidence that supersaturation initiates the expansion. 

In addition, there is a lack of relationship between the chemical changes and the 

macroscopic consequences. No link between the phase assemblage and the damage has 

been clearly done and especially the combined effects of different phases (e.g.; ettringite 

and gypsum) are widely discussed [3, 14, 22, 23]. 

Moreover, the absence of linear relationship between the amount of secondary 

sulfate-bearing phases and the expansion rises up the fact that sulfate attack can actually 

not be only and directly related to ettringite formation: different physical and chemical 

effects often overlap [50] and are hardly identified. Physical and chemical effects are often 

considered separately while they might not be so simply divided. 
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Chapter III - Research strategy 
 

 

 

 

 

 

 

The methodology adopted in this thesis involves a parallel study of laboratory and field 

concrete samples subjected to various conditions of degradation by external sulfate ions. 

Concretes made of pure Portland and with slag substitution of 70 wt.-% or more were 

exposed. In the laboratory, a low Na2SO4 concentration is used similar to levels in the 

field. In the field, exposures involve other ions in addition to SO4
2-. Various exposure 

conditions were studied: ponding, pH-control, semi-immersion and wet/dry cycles. 

The analysis of the concrete samples covers the macro to the micro scale. A first approach 

to the ion ingress and leaching comes from the measurement of the exposure solutions 

using AAS. Evaluation of the damage of the concrete samples is assessed by visual control 

and measurement of the physical properties such as expansion, mass loss, compressive 

strength and dynamic elastic modulus. To study the microstructure, specimens must be 

sacrificed at specific ages. Quantitative ion profiles were determined by image analysis of 

SEM elemental mappings and by micro-XRF for the field samples. The evolution with 

depth of the phase assemblages zonation was made combining XRD and statistical 

SEM-EDS analyses. Further local microstructural details were studied mainly by 

SEM-BSE images and local EDS analysis. 

After describing theses analytical techniques, the reference microstructures are introduced. 
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III.1.  MATERIALS AND EXPOSURE CONDITIONS 

III.1.1.  LABORATORY 

III.1.1.A. MICRO-CONCRETES 

The laboratory samples were standard 4×4×16 cm3 prisms, which allow easily comparison 

with existing data. In order to be as comparable as possible to the field conditions, these 

prisms are micro-concretes and not mortars. According to the geometry of the samples, the 

maximum aggregate size is 8 mm. The quartz aggregate grinding follows a sieving curve 

type AB8 from the German normalisation (Fig. III-1). 

Four binders were designed (Table III-1) according to three characteristics: 

 PC to be representative of one of the field most used binder; 

 high slag replacement level to evaluate the durability perspectives of such mixes; 

 w/b > 0.40 > w/b to check the influence of the connectivity of capillary porosity, 

which is generally shown to be connected above 0.40 and disconnected below. 

 

Sample preparation (mixing, demoulding and curing) was done according to the European 

standard EN 196-1. For the slag blends, slag and cement were premixed in a turbula 

shaker-mixer with three-dimensional movement during 5 hours. The micro-concrete 

prisms were prepared using a standard mixer. The water was first introduced, then the 

cement or the cement-slag mix and mixing started at low speed (145 ±5 rpm) during 30’’, 

after which the aggregates were added from the bigger to the smaller sieve size and the 

mixing speed increased (285 ±10 rpm) during 30’’. Mixing was stopped during 1’30’’ to 

homogenize the mix by hand. Mixing was started again at high speed during 60’’. 

The mixes with highest w/b-ratio (of 0.55) and that ones with lowest w/b-ratio (of 0.38) 

were made using respectively 400 kg.m-3 and 480 kg.m-3 of cement or cement-slag mix. 

 

 
Table III-1. Binder mix-design of the laboratory micro-concretes. 

 

Mineral addition 
Mix label 

Equivalent 
binder type 

28 days 
compressive strength 

(MPa) 
w/b Substitution level 

(wt.-%) 
Type 

P-0.55 CEM I 42.5 0.55 0 - 
P-0.38 CEM I 52.5 0.38 0 - 
S-0.55 CEM III/B 32.5 0.55 70 Slag 
S-0.38 CEM III/B 52.5 0.38 70 Slag 
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Fig. III-1.  Aggregate granulometry of the laboratory micro-concretes. 
 

 

This project was undertaken under the umbrella of the NanoCem research network, the 

raw materials were the same as used in the thesis core project of Kocaba [51]. The cement 

used is a CEM I with high C3S, and high alkali content (Table III-2), designated as 

“cement C” by Kocaba. The C3A content is about the average for commercial PCs. The 

slag employed is a slag of normal reactivity with an amorphous content exceeding 

99 wt.-% (Table III-3), designated as “slag 01” by Kocaba. All mixes were made without 

any superplasticizer. The XRD-Rietveld and XRF analyses were supplied by Kocaba. 

 
Table III-2. Phase composition of the cement used in the laboratory micro-concretes. 

 

Phases Formula Content (wt.-%) 
Alite C3S (M3) 61.5 
Belite β-C2S 17.3 

 αh-C2S - 
Aluminate C3A-cubic 5.6 

 C3A-orthorhombic 1.7 
Ferrite C4AF 8.6 
Lime C 0 

Periclase M 0.3 
Gypsum C$H2 0 

Hemihydrate C$H0.5 1.3 
Anhydrite C$ 1.4 

Quartz S 0 
Portlandite CH 0.8 

Calcite Cc 0 
Arcanite K$ 1.5 
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Table III-3. Oxide composition of the cement and slag used in the laboratory micro-concretes. 

 

Content (wt.-%) 
Oxides 

Cement Slag 

SiO2 21.01 36.61 
Al2O3 4.626 12.21 
Fe2O3 2.603 0.8503 
CaO 64.18 41.59 
SO3 2.78 0.6304 
MgO 1.823 7.177 
Na2O 0.197 0.184 
K2O 0.939 0.275 
P2O5 0.4 0.0065 
TiO2 0.143 0.3532 

Mn2O3 0.029 0.1439 
LOI 1.26 -0.03 

 

 

 

 
Table III-4. Density and porosity of binders of the laboratory micro-concretes 

after 28 days of hydration. 
 

Density 
(g.cm-3) 

Total porosity 
(vol.-%) Binder 

Apparent  Bulk 100)1(
apparent

bulk ⋅−
ρ
ρ  

MIP 

P-0.55 2.5506 2.2924 10.1260 7.6912 
P-0.38 2.5447 2.3553 7.4421 5.5438 
S-0.55 2.4920 2.2636 9.1661 7.7936 
S-0.38 2.4711 2.3065 6.6624 5.9069 

 

 

The apparent and bulk densities of the binders after 28 days of hydration were determined 

by helium picnometry (Micromeritics Accu Pyc 1330) and their global porosity, excluding 

the aggregates, was assessed by MIP (Porotec CE Instruments Pascal 140/240 series) 

(Table III-4). 
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III.1.1.B. LOW NA2SO4 CONCENTRATION AND VARIOUS EXPOSURE SETTINGS 

All laboratory studies were carried out at 20.5 °C ±0.5. The exposure environment was a 

low ion concentrated Na2SO4 solution of 3 g.l-1 (i.e; 0.021 mol.l-1 or 3000 ppm), renewed 

every month except pH-control. The ratio between the volume of the solution and the 

volume of the cementitious material was 20 (i.e.; 5 times higher than that prescripted in 

the ASTM C1012) to avoid limitations due to sulfate availability and to be closer to field 

conditions where sulfate is usually present in an unlimited reservoir. The solution was 

prepared at 20.5 °C ±0.5 mixing 165 g of anhydrous Na2SO4 with 55 l of deionised water 

under cover with a paddle at the bottom of the container and rotating at low speed 

(120 rpm) to limit CO2 entrainment into the solution. The pH of the initial solution is close 

to neutral. 

Samples are exposed after a curing period of 28 days in sealed conditions in lime saturated 

water at 20.5 °C ±0.5. Samples of same chemistry (i.e.; same mix-design) were exposed in 

a common container: for each exposure setting, four containers were in use, one for the 

P-0.55, one for the P-0.38, one for the S-0.55 and one for the S-0.38 micro-concretes. The 

containers are filled up to the top and covered to limit contact with the air and thus avoid 

CO2 dissolution and further carbonation. 

 

Four tests were designed (Fig. III-2) to evaluate the influence of the exposure setting on 

the interaction between sulfates and the cementitious material. The exposure settings were 

ponding, pH-control, semi-immersion and wet/dry cycles. A sample holder maintains the 

prisms vertically in the baths. 

 

 
 

Fig. III-2. Scheme of the laboratory setting. 
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Ponding 

The simplest test setting consists in a continuous full immersion of the samples in the 

exposure solution. This is the test adopted in most sulfate resistance studies. Its 

representativity of field cases is nevertheless questionable. The aim of conducting such a 

test is first to have a basis comparable to most literature data and second to evaluate it 

compared to other exposure settings and field data. 

 

pH-control 

One of the questions raised about the ponding exposure is the unrepresentative pH value 

compared to field conditions. The pH in ponding tests is found to rise rapidly to 11-13 

despite the regular renewal of the solution while the pH in the ground, fresh or sea waters 

in the field is usually in the range of 6-8. Therefore, a pH-control test was designed. The 

test applies a titration system initially destined for aquarium use from AQUA MEDIC to 

maintain the pH at 7.5 ±0.5 by the use of an H2SO4 titration solution. To simplify the 

setting, two baths containing samples of similar chemistry (PC on the one hand, slag 

blends on the other hand) were connected to the same central intermediate bath where the 

titration took place. A pump working at 200 l.h-1 situated in the intermediate bath permits 

a rapid mixing of the solution in the two exposure baths without neither concentration 

gradient, nor flow effect. The concentration of the titration solution has been adjusted to 

disturb as little as possible the nature of the exposure solutions in terms of Na2SO4 

concentration. The best compromise between low volume addition (highly concentrated 

titration solution) and constant sulfate concentration (low concentrated titration solution) 

has been found using a 0.2 M H2SO4 solution. A first test was done using a 0.01 M H2SO4 

titration solution. But this was found to be of low titration efficiency. Only results for the 

pH-control test involving the 0.2 M H2SO4 solution are presented, which are limited to 

shorter exposure times compared to the other tests because of the delayed test start. 

No renewal of the solution was carried out for the pH-control tests. 

 

Semi-immersion 

Cases of structures damaged by external sulfate sources may involve tidal zones or 

foundations. The ponding test does not take into account the effects of relative humidity 

changes that can strongly influence salt crystallisation processes [16]. The 

semi-immersion test aims to investigate such effects on the cementitious material damage. 

No steps were taken either to limit evaporation, or to avoid carbonation. 
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Wet/dry cycles 

To examine normal weathering effects, controlled wet/dry cycles were applied on 

samples, alternating 4 days of full immersion in ponding conditions with 3 days of drying 

at 40 °C in a vacuum oven to prevent from carbonation; a total of 52 cycles.year-1. 

Relative humidity (RH) measurements revealed that the samples RH oscillated between 

90 % and 20 % respectively after the wetting and drying periods. 

 

 

References 

Reference samples were stored at 20.5 °C ±0.5 in tap water under sealed conditions 

(RH 100 %). The tap water revealed a sulfate concentration of 0.02 g.l-1 corresponding to 

an equivalent Na2SO4 concentration of 0.03 g.l-1, which is 100 times less than the Na2SO4 

solution implemented in the tests. The solution of the reference test is not renewed and 

quickly reaches portlandite saturation and is therefore commonly called “lime water” as 

designated in the study. 

 

 

 

III.1.2.  FIELD 

A large panel of field samples from real structures and trial sites was catalogued for the 

study. A selection of the most interesting samples was made according to the availability 

and completeness of data on their mix-design and on their exposure conditions. Some 

supplied samples were found to suffer from other degradation mechanisms (e.g.; alkali 

silica reaction (ASR)) overlapping with the sulfate induced damage and were not 

examined in detail. The field concretes were selected to be the most comparable to the 

laboratory samples. 

 

 

III.1.2.A. CONCRETES 

A Portland cement with 8.5 wt.-% C3A was used to make concretes with 80 wt.-% of slag 

(Table III-5). The analyses of the anhydrous materials (Table III-6 and Table III-7) were 

provided by Irassar [21]. 

The samples were exposed as concrete blocks of 7×10×40 cm3. 
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Table III-5. Binder mix-design of the Argentinean concretes. 

 

Mineral addition 
Mix label 

Equivalent 
binder type 

28 days 
compressive strength 

(MPa) 
w/b Substitution level 

(wt.-%) 
Type 

P-0.53 CEM I 32.5 0.53 0 - 
S-0.53 CEM III/B 32.5 0.53 80 Slag 

 

 

 
Table III-6. Phase composition of the cement used in the Argentinean concretes. 

 

Phases Formula Content (wt.-%) 
Alite C3S 40.0 
Belite C2S 31.0 

Aluminate C3A 8.5 
Ferrite C4AF 8.2 

 

 

 
Table III-7. Oxide composition of the cement and slag 

used in the Argentinean concretes. 
 

Content (wt.-%) Oxides 
Cement Slag 

SiO2 21.35 33.20 
Al2O3 4.94 13.30 
Fe2O3 2.71 4.10 
CaO 60.16 39.30 
SO3 1.96 - 
MgO 0.46 6.20 
Na2O 1.00 0.28 
K2O 0.48 080 
LOI 5.57 - 
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III.1.2.B. EXPOSURE CONDITIONS 

The samples were partially buried (Fig. III-3) for 19 years in a muddy soil enriched in 

sulfate [21] (Table III-8). The upper layer of the samples was exposed to weathering with 

a wet/dry cycles frequency of 15-20 cycles.year-1 and with temperatures varying from 

0 to 34 °C. The sulfate amount in the soil was 0.97 wt.-%, which would correspond to an 

equivalent Na2SO4 concentration of 14.34 g.l-1 assuming that the entire sulfate in the soil 

is available as ionic species in the ground water. The pH of the soil is of 7.8 ±0.5. 

 

 

 
 

Fig. III-3. Exposure setting of the Argentinean concretes.  
 

 

 
Table III-8. Chemical characteristics of the Argentinean soil. 

 

Content of the main species 
(wt.-%) 

SO42- Na+ Mg2+ Cl- 
pH 

0.97 
±0.04 

0.32 
±.003 

0.23 
±0.02 

0.05 
±0.02 

7.8 
±0.5 
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III.2.  ANALYSIS METHODS FOR A “MACRO-TO –MICRO” APPROACH 

III.2.1.  IONIC TRANSPORT CHARACTERIZATION METHODS 

Representative samples of 100 ml of the exposure solutions were collected for analyses at 

each renewal. 

 

III.2.1.A. TITRIMETRIC ANALYSES 

The concentrations of SO4
2- and Ca2+ ions were titrated with an accuracy of ±5 g.l-1. SO4

2- 

was measured in acid solution (methylorange as indicator) from its precipitation in 

presence of BaCl2 in BaSO4. Ca2+ was measured in basic solution (calconcarbon acid as 

indicator) from its reaction with disodium salt, which after full reaction with calcium 

reacts with the calconcarbon acid that becomes blue.  

 

III.2.1.B. ATOMIC ABSORPTION SPECTROSCOPY (AAS) 

The concentration of Na+ ions was determined by atomic absorption spectroscopy with a 

Perkin Ellmer 4100 device, with an accuracy of ±5 g.l-1. The AAS method is based upon 

flame atomization. The energy from the heat of the flame brings the atoms to an excited 

state which relax to a ground state giving up their energy as photons of visible or 

ultraviolet radiation. The absorption spectrum thus collected is specific for a given 

element. The wavelength of sodium is λNa = 589 nm. 1 ml of the exposure solution is 

mixed to 10 ml of buffer solution to make sure that all the sodium will be excited. The 

solution is spread in the flame and a chromator measures the change of the flame intensity. 

 

III.2.1.C. PH-METRY 

The pH of the exposure solutions was controlled with glass KCl electrodes with an 

accuracy of ±0.5. From the pH, the OH- content in the exposure solution could be 

assessed. 

The titration system employed for the pH-control test is monitored by an acquisition 

software (AT-Control from AQUA MEDIC) to allow a continuous control of the pH of 

the exposure solution. Plastic electrodes from AQUA MEDIC with an electronic 

connexion and measure the pH with an accuracy of ±0.5. 
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III.2.2.  PHYSICAL CHANGES CHARACTERIZATION METHODS 

III.2.2.A. EXPANSION 

The expansion of the laboratory prisms was regularly measured on a LVDT device in the 

horizontal position to avoid the effect of sample weight compared to the traditional 

vertical setting from ASTM C 1012. For a given mix, three prisms were measured. Steel 

plug gages were directly cast in the prisms reserved for length measurement. Invar 

references were used. 

 

III.2.2.B. MASS 

The mass of the laboratory samples was regularly controlled on three prisms for each mix. 

A laboratory balance with a precision of ±0.01 g was used. The samples were surface 

dried up before weighting to avoid measurements artefacts due to surface water. 

 

III.2.2.C. COMPRESSIVE STRENGTH 

The compression measurements were carried out to follow the strength evolution of the 

laboratory micro-concretes, according to the European standard EN 196-1. The test carried 

on a Walter + Bai AG D 501/200 press consists of applying a load with a linear increase 

(0.5 MPa.s-1) on a 4×4 cm2 contact surface with the rhomb and in measuring the load 

every 100 ms up to the breaking load. 

Compressive strengths were measured on pieces remaining after cutting the samples for 

SEM and XRD measurements, providing they were large enough for the test. The testing 

was not initially planned and was done only as an indication of the change in mechanical 

properties. The accuracy of the measurements was not checked since only one piece of 

sample was tested at each sampling time for each sample type. Considering the low 

Na2SO4 concentration applied strengths of the samples after 28 days of exposure should 

not be much affected by the sulfate. Therefore the differences in compressive strengths 

measured for a same mix after 28 days of exposure in the different exposure settings were 

taken as a representative standard deviation. This value is in the range of 5 MPa, which 

appears to be consistent with the standard deviation of experimental data carried out by 

Kocaba on mortars made from the same binders [51]. But standard deviation is likely to 

increase with exposure time due to the statistical uncertainty of damage process. Results 

from this test should be considered with caution and remain indicative. 

No strength measurement was done on the field concretes. 
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III.2.2.D. DYNAMIC ELASTIC MODULUS 

The elastic modulus or Young modulus E describes the stress-strain relationship for a 

given material under load, and is generally assessed by a traction test. The dynamic elastic 

modulus Edyn can be reliably assessed by non-destructive methods. The empiric 

relationship between static and dynamic elastic moduli follows a law of type 

)1( dynbE
dyn aeEE −−= , [ ]1,0b,a ∈  dependant on material and environment parameters. 

 

Impulse excitation method 

The principle of the impulse excitation method is to make the sample excitation frequency 

vary up to reaching resonance. A grindosonic device from Lemmers was used to assess the 

fundamental frequency by means of a frequencemeter with a precision of 0.5 %. A 

transducer-emitter characterized by a natural resonant frequency of at least two times the 

supposed one of the sample is put directly in contact with the sample. The period 2T is 

recorded. From 2T the fundamental frequency can be calculated (Eq. III-1). Three measure 

modes are possible: leongitudinal L, flexural F and in torsion T. The fundamental 

longitudinal and flexural frequencies allow the dynamic elastic modulus to be calculated 

in two ways (Eq. III-2 and Eq. III-3), while the torsion mode permits the calculation of the 

dynamic shear modulus Gdyn (Eq. III-4). 

This method was applied to the laboratory micro-concretes, measuring three prisms each 

time, according to the procedure for normalised 4×4×16 cm3 prisms from ASTM C 215. 
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Eq. III-4 
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Impulse velocity method 

The principle of the impulse velocity method is based on the fact that waves propagate 

with a higher velocity in a denser material. If the material contains cracks, waves will 

propagate slower in the spaces opened by the cracks. The method can thus potentially 

measure the damage state of a piece of concrete that has been subjected to destructive 

conditions such as sulfate attack. This method does not require a specific geometry of the 

samples, but the length should not be less than 10 cm to avoid interference due to 

reflection waves. The ultra sound impulse velocity measured can be related to the dynamic 

elastic modulus knowing the apparent density of the material (Eq. III-5) [52]. 

The impulse velocity method was used to study the field concrete cores, making three 

measurements on each core. Measurements were carried out in the direction of the core 

length, according to EN 13296, using transducers for longitudinal waves of 50 kHz. 
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Edyn dynamic elastic modulus (N.mm-2 # MPa) 

ls sample length (mm) 

ts ultra sound impulse delay time in the sample (μs) 

tk correction factor: intrinsic delay time of the transducers (μs) 

ρs sample apparent density (kg.m-3) 

cl correction factor considering the hindrance of lateral strain (= 0.9) 

Eq. III-5
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III.2.3.  MICROSTRUCTURAL ANALYSIS METHODS 

III.2.3.A. SEM AND CEMENT CHEMISTRY 

Scanning electron microscopy (SEM) has proven to be a valuable tool in the study of 

cement chemistry and microstructure over the past 20 years [53]. 

SEM was used in the investigation methodology at different levels: 

 elemental mapping at low magnification level (×100) for the study of the ions profiles 

in the microstructure (§ III.2.3.B) and at higher magnification level (> ×1500) for local 

ions repartition analysis; 

 energy dispersive spectroscopy (EDS) for local phase assemblage determination and 

local chemistry quantification (§ III.2.3.E); 

 back-scattered electron (BSE) imaging for local study of damage and phase formation. 

 

The elemental mapping consists of EDS analyses carried out at each pixel location. EDS 

analysis is based on the ability of X-ray (generated from the electron-mater interaction) to 

excite the surrounding atoms, which in turn emit a characteristic fluorescence radiation. 

Qualitative elemental mappings were done with a spot size allowing at least 100 kcps to 

reach the detector and with an analysis time of 1.5 ms.pixel-1 running 30 cycles on 

512×384 pixel2 areas (i.e.; 15 min for one qualitative mapping). A quantification method 

based on image analysis was developed for the ions profile (§ III.2.3.B). 

The local EDS analyses have been conducted at relative high magnification (> ×1500) 

with a spot size enabling at least 50 kcps to reach the detector and with a single 

quantitative analysis run of 2 s. Phase assemblage could be assessed plotting atomic ratios, 

providing a good statistic of the local quantitative EDS analyses (§ III.2.3.E). 

BSE imaging is based on the fact that emission rate of back-scattered electrons from the 

primary electron beam is an increasing function of the atomic number Zi of the irradiated 

atoms. The resulting micrographs are in grey levels. The grey level of a given phase is 

directly related to its back-scatter coefficient η (Eq. III-6). In consequence the heavier the 

atoms of a phase are the brighter the phase contrast appears in BSE imaging. 
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Eq. III-6
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The SEM used was a Quanta 200 from FEI (Philips) where electrons are thermionically 

emitted from a tungsten cathode, accelerated under high vacuum (10-4-10-5 mbar) and 

focused up to a spot size of 1 to 5 nm. The acquisition software is Esprit version 

1.8.2.2089. The EDS detector is an Si(Li) Brucker 133 eV. An accelerating voltage E0 of 

15 kV has been found to be the best compromise between a representative spatial 

resolution (low voltage) and a representative chemical signal (excitation of the highest Kα 

peak: E0 ~ 2.EFeKα). 

SEM applications require flat polished surfaces for reliable analyses. The long preparation 

time of the polished sections (Appendix A) is the main disadvantage of the use of SEM in 

this study and limits the possibility to make repeatability measurements. 

 

 

III.2.3.B. SEM MAPPINGS AND IMAGE ANALYSIS 

Quantitative profiles of elements were obtained from SEM-mappings at low magnification 

(× 100) through a calibration and rescaling technique. A code for image analysis has been 

developed with the support of Gallucci to extract quantitative profiles from the qualitative 

mappings. Considering the relative large area investigated (2500 × 1870 µm) and their 

high resolution (512 × 384 pixels) compared to the phenomenon studied, the treatment of 

a single mapping is representative of the ion profile in the material and no further 

statistical measurements are necessary. 

The qualitative elemental mappings measured are scaled according to the pixel of major 

intensity and cannot be compared to each others. The method of quantitative profiles 

extraction consists in two stages: rescaling and calibration (Fig. III-4). Prior to these 

stages, the acquired mappings A are transformed to grey scale mappings Agrey in order to 

further get rid from the influence of the RGB colour factor (for an element x a specific 

colour in RGB notation has been attributed). From the grey scale mapping Agrey of an 

element x a rescaled mapping Aresc is calculated by dividing each intensity value of a pixel 

p by the mean intensity value of pixels of the concerned element x from a selected bulk 

area B. The bulk area B is the same for each element of a given sample and is selected 

according to two criteria: 

 homogeneous sulfur intensity in order to get rid from the influence of sulfate ingress; 

 as large as possible and with as few aggregates as possible in order to be as 

representative as possible of cementitious matrix composition. 



Research strategy 

46 

During the rescaling stage, a factor is applied for each element (e.g.; Ca and S) to make 

the resulting mappings visible on a 256 grey level image. This factor is arbitrary chosen 

and different for each element. For a given element mappings of different samples are 

comparable, but for a given sample mappings of different elements are not; this is the role 

of the calibration stage. Since the object of interest is the cementitious matrix in terms of 

ions ingresses, a criterion is defined to exclusively quantify the ions in the cementitious 

matrix. The laboratory and field samples selected have siliceous aggregates (e.g.; quartz 

sand). Calcium is the element present in higher quantities and distributed the most 

homogeneously in the cementitious matrix without taking part to the aggregates: it is the 

element whose mapping is the most representative of the cementitious matrix. Therefore, 

the criterion for calculation of ions profiles in the cementitious matrix is based on the 

rescaled Ca-mapping histogram. The initial Ca-mapping has been converted to an image 

in grey levels ranking from 0 (black) to 255 (white), corresponding respectively to pixels 

of lowest to highest Ca intensity (i.e.; content). Zones with absence of Ca possess pixels 

values close to 0 and can be isolated through a segmentation made from the histogram: the 

threshold grey scale value gt corresponds to the first minimum of the histogram curve after 

the first peak closest to 0. To pixels verifying tg)p(g <  the value 255)p(b =  is attributed, 

while to pixels verifying tg)p(g ≥  the value 0)p(b =  is attributed. The resulting 

segmented binary image reveals in black the cementitious matrix constituted of pixels 

where Ca is present independently of the amount of Ca in each pixel (i.e.; influence due to 

leaching phenomena taken out). Considering an element x: for pixels verifying 0)p(b =  in 

the segmented Ca-mapping, their values in the corresponding rescaled x-mapping are 

maintained; while for pixels verifying 255)p(b =  in the segmented Ca-mapping, their 

values in the corresponding rescaled x-mapping are fixed to 0. The new matrix ACEM  is 

thus the matrix Aresc without the aggregates pixel values. Pixels values are added along 

each column (i.e.; along the penetration depth) and divided by the pixels amount for which 

0)p(b =  in the considered column of the segmented Ca-mapping (i.e.; calibrated according 

to the cementitious matrix amount in each depth). The obtained profile is calibrated 

according to the bulk content of the concerned element x measured by EDS spots 

quantitative analyses: the mean value in of the profile bulk plateau is assumed to 

correspond to the amount of the concerned element x measured in the bulk by hundreds 

EDS spots quantitative analyses at high magnification ( 1000×≥ ), then each value of the 

profile is calibrated by the cross-product. The resulting quantitative profiles are expressed 

in the value of EDS measurement, that can be at.-%, wt.-%, oxide-%. 
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Fig. III-4. Method of ion profile quantification from SEM-mapping; 
case of P-0.55 after 119 days of exposure in ponding. 
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The resulting profiles are quasi-continuous and relate directly to the cementitious matrix, 

the aggregates being extracted from the calculation. 

The full completion of the quantification of the mappings and the profile extraction only 

takes few minutes while an automated quantification of the mappings by the Esprit 

software would last for 5 to 10 h. and the step of aggregate exclusion should be still to do. 

Such quantitative mappings were only acquired for local ions repartition analyses.  

 

 

III.2.3.C. MICRO-XRF MAPPINGS 

With micro X-ray fluorescence (micro-XRF) analysis the chemical composition of an 

inorganic material can be determined in an easy way. As mentioned in the previous 

section, X-ray fluorescence analysis is based on the ability of X-ray to excite elements, 

which in turn emit a characteristic fluorescence radiation that can be registered by a 

semi-conductor detector. The equipment used is an Eagle III micro-XRF from EDAX 

operated by the two software programmes Vison32 and Eagle Image. The incident X-rays 

are emitted from a rhodium anode and the X-ray fluorescence is registered on a Si(Li) 

detector. A low vacuum of 0.5-1 mbar is sufficient due to the high energy of the X-rays. 

The equipment can work in elemental mapping mode, which consists in the analysis of 

multiple equidistant spots along a dot matrix. Areas of 70×60 mm2 can be measured in a 

single run of 24 h but twice the time is required for quantitative analysis. The mappings 

were conducted under an accelerating voltage of 40 kV and with a spot size of 150 μm. 

The resulting profiles are quasi-continuous and quantitative. 

Such measurements were carried out on some field samples, as comparative method to the 

quantification of the profiles from SEM mappings. 

Advantage of micro-XRF over SEM is that the requirement for specimen preparation are 

much less arduous. Considering the low possible magnification, the surface does not need 

to be as flat as for SEM purpose: a macroscopic flat cut surface is enough for reliable 

measurements. Neither impregnation nor conductive surface is necessary. The main 

disadvantage of the method is its long acquisition time, especially for quantitative 

measurements. Additionally, the aggregates could not be extracted from the 

measurements. 
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III.2.3.D. XRD 

X-ray diffraction (XRD) analysis is based on the ability of crystalline phases to diffract 

rays of wavelength λ in the range of their d-spacing (interplanar space). Diffraction occurs 

when the Bragg’s law (Eq. III-7) is satisfied. For a given wavelength, a specific crystalline 

phase possesses a specific diffraction pattern (counts versus 2θ). The amorphous C-S-H 

cannot be detected. 

Laboratory and field samples were reduced to powder mm by mm from the contact 

surface using an electrical hand abraser. The aggregates are harder than the cementitious 

matrix and their powder is less fine. Each powdered layer was separately sieved down to 

100 μm to exclude the largest aggregate particles. Further grinding of the remaining 

powder down to the optimal 5-10 μm did not show any influence on the diffraction pattern 

compared to the 100 μm sieved powder. XRD patterns were collected using a 

PANalytical X’Pert Pro MPD diffractometer in a θ−θ Bragg Brentano configuration 

employing the CuKα radiation (λCuKα = 1.54 Å) and operating at 40 kV and 50 mA. The 

samples were scanned with the X’Celerator detector at a step size of 0.02 ° with a scan 

speed of 0.05 °.s-1 between 7 and 70 ° and the same step size of 0.02 ° with a scan speed of 

0.01 °.s-1 between 6 and 20.5 °. No quantification could be run due to the too much 

overlap between the cementitious hydrates and the aggregates patterns. 

 
)sin(.d2n θλ =  

 
n integer corresponding to the harmonic number; 

λ wavelength of the X-ray radiation; 

d d-spacing (space between atomic planes); 

θ angle between the incident X-ray and the crystal plane. 

Eq. III-7

 

 

III.2.3.E. SEM-EDS 

Due to the fine intermixing of the hydrates phases in cementitious systems relatively to the 

1 μm3 electron-matter interaction volume, information on several compounds is combined 

in the EDS spectra. The problem can be got around considering elemental ratios rather 

than absolute element contents. Plotting elemental ratios (e.g.; S/Ca versus Al/Ca) and 

knowing the stoichiometry of usual phases (e.g.; CH, gypsum, mono- or 

hemicarboaluminate, monosulfoaluminate, ettringite), phases and phase intermixes can be 

identified. In order to refine the phase assemblage as determined from XRD 
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measurements, such EDS analyses were conducted at specific depths in the outer and the 

inner C-S-H of chosen laboratory and field samples. At least 100 analyses were carried out 

in each phase in each region.. 

Another interest of such statistical analyses is the measurement of chemical change of a 

given phase. The present study looks closely at the chemical changes encountered by the 

outer and inner C-S-H phases, especially concerning their calcium leaching and their 

sulfate combination levels. Both phenomena are respectively assessed measuring the 

evolution of the Ca/Si and S/Si atomic ratios. Nevertheless, a pre-treatment of the acquired 

EDS analyses is required to isolate the C-S-H, which consists in a graphical selection of 

the C-S-H point cloud from the Al/Ca versus Si/Ca plot (Fig. III-5). Thus large crystals of 

monosulfoaluminate, mono- or hemicarboaluminate, ettringite or portlandite are excluded 

and only very fine intermixes of C-S-H are considered. Enrichment of the C-S-H in sulfate 

or depletion in calcium can be statistically followed. The standard deviation σ between 

measurements is taken as representative of the error in measuring the Ca/Si ratio since 

calcium and silicon are elements representative of the C-S-H chemistry. Sulfate is in turn 

very unequally combined in the C-S-H. A way to take into account this intrinsic 

heterogeneity of the material in the measurement error is to consider the standard error ε 

instead of the standard deviation for the S/Si atomic ratio (Eq. III-8). The outer and the 

inner C-S-H chemistry of some laboratory and field samples was thus followed. 

 

measuresofnumberN
deviationdardtans
errordardtans

N

σ
ε

σ
ε =

 

Eq. III-8

 

 
 
 
 
 

 

 

 

Fig. III-5. Method of C-S-H point cloud isolation from SEM-EDS analyses; 
case of the outer C-S-H at 2 mm depth of P-0.55 after 119 days of exposure in ponding; 

Ett.: ettringite, Mc./Hc.: Mono- or hemicarboaluminate, Ms.: Monosulfoaluminate. 



Research strategy 

51 

III.3.  MATURE CEMENT MICROSTRUCTURE 

The thesis concerns field and matured laboratory samples. The microstructure of such 

mature binders is not commonly known. 

Preliminary notions about the cement microstructure studied may be required and are 

developed below, comparing microstructures after 28 days and 1 year of hydration. 

 

Civil engineers usually assess concretes and cementitious materials according to their 

performance at 28 days, which is considered to be a representative measure of 90% of the 

long term strength. Research in the chemistry of cementitious materials is therefore mainly 

focused on the first 28 days of cement hydration. Hence, microstructures of young cement 

pastes (< 28 days of hydration) are more known than microstructures of aged cement 

pastes. 

Nevertheless, with the greater prevalence of durability questions, civil engineers are 

becoming more interested in later age evolution of the performances of cement. 

Consequently, there is an increased need for researchers to acquire knowledge on aged 

microstructures. 

 

Hydration is not restricted to the early ages but also continues at later ages in even more 

complex conditions because of the effects of weathering. 

Comparing the microstructures of PC micro-concretes (w/c = 0.5) stored in lime saturated 

water at 20.5 °C ±0.5 after 28 days (Fig. III-6) and after 1 year (Fig. III-7), it appears that 

hydrates develop, filling the capillary porosity. This is evident from the SEM-micrographs 

of the outer C-S-H which shows less empty spaces after 1 year. The extent of hydration 

can be assessed using the SEM-micrographs of alite grains: the hydration rim (inner 

C-S-H) around the alite grain after 28 days extends until the disappearance of the 

anhydrous grain after 1 year. Also, only isolated, and easy accessible belite, grains are 

hydrated after 28 days while all of belite, even those in clinker clusters are hydrated after 

1 year (note the hydration owing to preferential planes). Ferrites start to show differences 

in grey levels on their edges after 1 year, which suggests the beginning of hydration. AFm 

may show longer and thinner layer structures after 1 year, but overall, no apparent change 

is seen from the morphological point of view of the AFm, and portlandite either. 
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PC – 28 days 

 
CH Alite inner C-S-H 

Outer C-S-H 

 

Belite inner C-S-H 

 
AFm 

 

Ferrite 

 
 

Fig. III-6. SEM-micrographs of a PC micro-concrete (w/c = 0.55) after 28 days of hydration. 
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PC – 1 year 

 
CH Alite inner C-S-H 

Outer C-S-H Belite inner C-S-H 

AFm Ferrite 

 

Fig. III-7. SEM-micrographs of a PC micro-concrete (w/c = 0.55) after 1 year of hydration. 



Research strategy 

54 

Comparing the EDS Ca/Si-ratios of the different C-S-H phases after 28 days and 1 year 

(Table III-9), information on the chemical stability of the C-S-H can be extracted. The 

outer and inner C-S-H layer of alite decalcify with time and is characterised by a 

stabilisation their chemistry. The released (or leached) calcium may activate the hydration 

of secondary phases, belite and ferrite. The belite inner C-S-H seems to be chemically less 

stable marked by the higher dispersion of its chemistry, over time as a result of its 

hydration. Ageing is accompanied by a chemical equilibrium. 

 
Table III-9. EDS Ca/Si-ratio of C-S-H phases after 28 days and 1 year of saturated hydration. 

 

 
Ca/Si 

(normalised at.-% ratio) 

 28 days 1 year 

Outer C-S-H 1.90 ±0.10 1.69 ±0.08 

Inner C-S-H 
(alite) 

1.80 ±0.12 1.67 ±0.05 

Inner C-S-H 
(belite) 

1.86 ±0.04 1.88 ±0.07 

 

EDS plots of S/Ca versus Al/Ca atomic ratios (Fig. III-8) allow the phases intermixes in 

the different hydrates to be studied. The outer C-S-H appears to be more stable in its 

chemistry after 1 year, the cloud of points exhibits less dispersion, than after 28 days of 

hydration. After 28 days, the AFm is finely intermixed to the outer C-S-H but becomes 

unstable with time and seems to turn into mono- or hemicarboaluminate. The inner C-S-H 

from alite and particularly from belite fuses with AFm with time. AFm in the outer C-S-H 

is destabilised by the slow reacting carbonate-bearing phases in mono- or 

hemicarboaluminate and the remaining sulfate probably dissolves in the pore solution. The 

late hydration of belite makes C3A and C4AF interstitial phases accessible. Hence, 

hydration of belite is accompanied by AFm formation intermixed to the belite inner 

C-S-H. 

EDS plots of Fe/Ca versus Al/Ca atomic ratios of ferrite (Fig. III-9) points out its late 

hydration. After 28 days the anhydrous ferrite starts to dissolve, freeing iron and 

aluminium ions in solution. After 1 year ferrite hydrates in an Fe-enriched type of very 

stable hydrogarnet C4(A,F)H6 with up to 20 at.-% of aluminium substitution by iron. A 

part of the iron from the original ferrite probably enriches monosulfoaluminates with a 

substitution level up to 60 at.-%. 
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 Outer C-S-H  AFm in outer C-S-H 

 
  

 Alite  Belite 

 
 

Fig. III-8. EDS plots of S/Ca versus Al/Ca atomic ratios from the outer C-S-H, 
the AFm in the outer C-S-H, the alite and belite with their inner C-S-H; 

Ett.: ettringite, Mc./Hc.: Mono- or hemicarboaluminate, Ms.: Monosulfoaluminate. 
 

 

 Ferrite 

 
 

Fig. III-9. EDS plots of Fe/Ca versus Al/Ca atomic ratios from the ferrite and its hydration product; 
Fe-Ett.: Fe-enriched ettringite, Fe-Ms: Fe-enriched monosulfoaluminate. 
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Chapter IV - Ponding 
 

 

 

 

 

 

 

The purpose of this chapter is to describe the results of the laboratory exposure in sulfate 

solution comparable to most literature data (i.e.; full immersion/ponding) and to identify 

the mechanisms of degradation under such conditions. 

Traditional macro characterization was carried out and extended with a detailed 

microstructural analysis along the sulfate profile. 

 

As described in the previous chapter, four mixes were studied. Two made with pure 

Portland cement with water-to-cement ratio of 0.55 and 0.38 (P-0.55 and P-0.38) and two 

mixes with 70 wt.-% slag replacement (S-0.55 and S-0.38). Additionally, some results of 

the reference samples stored in lime saturated water are presented for comparison. 

 

 

 

 



Ponding 

58 

IV.1.  MACROSCOPIC BEHAVIOUR 

IV.1.1.  IONIC TRANSPORT 

IV.1.1.A. CALCIUM LEACHING 

The pH of concrete is buffered by portlandite whose pKa is 12.6. But in reality the pH of 

concrete is known to be above 12.6 due to the presence in the pore solution of alkalis 

(e.g.; Na+ and K+). The pH of the surrounding solution of the reference samples in lime 

water remained constant at 12.5 ±0.5. 

The initial pH of the Na2SO4 solution used in ponding test was of 7.5 ±0.5. The relatively 

acid pH stimulates dissolution of portlandite providing OH- ions to raise the pH and 

freeing Ca2+ ions in solution. This phenomenon is called leaching. The Na2SO4 solution 

was renewed every month. Na2SO4 exposure results in cyclic changes in pH (Fig. IV-1) 

accompanied by leaching. The pH rises 11-12 within about one week. 

 

 
 

Fig. IV-1. pH evolution of the Na2SO4 exposure solutions. 
 

 

Consequently, the leaching can be monitored by regular measurement of the Ca2+ content 

in the exposure solution before each renewal (Fig. IV-2). It has been observed that after 

84 days of exposure in reference conditions, the non renewed solution reaches values of 

calcium concentration in the range of 0.4 g.l-1 which corresponds to a concentration in 

Ca(OH)2 of 0.7 g.l-1. Such values are close to the values of portlandite solubility estimated 

to be of 1.1 g.l-1 at 18 °C but which is known to decrease with temperature increase [2]. In 

Na2SO4 solutions, where the solution is monthly renewed, saturation is never reached and 

calcium is continuously leached out. The calcium leaching evolves for the sulfate exposed 
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samples at a quasi constant rate. There seems to be no effect of the w/c-ratio on the 

leaching rate of the pure PCs, while a lower w/b-ratio results in a lower leaching rate for 

the slag blends. The leaching rate of the PCs increases with exposure time, which could be 

a sign of increasing deterioration of the concretes that leads to greater surface exposed. 

The leaching rate of the slag blends is 1.7 to 2.6 times lower than that of the pure PCs. The 

hydraulic reaction of the slag does not produce calcium hydroxide. Additionally, the extra 

calcium needed for slag reaction comes from the C-S-H rather than from portlandite [51]. 

Therefore, if the leaching would only concern the portlandite phase, it would be expected 

to be 30 % that of the Portland blends. The fact that it is greater indicates that other 

hydrates contribute to the leaching (e.g.; C-S-H phases and slag hydration products). 

 

 Lime water  

 
 

 Na2SO4 solution  
 

 

 

Fig. IV-2. Evolution of calcium leaching from the laboratory micro-concretes under ponding (bottom) 
versus reference (top) exposure. 
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IV.1.1.B. SULFATE INGRESS 

 

 Lime water  

 
 

 Na2SO4 solution  

 
 

Fig. IV-3. Evolution of sulfate combination from exposure solution to the laboratory micro-concretes 
under ponding (bottom) versus reference exposure (top). 

 

Sulfate ingress from the surrounding solution can be followed by measuring monthly the 

SO4
2- concentration in the exposure solution (Fig. IV-3). This revealed a slight leaching of 

sulfate from the reference samples stored in the saturated lime water and a strong ingress 

of sulfate into the samples stored in Na2SO4 solution. The sulfate ingress appears roughly 

linear. Nevertheless, the form of the curve indicates that sulfate ingress in concrete is not a 

pure diffusive process and must imply interaction with the cementitious system.  

As with calcium leaching, sulfate combination appears not to be very sensitive to the 

w/c-ratio of the Portland blends up to 224 days of exposure. This would indicate that 

sulfate ingress is not simply controlled by the usual parameters of permeability. However 

there seems to be some dependence on the w/b-ratio for the slag blends. 
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IV.1.2.  PHYSICAL CHANGES 

IV.1.2.A. MASS CHANGE 

The reference micro-concretes stored in lime water show a slight mass increase 

(Fig. IV-4): all mixes gained mass in the order of 0.2-0.4 % within the first 70 days after 

the start of exposure. This can be attributed to an uptake of water maybe to compensate 

the chemical shrinkage from continued hydration.  

 

 Lime water  

 
 

 Na2SO4 solution  

 
 

Fig. IV-4. Mass evolution of the laboratory micro-concretes under ponding versus reference exposure. 
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In Na2SO4 solution, all mixes except S-0.38 started loosing mass after 189 days of 

exposure (Fig. IV-4). After this time the water uptake would be outweighed by sulfate 

induced mass loss. Particularly interesting is the mass loss trend of P-0.55, which shows a 

three-stage behaviour. The different stages could be described as follow: 

 stage #1  – negligible mass loss; 

 stage #2 - linear mass loss; 

 stage #3 - reduced mass loss. 

 

The other two mixes P-0.38 and S-0.55 show similar patterns of mass loss. Interestingly, 

stage #2 starts and ends at the same times of exposure for the three mixes. It is worth 

noting that the only two mixes showing a stage #3 with measurable mass loss are the two 

PCs P-0.55 and P-0.38, which tends to confirm that the most deteriorated sample after 

P-0.55 is P-0.38. 

 

 
 

Fig. IV-5. Relationship between mass balance of ions exchange and mass changes of P-0.55 under 
ponding versus reference exposure. 

 

The mass balance of the ions exchange was calculated based on the measurements of the 

remaining sulfate and sodium in the exposure solution and on the dissolved calcium and 

hydroxide (deduced from pH measurement) in the exposure solution. For P-0.55 in 

Na2SO4 solution, the mass loss recorded for P-0.55 seems to be somehow related to or at 

least in the range of the mass balance of ions exchange (Fig. IV-5). It appears that after a 

negative mass balance of the ions exchange exceeding 1.00 wt.-%, during which the ion 

mass loss may be compensated by water ingress, material loss is recordable. Such a link 

between the two measurements was not observed for the other samples, nor in the case of 

the other exposure settings. 
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IV.1.2.B. EXPANSION 

A slight length change is observed within the first 84 days of exposure even for the 

reference samples in lime water, which if not in the range of deleterious expansion, 

remains positive (Fig. IV-6). This would be in agreement with the slight mass increase 

observed attributed to continued hydration. 

 

 Lime water  

 
 

 Na2SO4 solution  

 
 

Fig. IV-6. Length evolution of the laboratory micro-concretes under ponding versus reference 
exposure. 

 

 

Many laboratory tests fix the expansion criterion at 0.02 %, which is not passed in samples 

when sulfate is not present. From the test in Na2SO4 solution conducted over 560 days, 

only P-0.55 micro-concrete shows expansion in excess of 0.02 % (Fig. IV-6).  
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The expansion of P-0.55 follows a three-stage process, described as follow: 

 stage #1  – low expansion comparable to reference; 

 stage #2 - stable expansion; 

 stage #3 - unlimited expansion. 

Studies in the literature generally refer to a two-stage expansion process [3] corresponding 

to the low expansion described as the stage #1 here and to an expansive regime 

corresponding to the combination of the stages #2 and #3 here. A slight increase in length 

is nevertheless observable for all the other mixes in Na2SO4 solution, which could be a 

sign of preliminary expansion. This is largest for S-0.38, starting after 168 days and 

evolving linearly up to more than 560 days of exposure. It can be noted that the second 

highest expansion after P-0.55 is obtained from the other PC P-0.38, but this has to be 

taken with caution considering the dispersion of measurements. 

 

 

 

IV.1.2.C. COMPRESSIVE STRENGTH 

The asymptotical increasing strength of the reference samples stored in lime water 

(Fig. IV-7) is characteristic of normal microstructural development and space filling due 

to hydration. The decrease observed between 357 and 576 days of exposure could be 

attributed to measurement error or to later leaching. This decrease is especially significant 

for the PCs which contain more portlandite than the slag blends, which tends to confirm 

the second hypothesis of leaching effect. 

 

In the case of exposure to Na2SO4 solution, hydration and deterioration due to sulfate 

ingress are in competition. The two PCs samples P-0.55 and P-0.38 reveal a decrease in 

compressive strength, while the two slag blended micro-concretes appeared to maintain 

their mechanical properties in compression compared to the reference samples in lime 

water (Fig. IV-7). 
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 Lime water  

 
 

 Na2SO4 solution  

 
 

Fig. IV-7. Compressive strength evolution of the laboratory micro-concretes under ponding versus 
reference exposure. 

 

 

 
 

Fig. IV-8. Normalised compressive strength evolution of the laboratory micro-concretes under 
ponding. 
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In order to better isolate the effect of sulfate from the hydration influence, the compressive 

strengths measured on samples in ponding exposure were normalised by the compressive 

strengths measured on samples in lime water (Fig. IV-8). This clearly shows that the 

strengths of the PCs binders are diminished (30 % over 576 days) while the strength of the 

slag blends remains fairly constant (within 10 % over 576 days). P-0.55 and P-0.38 clearly 

show the three-stage behaviour identified earlier for mass loss and expansion. The 

different stages could be described as follow: 

 stage #1  – preserved sound strength; 

 stage #2 - linear strength loss; 

 stage #3 - limited strength loss. 

 

The compressive strength is representative of the state of the bulk of the material while 

mass loss is more representative of the state of the surface material. Furthermore, the mass 

loss encountered by the micro-concretes would lead to loss of the material over a few mm. 

The reduced section of the samples could not lead to the range of strength loss observed. 

P-0.38, S-0.55 and S-0.38 showed a comparable behaviour regarding their mass-loss. 

However, the good compressive strength of the slag blends indicates that they do not 

suffer much internal damage compared to the PCs and especially compared to P-0.38. 

Additionally, P-0.38 shows almost the same strength loss as P-0.55 even with much less 

expansion. This indicates that the stresses developed in P-0.38 do not cause expansion but 

still lead to an important loss of mechanical properties. This underlines the complexity of 

the sulfate attack phenomenon and indicates that monitoring of expansion as the sole 

criterion of degradation may be misleading. 
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IV.1.2.D. ELASTIC MODULUS 

The flexural dynamic elastic modulus appears to be the most sensitive to microstructural 

changes due to hydration or sulfate ingress compared to longitudinal elastic modulus and 

torsion shear modulus (Fig. IV-9). This slight anisotropy of the elastic behaviour might be 

due to the geometric asymmetry of the prisms facilitating displacement ability in flexion. 

In all measurement modes the elastic behaviour of the references is characterised by a first 

period during which properties increase. This period is of same length (about 161 days) 

for all mixes. This increase in elastic properties can be attributed to continued hydration. 

This period is comparable to the one observed for compressive strength increase 

considering the lower frequency of measurement in the later case. 

 

As for compressive strength, when samples are fully immersed in a 3 g.l-1 Na2SO4 

solution, deterioration due to sulfate ingress competes with changes due to hydration. The 

tendencies observed for deterioration of mechanical properties of the two PCs P-0.55 and 

P-0.38 are confirmed, while a loss of properties is additionally identified for S-0.55 and to 

a smaller extend for S-0.38 although these slag blends did not show any loss of 

compressive strength. 

As for compressive strength, in order to separate the impact of sulfate the results for the 

samples ponded in Na2SO4 solution are plotted relative to the references (Fig. IV-10). This 

representation underlines the fact that in addition to the PC binders the two slag blends 

show some loss of their elastic properties. P-0.55 performs the worst, loosing 25 % of its 

properties, then P-0.38 (15 %), followed by S-0.55 (10 %) and finally S-0.38 (less than 

5 %). Again a three-stage behaviour can be seen for the PCs blends: 

 stage #1  – preserved sound elastic properties; 

 stage #2 - linear loss of  elastic properties; 

 stage #3 - accelerated loss of elastic properties. 

 

Finally, the normalised dynamic elastic and shear moduli have the advantage of better 

discriminating between samples compared to the other degradation criteria 

(e.g.; expansion, mass and strength loss). 

The relationship between normalised dynamic elastic or shear moduli and expansion 

(Fig. IV-11) is linear for P-0.55 and tends to be linear for the other samples but with a 

different slope. This emphasises the reliability of dynamic elastic and shear moduli for 

sulfate attack damage evaluation 
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 Lime water  Na2SO4 solution 

 
 

 

 
 

 

 
 

Fig. IV-9. Dynamic elastic and shear modulus evolution of the laboratory micro-concretes under 
ponding versus reference exposure. 
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Fig. IV-10. Normalised dynamic elastic and shear modulus evolution of the laboratory 
micro-concretes under ponding exposure. 
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Fig. IV-11. Relationships between the normalised dynamic elastic or shear moduli and the expansion 
of the laboratory micro-concretes under ponding. 
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IV.1.3.  EXTERNAL APPEARANCE 

Carbonation of the micro-concretes was checked with phenolphthalein. No significant 

carbonation could be identified and photographs are reported in appendix (Appendix B). 

 

P-0.55 P-0.38 

 
 

 

S-0.55 S-0.38 

  
 

 

 

Fig. IV-12. Visual appearance of the laboratory micro-concretes after 575 days of exposure in 
ponding. 

 

From visual examination of the micro-concretes after 576 days of exposure in ponding 

(Fig. IV-12) the two PCs P-0.55 and P-0.38 show a high disintegration of the surface: sand 

grains and tiny cementitious matrix pieces of size in the range of sand grains were easily 

removed from the surface of the PCs samples, P-0.55 being slightly more affected than 

P-0.38. The two slag blends S-0.55 and S-0.38 appear little affected. However, sand grains 

were exposed on the edges. The first signs of disintegration were recorded for the PCs 

micro-concretes from 329 days of exposure, which corresponds to the start of the second 

stage of expansion, mass loss, strength and loss of elastic properties. The first visual sign 

of cementitious matrix weakness were observed much later for the slag blends, after 

441 days of exposure. Samples do not appear to be cracked at this level of observation: 

they reveal a softening type of damage characterised by surface disintegration and 

decohesion. 
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IV.1.4.  SUMMARY 

IV.1.4.A. A THREE-STAGE PROCESS (P-0.55) 

The physical changes due to sulfate attack on P-0.55 appeared to follow a three-stage 

behaviour (Table IV-1). 

 
Table IV-1. Characteristics of the three-stage behaviour of the physical changes of P-0.55 under 

ponding exposure; 
 

 Expansion Mass change 
Compressive 

strength 
Dynamic elastic 

modulus 
   

 
Stage #1 

 
insignificant slight gain slight gain slight gain 

 
 

0 
 

 
 

 
Stage #2 

 
slow slow loss slow loss slow loss 

 
 

6  
 

 
Stage #3 

 
quick very slow loss very slow loss quick loss 

 
 

13
 

 

     

Exposure tim
e 

(m
onths) 

 

 

 

The relationship between mass and length changes for P-0.55 in Na2SO4 solution 

(Fig. IV-13) is linear during stage #2, after which expansion dominates (stage #3) 

probably involving stresses too deep inside the material to be responsible for surface mass 

loss. 
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 Lime water  

 
 

 Na2SO4 solution  

 
 

Fig. IV-13. Relationship between length and mass changes of the laboratory micro-concretes under 
ponding versus reference exposure. 

 

 

A first understanding of the three-stage behaviour observed for P-0.55 in Na2SO4 solution 

can therefore be the following: 

 stage #1  – induction – slight water uptake without any significant expansion; 

 stage #2  – surface damage – slow expansion with surface concrete loss; 

 stage #3  – bulk damage – quick expansion attributed to bulk damage. 

This macroscopic evaluation needs however to be completed by looking inside the 

material at the microstructure damage and changes encountered. 
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IV.1.4.B. EFFECT OF REDUCTION OF W/C-RATIO (P-0.38) 

The ionic transports involved in the ponded concretes in a low sodium sulfate solution 

couple leaching and sulfate ingress. Both phenomena progress in the Portland 

micro-concretes at constant rate independent of the w/c-ratio. Calcium leaching and 

sulfate ingress are hence not diffusion controlled and limited by chemical uptake or 

depletion of the solution. For comparable level of ion transport, P-0.55 and P-0.38 do not 

show the same state of physical properties (e.g.; expansion), which could indicate that the 

mechanical properties of the material and/or the repartition of the ions inside the materials 

can play a major role in the damage process. 

A tendency towards linear relationship between mass loss and expansion is observed for 

P-0.38 as in stage #2 for P-0.55. But considering the low expansion of P-0.38, the damage 

would be dominated by mass loss. Moreover, the plot of mass change against length 

change points out the performance ranking of the samples: P-0.55 is the worst performing 

followed by the other PC P-0.38. 

 

 

IV.1.4.C. EFFECT OF SLAG ADDITION (S-0.55 AND S-0.38) 

The ion exchange in the slag blends is reduced compared to that in the pure Portland 

blends. 

 

Before exposure, the Ca/Si and Ca/(Si + Al) ratios of the outer C-S-H are 1.98 and 1.75 

for P-0.55 and 1.44 and 1.26 for S-0.55. This indicates that the availability of calcium 

from C-S-H in P-0.55 is 1.4 times higher than in S-0.55. This ratio of reacted calcium 

availability is slightly below the ratio of leaching between the two mixes (1.7). 

Additionally, the leaching from the pure PCs starts as soon as exposure starts while slag 

blends leaching starts with a delay of 28 days after exposure start. Such differences in the 

leaching level and rate might be due to the lower connectivity of capillary porosity of the 

slag blends compared to the pure Portland blends. 

 

Slag addition seems to control somehow the sulfate ingress. The sulfate combination rate 

for the pure PCs is 1.4 times higher than that for the slag blends. This is close to the ratio 

between the calcium leaching rate of the PCs and of the slag blends. As for calcium 

leaching, the fact that the sulfate combination rate is not directly proportional to the 

amount of Portland cement contained in the binder indicates that sulfate combination is 
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not limited to the Portland hydrates but involves also the slag hydration products. Slag 

addition provides additional source of alumina in the cementitious matrix. The slag blends 

contain 9.935 wt.-% Al2O3 while the PCs have half as much with 4.626 wt.-%. All the 

alumina in the slag blend is not available for reaction since there is a large amount in the 

unhydrated slag grains that react very slowly. Nevertheless, a correlation can be seen 

between the sulfate combination and the C-S-H chemistry characterised by the 

Ca/(Si + Al) ratio: as detailed in the previous section on leaching, Ca/(Si + Al) ratio of the 

outer C-S-H is 1.4 times higher in the PCs than in the slag blends (Al/Ca ratio of 0.06 for 

the PCs and 0.14 for the slag blends) which can be directly related to the 1.3 factor 

between the sulfate combination in the PCs compared to the slag blends. Sulfate ions are 

known to adsorb on the C-S-H [54]. Aluminium is known to be found in substitution in 

the C-S-H structure occurring on bridging tetrahedral and in the interlayer and perhaps on 

particle surfaces [55]. In slag blends typically, the outer C-S-H is found to be enriched in 

aluminium which is assumed to be substituted in the C-S-H [56]. Therefore, an increase 

aluminium amount in the C-S-H, as observed in the slag blends compared to the PC 

blends, might reduce the sulfate adsorption while increasing the C-S-H steric hindrance, 

especially in case of aluminium substitution in the interlayer or on particle surfaces. 

Sulfate combination for the pure PCs starts as soon as exposure starts, while sulfate 

combination for the slag blends starts with a delay of 28 days after the start of exposure. 

As for calcium leaching, this might be related to the lower connectivity of capillary 

porosity of the blends compared to the pure Portland blends. 

 

As for P-0.38, a tendency towards linear relationship between mass loss and expansion is 

observed for the two slag blends S-0.55 and S-0.38 revealing damage dominated by mass 

loss. The two slag blends seem to perform better than the PCs. Their relative performance 

can nevertheless not be split from this macroscopic point of view. 
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IV.2.  DAMAGE PROCESS AND LINK TO PHASE ASSEMBLAGE 

In order to link the macroscopic observations to the changes in the microstructure, a 

detailed examination was made by SEM and XRD. These changes are presented first for 

the P-0.55 which undergoes the most extensive deterioration and then for the less 

deteriorated samples. 

 

IV.2.1.  P-0.55 

IV.2.1.A. MICRO-CRACKING 

The crack patterns of P-0.55 ponded in Na2SO4 solution were examined by SEM-BSE 

(Fig. IV-14). The first 0.5 mm was characterised by a low density zone with darker grey 

levels compared to the bulk. This is characteristic of a leached zone. The transition 

between the dark grey level of the leached surface and the brighter sound bulk paste is 

progressive for this micro-concrete. 

Cracks in P-0.55 (Fig. IV-14) progress from the surface of the sample towards the bulk, 

following the direction of the sulfate ingress. As seen, especially from the crack pattern 

after 357 days of exposure, and from the corresponding sulfur mapping, former cracks in 

the surface region are filled due to sulfate ingress. This later point could explain the fact 

that mass loss rate decreases after 357 days of exposure: the surface of the sample is 

densified due to the precipitation of sulfate-bearing phases in open spaces. This might also 

explain the reduced loss in compressive strength observed after 357 days of exposure. 

Furthermore, cracks at the surface of the sample will more likely cause decohesion and 

therefore mass loss than cracks propagating deeper inside the sample. The cracks 

propagate in the cementitious matrix of the sample and around aggregates (gaps at the 

interface aggregate-paste). This propagation pattern is characteristic for expansion of the 

cementitious matrix [50]. 

Thus, the hypothesis made after observing the three-stage expansion behaviour in the 

previous section is verified: stage #2 of expansion at lower rate is characterised by surface 

cracking, while stage #3 at higher rate involves bulk cracking of the cementitious matrix. 

 

These micrographs also point out the surface mass loss from which the samples suffer: 

aggregates become exposed on the surface because the surrounding cement paste 

disintegrates. Due to this feature there is some uncertainty in the following analyses 

concerning the depth from the original contact surface. 
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Fig. IV-14. Crack patterns from BSE micrographs with corresponding quantified S-mapping of P-0.55 
under ponding in Na2SO4 solution. 
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IV.2.1.B. IONIC PROFILE 

Quantitative calcium profiles and sulfur profiles were calculated by image analysis from 

qualitative SEM-mappings for P-0.55 after 28, 119, 245 and 357 days under ponding in 

Na2SO4 solution (Fig. IV-15). 

 

 Calcium  Sulfate 

 
 

 

 
 

Fig. IV-15. Evolution of calcium (left) and sulfur (right) profiles of the cementitious matrix of P-0.55 
under ponding in Na2SO4 solution. 

 

 

The progressive leaching of calcium in P-0.55 indicated by the SEM-BSE micrographs 

observations is verified. 

The sulfur ingress profile appears to have a shape in three parts (reported on the graph for 

the sulfur profile after 245 days of exposure): 

 I:  reduced amount at the contact surface; 

 II: maximum below the surface and at edge of the calcium leaching zone; 

 III: continuous decrease down to the bulk content of 2-3 wt.-%. 
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The first region closest to the surface where sulfate content is reduced corresponds to a 

part of the leaching zone. The pH might be too low to stabilize sulfate-bearing phases such 

as gypsum or ettringite, which would explain that the sulfate ingress is not highest at the 

contact surface. However, the leaching zone has an increased porosity due to material loss. 

This makes place for other phases and especially for sulfate-bearing phases to precipitate. 

The calcium released in this zone (from portlandite dissolution and in some instance from 

C-S-H decalcification) is free to precipitate as gypsum and ettringite in presence of 

alumina, which could explain that the maximum of the sulfate ingress is found at edge of 

the calcium leaching zone. 

 

The four exposure times at which the analysis were done can be related to the three stages 

observed from the study of the macroscopic behaviour: 

 28-119 days  – stage #1 – continuous quick ingress of sulfate; 

 119-245 days - stage #2 – reduced ingress of sulfate; 

 357 days - stage #3 – massive ingress of sulfate. 

The sulfur ingress profile reaches 10 wt.-% after 119 days and shows a peak up to 

15 wt.-% after 357 days of exposure. Interestingly, 10 wt.-% and 20 wt.-% sulfur 

correspond to the sulfur content in ettringite and gypsum respectively. A cementitious 

matrix rich in ettringite with a zone of high gypsum content between 1 and 2 mm depth is 

therefore expected for after 357 d of exposure, while ettringite should dominate at 0.5 mm 

depth after 119 days. 
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IV.2.1.C. PHASE ASSEMBLAGE ZONATION 

Coarse approach: XRD 

Qualitative XRD patterns were acquired mm by mm from the contact surface after 28, 

119, 245 and 357 days of ponding in Na2SO4 solution down to the depth at which 

formation of ettringite could no longer be detected (Fig. IV-16). The patterns clearly 

revealed the effect of leaching on portlandite dissolution. Additionally, the precipitation of 

sulfate-bearing crystalline phases was identified. Ettringite precipitates along the sulfate 

profile, and is already detected at the surface up to 1 mm depth after 28 days of exposure. 

Gypsum is present at the surface of the micro-concrete, already after 28 days of exposure, 

but also deeper in the material after 357 days of exposure. This could be linked with 

previous observations of increased amount of sulfate penetrated between 1 and 2 mm. 

Gypsum was identified by XRD in massive amounts between 2 and 3 mm. Nevertheless, 

the method used to collect the powder for XRD analysis gives a rather coarse spatial 

resolution. Therefore, XRD phase assemblages were refined making statistical SEM-EDS 

analysis at specific depths to better situate the zones of phase formation. 

 

A “double ettringite peak” was observable at 2θ ~ 9° (Fig. IV-17). The peak position 

corresponds to the U-phase which is a Na-AFm stable in environment enriched in alkaline 

[57]. However, this peak was also observed in the reference samples stored in lime water. 

Therefore, the hypothesis of a structural change of ettringite is preferred. The hypothesis 

of the shift of the ettringite peak towards lower angles would imply an increase in the 

d-spacing of ettringite. This could be achieved by 1°/ substitution of Al3+ by a bigger 

cation (e.g.; Fe3+), 2°/ integration of elements in the structure of ettringite (e.g.; Ti, Cr, Cl), 

3°/ solid solution with thaumasite and 4°/ OH-ettringite formation. No composition 

changes could be confirmed by SEM-EDS analysis. The case of solid solution with 

thaumasite is unlikely to happen in the conditions applied where carbonation has been 

limited. The last hypothesis of OH-ettringite would be the most probable could not been 

verified. 
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Fig. IV-16. XRD patterns at low angles of the first millimetres of P-0.55 after 28, 119, 245 and 
357 days under ponding in Na2SO4 solution; Ett.: ettringite, G.: gypsum, Ms.: monosulfoaluminate, 

P.: portlandite. 
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Fig. IV-17. Typical double ettringite peak observable in some samples exposed to sulfate and in the 
reference samples exposed to lime water; Ett.: ettringite. 

 

 

 

Fine approach: SEM-EDS 

In order to locate where sulfate-bearing phases are formed (e.g.; gypsum and ettringite), 

EDS quantitative analyses were carried out in the regions of outer and inner C-S-H after 

the different exposure times 28, 119, 245 and 357 days (Fig. IV-18). 

Gypsum was found to form in the outer C-S-H at 1 mm depth after 357 days of exposure, 

which confirms the first observations of the sulfur profile. Gypsum seems to be finely 

intermixed to the outer C-S-H and not only precipitated as coarse crystals in cracks as 

could have been thought from the sulfur SEM-mappings. This fine intermixing could be a 

sign that gypsum has formed partly from the calcium of the C-S-H. In addition to the fact 

that gypsum is only to be seen at the surface of the samples, this could explain the surface 

softening of P-0.55 by a loss of the cohesive properties of C-S-H due to its increased 

decalcification.  

The destabilisation of monosulfoaluminate to form ettringite is observable in both C-S-H 

regions. 

 

 

 

 

 

 

 

 



Ponding 

83 

  Outer C-S-H  Inner C-S-H 
   

28 
days 

  
   

119 
days 

  
   

245 
days 

  
   

357 
days 

  
 

Fig. IV-18. SEM-EDS plots of S/Ca versus Al/Ca atomic ratios from the outer (left) and inner C-S-H 
(right) of P-0.55 under ponding in Na2SO4 solution; Ett.: ettringite, G.: gypsum, Mc./Hc.: mono- or 

hemicarboaluminate, Ms.: monosulfoaluminate. 
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Phase assemblages 

Combining the results from XRD and SEM-EDS analysis, schematic graphs of the phases 

with the sulfate penetration depth and at the different exposure times were constructed 

(Fig. IV-19). 

The carbonation degree seems constant, with a slight formation of monocarboaluminate 

after 357 days of exposure. 

Progressive portlandite leaching is observable as well as a progressive decalcification of 

the C-S-H (C-S-Hd). It is worth noting that gypsum forms in the leaching zone where 

portlandite is less available. This indicates that gypsum may form from the calcium of 

C-S-H. This supports the previous hypothesis that gypsum could be responsible for the 

surface softening of the samples due to C-S-H decalcification. 

The phase assemblages after 119 and 245 days of exposure are similar, which confirms the 

similar sulfur profiles previously observed. Between 28 and 119 days, no significant 

change in the depth of formation of ettringite could be seen. Deeper ettringite formation 

was observed only after 245 and 357 days, when expansion was already initiated. 

Therefore, the depth of ettringite formation does not seem to play a significant role in the 

expansion initiation. Between 119 and 245 days, expansion was recorded (stage #2). This 

points out that expansion cannot be so easily related to the phases formed. Further 

microstructural study is therefore required to better correlate the mineralogical and 

microstructural changes to macroscopic expansion. 

 

After 119 days of exposure, prior to expansion, P-0.55 reveals a substantial formation of 

ettringite in the inner C-S-H compared to the outer C-S-H (Fig. IV-18). This could 

indicate that, apart from sulfate combination, ettringite precipitation in the inner C-S-H 

could play a role at the origin of expansion. Nevertheless, the availability of Al2O3 from 

the ferrite phase in the inner C-S-H could better stabilise ettringite in this C-S-H region 

rather than in the outer. 

Nevertheless, as pointed out by the crystal growth theory [16], the size of the crystals 

formed would be a major parameter in their ability to cause stresses high enough for 

expansion to occur. The size of a crystal cannot be directly assessed in this study but 

considering the statistical EDS measurements the relative size of the crystals can be 

approached. The larger the crystal is, the closer to its theoretical stoichiometry the EDS 

analysis will be: the points will be close to the theoretical plot of the concerned crystal. If 



Ponding 

85 

the crystal is small, the EDS analysis will contain influences of its surrounding: the points 

will be between the different phases analysed theoretical plots. 

Hence, the plots for the outer C-S-H of P-0.55 after 119 days of exposure could result 

from small ettringite crystals intermixed in the outer C-S-H. The plots for the inner C-S-H 

would reveal the presence of both relative large and small ettringite crystals in the inner 

C-S-H. Nevertheless, for a same size of ettringite crystals formed, the effects of the 

stresses developed in the inner C-S-H might be higher due to its the density of this C-S-H 

region. The outer C-S-H is surrounded by a capillary porosity network in which phases 

may crystallise without causing any deleterious stresses. 

 

Results after 357 days of exposure in ponding revealed a finer and deeper ettringite 

formation in the outer C-S-H than in the inner C-S-H for P-0.55. Nevertheless, fine 

ettringite is present in comparable amount in the inner and in the outer C-S-H of P-0.55 

after 119 days of exposure. It seems that the fine ettringite in the inner C-S-H of P-0.55 

present after 119 days of exposure has recrystallised in coarser ettringite in free spaces of 

the inner C-S-H after 357 days of exposure. 

 

A first refinement of the statistical SEM-EDS analysis to the cloud of points of the C-S-H 

phases (Fig. IV-20) indicates that ettringite may be finely intermixed to the outer but also 

to the inner C-S-H.. 

Moreover, the centre of the cloud of points of the outer and inner C-S-H seems to move 

towards higher values of S/Ca, which could be an indication of the sulfate combination to 

both C-S-H phases. 

The plots of the outer C-S-H of P-0.55 after 28 days of exposure under ponding are 

characteristic of a microstructure dominated by C-S-H and monosulfoaluminate. However, 

the centre of the C-S-H points cloud seems to move towards higher S/Ca atomic ratios 

within the first 0.50 mm of the sample. After 119 days, the centre of the C-S-H points 

cloud has moved further towards higher S/Ca atomic ratios within the first 2 mm of the 

sample. At this stage of exposure, the microstructure seems to undergo some precipitation 

of ettringite finely intermixed to the C-S-H, which is accompanied by a reduced amount of 

monosulfoaluminate. At further times of exposure (245 and 357 days) the outer C-S-H 

does not seem to continue loading in sulfate while ettringite does continue precipitating. 

In parallel, the inner C-S-H seems to load in sulfate and ettringite becomes quickly stable 

to the detriment of monosulfoaluminate. 
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Fig. IV-19. Evolution in depth of phase assemblage in the binder of P-0.55 after various exposure 
times under ponding in Na2SO4 solution. 
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Fig. IV-20. SEM-EDS plots of S/Ca versus Al/Ca atomic ratios from the outer (left) and inner C-S-H 
(right) after refinement of P-0.55 under ponding in Na2SO4 solution; Ett.: ettringite, G.: gypsum, 

Mc./Hc.: mono- or hemicarboaluminate, Ms.: monosulfoaluminate. 
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IV.2.1.D. SUMMARY 

From observations made on P-0.55, it appeared that under ponding exposure sulfate attack 

follows a three-stage process: 

 

 stage #1 –  induction –  

□ continued hydration predominates resulting in an increase in strength and 

elastic properties; 

□ the associated chemical shrinkage causes a slight solution uptake; 

□ the continuous sulfate ingress is accompanied by ettringite formation and 

associated to surface micro-cracking; 

□ gypsum is formed at the surface of the micro-concrete. 

 

 stage #2 –  surface damage –  

□ sulfate ingress starts to dominate the behaviour resulting in a loss of the 

strength and elastic properties and is sufficient to start and maintain a slow 

expansion characterised by micro-cracking development. 

□ the increased leaching causes material loss at the surface; 

 

 stage #3 –  bulk damage –  

□ the increased sulfate combination in the binder results in an accelerated 

expansion and loss of the elastic properties; 

□ the developed cracks penetrate deeper in the material and promote 

increased ion transport (calcium leaching and sulfate ingress with massive 

gypsum precipitation) through the opened microstructure; 

□ the sulfate-bearing products precipitating in the cracks may cause a relative 

increase in strength resulting in a slow down of the strength loss. 

 

 

Nevertheless, it has been brought into light that the outer and inner C-S-H phases could 

load in sulfate prior to ettringite precipitation. A more detailed observation and analysis of 

the microstructure is required to fix such aspects and their potential influence on the 

damage process. This is the object of the next section (§ IV.3. ). 
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IV.2.2.  EFFECT OF REDUCTION OF W/C-RATIO (P-0.38) 

IV.2.2.A. MICRO-CRACKING 

P-0.38 revealed the same kind of softening damage at the surface at the macro-scale 

without either micro-cracking or expansion and does not show any sign of particularly 

high sulfate intrusion after 357 days fully immersed in Na2SO4 solution (Fig. IV-21) 

despite a comparable ingress measured from the exposure solutions compositions. Neither 

leaching is observable at this stage of the study. 

 

357 
days 

 
 

Fig. IV-21. Crack patterns from BSE micrographs with corresponding quantified S-mapping of P-0.38 
after 357 days of exposure under ponding in Na2SO4 solution. 

 

IV.2.2.B. IONIC PROFILE 

Reduction of the w/b-ratio reduces the depth of leaching, making the front more abrupt 

(Fig. IV-22). Nevertheless, the profiles only inform about the global leaching process. 

Local fluctuations may be envisaged and could be at the origin of the fact that for a same 

leaching rate (§ IV.1.1.A) the leaching profiles are different. 

As for calcium leaching, reduction of the w/b-ratio reduces the apparent depth of sulfate 

penetration that could be directly related to the fact that P-0.38 does not expand on the 

contrary to P-0.55. This supports the previous remarks concerning the effect of the ion 

repartition and especially the ion penetration depth on the damage process (§ IV.1.4.B). 

P-0.38 shows lower sulfate ingress than P-0.55 while it revealed the same sulfate 

absorption from the exposure solution (§ IV.1.1.B). The two results are not necessary 

contradictory and may indicate that the all sulfate diffused in solution through the porous 

network (measured from the exposure solution) is not fixed in the hardened binder 

(assessed by the sulfur profiles). Hence, the cementitious matrix of P-0.55 would more 

easily fix sulfate than that of P-0.38 for the same level of available sulfate. Whether this is 

due to a chemical or a physical effect is however not clear. Nevertheless, the very narrow 
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sulfur profile of P-0.38 compared to that of P-0.55 tends to indicate that, if the same 

amount of sulfate went into P-0.38 as into P-0.55, the entire sulfate might have 

concentrated at the surface of the sample without reaching a critical depth that would 

cause macroscopic bulk damage. The surface of P-0.38 is eroded and this related to the 

lower sulfur profile measured after 357 days than after 245 days of exposure might 

support the idea that damage on P-0.38 occurs step by step, concentrated at the surface of 

the material, without affecting the bulk. 

The sulfur profile is again characterised by a shape in three parts as described for P-0.55 

(leaching, accumulation and transport to the bulk of the material). 

 

 Calcium  Sulfate 

  
 

Fig. IV-22. Evolution of calcium (left) and sulfur (right) profiles of the cementitious matrix of P-0.38 
under ponding in Na2SO4 solution. 

 

 

IV.2.2.C. PHASE ASSEMBLAGE ZONATION 

The phase assemblage of P-0.38 after 357 days of exposure (Fig. IV-23) follows the same 

pattern observed for P-0.55 but with reduced depths (especially for ettringite formation). 

Gypsum is formed at the surface of the sample, which suffers also from softening as 

P-0.55. 

Portlandite has been largely dissolved for the samples with w/b of 0.55 up to 3 mm depth 

while for their homologues with w/b of 0.38 portlandite dissolution only concerns less 

than 1 mm at the surface. This is in agreement with the previous observations on C-S-H 

leaching from the SEM-BSE micrographs. 

The depth of reaction might be a critical parameter for damage to occur. Again, a finer 

microstructure study is required to understand such influences especially relative to the 

interactions of the C-S-H with sulfate ions. 
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Fig. IV-23. Phase assemblage in the binder of P-0.38 after 357 days under ponding in Na2SO4 solution. 
 

 

IV.2.3.  EFFECT OF SLAG ADDITION (S-0.55 AND S-0.38) 

IV.2.3.A. MICRO-CRACKING 

Neither the cracking nor the sulfate ingress of the slag blends is significant after 357 days 

under ponding exposure (Fig. IV-24). The surface of S-0.55 is characterised by a very 

abrupt change in grey level characteristic for leaching, which differs form the progressive 

leaching behaviour observed for P-0.55. 
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Fig. IV-24. Crack patterns from BSE micrographs with corresponding quantified S-mapping of S-0.55  
and S-0.38 after 357 days of exposure under ponding in Na2SO4 solution. 
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IV.2.3.B. IONIC PROFILE 

The decrease in capillary porosity connectivity due to slag addition ensures a reduced 

penetration of the surrounding solution into the sample which consequently reduces the 

leached zone and the amount of sulfate penetrated (Fig. IV-25). Reduction of the leaching 

depth implies none complete decalcification before further penetration can occur leading 

to an abrupt leaching front as seen for S-0.55 compared to P-0.55, with material loss 

characterised by the rise of aggregates at the surface of the material. Reduction of the 

w/b-ratio reduces the depth of leaching for the slag blends but it does not influence as 

much the sulfur profiles in terms of penetration depth as it did in the case of the PCs. 

Again, as for the PCs, the sulfur profiles are characterised by a shape in three parts 

(leaching, accumulation and transport to the bulk of the material). 
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Fig. IV-25. Evolution of calcium (left) and sulfur (right) profiles of the cementitious matrix of S-0.55 
and S-0.38 under ponding in Na2SO4 solution. 
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IV.2.3.C. PHASE ASSEMBLAGE ZONATION 

S-0.55 suffers from more leaching compared to S-0.38 characterised by portlandite 

dissolution and C-S-H decalcification (Fig. IV-26), which matches the differences 

observed in the calcium profiles. 

Only traces of gypsum and ettringite could be identified in S-0.55 after 357 days of 

exposure. Compared to P-0.55 those sulfate-bearing products seem to be present in minor 

quantities. 

Slag addition appears to stabilise monocarboaluminate. However, as seen in the next 

section (§ IV.3. ), slag blends revealed a reduced sulfate combination to the C-S-H phases  

compare to their plain Portland homologues(Fig. IV-39 and Fig. IV-40 compared to 

Fig. IV-36 and Fig. IV-37). Both features go in the sense that the overall microstructure of 

slag blends is depleted of sulfate compared to the plain Portland blends microstructures. 

The phase identified in the phase assemblages as hydrotalcite, hydrate of the slags, is in 

fact quintinite, which is hydrotalcite like but with Mg/Al = 2 and not 3. Abusively, the 

term hydrotalcite is used. 
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Fig. IV-26. Phase assemblage in the binder of S-0.55 and S-0.38 after 357 days under ponding in 
Na2SO4 solution. 
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IV.2.4.  SUMMARY 

IV.2.4.A. SULFATE INGRESS 

 

 
 

Fig. IV-27. Relationship between the sulfur combined in the solution and the sulfur combined in the 
binder of the laboratory micro-concretes along exposure time in ponding in Na2SO4 solution. 

 

The integration of the quantitative sulfur profiles delivers information on the cumulative 

sulfur content which, with subtraction of the initial bulk sulfur content from the reference 

samples after the 28 days curing, can lead to the cumulative sulfur combined in the binder. 

 

The relationship between the sulfur combined in the solution and the sulfur combined in 

the binder of the micro-concretes in ponding (Fig. IV-27) confirms the previous remark 

that for P-0.55 the entire sulfate penetrated has been fixed to the binder and has potentially 

reacted with. For the three other mixes, the sulfate penetrates into the material but does not 

fully react with or is only partially fixed to it. 

This put into light the dual aspect of sulfate attack on concrete that decomposes in 

physical (diffusion of sulfate in the pore solution of the material) and chemical (fixation of 

sulfate to the binder) effects. 
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Fig. IV-28. Relationship between the expansion and the sulfur combination in the solution (right) and 
in the binder (left) of the laboratory micro-concretes under ponding in Na2SO4 solution. 

 

Relationships can be drawn between the expansion and the sulfur combination either in 

solution or in the binder (Fig. IV-28). It appears that expansion is independent of the 

amount of sulfur combined from the pore solution but starts to be significant after a 

critical total amount of sulfur combined in the binder in the range of 1.0 wt.-% reached for 

P-0.55. The three stages pointed out for expansion have been reported on the graph which 

indicates that the three behaviours identified from the highly discrete data on this figure do 

match with the three-stage behaviour observed from the close to continuous data of 

expansion: 

 stage #1 is characterised by a low sulfate ingress accompanied by a low expansion; 

 stage #2 represents the critical stage where a slight ingress of sulfate is accompanied 

by extensive expansion; 

 stage #3 is characterised by a large sulfate ingress accompanied by an extended 

expansion. Nevertheless, as noted earlier, stage #3 might also be characterised by 

sulfate-bearing products precipitation in pre-existing cracks leading to an increased 

sulfate ingress which is not be directly related to expansion. 

 

 

IV.2.4.B. GYPSUM FORMATION 

Gypsum was only identifiable in the PCs samples P-0.55 and P-0.38 which are precisely 

the samples suffering softening kind of macro-damage. Gypsum could therefore be at the 

origin of softening as it has been already reported by several authors. Gypsum precipitates 

in the leaching zone where ettringite is not stable, after extensive ettringite precipitation in 

the zone of higher sulfate amount (see quantitative sulfur profiles in previous section) and. 

in locations typical for portlandite precipitation (Fig. IV-29): around the aggregates, in the 
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interfacial transition zone (ITZ). This leads to the conclusion that, in external sulfate 

attack, gypsum forms when the system is sulfate dominated directly from portlandite 

(portlandite dissolution, gypsum precipitation). Considering the structural differences 

between the two crystals (monoclinic gypsum and hexagonal portlandite), gypsum forms 

more likely by a through solution mechanism and not by a topochemical mechanism. 

However, gypsum can also form from the calcium of the C-S-H. The reduced gypsum 

formation in the slag blends could therefore be attributed to the relative reduced 

portlandite amount and the lower calcium in C-S-H of such mixes.Gypsum formation 

seems to be related to the softening of the PCs in ponding exposure. 

 

 
 

 
Fig. IV-29. BSE micrographs (left) with corresponding EDS plots of S/Ca versus Al/Ca of P-0.38 at 

0.5 mm depth after 357 days under ponding in Na2SO4 solution. 
 

 

IV.2.4.C. ETTRINGITE FORMATION 

P-0.55 is characterised by a extensive ettringite formation compared to the other mixes. 

Since P-0.55 is the only sample in ponding to show significant expansion, ettringite 

formation could be at the origin of expansion. P-0.38 also showed some ettringite 

formation after 357 days of exposure comparable in terms of relative amount and depth of 

formation to P-0.55 after 119 days of exposure while the corresponding expansions were 

in the same range: respectively 0.013 % and 0.010 %. The influence of the depth of 

formation of ettringite might therefore play a role in the expansion in addition to the 

amount of ettringite formed. Owing to this remark, ettringite would lead to expansion 

when formed beyond the first 1-2 mm in such 4×4×16 cm3 prisms. Semi-quantification 

can be done measuring the area under the ettringite peak at 2θCuKα = 15.8 while subtracting 

the background. Summing this area up to detection level along the depth the cumulative 

semi-quantified amount of ettringite formed in a sample can be assessed. 
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Fig. IV-30. Relationship between the cumulative semi-quantified ettringite from XRD and the 
expansion of the laboratory micro-concretes under ponding in Na2SO4 solution. 

 

Plotting this cumulative ettringite amount against expansion (Fig. IV-30), a relationship 

can be extracted for the PCs while no clear behaviour is observable for the slag blends. 

The three stages identified for the expansion of P-0.55 are shown on the graph. Increased 

ettringite formation is identified for the stages #2 and #3 while the ettringite present in 

stage #1 is more similar to the background level. Expansion is detected in stages #2 and #3 

but initiated in stage #1. The relatively low ettringite formation in stage #1 leads therefore 

to the conclusion that ettringite formation as precursor to expansion is a doubtful concept 

in ponding kind of exposure. More likely according to the increased ettringite formation 

during stages #2 and #3, ettringite precipitation would be a consequence of expansion or 

feeds late expansion. 

 

The plot for P-0.55 of the ettringite amount formed against the sulfate ingress in the outer 

and inner C-S-H (Fig. IV-31) indicates the fact that during the initiation stage #1 (28 and 

119 days measurements) ettringite does not precipitate in significant amounts while the 

two C-S-H phases become loaded with sulfate. Expansion could therefore be initiated by 

sulfate combination to outer and inner C-S-H. Stages #2 and #3 (245 and 357 days 

measurements) are characterised by a continuous sulfate combination to the outer and 

inner C-S-H accompanied by a continuous ettringite precipitation. 
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Fig. IV-31. Relationship between the cumulative S/Si atomic ratio of the outer and inner C-S-H and 
the cumulative semi-quantified ettringite from XRD of P-0.55 under ponding in Na2SO4 solution. 

 

In the slag blends matrix the inner C-S-H is characterised by a high calcium leaching. It 

can be supposed that the calcium went out from the inner C-S-H to activate slag hydration 

as mentioned in other works [51] leaving therefore a large empty space for ettringite to 

precipitate extensively without causing any stress high enough to lead to expansion 

(Fig. IV-32). This can explain why no relationship between ettringite formation and 

expansion could be seen for the slag blends. 

 

S-0.55 after 357 days – 10 mm depth (bulk) S-0.55 after 357 days - 0.2 mm depth (surface) 

  
 

Fig. IV-32. BSE micrographs of the bulk (left) and the surface (right) of S-0.55 after 357 days of 
exposure in ponding in Na2SO4 solution. 

 

 

Investigation of the microstructure is required to underpin the mechanisms behind sulfate 

attack process in ponding in Na2SO4 solution. 

The main question to solve is the repartition of sulfate ingress in the microstructure and 

how the local microstructural effects can influence the macroscopic damage process. 
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IV.3.  IMPACTS ON THE MICROSTRUCTURE 

IV.3.1.  LOCAL EFFECTS ON THE MICROSTRUCTURE 

IV.3.1.A. LEACHING OF THE HYDRATES 

  

 

Ca 
(non normalised wt.-%)

Si 
(non normalised wt.-%) 

6.0 ± 1.0 3.2 ± 1.2 
3.6 ± 0.4 3.9 ± 0.5 
2.2 ± 0.3 3.2 ± 0.3  

 

Fig. IV-33. Leaching of the outer (top) and inner C-S-H (bottom); case of P-0.38 after 245 days under 
ponding in Na2SO4 solution. 

 

 
 

Fig. IV-34. Leaching of the inner C-S-H with precipitation of portlandite rim; case of P-0.38 after 
357 days under ponding in Na2SO4 solution. 

 

While dissolving portlandite frees Ca2+ ions. Furthermore, in case of high leaching up to 

full dissolution of portlandite, C-S-H can in turn play the role of buffer, freeing OH- and 

Ca2+ ions leaving a silicate skeleton that evolves in silica gel. The leaching phenomenon 
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concerns both outer and inner C-S-H (Fig. IV-33). The cloud of EDS points of the darker 

outer C-S-H from the surface zone appears to be deviated towards higher Si/Ca and to a 

lower extend towards higher Al/Ca compared to the cloud of EDS points of the brighter 

outer C-S-H from the bulk of the sample. This is a typical sign for a lack in Ca. The 

gradient in grey levels in the outer C-S-H showing a darker C-S-H zone at the surface of 

the sample can therefore be identified as due to calcium leaching. However, this gradient 

in grey levels is also observed inside hydrated grains themselves when situated in the 

overall darker outer C-S-H surface zone. Since this difference might be caused by a 

removal of material (leaching), EDS plots analysis has been carried out without 

normalisation of results in order to better point out which element is in default or in excess 

in the darker zone. The effect of silicon enrichment on the C-S-H points cloud would be 

the same as a calcium deficit, moving points towards high Si/Ca values. But EDS analyses 

conducted in the inner C-S-H in wt.-% non normalised revealed a constant amount of Si 

(3.4 wt.-% ±0.7), while the amount of Ca decreased (from 6.0 wt.-% ±1.0 to 

2.2 wt.-% ±0.3) when the corresponding area became darker. Hydrated grains are 

decalcifying from the inside outwards because anhydrous grains are most reactive. Hence, 

in relative acid conditions leaching changes the hydration process and can come to 

competition with hydration mechanisms. In some cases, a rim of portlandite can 

precipitate at the interface between the decalcified and the sound inner C-S-H (Fig. IV-34 

and also pictures in [58]). This phenomenon could be attributed to a local gradient of pH 

from acid close to the anhydrous grain to basic in the inner sound C-S-H: portlandite 

becomes stable when in proximity to the sound inner C-S-H. Nevertheless, this can be 

found in sound cement pastes and is in any case not a sign of strong acid attack. 

 

 Outer C-S-H  Inner C-S-H 

 

Fig. IV-35. EDS Ca/Si-ratio evolution from the outer (left) and inner C-S-H (right) of the laboratory 
micro-concretes after 357 days under ponding in Na2SO4 solution. 
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Leaching in the outer and inner C-S-H can be compared based on EDS Ca/Si-ratio 

evolution in depth in the two kinds of C-S-H phases (Fig. IV-35). In principle outer and 

inner C-S-H are leached to a comparable degree and depth out for S-0.55 which reveals a 

large surface leaching of its outer C-S-H while the inner C-S-H remain sound relative to 

leaching at the surface. The very abrupt superficial leaching zone of S-0.55 is also 

verified. The continuous gradual leaching of the PCs samples is verified for the outer and 

the inner C-S-H. The role of w/b is confirmed regarding leaching: samples with w/b of 

0.38 reveal a shallower leaching than their respective homologue with w/b of 0.55. 

Nevertheless, as it was stated for the calcium profiles (§ IV.1.1.A), local fluctuations may 

be envisaged that could explain the reduced leaching observed for the micro-concretes 

with lower w/b-ratio while their leaching rates were similar to their homologues with 

higher w/b-ratio. The higher error bar in the Ca/Si-ratios of P-0.38 compared to those of 

P-0.55 could be a sign of such local fluctuations. Also, the high concentration of attack at 

the very top surface of P-0.38, as previously identified, may increase local fluctuations in 

this region. 

 

 

 

IV.3.1.B. SULFATE INGRESS IN THE HYDRATES 

It is considered that sulfate ions ingresses through the porous cementitious matrix, which 

is generally assumed to be the outer C-S-H. Nevertheless sulfate also penetrates in the 

inner C-S-H and combines significantly up to depths in the same range as that of the outer 

C-S-H in the case of the PCs (Fig. IV-36 and Fig. IV-37) but also in the case of the slag 

blends (Fig. IV-39 and Fig. IV-40). A saturation level seems to be reached for P-0.55 after 

119 days of exposure, which corresponds to the expansion start. This could mean that 

sulfate combination to the outer and to the inner C-S-H phases could be able to initiate 

expansion. A saturation level seems also to be reached for P-0.38 after 245 days of 

exposure, as well as for S-0.55 and S-0.38. But the depths concerned are clearly reduced 

compared to that of P-0.55, which could emphasise that the depth of chemical changes 

must reach a critical value so that damage can occur. 
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 Outer C-S-H  Inner C-S-H 

 

Fig. IV-36. EDS S/Si atomic ratio evolution from the outer (left) and inner C-S-H (right) of P-0.55 
under ponding in Na2SO4 solution. 

 

 Outer C-S-H  Inner C-S-H 

 

Fig. IV-37. EDS S/Si atomic ratio evolution from the outer (left) and inner C-S-H (right) of P-0.38 
under ponding in Na2SO4 solution. 

 

Quantitative elemental mappings of reacted grains are acquired for P-0.55 sample after 28, 

119, and 357 days of exposure at depths corresponding to the maximal sulfate ingression 

(Fig. IV-38). If inner C-S-H is assumed to be denser than outer C-S-H, it does not prevent 

sulfate from penetrating in. After 28 days of exposure sulfate starts to penetrate the inner 

C-S-H, coming close to the reacting anhydrous grains. The reacting anhydrous grains are 

highly reactive calcium source for any reaction, including reactions involving sulfate ions. 

Furthermore, calcium seems to be evacuated from the centre of inner C-S-H through 

cracks. Also, the anhydrous grain leaves a hole after complete hydration, which is free 

space for crystals (e.g.; ettringite) precipitation. However, the inner C-S-H would be more 

rigid than the outer and would therefore less good relax stresses caused by internal strains 

such as phase growth than the outer C-S-H. 
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P-0.55 after 28 days – 0.5 mm depth 

 
 

 

P-0.55 after 119 days – 0.5 mm depth 

 
 

 

P-0.55 after 357 days – 1 mm depth 

 

 

 
 

Fig. IV-38. BSE micrograph and corresponding quantified S-and Ca-mappings of inner C-S-H from 
P-0.55 under ponding in Na2SO4 solution at different times of exposure and depths. 
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 Outer C-S-H  Inner C-S-H 

 

Fig. IV-39. EDS S/Si atomic ratio evolution from the outer (left) and inner C-S-H (right) of S-0.55 
under ponding in Na2SO4 solution. 

 

 

 

 Outer C-S-H  Inner C-S-H 

 

Fig. IV-40. EDS S/Si atomic ratio evolution from the outer (left) and inner C-S-H (right) of S-0.38 
under ponding in Na2SO4 solution. 
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Fig. IV-41. Relationship between the cumulative S/Si atomic ratio of the outer (top) and inner C-S-H 
(bottom) and the expansion of the laboratory micro-concretes under ponding in Na2SO4 solution. 

 

As for the quantitative sulfur profiles, the integration of the quantitative S/Si profiles of 

the outer and inner C-S-H delivers information on their respective cumulative S/Si 

content. Subtracting the initial bulk S/Si content of the outer and inner C-S-H from the 

reference samples after the 28 days cure the cumulative sulfate ingress in the two C-S-H 

phases can be deduced. A relationship is visible for P-0.55 between the cumulative sulfate 

ingress and expansion both in the case of the outer and inner C-S-H (Fig. IV-41). The 

three stages observed for expansion have been reported on the graphs. For the outer 

C-S-H, this relationship is continuous while for the inner C-S-H it tends to follow the 

three-stage behaviour of the cumulative sulfate ingress previously observed. The three 

stages also match the three stages of expansion observed in section IV.1.2.B. For the inner 

C-S-H, stage #1 is characterised by a significant sulfate ingress accompanied by a low 

expansion, stage #2 represents the critical stage where a slight ingress of sulfate is 

accompanied by extensive expansion and stage #3 is characterised by a significant sulfate 

ingress accompanied by an extended expansion. Regarding the error range, no significant 
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difference can be identified between stage #2 and stage #3. No influence of massive 

sulfate-bearing products precipitation can be expected here since the S/Si measured has 

been reduced to the C-S-H phases themselves, excluding points of measurement with 

corresponding S/Ca and Al/Ca ratios in the range of ettringite and gypsum. It appears 

therefore that for P-0.55, expansion does not require any critical sulfate ingress in the 

outer C-S-H but would require the S/Si in the inner C-S-H to overcome a critical value in 

the range of 0.30. It might therefore be thought that sulfate combination in the inner 

C-S-H might play a role in the expansion mechanism in such ponding exposure while 

sulfate combination in the outer C-S-H could be a side effect. 

 

  
 

Fig. IV-42. BSE-micrograph (left) and corresponding quantified S-mapping (right) of a slag grain 
with hydration rim at 0.5 mm depth of S-0.55 after 357 days under ponding in Na2SO4 solution. 

 

 
Table IV-2. EDS S/Si atomic ratio from slag hydration rim of S-0.55 at 0.5 mm depth: evolution along 

ponding in Na2SO4 solution. 
 

S/Si( 
normalised at.-% ratio) 

Exposure time 
(days) 

S-0.55 
28 0.06 ± 0.01 
119 0.13 ± 0.01 
245 0.19 ± 0.01 
357 0.29 ± 0.02 

 

Quantitative elemental mapping of reacted slag acquired for S-0.55 after 357 days of 

exposure revealed that slag inner hydration product combines sulfate (Fig. IV-42). The 

morphology of slag inner hydration product does not seem to be affected as was the case 

for inner Portland C-S-H. The sulfate combination to slag hydrate has been checked 

measuring the EDS S/Si atomic ratio in the slag hydration rim at different exposure times 

for S-0.55 and S-0.38 (Table IV-2). 



Ponding 

107 

 
 

Fig. IV-43. Relationship between the cumulative S/Si atomic ratio of the slag hydration rim and the 
expansion of S-0.55 and S-0.38 under ponding in Na2SO4 solution. 

 

A tendency towards a relationship between the S/Si atomic ratio in the slag hydration rim 

at 0.5 mm depth (depth of highest sulfate ingress) can be observed for S-0.55 (Fig. IV-43). 

Even considering the low level of expansion of S-0.55, the sulfate combination of the slag 

hydrates seem to play a more important role than the sulfate combination of the cement 

outer and inner C-S-H. 

 

 

IV.3.1.C. CRACKING OF THE HYDRATES 

Observations at high magnification of the polished sections of the expansive P-0.55 

sample point out a cracking behaviour at low scale (Fig. IV-44). After 119 days of 

exposure, cracks start to form in the inner C-S-H. After 357 days of exposure, cracks have 

developed and are not restricted to the inside of the inner C-S-H but form significantly at 

the inner/outer C-S-H interface. Cracking at the interface of such phase contrast is 

characteristic of a difference in mechanical properties between the two phases. A 

difference in mechanical properties between the outer and the inner C-S-H would lead to a 

difference in expanding behaviour but it is not obvious which one of the phases would 

expand more than the other. Nevertheless, the absence of such cracks between the outer 

C-S-H and portlandite would indicate a common mechanical behaviour regarding sulfate 

ingress. An expansion of the inner C-S-H as cause for macroscopic expansion would 

therefore not be excluded. The fact that no cracking is observable in the inner C-S-H at the 

surface of P-0.55 after 357 days of exposure can be explained by the high calcium 

leaching level of these inner C-S-Hs which become less dense and can accept large 

precipitation of ettringite without developing any stress. Cracking between the outer and 
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the inner C-S-H is also observed for P-0.38 but probably not deep enough inside the 

sample to cause macroscopic expansion (Fig. IV-45). 

 

P-0.55 after 119 days 

  
0.05 mm depth 0.5 mm depth 

 
P-0.55 after 357 days 

  
0.05 mm depth 1 mm depth 

 

Fig. IV-44. BSE micrographs of inner C-S-H at the surface of P-0.55 after 119 (top) and 357 days 
(bottom) under ponding in Na2SO4 solution. 

 

 

Such crack patterns observed by SEM-BSE imaging can either have been developed in the 

material due to stresses or have been initiated by the SEM vacuum. In the later case, this is 

typically the issue for cracking in ettringite: ettringite has a very high amount of water 

molecules that dry when under the SEM vacuum resulting in random orientated cracks. 

In the case of the cracked C-S-H and especially the cracked inner C-S-H observed here, 

the cracks generally do not show any radial or orientated pattern. This could rather 

indicate that they are an artefact of the observation. Nevertheless this would mean that the 

C-S-H has loaded in water molecules, through ion adsorption for instance, and may 

therefore have swelled. The cracking of the inner C-S—H observed could be due to a 

particular swelling of this C-S-H region compared to the outer C-S-H. 
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P-0.38 after 357 days 

  
0.1 mm depth 1 mm depth 

 

Fig. IV-45. BSE micrographs of inner C-S-H of P-0.38 after 357 days under ponding in Na2SO4 
solution. 

 

 

S-0.55 after 357 days S-0.38 after 357 days 

  
 

Fig. IV-46. BSE micrographs of slag grain with hydration rim at 0.5 mm depth in S-0.55 (right) and 
S-0.38 (left) after 357 days under ponding in Na2SO4 solution. 

 

The high level of slag replacement (70 wt.-%) in S-0.55 and S-0.38 implies that the 

mechanical behaviour of the micro-concretes is governed by the properties of the slag and 

its hydration products. It appears that S-0.55 and S-0.38 slag and its hydration rim do not 

suffer cracking (Fig. IV-46) on the contrary to the inner C-S-H of P-0.55 for instance. 

Nevertheless the hydration rim of the slag grains in the surface shows darker zones of 

lower density that could be a sign for leaching. The absence of macroscopic damage of the 

slag blends in ponding exposure might be related to the fact that slag inner hydration 

products are not physically affected by sulfates in ponding exposure as inner C-S-H is. 
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IV.3.1.D. SUMMARY 

Sulfate ingress is not restricted to the outer C-S-H but does concern also the inner 

hydration products (inner C-S-H and slag hydration rim). Sulfate combination to the 

hydration products could cause a swelling at the origin of the expansion. Relationships 

were shown between expansion and sulfate combination to the outer and inner C-S-H for 

the PCs and to the slag hydration product for the slag blends. This was underlined by 

micro-cracking observations at the interface of the outer and inner hydrates. It is however 

not clear which one of the outer or inner hydrates would dominate the expansion. 

Nevertheless, sulfate ingress in the hydrates may stabilise some phases that can have a link 

with expansion. 

 

 

 

 

 

 

 

IV.4.  SUMMARY 

IV.4.1.  RELEVANCE OF TECHNIQUES 

It has been emphasized that expansion cannot be taken as sole criterion for damage due to 

sulfate attack in ponding exposure. Furthermore, the elastic properties have shown a very 

good reliability for evaluation of damage due to sulfate attack. The normalised dynamic 

elastic moduli revealed to be a precise tool for the samples ranking in terms of 

performances against sulfate exposure in ponding. 

 

SEM-EDS quantitative analyses present the advantage over XRD to localize the phase 

formations in the microstructure. But SEM preparation and acquisition is more time 

consuming. 
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IV.4.2.  PROPOSED MECHANISM OF DAMAGE 

Both C-S-H phases are combining sulfate and both present fine ettringite formation. It 

remains unclear which one of the C-S-H phases predominates in the expansion process. 

Nevertheless a mechanism can be proposed based on the observation from P-0.55 in 

ponding (Fig. IV-47): 

 

 stage #1 –  induction –  

□ sulfate combination to the outer and inner C-S-H causes a swelling of the 

C-S-H phases; 

□ sulfate combination to the outer and inner C-S-H reaches saturation and 

fine ettringite precipitates accompanied by micro-cracking of the inner 

C-S-H. 

 

 stage #2 –  surface damage –  

□ coarse ettringite starts to precipitate in the free spaces in the inner C-S-H 

without causing cracking; 

□ sulfate combination to the outer C-S-H becomes predominant; 

□ fine ettringite precipitates in the outer C-S-H causing an accelerated 

expansion with cracking of the cementitious matrix. 

 

 stage #3 –  bulk damage –  

□ coarse ettringite precipitation in the developed cracks; 

□ the developed cracks penetrate deeper in the material promoting a large ion 

transport through the opened microstructure; 

□ the massive sulfate intrusion can combine to deeper outer and inner C-S-H 

up to ettringite saturation feeding the increased expansion. 

 

 

However, gypsum formation was found to be at the origin of the surface softening of the 

micro-concretes under ponding exposure. 
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Fig. IV-47. Proposed mechanism of expansion in three stages as depicted for P-0.55 under ponding 
exposure. 
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IV.4.3.  EFFECT OF W/B-RATIO 

The w/b-ratio does not control the transport of the ions through the cementitious matrix. 

The w/b-ratio does not affect the phase assemblages qualitatively (same phases formed) 

but quantitatively. Reduction of the w/b reduces the depth of chemical changes and the 

phase formation. Microstructures with lower w/b-ratio withstand better chemical and 

phase transformations maybe due to intrinsic better mechanical resistance. 

The importance of the quantity and depth of the phase formed to be able to cause 

expansion is however underlined 

 

 

IV.4.4.  EFFECT OF SLAG ADDITION 

Slag addition reduces the capillary porosity which consequently limits the sulfate ingress. 

Expansion is therefore prevented. 

Slag causes a high decalcification of the inner C-S-H which makes free spaces for phases 

(e.g.; sulfate-bearing phases) to precipitate without causing any stress high enough to lead 

to expansion. 

However, slag could in principle slow down ettringite formation due to 

monocarboaluminate stabilisation. 
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Chapter V - Effect of different testing conditions 
 

 

 

 

 

 

 

This chapter evaluates the influence of different types of exposure conditions on the 

process of sulfate attack. The specimens were exposed to three types of exposure 

condition at 20.5 °C ±0.5 in addition to the ponding described in the last chapter: 

pH-control, semi-immersion and wet/dry cycles. 

The samples were studied with the same array of methods as presented for the case of 

ponding. 

 

 

 

 

 

 

 



Effect of different testing conditions 

116 

V.1.  PH-CONTROL 

V.1.1.  MACROSCOPIC BEHAVIOUR 

V.1.1.A. IONIC TRANSPORT 

Leaching 

The pH of the exposure solution of the pH-control tests was kept constant in the range of 

7.5 compared to the pH in ponding raising 12.5. The normal distribution of the pH values 

measured in the exposure solutions of the PCs and of the slag blends were found to be 

respectively in the range of 7.3 ±0.5 and 7.6 ±0.4 (Fig. V-1). 

 

Solution of the PCs  

 
 

Solution of the slag blends 

 
 

Fig. V-1. pH evolution of the pH-control exposure solutions. 
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Calcium leaching only occurs within the first 28 days of exposure for all the 

micro-concretes under pH-control (Fig. V-2). The calcium leached from the binders 

reaches 0.005 g.gbinder
-1 ± 0.001. The fact that the solution of the pH-control test is not 

renewed limits the portlandite dissolution to its solubility level. 

 

 
 

Fig. V-2. Evolution of calcium leaching from the laboratory micro-concretes under pH-control. 
 

 

 

 

 

Sulfate ingress 

The pH-control test has a pH titration system with a solution at 0.2 M of H2SO4 to 

influence as little as possible the initial sulfate concentration, which is of 2.017 g.l-1 for the 

3 g.l-1 Na2SO4 solution employed for the exposure. The fluctuations of the sulfate 

concentration is slightly higher in the case of pH-control compared to ponding within one 

month and one year of exposure but values remain close to the initial concentration to an 

acceptable range (Table V-1). As a consequence, the sulfate concentration in the exposure 

solution is kept constant and cannot be of any indication on the sulfate combination in the 

micro-concretes. 
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Table V-1. Sulfate concentration evolution of the solutions of the ponding and pH-control tests. 
 

[SO42-] 
(g.l-1) 

Δ [SO42-] 
(g.l-1) 

Setting 
Exposed 
sample Before 

exposure 

After 
28 days of 
exposure 

After 
392 days of 
exposure 

After 
28 days of 
exposure 

After 
392 days of 
exposure 

P-0.55 2.017 1.741 2.028 ±0.138 ±0.005 
P-0.38 2.017 1.822 2.034 ±0.098 ±0.008 
S-0.55 2.017 1.998 1.897 ±0.009 ±0.060 

Ponding 

S-0.38 2.017 2.023 1.873 ±0.003 ±0.072 
P-0.55 2.017 1.856 1.928 ±0.080 ±0.044 
P-0.38 2.017 1.844 1.967 ±0.087 ±0.025 
S-0.55 2.017 1.847 1.956 ±0.085 ±0.030 

pH-control 

S-0.38 2.017 2.024 1.816 ±0.004 ±0.100 
 

 

 

V.1.1.B. PHYSICAL CHANGES 

 

Expansion 

 
 

Fig. V-3. Length evolution of the laboratory micro-concretes under pH-control exposure. 
 

During the 392 days of exposure in pH-control, only P-0.55 showed significant expansion, 

as was the case for ponding exposure over 560 days of exposure (Fig. V-3). Moreover, as 

its homologue in ponding, P-0.55 in pH-control revealed a three-stage expansion 

behaviour characterised by: a first induction period prior to significant expansion, then a 

first linear increase in length of rate 2.0 · 10-4 %.days-1 starting after 84 days and up to 

168 days, followed by a second quicker linear stage with a higher rate of 

3.3 · 10-4 %.days-1 takes place. The ratio in expansion rates is close to two (1.7) but not so 
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high as encountered for ponding. Due to the reduced exposure time for this test there is a 

lack of data concerning the expansion behaviour between 386 and 560 days needed to be 

fully comparable with ponding exposure. Nevertheless, it appears clearly that pH-control 

accelerates the expansion of P-0.55 which expands in the same manner as in ponding but 

with an advance in the range of 84 and 56 days respectively for stage #2 and stage #3. 

From 273 days of exposure the three other mixes seem to start to expand as well, which 

corresponds to an advance in the range of 56 days compared to their homologues in 

ponding.  

Plotting the expansion under pH-control against the expansion under ponding (Fig. V-4), 

it appears more clearly that expansion of P-0.55 in pH-control is of the same kind that in 

ponding but with an advance in time. 

The exposure pH of 7.5 is relatively acid for concrete. This is below the range of stability 

for cementitious phases. Nevertheless, the lower stability of ettringite tends to contradict 

the hypothesis that ettringite alone is at the origin of expansion. 

 

 

 
 

Fig. V-4. Expansion under pH-control versus expansion under ponding for the laboratory 
micro-concretes. 

 

 

 

 

 

 

 

 



Effect of different testing conditions 

120 

Mass change 

The mass loss of the micro-concretes under pH-control is not significant (Fig. V-5) and is 

far from the three-stage behaviour encountered for the micro-concretes under ponding. 

This might be related to the reduced leaching under pH-control compared to ponding. 

 

 
 

Fig. V-5. Mass evolution of the laboratory micro-concretes under pH-control. 
 

 

 

 

 

 

Compressive strength 

The normalised compressive strength evolution of the samples under pH-control revealed 

a significant decrease in mechanical properties only for P-0.55 (Fig. V-6). This decrease is 

in the range of the one observed for the same sample in ponding. The lack of measurement 

points does not allow any stages to be distinguished as seen for the expansion results. In 

principle, the same kind of behaviour as explained for ponding would be expected for 

pH-control at this stage of the exposure: P-0.55 suffers internal stresses due to expansion 

that damage the bulk of the sample without causing any surface damage. The other three 

mixes do not present internal stresses high enough to affect their bulk mechanical 

properties nor their surface cohesion. 
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Fig. V-6. Normalised compressive strength evolution of the laboratory micro-concretes under 
pH-control. 

 

 

 

 

 

Dynamic elastic modulus 

From the normalised flexural dynamic elastic modulus evolution of the micro-concretes 

under pH-control, it appeared that only the two PCs revealed significant loss in properties 

(Fig. V-7) in contrast to ponding where the slag blends also showed a decrease of elastic 

and shear moduli. This is surprising since it has been already pointed out that pH-control 

exposure seems to accelerate the damage process compared to ponding exposure. 

Nevertheless, it could be a sign that slag and slag hydrates withstand better low pH 

conditions than cement and its hydrates.  

No three-stage behaviour is identifiable as for expansion for P-0.55. Nevertheless, the 

relationships between normalised flexural dynamic elastic modulus and expansion 

(Fig. V-8) is linear for P-0.55 and tends to be linear for the other samples as seen for 

ponding exposure but with a lower correlation (R2 lower). This emphasises that the same 

kind of damage processes might be involved in the samples subjected to pH-control than 

in the samples subjected to ponding. 
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Fig. V-7. Normalised flexural dynamic elastic modulus evolution of the laboratory micro-concretes 
under pH-control. 

 

 
 

Fig. V-8. Relationship between the normalised flexural dynamic elastic modulus and the expansion of 
the laboratory micro-concretes under pH-control. 

 

 

V.1.2.  DAMAGE AND CRACKING 

V.1.2.A. EXTERNAL APPEARANCE 

 

 
Fig. V-9. Visual appearance of P-0.55 after 386 days of exposure under pH-control. 
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In appearance, only P-0.55 was macroscopically affected by the exposure, showing a 

slight surface disintegration (Fig. V-9) comparable to that observed in ponding. 

 

 

V.1.2.B. MICRO-CRACKING 

The laboratory micro-concretes under pH-control present the same kind of microstructure 

state than the one in ponding (Fig. V-10). P-0.55 seems to undergo comparable cracking 

of its cement paste with gaps around aggregates. The two PCs show signs of surface 

material loss. After 112 days of exposure in pH-control, the two slag blends reveal a 

marked leaching zone of depth comparable to that observed on the slag blends after 

357 days in ponding. This leaching zone is already observed on the slag blends after 

28 days of exposure, which may be a sign that leaching occurs very quickly in pH-control 

but does not develop over exposure time. 

 

P-0.55 P-0.38 

 
 

 

S-0.55 S-0.38 

  
 

Fig. V-10. Crack patterns from BSE micrographs of the laboratory micro-concretes after 112 days of 
exposure under pH-control. 
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V.1.3.  STUDY OF THE MICROSTRUCTURE 

V.1.3.A. IONIC PROFILE 

 

Leaching 

The calcium profiles of the micro-concretes under pH-control exposure (Fig. V-11) reveal 

the same kind of leaching behaviours as observed in ponding. The PCs are characterised 

by a progressive leaching while the slag blends present a step by step leaching. 

 

 P-0.55  P-0.38 

 
 

 

 S-0.55  S-0.38 

  
 

Fig. V-11. Evolution of calcium leaching from the cementitious matrix of the laboratory 
micro-concretes under pH-control. 

 

 

 

 

 

 

Sulfate ingress 
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The pH-control condition enhances sulfate ingress in the micro-concretes compared to 

ponding (Fig. V-12). This is particularly true for the PCs while the slag blends seem not to 

be much sensitive to the low pH. This could be due to the fact that in the pH-control 

exposure no depletion of sulfate occurs on the contrary to the other tests. Slag addition 

seems to reduce sulfate ingress as was observed in ponding. It is worth noting that the 

sulfur profile of P-0.38 is much narrower than that of P-0.55, which confirms previous 

statements, made in the case of exposure under ponding, that the reduced w/c-ratio limits 

the ingress of sulfate to the very top surface of the material. 

 

 P-0.55  P-0.38 

 
 

 

 S-0.55  S-0.38 

  
 

Fig. V-12. Evolution of sulfate ingress in the cementitious matrix of the laboratory micro-concretes 
under pH-control. 
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V.1.3.B. PHASE ASSEMBLAGE ZONATION AND IMPACTS ON THE MICROSTRUCTURE 

 

 
 

Fig. V-13. Phase assemblage zonation of P-0.55 after 386 days of exposure under pH-control. 
 

 

After one year of exposure, the phase assemblage of P-0.55 under pH-control is pretty 

similar, in terms of phases in presence and their depths of formation, to that developed 

under ponding after the same time of exposure. This tends to indicate that the start of the 

exposure is accelerated in the case of pH-control but not the entire exposure. 

 

In addition, the S/Si atomic ratio in the outer and the inner C-S-H of P-0.55 under 

pH-control reaches after 112 days of exposure the same saturation value as observed after 

119 days under ponding in the range of respectively 0.27 ±0.01 for the outer and 

0.21 ±0.01 for the inner. 

 

The damage encountered under pH-control must be comparable to that encountered under 

ponding. 
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V.2.  SEMI-IMMERSION 

V.2.1.  MACROSCOPIC BEHAVIOUR 

V.2.1.A. IONIC TRANSPORT 

 

Leaching 

The pH of the solution of the semi-immersion test followed a cyclic evolution according 

to the monthly solution renewal frequency, as observed for the ponding test in the 

previous chapter (§ IV.1.1.A). 

 

 
 

Fig. V-14. Evolution of calcium leaching from the laboratory micro-concretes under semi-immersion. 
 

The calcium leaching evolution deduced from regular exposure solution measurements 

has been calculated taking into account only the submerged part of the micro-concretes 

(Fig. V-14). A direct comparison with the ponding case can be done since the same ratio 

between the volume of solution and the volume of prisms submerged in the solution was 

maintained. It appears that for all the samples the values remained below that calculated 

for ponding. This indicates that the calcium leaching has been reduced in the 

semi-immersion setting. The contact with the air in this setting let the samples carbonate 

both in the air exposed part and in the submerged part (§ AAppendix B). The calcite 

formed due to carbonation might be too stable so that further calcium leaching is limited. 

Apparently the air exposed part does not play any role in the calcium leaching process. 
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Sulfate ingress 

On the same principle as for calcium leaching, the sulfate combination to the samples in 

semi-immersion has been calculated taking into account only the submerged part of the 

prisms (Fig.V-15). It appears that the sulfate combination is stronger for the Portland 

blends in semi-immersion than in ponding. This might be understood as the air exposed 

part of the prisms may play a role in the ion exchange and combine sulfate. Considering 

the slag blends, the sulfate combination appeared reduced compared to the ponding case. 

Their air exposed part might not be affected in such by ion transport. Capillary suction is 

therefore only expected for the Portland blends and not for the slag blends. 

 

 
 

Fig.V-15. Evolution of sulfate combination from exposure solution to the laboratory micro-concretes 
under semi-immersion. 

 

 

 

V.2.1.B. PHYSICAL CHANGES 

 

Expansion 

The measurements of the length change of the samples in semi-immersion revealed a 

shrinkage within the first 56 days of exposure without further large expansion (Fig. V-16). 

A slight increase in length can be seen after 161 days of exposure for the PCs 

micro-concretes but this is not large enough to confirm deleterious expansion. The two 

slag blends remain stable regarding their length after the first stage of shrinkage. This 

shrinkage behaviour has been verified by a repeat series of semi-immersion tests. This 

shrinkage behaviour can be explained by the water evaporation from the half of the 

samples that is in the air. The samples have been fully immersed in a lime saturated 



Effect of different testing conditions 

129 

solution during 28 days of curing prior to exposure and are therefore saturated at the start 

of semi-immersion exposure. The half of the prisms in the air losses its capillary water 

during the first 56 days of exposure. 

As in ponding, only the two PCs seem to show any sign of expansion while the two slag 

blends show no signs of expansion. The expansions observed in semi-immersion are 

nevertheless less than half than the ones observed in ponding. Semi-immersion cannot be 

seen as a semi-ponding in terms of expansion behaviour. This relative reduced expansion 

may be influenced by carbonation of the surface of the samples in their submerged part 

that creates a barrier for sulfate to ingress. Indeed, on the contrary to the other test settings 

where contact with the air is limited, the semi-immersion test implies a large air contact 

surface and CO2 from the air can dissolve in the exposure solution and carbonate the 

submerged surface of the samples. 

 

 
 

Fig. V-16. Length evolution of the laboratory micro-concretes under semi-immersion. 
 

 

 

Mass change 

The mass loss of the micro-concretes in semi-immersion is not very significant 

(Fig. V-17). Nevertheless, the samples present the particularity to start loosing mass after 

56 days of exposure. This is comparable to the time during which the air exposed part of 

the samples is desaturating as seen from shrinkage behaviour occurring during these first 

56 days of exposure. The fact that no mass loss before 56 days of exposure is to be seen 

may be explained looking at the reference samples stored in lime water that showed mass 

gain within the first 70 days after the start of exposure that had been attributed to an 

uptake of water to compensate the continued hydration. The drying and the water uptake 
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effect would therefore be in competition during the first part of exposure where water 

uptake would be the strongest and after which the desaturation effect would become 

observable. 

 

 
 

Fig. V-17. Mass evolution of the laboratory micro-concretes under semi-immersion. 
 

 

 

Compressive strength 

Compressive strengths of the samples in semi-immersion were not measured considering 

the non-symmetry of the sulfate attack phenomenon and the fact that those measurements 

were only done on remaining material after sampling for SEM analysis; sampling of 

semi-immersion exposed samples necessitates cutting the prism transversally. 

 

 

 

Dynamic elastic modulus 

In semi-immersion all the four mixes seemed to loose some of their elastic properties 

within the first 56 days of exposure after which they remain stable (Fig. V-18). This is to 

be correlated to the shrinkage due to drying of the air exposed part of the samples 

occurring within the first 56 days of exposure. This loss in properties due to drying is 

particularly clear for S-0.55, which is in accordance with following observations made in 

the case of wet/dry cycles exposure where S-0.55 appeared to be the mix to perform the 

worst against drying cycles. 

As will be seen subsequently this confirms the vulnerability of slag blends to drying. 
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Fig. V-18. Normalised flexural dynamic elastic modulus evolution of the laboratory micro-concretes 
under semi-immersion. 

 

 

 

V.2.2.  DAMAGE AND CRACKING 

V.2.2.A. EXTERNAL APPEARANCE 

 

Semi-immersion 

 

  
 

Fig. V-19. Typical visual appearance of the laboratory micro-concretes after 175 days of exposure in 
semi-immersion. 

 

The samples in semi-immersion typically show a crystal efflorescence in the capillary 

suction zone (Fig. V-19). The crystal formed has been identified as thenardite by XRD. 

Repeated crystallisation of thenardite and mirabilite in such semi-immersion exposure due 

to local changes in the RH are known to be harmful for the material. There was however 

no sign of such damage in the semi-immersion samples. 
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V.2.2.B. MICRO-CRACKING 

Microstructure state of the immersed part of the samples in semi-immersion is comparable 

to that observed in ponding with reduced cracking and leaching. 

The crack patterns shown have been taken from the exposure zone where capillary suction 

phenomena take place, just above the solution line (Fig. V-20). The zone has been 

identified owing to sulfur mappings carried along the exposed surface (§ V.2.3.A). It 

seems that the slag blends suffer of stronger surface erosion than the PCs. Slight cracking 

of the microstructure of the PCs is nevertheless observable. 

 

P-0.55 P-0.38 

 
 

 

S-0.55 S-0.38 

  
 

Fig. V-20. Crack patterns from BSE micrographs of the laboratory micro-concretes after 357 days of 
exposure under semi-immersion. 
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V.2.3.  STUDY OF THE MICROSTRUCTURE 

V.2.3.A. IONIC PROFILE 

Leaching 

Leaching in the submerged part of the micro-concretes in semi-immersion is similar to 

that occurring in ponding exposure (Fig. V-21). The emerged part shows also some 

leaching. 

 

 

Sulfate ingress 

The different sulfate ingress behaviours occurring in the submerged and in the emerged 

part of the micro-concretes in semi-immersion is observable matching the qualitative SEM 

sulfur mappings transversally to the exposure (Fig. V-22). The sulfur profiles calculated in 

the submerged and in the emerged part of the samples (Fig. V-37) confirm that capillary 

suction occurs in the air exposed part of the samples leading to sulfate suction in the zone 

above the immersion level without much leaching effect. The behaviour in the immersed 

zone is comparable to that in ponding exposure. In both parts of the samples the sulfate 

ingress was found to be more pronounced in the PCs than in the slag blends as suggested 

by the sulfate combination calculation (Fig.V-15) and as verified by the sulfur profiles 

(Fig. V-23). 
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  Submerged part  Emerged part 
   

P-0.55 

 
   

P-0.38 

 
   

S-0.55 

   

S-0.38 

 
 

Fig. V-21. Evolution of calcium leaching from the cementitious matrix of the laboratory 
micro-concretes under semi-immersion exposure; submerged part (left) and emerged part (right). 
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Fig. V-22. Qualitative SEM sulfur mapping of P-0.55 in semi-immersion. 

 

 

 

 

 

 

 

 

 

 

 



Effect of different testing conditions 

136 

  Submerged part  Emerged part 

   
P-0.55 

 
   

P-0.38 

   

S-0.55 

   

S-0.38 

 
Fig. V-23. Evolution of sulfur profiles in the cementitious matrix of the laboratory micro-concretes 

under semi-immersion; submerged part (left) and emerged part (right). 
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V.2.3.B. PHASE ASSEMBLAGE ZONATION AND IMPACTS ON THE MICROSTRUCTURE 

 

 Submerged part  Emerged part 

 
 

Fig. V-24. Phase assemblage zonation of the submerged part (left) and the air emerged (right) of 
P-0.55 after 357 days under semi-immerison; submerged part (left) and emerged part (right). 

 

 

The phase assemblage in the immersed part seems close to that observed in ponding 

(Fig. V-24) with less deep ettringite formation probably due to carbonation that may 

prevent sulfate from penetrating. The air exposed part looks similar to the immersed part 

in terms of phase assemblage but with a much reduced and less deep ettringite formation. 

This is however particularly interesting that the sulfate penetrated by capillary suction in 

the emerged part of the samples may be enough to stabilise ettringite formation above the 

solution level. 

In addition, the levels of sulfate combination to the C-S-H of P-0.55 reaches comparable 

values as observed in ponding, both in the submerged and emerged parts. After 245 days 

of exposure in semi-immersion, the S/Si atomic ratio of the outer C-S-H is brought in the 

submerged part to 0.23 ±0.01 at 1 mm depth and goes down back to 0.12 ±0.005 at 3 mm 

depth, while in the emerged part it is brought to 0.27 ±0.01 at 0.05 mm depth and goes 

down back to 0.17 ±0.005 at 1 mm depth. The saturation level of the CSH in sulfate seems 

to be reached both in the submerged and emerged parts but less deep inside the sample in 

the emerged part. The depth of sulfate combination into the C-S-H in the submerged part 

of P-0.55 in semi-immersion is comparable to that of P-0.55 in ponding after the same 

time of exposure. This may be a sign that expansion is indeed being initiated for P-0.55 in 

semi-immersion. The damage might not be visible due to a less deep change in the phase 

assemblage (i.e.; a less deep ettringite formation). 
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V.3.  WET/DRY CYCLES 

V.3.1.  MACROSCOPIC BEHAVIOUR 

V.3.1.A. IONIC TRANSPORT 

 

Leaching 

The pH of the solution of the wet/dry cycles test followed a cyclic evolution according to 

the monthly solution renewal frequency, as observed for the ponding test in the previous 

chapter (§ IV.1.1.A). 

 

 
 

Fig. V-25. Evolution of calcium leaching from the laboratory micro-concretes under wet/dry cycles 
exposure. 

 

The wet/dry cycles exposure is characterised by the alternation of wetting and drying 

cycles of respectively 3 and 4 days a week. One can consider the wetting and drying 

cycles in the whole and deduce from the calcium leaching evolution along exposure 

(Fig. V-25) that the wet/dry cycles setting reduces calcium leaching compared to the 

ponding exposure. This is appropriate in terms of prediction of structure service life. 

Nevertheless, one can consider the effective time in exposure to the solution during the 

wet phase of the wet/dry cycles and conclude that the wet/dry cycles setting enhances 

calcium leaching compared to the ponding exposure. This approach allows evaluating the 

effect of wet/dry cycles compared to ponding in terms of damage mechanism, which is the 

aim of the study. 
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Sulfate ingress 

 
 

Fig. V-26. Evolution of sulfate combination from exposure solution to the laboratory micro-concretes 
under wet/dry cycles exposure. 

 

As exposed for calcium leaching, two approaches can be considered face to the wet/dry 

cycles exposure and its effect on sulfate combination (Fig. V-26). In terms of service life 

(overall time), the wet/dry cycles appear to delay the sulfate combination without having 

much effect on its rate. But in terms of mechanism (wet time), the wet/dry cycles do 

increase the rate of onset of sulfate combination. It is worth to note that S-0.55 combines 

sulfate in the same range than the two PCs P-0.55 and P-0.38, while the other slag blend 

S-0.38 dos not seem to combine much sulfate. The delay observed before sulfate 

combination is characterised by a first slight sulfate combination followed by an almost 

complete release of the combined sulfate. In a first time, the sulfate might have penetrated 

the micro-concretes and crystallised in it, while the precipitated crystals might have 

dissolved in a second time. Admitting a progressive degradation of the micro-concretes, 

the available surface area may increase over exposure time and enable higher sulfate 

combination. 
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V.3.1.B. PHYSICAL CHANGES 

 

Expansion 

 
 

Fig. V-27. Length evolution of the laboratory micro-concretes under wet/dry cycles. 
 

Under wet/dry cycles the PCs showed expansion, in a comparable range as for ponding 

and faster if only wet time considered, but interestingly the slag blends appeared to be 

very sensitive to wet/dry cycles regarding expansion (Fig. V-27). The expansion of P-0.55 

and S-0.55 seems to show a three-stage behaviour with the same start and end times: 

induction stage #1 up to 217 days, slow expansion stage #2 from 217 to 357 days and 

quick expansion stage #3 after 357 days. The times of the start of the different stages are 

similar as for ponding but with a delay of 56 days for stage #2 and 28 days for stage #3. 

These delays could be explained by the fact that the samples in wet/dry cycles are in 

contact with the exposure solution for less of the time than in ponding. Indeed, the 

micro-concretes are 1.75 times less in immersion to the exposure solution under wet/dry 

cycles than under ponding. The start of the expansion of P-0.55 under wet/dry cycles 

occurs after 217 days of exposure corresponding to 124 days after effective exposure to 

the solution, which is in the range of expansion start of P-0.55 after 161 days under 

ponding. Additionally, slight fluctuations are to be seen for all samples during the first 

stage where the induction period prior to expansion probably alternates with shrinkage due 

to drying. The rates of expansion of P-0.55 and S-0.55 are respectively of 

1.7 · 10-4 %.days-1 and 2.6 · 10-4 %.days-1 during stage #2 and of 5.3 · 10-4 %.days-1 and 

2.9 · 10-3 %.days-1 during stage #3. The ratios between the expansion rates in the two 

different stages are in the range of three for P-0.55 (comparable to the ratio of two and half 

for P-0.55 in ponding) and eleven for S-0.55. P-0.38 seems to enter stage #2 after 

385 days of exposure (220 wet days), which is delayed compared to the start of expansion 
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detected after 168 days in ponding. Similarly to S-0.55 compared to P-0.55 behaviour in 

wet/dry cycles, S-0.38 show a higher degree of expansion than P-0.38. S-0.38 seems to 

enter stage #2 after 357 days of exposure, which is in the same range as P-0.38. S-0.38 

seems however to enter a stage #3 of expansion after 434 days of exposure where 

expansion seems to stop. This later stage #3 seems to be representative of the material 

behaviour regarding the low scatter of the measurements but would need to be checked by 

further study. It is difficult to conclude in the case of P-0.38 concerning such a stage #3 

since a reduced rate of expansion after 434 days of exposure is not clearly evident. 

 

 
 

Fig. V-28. Expansion under wet/dry cycles versus expansion under ponding for the laboratory 
micro-concretes. 

 

In conclusion, the slag blends are highly sensitive to wet/dry cycles with respect to 

expansion, while the behaviour of the PCs is comparable to their behaviour in ponding 

(Fig. V-28). This is particularly true for the samples with w/b of 0.55 (P-0.55 and S-0.55) 

since sorption would be more rapid due to the higher connectivity of the capillary pore 

network. The relationship between the expansions of P-0.55 in ponding and wet/dry cycles 

follows the x = 1.75·y regression line, that takes into account the reduced exposure time in 

wet/dry cycles compared to ponding, especially after cracking occurs. 

Considering the high slag replacement level (70 wt.-%), the behaviour of the slag blends is 

expected to be dominated by slag and its hydrates. It seems that the microstructure of the 

slag blends has a poor behaviour under wet/dry cycles. Thus, slag and slag hydrate must 

stand bad against drying and their microstructure might be irreversibly affected. 

 

Mass change 
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Fig. V-29. Mass evolution of the laboratory micro-concretes under wet/dry cycles. 
 

Under wet/dry cycles, all samples show similar behaviour with respect to mass change: no 

significant loss during the first 434 days of exposure followed by a sudden abrupt decrease 

in mass (Fig. V-29). This mass loss reaches 3.8 % for S-0.55 after 577 days of exposure 

and is therefore likely to be related to material loss due to extensive cracking from the 

high expansion rather than to leaching as was the case for P-0.55 in ponding. This is 

supported by the macroscopic appearance of the samples which shows spalling, especially 

of S-0.55, rather than surface softening as observed in ponding particularly for P-0.55. For 

the two PCs P-0.55 and P-0.38, the mass loss remains in the range of 1 % as observed in 

ponding after 578 days of exposure and could therefore be related to leaching as well as to 

material loss. The abrupt mass loss is particularly surprising for S-0.38 since it revealed a 

stop in expansion precisely after 434 days of exposure. This might nevertheless indicates 

that stresses developed by expansion created a massive cracking that caused the abrupt 

mass loss and release the expansive stresses preventing the sample from further expansion. 

The representation of the mass loss against expansion (Fig. V-30) underlines the 

discontinuous behaviour for the slag blends while the behaviour of the PCs remain more 

similar to the continuous one observed in ponding. The microstructure of the slag blends is 

clearly damaged by the wet/dry cycles. 
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Fig. V-30. Relationship between length and mass changes of the laboratory micro-concretes under 
wet/dry cycles. 

 

 

Compressive strength 

 
 

Fig. V-31. Normalised compressive strength evolution of the laboratory micro-concretes under 
wet/dry cycles. 

 

The compressive strengths evolution of the samples under wet/dry cycles revealed the fact 

that damage in the four samples does not occur abruptly as seen from mass loss but 

develops progressively during exposure (Fig. V-31). This underlines the fact that stresses 

during expansion were high enough at any stage of the expansion to damage the bulk of 

the samples. S-0.55 encountered the highest loss in mechanical performance but no 

three-stage behaviour can be identified as for expansion. Nevertheless, the rate of strength 

loss seems to increase with time. The three other mixes evolve in the same range of 

compressive strength loss which points out that to different expansion behaviours 

correspond the same kind of mechanical properties loss. A three-stage behaviour is 

identifiable for P-0.55 similarly to what has been observed in ponding with start and end 
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times of the stages corresponding to the one observed for the expansion of P-0.55 in 

wet/dry cycles. This would indicate that the PCs suffer similar kind of damage in wet/dry 

cycles and in ponding while the slag blends suffer a specific damage process when placed 

under wet/dry cycles. 

 

 

Dynamic elastic modulus 

 
 

Fig. V-32. Normalised flexural dynamic elastic modulus evolution of the laboratory micro-concretes 
under wet/dry cycles. 

 

Results from normalised flexural elastic modulus evolution of the laboratory 

micro-concretes under wet/dry cycles clearly revealed a particular behaviour specific to 

this exposure condition (Fig. V-32). All the four samples showed a linear decrease of their 

elastic properties from the start of exposure up to 357 days, the time of the start of 

stage #3 for the expansion of S-0.55, P-0.55 and S-0.38 and start of stage #2 for the 

expansion of P-0.38. Then a high reduction of the elastic properties is observable for all 

the samples up to 434 days after which the performance remains constant corresponding to 

the reduced expansion observed for all the samples. The clear delineation of behaviour 

again shows the usefulness of this technique in following the damage behaviour an in 

ranking the samples. The abrupt changes in the behaviour of the elastic properties is in 

agreement with the sudden expansion and mass loss previously observed. The last stage 

where no change in elastic properties is observed (and there is no further expansion) 

occurs exactly at the time when abrupt mass loss is measured. This supports the 

hypothesis that stresses developed during expansion are relaxed by the mass loss and the 

remaining stresses in the material are not sufficient to continue expansion. 
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Relationship between normalised flexural dynamic elastic modulus and expansion of the 

micro-concretes underlines this different damage mechanism observed in wet/dry cycles 

compared to ponding (Fig. V-33). Also the ranking of the samples exposed to wet/dry 

cycles is clear: S-0.55 performs the worst, followed by P-0.55, then S-0.38 and finally 

P-0.38. This ranking highlights the vulnerability of slag blends to changes in humidity. 

 

 
 

Fig. V-33. Relationship between the normalised flexural dynamic elastic modulus and the expansion of 
the laboratory micro-concretes under wet/dry cycles. 
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V.3.2.  DAMAGE AND CRACKING 

V.3.2.A. EXTERNAL APPEARANCE 

All the samples exposed to wet/dry cycles revealed some signs of macroscopic damage 

(Fig. V-34). The PCs edges appeared eroded. S-0.55 showed severe surface cracking and 

loss of corners while the other slag blend S-0.38 did not show much damage. 

As for ponding test, carbonation of the micro-concretes has been checked with 

phenolphthalein. No significant carbonation could be identified and photographs are 

reported in appendix (Appendix B). 

 

P-0.55 P-0.38 

 
 

 

S-0.55 S-0.38 

  
 

 
Fig. V-34. Visual appearance of the laboratory micro-concretes after 577 days of exposure in wet/dry 

cycles. 
 

V.3.2.B. MICRO-CRACKING 

In the wet/dry cycles, P-0.55 and S-0.55 show the most severe damage characterised by a 

progressive leaching with dense cracking developing at late stage (Fig. V-35). The start of 

the cracking seems to correspond to the start of expansion. Cracking appears particularly 

pronounced for S-0.55 which is also the one to expand the most. S-0.38 revealed similar 

damage with less cracking while P-0.38 only started to show slight cracking around the 

aggregates after 357 days of exposure. 

 P-0.55 S-0.55 
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Fig. V-35. Crack patterns from BSE micrographs of P-0.55 and S-0.55 after 28, 119, 245 and 357 days 
of exposure in wet-dry cycles 
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V.3.3.  STUDY OF THE MICROSTRUCTURE 

V.3.3.A. IONIC PROFILE 

 

Leaching 

 

 P-0.55  P-0.38 

 
 S-0.55  S-0.38 

 
Fig. V-36. Evolution of calcium leaching from the cementitious matrix of the laboratory 

micro-concretes under wet/dry exposure. 
 

Calcium leaching of the micro-concretes is enhanced under wet/dry cycles compared to 

ponding (Fig. V-36). 
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Sulfate ingress 

 

 P-0.55  P-0.38 

 
 

 

 S-0.55  S-0.38 

  
 

Fig. V-37. Evolution of sulfur profiles in the cementitious matrix of the laboratory micro-concretes 
under wet/dry cycles. 

 

 

The sulfur profiles of the micro-concretes under wet/dry cycles (Fig. V-37) reveal a 

reduced sulfate ingress for P-0.55 while the other samples and especially the slag blends 

show comparable profiles as observed in ponding. Nevertheless, sulfate penetrate deeper 

with the wet/dry cycles. It is worth noting that the previous observation made for ponding 

that the slag blends showed reduced sulfate ingress is verified in the case of the wet/dry 

cycles. 
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V.3.3.B. PHASE ASSEMBLAGE ZONATION 

 

The phase assemblage zonations of the binder of micro-concretes under wet/dry cycles as 

determined from the combination of XRD and SEM-EDS analysis (Fig. V-38 and 

Fig. V-39) confirm some observations from the ponding exposure. Gypsum is found only 

in the Portland systems. The slag blends seem to stabilize monocarboaluminate over 

monosulfoaluminate. The samples present the characteristics of leaching with depletion of 

portlandite and decalcification of C-S-H at the surface. Carbonation identified by the 

calcite formation appears enhanced and deeper in the wet/dry cycles compared to ponding. 

 

 

 

Ettringite formation in P-0.55, P-0.38 and S-0.55 seems to be comparable in terms of 

relative amount and depth to that found in the ponding exposed samples. Additionally, 

ettringite has been found in S-0.38, which tends to indicate that cracking is accompanied 

by extensive ettringite formation. This is supported by the relationship clearly observed 

for P-0.55 and S-0.55 between the expansion and the total amount of ettringite formed 

(Fig. V-40). Nevertheless, this does not mean that ettringite is at the origin of the 

expansion since the large cracking of the micro-concretes under wet/dry cycles may 

promote sulfate ingress and extensive ettringite precipitation in the opened free spaces 

(i.e.; in the cracks). 
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Fig. V-38. Evolution in depth of phase assemblage in the binder of P-0.55 and S-0.55 after various 
exposure times under wet/dry cycles. 
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  P-0.38  S-0.38 

357 
days 

 
Fig. V-39. Evolution in depth of phase assemblage in the binder of P-0.38 and S-0.38 after 357 days of 

exposure under wet/dry cycles. 
 

 

 

 P-0.55 

 
 

 S-0.55 

 
 

Fig. V-40. Relationship between expansion and ettringite formation 
in P-0.55 and S-0.55 under wet/dry cycles. 



Effect of different testing conditions 

153 

Gypsum seems to form in comparable amounts and depths in the Portland micro-concretes 

exposed to wet/dry cycles as for ponding. Nevertheless, the pattern of deterioration is 

different: the samples subjected to wet/dry cycles are characterised by cracking while the 

samples exposed to ponding showed surface decohesion that was attributed to the gypsum 

formation. In the case of the wet/dry cycles, the gypsum formed does not seem to lead to 

any decohesion of the samples. However, gypsum has been found to be finely intermixed 

to the C-S-H of P-0.55 in the case of ponding exposure while it appears more separate in 

wet/dry cycles (Fig. V-41). This might indicate that gypsum formed partly from the C-S-H 

in ponding exposure and probably only from portlandite in wet/dry cycles. The formation 

of gypsum from the C-S-H causes a decalcification of the C-S-H that can explain the 

decohesion of the micro-concretes surface. The formation of gypsum from portlandite in 

turn would not be so harmful since one phase is replaced by another and both do not 

intercede in the overall performance of cement. This could explain why the 

micro-concretes subjected to wet/dry cycles do not show any decohesion of their surface 

despite the formation of gypsum. 

 

 Ponding  Wet/dry cycles 

  
 

Fig. V-41. SEM-EDS plots of S/Ca versus Al/Ca atomic ratios from the outer C-S-H of P-0.55 after 
357 days under ponding (left) and wet/dry cycles (right); Ett.: ettringite, G.: gypsum, Mc./Hc.: mono- 

or hemicarboaluminate, Ms.: monosulfoaluminate.. 
 

 

These observations underline the fact that consideration of the phase assemblage alone 

does not give a definitive indication about the damage mechanisms: the local 

microstructure needs to be investigated. 
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V.3.3.C. IMPACTS ON THE MICROSTRUCTURE 
 

Ion transport and phase formation 

On the contrary to the case of the ponding exposure, P-0.55 expansion may not so easily 

be linked to the sulfate combination to the outer but also to the inner C-S-H (Fig. V-42). 

S-0.55 reveals in turn a linear relationship between its expansion and the sulfate 

combination to the inner C-S-H. 
 

 P-0.55 

 
 

 S-0.55 

 
 

Fig. V-42. Relationship between the cumulative S/Si atomic ratio of the outer and inner C-S-H and the 
expansion of P-0.55 (top) and S-0.55 (bottom) under wet/dry cycles. 

 

However, as already mentioned, the high slag replacement level of 70 wt.-% could have 

the consequence that the material properties would be more controlled by the slag and he 

slag hydrates than by the cement and its hydrates. As found in the case of the ponding 

exposure, it appears that under wet/dry cycles slag hydrates can combine sulfate 

(Fig. V-43). 
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S-0.55 

  
 

Fig. V-43. SEM-BSE micrograph (left) and corresponding quantified S-mapping (right) of a slag grain 
with hydration rim at 0.5 mm depth of S-0.55 after 357 days under ponding. 

 

The sulfur level in the slag hydrate was found to reach 4.53% ±1.34 at 0.5mm and 1.22% 

±0.22 at 1.0mm. The slag hydrate enriched in sulfur showed cracking while the one with 

lower sulfur content appeared sound. This compared with the very low levels of sulfur 

found in the slag hydrate of the ponded samples leads to the conclusion that sulfate 

combination to the slag hydrate could be link with the macroscopic damage. 

A tendency towards relationship between the expansion of S-0.55 under wet/dry cycles 

and the combination of sulfate to the slag hydrates could be drawn (Fig. V-44). 

 

 

 S-0.55 

 
 

Fig. V-44. Relationship between the cumulative S/Si atomic ratio of the slag hydration rim and the 
expansion of S-0.55 under wet/dry cycles. 
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Cracking of the hydrates 

 

P-0.55 S-0.55 

 
 

Fig. V-45. SEM-BSE micrographs of the inner C-S-H of the micro-concretes 
after 357 days under wet/dry cycles exposure. 

 

Looking closer at the cracking behaviour of P-0.55 and S-0.55 under wet/dry cycles 

(Fig. V-45), it appears that cracking goes through the outer C-S-H, around aggregates and 

through the inner C-S-H and at the interface between the inner and the outer C-S-H. Also 

important to note is the large formation of ettringite in the inner C-S-H of S-0.55 as 

observed in the case of ponding. 

Considering S-0.55, the slag hydration rims seemed to undergo specific damage of their 

microstructure when put under wet/dry cycles, showing crack development at the close 

interface with the outer products (Fig. V-46). 

 

 

It is however difficult to conclude whether expansion comes from the inner hydration 

products or from the outer ones. Nevertheless, drying as conducted in the wet/dry cycles 

tests might not be without consequence regarding the hydrates. Jennings [59] showed that 

drying from 20 to 0 % RH is accompanied by loss of interlayer water causing irreversible 

collapse in the structure. The RH was measured in the micro-concretes exposed to wet/dry 

cycles. After the wet period, the RH inside the micro-concretes was of 91.4 %, while after 

the dry period, the RH appeared to be lowered down to 21.0 %, which is in the critical 

range mentioned by Jennings. The slag hydrates may be more sensitive to such drying and 

stronger collapse than the cement hydrates. 
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Fig. V-46. SEM-BSE micrographs of the slag with hydration rim at 0.5 mm depth 
for S-0.55 and S-0.38 after 357 days under wet/dry cycles exposure. 
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V.4.  SUMMARY 

The pH-control test appeared to be comparable to the ponding case with the difference that 

the non-renewal of the solution reduced the leaching. 

 

The semi-immersion test seems to involve similar mechanisms of ion transport to the 

ponding test. The capillary suction might nevertheless contribute to sulfate combination 

for the Portland blends while it is not observable in the case of the slag blends. 

 

The wet/dry cycles seem to induce a mechanical fatigue with discontinuous and abrupt 

loss of performance. The wet/dry cycles applied imply an oscillation in relative humidity 

in the microstructure. Sulfate-bearing phase precipitation and stability is highly dependant 

on the relative humidity. This may explain in a first approach the delay observed in sulfate 

combination. However, this test points out the ability of slag blends to combine sulfate at a 

comparable level than the PCs. The slag hydrates seem to be very sensitive to the drying 

operated. 
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Chapter VI - Field exposures 
 

 

 

 

 

 

The field concretes selected for detailed study come from two different locations 

involving various exposure chemistries and settings. The first series most comparable to 

the laboratory samples were exposed in a sulfate enriched ground in Argentina for 

19 years. The muddy soil had a sulfate content of 0.97 wt.-%, corresponding to an 

equivalent Na2SO4 solution of 14.34 g.l-1. The pH was in the range of 7-8. The samples 

were partially submerged so that their upper layer was subjected to weathering with a 

wet/dry cycles frequency of 15-20 cycles.year-1. The temperatures were in the range of 

0-34 °C. The study focuses on a CEM I P-0.53 and on a CEM III/B with high level slag 

replacement (80 wt.-%) S-0.53.  

The field samples were studied following the same methodology developed for the 

laboratory specimens, with the difference that only data at a single exposure time t could 

be assessed. 
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VI.1.  PARTIAL IMMERSION IN SULFATE ENRICHED GROUND (ARGENTINA) 

VI.1.1.  STATE OF DAMAGE 

VI.1.1.A. MASS CHANGE 

 

 
 

Fig. VI-1. Mass evolution of the field concretes under partial immersion in sulfate enriched ground, 
after Irassar. 

 

The mass change of the concrete specimens was regularly recorded and results have been 

provided by Irassar (Fig. VI-1). The concretes appear to loose mass progressively under 

the Argentinean exposure conditions. The CEM I P-0.53 shows a reduced mass loss rate 

relative to the blended concretes that could be comparable to that observed for the 

laboratory micro-concrete P-0.55 under the ponding exposure in terms of range of values 

and behaviour (§ IV.1.2.A). 

The ranking of the samples is closer to that observed in the laboratory tests under wet/dry 

cycles with the Portland specimens having a reduced mass loss compared to the slag 

blends (§ V.3.1.B). 
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VI.1.1.B. DYNAMIC ELASTIC MODULUS 

 
 

Fig. VI-2. Dynamic elastic and shear modulus evolution of the field concretes under partial immersion 
in sulfate enriched ground, after Irassar. 

 

The dynamic elastic modulus data supplied by Irassar (Fig. VI-2) indicate values after 

15 years of exposure for P-0.53 and S-0.53of respectively 48 GPa and 44 GPa. The values 

are in the range of that measured in the flexural mode on the laboratory micro-concretes. 

The slag blend would perform worst than the plain Portland, as observed in the case of the 

laboratory micro-concretes under wet/dry cycles exposure (§ V.3.1.B). But in order to 

evaluate accurately the ranking of the specimens, the dynamic elastic modulus 

measurements should be normalised by values of reference specimens not exposed to 

sulfate. Such values are not available. However, the evolution of the dynamic elastic 

modulus of P-0.53 characterised by a loss of properties followed by a plateau correlates 

with that observed in the case of the wet/dry cycles exposure from the laboratory tests 

undertaken (§ V.3.1.B). The evolution of the blended concrete would more likely correlate 

with that observed in the case of the ponding exposure (§ IV.1.2.D) unless the last plateau 

has not occurred yet. 
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VI.1.1.C. VISUAL APPEARANCE 

The visual appearance of the Argentinean field concretes (Fig. VI-3) reveals broken 

corners of the Portland blend, which might not be very significant since such parts are 

very fragile and may have broken during the transport of the samples. The slag blend 

shows significant erosion, with aggregates rising the surface, on its top side exposed to 

weathering. 

This confirms observations made by Irassar on other specimens in semi-immersion in such 

a sulfate soil [21]. Irassar pointed out that especially high slag additions in concrete would 

have a negative effect on sulfate resistance when wet/dry cycles and salt crystallisation are 

concerned (Fig. VI-4). This would tend to confirm the observation from the laboratory 

study that slag blends with high slag replacement level do not withstand well wet/dry 

cycles exposure. 

However, the bottom side fully submerged of both samples seems to be in good state.  

 

P-0.53 S-0.53 

  
 

Fig. VI-3. Visual appearance of the field concretes after 19 years under partial immersion (submerged 
part: bottom of the concrete blocks – exposed part:  top of the concrete blocks) in sulfate enriched 

ground. 
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Air exposed part 

 

 

Submerged part 

 

Fig. VI-4. Visual appearance of the field blended concretes after 15 years under semi- immersion in 
sulfate enriched ground, after Irassar. 

 

 

 

 

VI.1.1.D. MICRO-CRACKING 

Looking closer to the microstructure, it appears that the Portland blend shows cracking in 

its submerged surface while the slag blend remains in relative good state (Fig. VI-5). 

P-0.53 crack pattern can be directly related to that observed in the laboratory for P-0.55 

under ponding. 
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 Submerged part 

P-0.53 

  

S-0.53 

 

Fig. VI-5. Crack patterns from BSE micrographs of the field concretes after 19 years under full 
immersion in sulfate enriched ground. 
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VI.1.2.  STUDY OF THE MICROSTRUCTURE 

VI.1.2.A. IONIC PROFILE 

Leaching 

 
 

Fig. VI-6. Calcium profiles of the cementitious matrix of the field concretes after 19 years under 
partial immersion in sulfate enriched ground; submerged part. 

 

 

 
 

Fig. VI-7. Calcium profiles of the cementitious matrix of the field concretes after 19 years under 
partial immersion in sulfate enriched ground; exposed part. 

 

The calcium profiles (Fig. VI-6 and Fig. VI-7) confirm the presence of leaching both in 

the fully submerged and exposed parts of the concretes, the phenomenon being increased 

in the exposed part. This supports previous observation from the laboratory owing to 

which wet/dry cycles appeared to increase leaching. 

The irregular leaching behaviour is probably due to the heterogeneous compaction of the 

cement pastes. However, the increased calcium content on the surface of the concretes 

must be a sign of surface carbonation. 
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Sulfate ingress 

 
 

Fig. VI-8. Sulfate profiles of the cementitious matrix of the field concretes after 19 years under partial 
immersion in sulfate enriched ground; submerged part. 

 

 

 
 

Fig. VI-9. Sulfate profiles of the cementitious matrix of the field concretes after 19 years under partial 
immersion in sulfate enriched ground; exposed part. 

 

The sulfate ingress is also subjected to leaching effects in the full and to lesser extend in 

the exposed part of the concretes (Fig. VI-8 and Fig. VI-9). Interestingly, the levels of 

ingress are comparable in both exposure types as was also observed in the laboratory 

micro-concretes. The reduced sulfate ingress observed for the laboratory samples in the 

slag blend compared to the pure Portland is nevertheless not confirmed here, where the 

sulfate ingress seems to reach lower values than observed in the laboratory. This might be 

related to the fact that the exposure surrounding is not liquid but solid (mud) making a 

reduced connection between the pore network and the environment in terms of ion 

transport 
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Submerged part 

 
 

Exposed part 

 
 

Fig. VI-10. Micro-XRF quantitative sulfate mapping of S-0.53 after 19 years under partial immersion; 
submerged part (top) and exposed part (bottom). 

 

 

Micro-XRF measurements of the quantitative sulfate mapping in the submerged and 

exposed parts of S-0.53 (Fig. VI-10) reveal similar ingress behaviour as depicted by the 

SEM sulfur-mapping image analysis method. The SO3 values ranging from 0 to 8-9 wt.-% 

do correspond to values of sulfur from 0 to 3-3.5 wt.-% as deduced by the calculation of 

the sulfur profiles from SEM sulfur-mapping image analysis.  

Both techniques are validated. The micro-XRF requires poor sample preparation (minutes) 

but long acquisition time (days) and the SEM-based method long sample preparation 

(days) and short acquisition and analysis time (minutes). 
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VI.1.2.B. PHASE ASSEMBLAGE ZONATION 

  Submerged part  Exposed part 

P-0.53 

 
   

S-0.53 

  
 

Fig. VI-11. Phase assemblage zonations as determined from XRD and SEM-EDS analyses of the field 
concretes after 19 years under partial immersion in sulfate enriched ground (submerged part: left – 

exposed part: right). 
 

The qualitative phase assemblage zonations (Fig. VI-11) reveal comparable phase 

assemblages for P-0.53 under full and exposed immersion, confirming the laboratory 

observations of P-0.55 under ponding and wet/dry cycles. The major difference is found 

for the slag blend S-0.53 for which ettringite is found to form deeper in the exposed part 

compared to the submerged part. This confirms again the observations from the laboratory 

micro-concrete S-0.55 that presented deeper ettringite precipitation when exposed to 

wet/dry cycles compared to ponding. Also gypsum formation was detected in the exposed 

part of the S-0.53 but not in the submerged part. The difficulty to detect hydrotalcite in the 

exposed part of the slag blend while it was easily detected in the submerged part indicates 

that the slag hydrates may undergo some deterioration from the exposed conditions. 

It is worth noting that gypsum formation was found in these field concretes in contrast to 

what is often claimed. Nevertheless, the particularly high sulfate content of the soil might 

be at the origin of gypsum stabilization, which should not be taken as representative of 

real field cases.  

Monocarboaluminate is found to be more important in the field concretes over 

monosulfoaluminate which is the main AFm phase present in the laboratory samples. 
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VI.1.2.C. LOCAL EFFECTS ON THE MICROSTRUCTURE 

Sulfate combination to the hydrates 

 

 Outer C-S-H  Inner C-S-H 

 

Fig. VI-12. EDS S/Si atomic ratio of the outer (left) and inner C-S-H (right) of P-0.53 after 19 years 
under partial immersion in sulfate enriched ground; submerged part. 

 

 

 Outer C-S-H  Inner C-S-H 

 

Fig. VI-13. EDS S/Si atomic ratio from the outer (left) and inner C-S-H (right) of P-0.53 after 19 years 
under partial immersion in sulfate enriched ground; exposed part. 
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The sulfate combinations to the outer C-S-H of P-0.53 under full and exposed immersion 

(Fig. VI-12 and Fig. VI-13) reach comparable values to that of P-0.55 under respectively 

ponding and wet/dry cycles with a maximum of S/Si atomic ratio of 0.25. The sulfate 

combination to the inner C-S-H in turn seems to be reduced for the submerged part of the 

field concrete compared to the laboratory micro-concrete under ponding but increased for 

the exposed part of the field concrete compared to the laboratory micro-concrete under 

wet/dry cycles. Nevertheless, the sulfate combination to the inner C-S-H of P-0.55 was 

found to be higher in the case of wet/dry cycles exposure than in the case of the ponding 

exposure. The field concrete P-0.53 follows the same tendency comparing the sulfate 

combination to its inner C-S-H in the submerged and exposed parts. 

 

 

 

Cracking of the hydrates 

 

  
  
 

 
 

Fig. VI-14. SEM-BSE micrograph of a slag with hydration rim with corresponding quantitative 
S-mapping for S-0.53 after 19 years under partial immersion in sulfate enriched ground; submerged 

part. 
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Fig. VI-15. SEM-BSE micrograph of a slag with hydration rim with corresponding quantitative 
S-mapping for S-0.53 after 19 years under partial immersion in sulfate enriched ground; exposed 

part. 
 

 

The slag hydration rims of S-0.53 under exposed immersion showed severe cracking 

compared to that from the full immersion part (Fig. VI-15 and Fig. VI-15). The cracking 

of the slag hydration rims seems to be associated with a higher sulfur combination. This 

would tend to confirm observations made from the S-0.55 laboratory micro-concrete after 

357 days of exposure under wet/dry cycles where cracked slag hydration rims revealed 

sulfur content up to 4 at.-%. 

However, the fact that hydrotalcite could be hardly identified by XRD neither by SEM 

analysis on S-0.53 subjected to exposed immersion indicates that the slag hydrates have 

encountered some deterioration. 

Note that, as it was the case for the laboratory samples, the hydrotalcite like phase consists 

in fact of quintinite, usually related to hydrotalcite with Mg/Al atomic ratio of 2 and not 3 

as in typical hydrotalcite. 
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VI.2.  COMPARISON BETWEEN FIELD AND LABORATORY 

 

The Argentinean concretes were exposed for 19 years in partial immersion. The partial 

immersion exposure comprises submerged and exposed parts.  

 

The physical changes of the concretes could be related to that observed for the laboratory 

specimens stored for 1 year under wet/dry cycles. Slag blend with high slag replacement 

level appeared to perform worst under such partial immersion, in particular concerning the 

exposed part of the samples despite the lower sulfate ingress. This was also observed in 

the laboratory for the slag blends under wet/dry cycles. 

 

Nevertheless, no evident relationship between the state of damage and the ettringite 

formation could be observed. 

 

Sulfate has been found to combine to the outer and inner C-S-H phases of the Portland 

blend on a comparable manner as observed from the laboratory samples. The slag 

hydration rim appeared to combine sulfate, especially in the exposed regime where it 

appeared cracked. Such a cracking of the slag hydration rim could be related to the 

cracking observed for the slag laboratory blends under wet/dry exposure and might either 

be a sign of swelling of the hydrates or cracking under local stresses. 
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Chapter VII - Discussion, conclusions and perspectives 
 

 

 

 

 

 

 

The thesis has been divided into three main steps: 

 elaboration of representative and repeatable laboratory tests for sulfate resistance      

(at BAM – Bundesanstalt für Materialforschung und -prüfung – Germany); 

 procurement and selection of sulfate exposed field samples, started before the project 

(at BAM); 

 parallel study at macro and micro level of the laboratory and field specimens             

(at BAM and EPFL – Ecole Polytechnique Fédérale de Lausanne – Switzerland). 

 

The originality of the thesis is the parallel study of laboratory and field specimens by the 

same methodology sound track. The laboratory micro-concretes have been designed to be 

as close as possible to typical field concretes. The laboratory exposure conditions have 

been adjusted to be as representative as possible to usual field exposures. 

The laboratory samples allow a chronological study while the field samples deliver 

instantaneous state of the damage. The large panel of methods implemented allows 

correlating the physical changes to the microscopic phenomena. 
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VII.1.  MAIN RESULTS 

VII.1.1.  IMPROVEMENTS OF UNDERSTANDING OF DAMAGE UNDER PONDING EXPOSURE 

VII.1.1.A. DAMAGE PROCESS 

The expansion process has been found to follow a three-stage behaviour. The common 

two-stage expansion process encountered in the literature would in fact have its second 

stage split into two stages of increasing rate. This three-stage process has been verified for 

other physical measurements such as mass loss and elastic properties loss. The damage 

process of concrete under ponding exposure would thus follow a three-stage behaviour 

characterised by: 

 stage #1 –  induction –  

□ dominated by the loading of the outer and inner C-S-H regions in sulfate; 

□ accompanied by the precipitation of fine ettringite especially in the inner 

C-S-H after reaching a saturation level of sulfate combination; 

 stage #2 –  surface damage –  

□ dominated by sulfate combination to the outer C-S-H with fine ettringite 

precipitation that accelerates the cracking of the cementitious matrix; 

□ accompanied by coarse ettringite precipitation in empty spaces in the inner 

C-S-H without causing stress; 

 stage #3 –  bulk damage –  

□ dominated by large ion transport through the opened microstructure whose 

higher available surface area increases the reaction potential with sulfate; 

□ accompanied by coarse ettringite and gypsum precipitation in the 

developed cracks. 

 

The expansion process would thus be driven by the capability of the C-S-H regions to 

combine sulfate. Two theories for the expansion initiation may be pointed out: swelling of 

the C-S-H due to sulfate combination or stresses developed in the C-S-H by fine ettringite 

precipitation due to local supersaturation in sulfate. The saturation of the C-S-H in sulfate 

seems to be a necessary criterion for expansion, which would be related to the crystal 

growth pressure theory of expansion for which supersaturation is the driving force [16]. 
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Gypsum precipitation was found to correlate with the surface softening of the samples. 

Nevertheless it is not explained why gypsum forms in such conditions with so low sulfate 

concentration. 

The sulfate ion penetration in solution through the pore network of the micro-concretes is 

independent of the w/c or w/b-ratio (i.e.; to the usual parameters of permeability) and 

cannot therefore be considered as a diffusion controlled process. 

 

 

VII.1.1.B. INFLUENCE OF W/C-RATIO 

The damage process exposed was only encountered by the pure Portland micro-concrete 

with w/c-ratio of 0.55. Its homologue with w/c-ratio of 0.38 presented comparable 

microstructural characteristics with the difference that sulfate ingress, sulfate-bearing 

phase formation and sulfate combination to the hydrates were recorded less deep into the 

material. The reduced w/c–ratio would thus reduce the transport phenomena and therefore 

reduce the depth of physico-chemical changes in the material. The absence of significant 

physical damage for samples with such reduced w/c-ratio may indicate that the depth of 

reaction between the sulfate ions and the cementitious matrix can play a role in the 

intensity of the damage process, as also emphasised by Schmidt [30]. However, it might 

be thought that a reduced w/c-ratio allows a better mechanical resistance against the 

developed local stresses. 

 

 

VII.1.1.C. INFLUENCE OF SLAG ADDITION 

The slag blends did not reveal much physical damage. Slag addition causes a 

decalcification of the inner C-S-H from which the calcium is assumed to feed the slag 

hydration as also mentioned by Kocaba [51]. The empty spaces left allow phase 

precipitation without causing any stress. Nevertheless, slag hydration product seemed to 

be sensitive to sulfate ingress as it was found to be able to fix sulfate. 
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VII.1.2.  INFLUENCE OF THE TYPE OF EXPOSURE 

 

VII.1.2.A. PH-CONTROL 

Maintaining the pH at 7.5 ±0.5 did not influence much the process of damage by external 

sulfate ions compared to the ponding exposure, driven by the combination and saturation 

of sulfate in the outer and inner C-S-H regions, which appeared to be in the same level 

range for P-0.55 under pH-control and ponding. 

The continuous supply of sulfate ions increased the physico-chemical changes of the 

micro-concretes. 

The non-renewal of the solution caused a reduction of the leaching process. 

 

 

 

VII.1.2.B. SEMI-IMMERSION 

The submerged part of the micro-concretes under semi-immersion has been found to 

follow the same microstructural changes than that ones in ponding. The effects were 

however observed with a delay attributed to a surface carbonation of the samples in 

semi-immersion. The physico-chemical changes were reduced compared to ponding but, 

according to the sulfate saturation level of the C-S-H, P-0.55 seemed to undergo the 

initiation period of the expansion process along the year of observation. It might be 

expected a later expansion take of for this sample, accompanied by deeper fine ettringite 

formation. 

The air exposed part of the samples was found to contribute in the ion exchange through 

capillary suction leading to significant physico-chemical changes in this area of the 

samples. Such effects (e.g.; sulfate penetration and ettringite precipitation) were 

nevertheless observed at reduced depths, for the given exposure times, to be thought to 

contribute significantly to the overall damage. 

Thenardite efflorescence has been identified at the surface of the samples in the above 

solution level area but without any sign of damage. 
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VII.1.2.C. WET/DRY CYCLES 

The pure Portland micro-concretes and especially the one with w/c-ratio of 0.55 followed 

similar physical changes than under ponding. However, a relationship could not be clearly 

drawn between the sulfate combination to the C-S-H and the expansion of P-0.55, letting 

think that another kind of damage process is concerned under wet/dry cycles compared to 

ponding. 

The slag blends and especially that with w/b-ratio of 0.55 revealed a different behaviour 

than in ponding and was found to be particularly sensitive to the drying cycles. The 

damage process for such samples appeared to occur in three stages, characteristic for 

mechanical fatigue: induction, cracking and collapse. The damage was accompanied with 

ettringite formation and could be related to the sulfate combination to the slag hydrate in 

the case of the slag blend with w/c-ratio of 0.55. The collapse was associated to a cracking 

of the slag hydrate. 

The applied drying was found to reduce the relative humidity inside the concrete down to 

critical values (20 %) that may cause irreversible collapse of the cementitious hydrates  

[59] and apparently especially of the slag hydrates. 

The wet/dry cycles exposure appeared to enhance leaching and increase the rate of sulfate 

ingress. 

 

 

 

 

 

 

VII.2.  DISCUSSION 

VII.2.1.  COMPARISON BETWEEN LABORATORY AND FIELD 

The degradation process in the laboratory and in the field was found to follow the same 

kind of zoning with different kinetics. The field cases in full immersion were found to be 

comparable in terms of physical and microstructural state to the laboratory results in 

ponding. The applied wet/dry cycles in the laboratory appeared representative of the 

weathering exposed conditions studied in Argentina. 
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The pure Portland matrix seems to be especially vulnerable to ponding exposure. The 

cracking (i.e.; expansion) could not be only related to the ettringite formation. The sulfate 

combination to the outer and inner C-S-H regions appeared to play a major role in the 

damage process. The sulfate combination in the C-S-H showed comparable saturation 

levels in the laboratory and field microstructures that seemed to be of key criterion for the 

expansion initiation. The pure Portland matrix revealed much better resistance towards 

exposure involving wet/dry cycles. 

 

The slag blended concretes were found to be especially sensitive to exposure involving 

wet/dry cycles both in terms of physical and chemical resistance of the hydrates 

characterised respectively by a cracking of the slag hydration rims in the zone of highest 

sulfate ingress and by a hardly identifiable hydrotalcite phase. Additionally, the slag 

hydration rim showed comparable sulfate combination levels in the laboratory and in the 

field microstructures. The expansion of the laboratory specimens was found to be 

accompanied by an increased sulfate combination to the slag hydrates. The drying might 

cause a particular strong physical change of the slag hydrates compared to the Portland 

hydrates characterised by a quicker irreversible collapse of the microstructure. The 

resulting cracking might enhance the sulfate penetration and thus combination to the slag 

hydrates up to reaching a critical level after which the expansion increases. The slag 

blended matrix was found to be sulfate resistant in ponding type of exposure. 

 

The representativity of the laboratory specimens compared to the field cases might 

nevertheless be questionable in terms of geometry: the surface over volume ratio of a 

4×4×16 cm3 is higher compared to that of a real structure and the consequences of few 

millimetres of damaged zone consequently overestimated. 

Gypsum formation in the laboratory micro-concretes was found to be overrepresented 

compared to that occurred in the field concretes despite the low sulfate concentration 

applied. This is especially surprising as it appeared also overestimated compared to the 

thermodynamic predictions [30]. This might be due to local enrichment in sulfate either 

from chemical effects (sulfate combination to the hydrates) or physical characteristics 

(tortuosity of the pore network) that are different in the laboratory from the field and 

might be underestimated or occulted in thermodynamic calculations. 
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VII.2.2.  EVALUATION OF THE DEVELOPED TESTS 

The ponding test seems to be in fact a good way to represent most field cases. As just 

pointed out in the previous paragraph, gypsum seems nevertheless to be still 

overrepresented even at low sulfate concentrations, which is not well understood yet. 

 

It might be interesting to include monthly renewal of the solution in the pH-control test in 

order to enhance the leaching but also to better compare the ion exchange with the other 

tests. 

 

The semi-immersion test would be worth to carry under noncarbonated atmosphere (N2 

for instance) to prevent from carbonation that seems to be a barrier towards sulfate 

ingress. 

 

The representativity of the wet/dry cycles test developed may be questionable: does the 

test be representative of very specific field conditions or does it have any legitimacy in 

terms of wide representativity of possible field cases? 

Nevertheless, other methods for drying could be envisaged such as solvent exchange (if 

reversible) and regular control of the relative humidity after the drying period should be 

done. 
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VII.2.3.  RELEVANCE OF THE TECHNIQUES INVOLVED 

The dynamic elastic modulus appeared to be a reliable and useful technique to monitor the 

degradation of concrete when exposed to sulfate and should be more implemented. 

 

The analysis of the ions in the exposure solution has been found to provide information on 

the physical effects of sulfate attack, but not on the chemical effects. 

 

From the different methods applied for estimation of the ion profiles (Appendix C) the 

quantitative micro-XRF and the image analysis of qualitative SEM-mapping were found 

to be the most powerful tools. First of all, both techniques lead to quantitative results. 

Micro-XRF quantitative mapping are done on cut surfaces, which presents the advantage 

of not requiring any special preparation of the sample but the measurements last 56 hours. 

The image analysis from SEM-mapping supposes fine prepared polished section, which is 

time consuming. However, the mapping itself only last 15 min and quantification using 

image analysis is immediate. 

 

 

It has been shown that XRD can inform on the phase assemblage of the binder of concrete 

samples and even on field concrete samples, while many authors claim that the aggregate 

diffraction pattern overlap that one of the hydrates, which is true but not in the 6-20 2θ 

range. Additionally, the aggregates could simply be separated from the paste to check their 

diffraction pattern. SEM-EDS quantitative analyses present the advantage over XRD to 

localize the phase formations in the microstructure. But SEM preparation and acquisition 

is more time consuming. 
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VII.3.  PERSPECTIVES 

VII.3.1.  INPUTS FOR MODELLING 

The data issued from this thesis can be implemented in chemical/thermodynamic 

modelling. This is already in progress for the ponding and the pH-control exposures 

(Idiart). 

Mechanical modelling should follow (Idiart and Dunant). Mechanical modelling of 

fracture mechanisms could be a tool to check the damage mechanisms. For example, 

hypothesis could be made that the combination of sulfate in the outer or in the inner 

C-S-H is at the origin of the expansion of one or the other phase promoting the overall 

expansion of the cementitious matrix. The calculated damage especially in terms of loss of 

elastic properties could be compared to the experimental results to evaluate the validity of 

the assumption made. 

 

It also in question whether more complex systems in terms of exposure setting and 

chemistry could be modelled, knowing that different durability problems could hence 

overlap and compete each others (ASR, carbonation, chloride penetration, …). 

 

 

 

VII.3.2.  RECOMMENDATIONS FOR FUTURE RESEARCH 

The tests developed are continuing in BAM location. 

 

The next step in the understanding of the sulfate attack phenomena would be the 

quantification of the phase assemblages. This might be done by XRD the problem being 

the extraction of the aggregate signal. Maybe physical extraction of the aggregate in each 

slice prior to measurement could be envisaged. 

 

However, more fundamental and more focused studies on specific mechanisms/exposure 

types would be necessary to confirm/infirm the proposed mechanisms of damage. 
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Further studies on field samples must be carried out to better adjust the laboratory work. 

More complex exposures such as sea water were briefly studied during the thesis and 

would require more interest. They make the object of papers in writing process. The 

different ions in presence might stabilise other phases: thaumasite is stabilised in presence 

of carbonate, brucite in presence of magnesium, AFm may transform to Friedel’s salts in 

presence of chloride. 

 

Fully buried in soil for 3 years (UK) 

 CEM I (P-0.54)  CEM III/B (S-0.54) 

 

 

Fully submerged in sea water for 19 years (DK) 

CEM I (P-0.43) 

 

 

 

 

 

The study of field samples is valuable also for other durability problems such as 

carbonation or ASR. 
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Appendix A -  Thin and Polished Sections Preparation 
 

 

THIN SECTIONS 

Thin section preparation follows five main steps: vacuum resin impregnation, cutting and 

slight abrasion, glue on a matted glass slide, sawing off of the sample block, thin grinding 

and polishing of the remaining sample plate. Each one of these steps is conducted so that 

the end result presents the right optical properties when placed under polarising light and 

avoiding contact with water to prevent from further hydration and/or dissolution of species 

(generally use of petrol as lubricant). In-between-steps washings are carried out with 

petrol intensive brushing and in ultrasonic petrol bath. At the end of the process, the 

sample itself has a thickness of 25µm on its overall surface. This thickness is decisive for 

further optical properties and especially for refraction index value of the crystalline phases 

when observed in cross-polar position under a polarizing microscope. 

 

POLISHED SECTIONS 

Hydration of the samples is stopped by decreasing the relative humidity into capillary 

pores below the critical level of 80 % through solvent exchange; isopropanol is used due 

to its boundary surface tension lower enough than the one of water and due to its inert 

character towards cement. A minimum of four days is required for full completion of 

hydration stopping. 

Polishing consists in abrasion sequences. The samples must first be epoxy impregnated 

under low vacuum (10-2 mbar). Then the impregnated samples are subjected to polishing 

sequences with decreasing grades of diamond crystallite suspensions of 9, 3 and 1 μm, 

each sequence lasting between 3 and 6 hours. The lubricant employed is petrol and 

rotation speed fixed at 150 rpm. Mirror polished samples are then coated with carbon by 

evaporation at 10-2 mbar to be conductive and observable under the SEM. 
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Appendix B -  Carbonation of the laboratory samples 
 

 

The carbonation of the laboratory specimens has been controlled using a phenolphthalein 

solution of 1% in an ethanol solvent. Carbonated concrete is characterised by a pH in the 

below 9 and phenolphthalein has a colour transition in the range of pH of 8.3-10.0; 

carbonated concrete appears colourless while sound concrete (pH in the range of 12.5-13) 

appears red. Pictures show the carbonation state after 1 year of exposure. 
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PC+slag 
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Appendix C -  Comparison of Methods for Ion Profiling 
 

 

Two methods in addition to SEM-mapping image analysis and quantitative micro-XRF 

were implemented for the ionic profiling: PIXE and Coulometric titration. 

 

 

PIXE 

Proton induced X-ray emission (PIXE) is based on the same principle than SEM-EDS or 

micro-XRF at the difference that the X-rays are generated from proton-mater interaction. 
1H are used for bombarding the samples and X-ray fluorescence was collected with an 

Si(Li) semi-conductor detector. The whole diameter of the scanned area is 3 mm in about 

215 pixels. The results are expressed in normalised counts as counts.pixel-2 or 

counts.mm-2. In consequence, results can be compared to each others by plotting the 

elemental ratios, typically S/Ca for sulfur profile. 

The obtained ions profiles are discontinuous and semi-quantitative. 

Such measurements have been carried out on some field samples, as comparative method 

to the quantification of the profiles from SEM mappings. 

The main disadvantages of the technique over SEM mapping are its low resolution that 

avoid good discrimination between the cementitious matrix and the aggregates. 

 

 

COULOMETRIC TITRATION 

Coulometric titration goes in three steps: 1°/ vaporisation of the element to measure by 

burning of a powdered sample, 2°/ precipitation of the element to measure under the form 

of a component in a solution of which it modifies the pH and 3°/ measurement of the 

quantity of electrical charge (electrons) required to convert a sample of an analyte 

quantitatively to a different oxidation state to back-titrate the pH. The amount of material 

required is in the range of 15 g and concrete slices of 1 mm width should be cut and 

ground to be analysed. 

 

Sulfur and carbon profiles have been determined on some field samples. 

Sulfur and carbon evaporation temperatures are respectively of 1100 and 1400 °C. 
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The Coulometric titration system used is a behr C 30 DT/S 30 HT/CS 30 HT from behr 

Labor-Technik. SO2 entered a solution of Na2SO4;H2O2 of which it reduced the pH 

forming H2SO4. The back-titration has been carried out with a ZnO anode. CO2 entered a 

solution of Ba(ClO4)2 and decreased the pH while precipitating in BaCO3. The 

back-titration has been carried out with a BaCO3 anode. 

 

For chloride measurement, 2 g of powdered material was dissolved in an HNO3 solution. 

Ammoniac was then added to precipitate the trioxides and then filtered. To increase the 

sensitivity regarding the electrode, acetone was added and then a known amount of NaCl. 

A known amount of AgNO3 was added to the mix (to precipitate AgCl) whose 

conductivity was measured by a silver electrode. The relationship between the AgNO3 

added and the conductivity measured allows to come back to the initial chloride content. 

Out of being a comparative method to the quantification of the sulfur profiles from SEM 

mappings, this method is particularly interesting for the carbon profiles. Carbon is a too 

light element to be determined by X-ray fluorescence methods. 

 

This rapid and quantitative analysis presents the disadvantage over SEM of being highly 

subjected to the aggregate amount present in each powder. Extraction of the aggregates 

could not be done, which implies a high dispersion of the results. Moreover, the spatial 

resolution of the extracted profiles is limited. Additionally, the burned samples cannot be 

re-used for other measurements on the contrary to the X-rays methods (SEM, micro-XRF 

and PIXE) where the polished sections can be re-used for further SEM analyses and the 

cut surfaces for other any analyses. 
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The following example concerns sulfate and chloride profiles determination by PIXE, 

micro-XRF and Coulometric titration on a field concretes of type CEM I (P-0.43) fully 

immersed for 24 years in the sea water in Denmark. 

 

PIXE (proton induced X-ray emission) 

 

 

Micro-XRF 

  

Coulometric titration 
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Specialization Semester 
in Materials Characterization Methods 

 

Universität des Saarlandes 
Saarbrücken - Germany

    

2003-2005 Background 
in Materials Science 
English – German – Spanish 

 

INP - EEIGM 
Nancy - France

    

2001-2003 Bachelor of Science / Classes Préparatoires 
in Mathematics – Physics – Chemistry 
English – German - French – Communication 
High-level intensive course to prepare for 
entering French INP engineering schools 

 

INP - CPP 
Institut National Polytechnique  
Cycle Préparatoire Polytechnique  

Grenoble - France
    

2001-2001 A’level of Science / Baccalauréat scientifique 
in Mathematics, Physics & Chemistry 
Emphasis on German - English 
With honours (15/20 : Mention Bien) 

 

LGM 
Lycée du Grésivaudan Meylan 

Meylan - France
    



Curriculum vitae 

XX 

 
 
 
 
 

PPRROOFFEESSSSIIOONNAALL  EEXXPPEERRIIEENNCCEE  
    

2005-2009 Research assistant and trainee 
 Teaching 
 Master Student Supervision 
 Project Management 
 Networking 
 Industrial & Academia Inter-working 
 Handling of High Technical Instruments 
 Laboratory Experimental Work  
 English Scientific Writing 
 Scientific Articles Reviewer (Cement and 

Concrete Research) 

EPFL – LMC 
Lausanne - Switzerland

BAM 
Berlin - Germany

VDZ 
Verein Deutscher Zementindustrie 

Düsseldorf – Germany
University of Surrey 

Guildford - United Kingdom
MISA 

Moscow - Russia

    

2000-2004 
1month½ 

Production Internship 
 Surface Treatment 

Schneider Electric France

     

Le Provençal 
Restaurant 

Germany

Camping du  Botza Switzerland

 
1month 
1month 
1month 

Summer Jobs 
 Waitress 
 Swimming Supervision and Teaching 
 French Teaching Association 

UNAREC 
Lithuania
Rumania

     

   

   

SSKKIILLLLSS 
    

Techniques  Scanning Electron Microscopy (SEM) 
 X-Ray Diffraction (XRD) 
 Micro X-Ray Fluorescence (micro-XRF) 

 Synchrotron X-Ray Radiation 
 Analytical Chemistry  
 Mechanical Testing 

    

Computer  Office automation software 
 Programming (Caml, MatLab) 
 Image Analysis (IDL) 

 Finite Element Analysis 
(Algor/PDEase) 

 Graphic Programming (LabVIEW)
    

Languages  German – Bilingual / Current & Scientific 
ZMP - Zentrale Mittelstufenprüfung - July 2005 
 English – Fluent / Scientific 

FCE  - First Certificate of English - June 2004 

 Russian - Learning in progress 
 Spanish - Understanding 

    

  
  

PPEERRSSOONNAALL  IINNTTEERREESSTTSS  
    

Sports  Skiing 
 Windsurfing 
 Trekking 

Arts   Drama 
 Painting/Drawing 
 Photography/Architecture 

    
 
 
 
 

 




