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A scanning electrochemical microscopy (SECM) protein detection methodology has been developed
based on the tagging of free cysteines and other nucleophiles in proteins and peptides by benzoquinone.
The tagged proteins are detected by the mediated reduction of benzoquinone with a redox species pro-
duced electrochemically at the SECM tip. After careful optimization, a sensitivity in the low ng mm2
range was reached for bovine serum albumin. One of the major advantages of the present technique is
that the selectivity of the protein tagging can be tuned by changing the pH of the reaction media. Depend-
ing on the requirements, cysteine selective or general detection can therefore be achieved with a high
sensitivity. As a proof of concept, this technique was applied to the detection of protein spots and to
the imaging of human fingerprints and further compared to the actual SECM state-of-art approach.
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1. Introduction

The development of sensitive and selective techniques for pro-
tein detection has been extensively pursued since low abundance
proteins have been shown to play relevant roles at all the levels
of biological processes [1,2]. In systems such as yeast, these pro-
teins furthermore represent 80% of the predicted proteome [3,4].
In gels or in human fingerprints, proteins are usually visualized
by optical techniques based on protein staining with either metal
ions such as silver [5], organic substances [6] or fluorescent dyes
[7-9]. Radioactive isotope labels have also been used [10], but de-
spite of the very high sensitivity with reported attomole detection
limits, the handling of radioactive materials and their cost makes
the routine use of this technique rather cumbersome [9]. From a
sensitivity point of view, fluorescence methodologies are also very
powerful. Indeed, detection of proteins, after derivatization [7,8] or
by native fluorescence [11], has been reported with detection lim-
its close to 5 pg per band on polyacrylamide gels and between 0.25
and 1ngmm™2 on polyvinylidene fluoride (PVDF) membranes
[12]. still, this approach is somehow costly as expensive fluores-
cent dyes and/or fluorescence scanners are required [13]. Electro-
chemical detection of proteins by scanning electrochemical
microscopy (SECM) has been developed in conjunction with tech-
niques like immunodetection [14,15] or metal staining [16-19].
Recently, it has been reported that the sensitivity of the silver
staining technique can be enhanced to 0.5 ng mm 2 by the use of
SECM as a readout tool [19].
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SECM is a scanning probe technique suitable for locally detect-
ing electrochemical and/or chemical surface reactivity with a high
resolution and sensitivity [20,21]. SECM is often used by monitor-
ing the steady state current achieved at a microelectrode, when it
is moved in horizontal (x, y) or vertical (z) direction over a scanned
surface. Quantitative kinetic information of both heterogeneous
and homogeneous reactions can additionally be extracted by
fitting the experimental results with numerical simulations based
on kinetics and mass transport models [22-24]. The SECM versatil-
ity allows electrochemical studies at almost any interface (i.e.
liquid/solid, liquid/liquid and gas/solid interfaces) [25-31]. As a
result, SECM has been applied in various fields such as biology to
study the respiratory chain of Escherichia coli [32] or in forensic
sciences to image human fingerprints [33,34].

As a preliminary step to protein quantification, protein struc-
ture elucidation is generally carried out in proteomic studies. In
this context, as it may provide important information, selective
tagging of proteins has been extensively studied by several
techniques such as mass spectrometry [35,36]. One interesting
approach is the tagging of free cysteines containing proteins and
peptides by benzoquinone [37]. This reaction follows a classical
1,4-Michael addition mechanism with a high selectivity for
cysteine groups in acidic pHs (pH < 4) and an extended reactivity
for other nucleophilic groups (e.g. lysine and histidine) at a higher
pH (pH >4) [38-40]. Herein, we present a new SECM protein
detection approach based on the tagging of proteins with
benzoquinone and the further electrochemical detection of the
quinone-protein adducts by the recycling of a redox mediator.
The present methodology is simpler than metal staining and pre-
sents the advantage of being suitable for both general (i.e. tagging
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of cysteine, histidine and lysine) and selective (i.e. tagging of cys-
teine) protein detections. Additionally to provide relevant informa-
tion for protein identification, a sensitivity in the low ng mm 2
range is afforded.

2. Experimental methods
2.1. Chemicals

KNO3 (>99%), KCl (>99.5%), CH3COOH (>99.8%), CH3;COONa
(>99%), Na,S,03-5H,0 (>99.5%), Na,CO3 (>99.5%), AgNO; (>99.5%)
and ethanol (>96%) were purchased from Fluka (Buchs, Switzer-
land). Methanol and Ks3[Fe(CN)g] (=99%) were purchased from
Merck (Dietikon, Switzerland). K5[IrClg] (>99.5%), bovine serum
albumin (BSA) (=90%) and horse heart myoglobin (MYO) (> 90%)
were purchased from Sigma-Aldrich (Schnelldorf, Switzerland).
All the chemicals were used as received. Deionized water was pro-
duced by a Milli-Q plus 185 model from Millipore (Zug, Switzer-
land). PVDF membranes for protein blotting were purchased
from Bio-Rad (Hercules, CA, USA).

2.2. Protein tagging and silver staining on PVDF membranes

BSA or MYO (1 pL) solution were deposited over a PVDF mem-
brane with a microsyringe. Previously to the protein spotting, the
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Scheme 1. General reactions for the tagging of proteins with benzoquinone.

PVDF membrane was wetted in methanol and water. To avoid
the formation of any significant topographical differences, the nee-
dle of the microsyringe was not in physical contact with the PVDF
membrane during the deposition process. After sample application,
PVDF membranes were dried under a gentle nitrogen flux. For sub-
sequent tagging, the whole membrane was then submerged in an
aqueous solution of acetic acid (0-44 g/L AcOH) with benzoqui-
none (0.2 mM-200 mM) for various durations (1-12 h) with con-
stant shaking. For the detection of the hydroquinone-protein
adducts, a reduction step with a solution of Sn(II) (130 mM SnCl,,
0.5M HCI, 1.0 M NaCl) was performed overnight. The procedure
used for silver staining proteins on PVDF membranes has been
introduced elsewhere [19,41]. The PVDF membrane was then
washed extensively with water, dried, taped over a microscopic
glass and finally scanned by SECM. Protein inked human finger-
prints were prepared by microcontact printing (pLCP) as described
elsewhere using the fingerprint of one volunteer [34].

2.3. SECM measurements

SECM measurements were carried out using a custom-built
SECM setup running under SECMx software [42] and comprising
an IVIUM compactstat (IVIUM Technologies, The Netherlands)
operating in a classical three-electrode mode or under bipotentio-
static conditions. Data analyses were carried out using MIRA soft-
ware [43]. The electrochemical cell comprises a silver wire as the
quasi-reference electrode (Ag-QRE), a platinum wire as the counter
electrode. As the working electrode, a Pt microelectrode (UME)
with a radius equal to 11 pm and a RG (radius of the insulating
glass sheath over electrode radius (a)) between three and four if
not specified in the figure captions. All potentials are reported with
respect to the Ag-QRE. Pt microelectrodes were polished by a suc-
cession of diamond lapping discs (Ultra-prep, Buehler, Schlieren,
Switzerland) with different particle sizes of 30 um, 6 wm, and
0.1 pum. After polishing, the quality and the RG of the electrodes
was checked with a Laborlux D optical microscope (Leitz, Ger-
many). All the samples were mounted on the bottom of a flat table
used as sample holder for SECM experiments and SECM images
were performed by placing the electrode at a constant height from
the surface of the sample (constant height mode). All the measure-
ments were performed at room temperature (20 + 2 °C).
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Fig. 1. Schematic representation of the protein detection principle by the mediated (a) oxidation of protein-hydroquinone adducts or (b) reduction of protein-quinone

adducts.
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3. Results and discussions
3.1. Protein tagging reaction and SECM detection principle

The tagging of proteins with benzoquinone is based on a 1,4-
Michael reaction mechanism. The general reaction is depicted as
reaction one in Scheme 1, where “R” is the protein that contains
free thiol groups “SH”, which can react with benzoquinone to pro-
duce a mixture of benzoquinone and hydroquinone-protein ad-
ducts. The composition of the obtained products can be tuned by
the amount of benzoquinone added at the beginning of the reac-
tion (reaction two in Scheme 1). The protocol for the tagging reac-
tion is simpler than other protein labeling techniques, since it is a
one-step procedure where it is only required to wet the PVDF
membrane with an acidic or neutral solution of benzoquinone for
a given duration (1-3 h). In addition, since this is an endpoint pro-
tocol, the membrane can be left in the benzoquinone solution for
prolonged periods of time without over staining. This is an impor-
tant advantage over previous silver staining techniques in which
the staining intensity may significantly vary from experiment to
experiment and high background signals can be easily obtained.

Depending on the type of protein adduct produced in the tag-
ging reaction, a different strategy for the electrochemical protein
detection is proposed. Indeed, either the hydroquinone-protein
adducts (Fig. 1a) or the quinone-protein adducts (Fig. 1b) can be
targeted. The first strategy requires a prior reduction of the qui-
none-protein adducts before the SECM scanning, to reach a maxi-
mum detected quantity of hydroquinone-protein adducts. With
this aim, the tagged protein spots were first reduced overnight
with a Sn(II) solution (130 mM SnCl,, 0.5 M HCI, 1.0 M NaCl). Then,
the PVDF membrane was washed extensively with water and
imaged by SECM. The tagged and further reduced protein spots
were then detected by using IrClg’ as the redox mediator (see Sup-
porting Information S1). Although a protein spot of 50 ng mm 2 of
BSA was observed, this option was not further selected since
hydroquinone species can be easily re-oxidized in presence of oxy-
gen. As a consequence, the current intensity over the protein spots
decreases drastically after the first scan. Before to analyze or re-
analyze these samples, an additional reduction step would have
to be performed in order to keep the signal intensity. This problem
has been recently solved for the detection of DNA hybridization,
where DNA strands were deposited over a quinone polymer matrix
supported on a carbon fiber electrode and the hydroquinone
species were in situ produced at the negatively biased electrode
[44]. A high amount of hydroquinone groups were thus available
to undergo a reaction with the redox mediator (Fe(CN);") gener-
ated at the SECM tip. Herein, as the supporting PVDF membrane
is an insulating material, this previously reported approach cannot
be applied.

To circumvent these problems, a second strategy (Fig. 1b) was
explored where the recycling of the redox mediator (Fe(CN)g’) is
associated to the reduction of benzoquinone-protein adducts,
which can be the main product if an excess of benzoquinone is
employed during the tagging reaction (reaction two in Scheme
1). In comparison with the first approach, the current intensity
over the protein spots remains stable after several scans (see Sup-
porting Information S2).

3.2. Optimization of the tagging reaction

Two parameters have firstly been considered for optimizing the
tagging reaction. With this aim, several protein spots of similar
concentration (500 ng mm 2 of BSA) were tagged during different
durations (1-12 h) and with various benzoquinone concentrations
(0.2-200 mM) in water without acetic acid. To be able to deter-

mine the best conditions, all the protein spots were scanned by
SECM under similar experimental conditions (e.g. probe-substrate
distance, redox mediator concentration, microelectrode, micro-
electrode RG, translation speed and translation step). The current
value was then monitored over each protein spot and the results
compared as a function of the varying parameters. For being able
to determine the best conditions, the current difference (Air) ob-
tained by subtracting the averaged background current from the
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Fig. 2. (a) SECM line scan of a Pt UME (a =11 um, RG =2-3) over a protein spot
tagged with Benzoquinone. (b) Benzoquinone concentration ([BQ]) and (c) reaction
time optimization. Air represents the current difference between the protein region
and the background (noise). For all the experiments a 500 ng protein spot of BSA
over PVDF was prepared. Imaging conditions: 2.0 mM K;[Fe(CN)g] in 0.1 M KNOs,
translation speed 50 um s~!, step 50 um, d =4 um and Er= —0.2 V.
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averaged current recorded over the protein spot (Fig. 2a) was taken
into account. This current difference was plotted as a function of
the different tested conditions (Fig. 2b and c). For the benzoqui-
none concentration, it can be seen that 20 mM benzoquinone con-
centration is appropriate for the tagging reaction, since no further
increment on the current difference is observed at higher concen-
trations (Fig. 2b). Additionally, higher concentrations of benzoqui-
none are hardly obtained due to the limited benzoquinone
solubility in water. A benzoquinone excess was employed for the
tagging reaction as it not only tags the cysteine groups but also
other nucleophilic aminoacids (vide infra). Also, benzoquinone acts
as an oxidative agent for hydroquinone-protein adducts (reaction
two in Scheme 1). Then considering Fig. 2¢, 3 h was subsequently
chosen as the optimum reaction time as it provides a good compro-
mise between signal intensity and experiment duration. Previous
studies performed in solution showed that a tagging reaction yield
of almost 100% was achieved in 1 h [40]. The longer experimental
time required in the present methodology is certainly a conse-
quence of the heterogeneous nature of the reaction occurring be-
tween benzoquinone and adsorbed proteins. As the reactive
species in this Michael type reaction is mainly the thiolate (-S7),
the reaction rate can also be affected by the pH of the solution.
Other experimental parameters such as the charge of the neighbor-
ing groups and the steric hindrance induced by the protein struc-
ture may also lower the availability of free cysteine groups
[39,45,46]. In this work, the solution pH was 6.4, which provides
an appreciable amount of thiolate groups without affecting the
benzoquinone stability. As reported in other studies, if further re-
quired, the rate of the tagging reaction may also be enhanced by
using benzoquinone derivates with electron withdrawing groups,
like the carboxymethyl [47].

3.3. Sensitivity and selectivity

The sensitivity of the present technique was assessed by spot-
ting different protein quantities with concentrations ranging from
0.5 to 500 ng mm 2 on a PVDF membrane. The protein tagging was
then performed under the previously optimized conditions. As
demonstrated by the Fig. 3a, the protein spots corresponding to
protein amounts of 500 ng, 50 ng and even 5 ng can be detected
by using the proposed detection technique. The spot containing
0.5 ng of BSA could not be observed. From Fig. 3 and the SECM
imaging of a similar sample (result not shown), eight line scans
were extracted by using MIRA software (four line scans from each
image) in order to establish for each protein spot the current differ-
ence (Air). Average values of these differences were then plotted
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Fig. 4. Constant height images of tagged BSA (500 ng) and MYO (500 ng) protein
spots over PVDF membrane in an aqueous solution of 2.2 mM K3[Fe(CN)g] in KNO3
0.1 M. Tagging reaction conditions: (a) pH=2.44 and (b) pH=6.4 (the pH was
adjusted with acetic acid), benzoquinone = 20 mM and reaction time = 3 h. Imaging
conditions: translation speed 50 pm s~?, step 50 um, d =4 pm and Ey = —0.2 V.

against the BSA surface concentration. The results are showed in
Fig. 3b, where the error bars correspond to the standard deviation
of the calculated current differences. Despite the minimum protein
surface concentration observable with this method is 5 ng mm~2,
the statistical value of the limit of detection is undoubtedly higher
as the observed background noise is rather strong (signal to noise
ratio of 1.6 for 5 ng mm2). Still, in addition to the proof of concept
of the methodology, it can be assessed that the developed method
allows for a limit of detection in the low ng mm™2 range, which is
of the same magnitude as those provided by the state of the art
protein detection over PVDF membranes [13,48,49].

However the current difference increases with the protein
concentration, further experiments will have to be performed to
thoroughly characterize the proposed method by for example
determining its limit of quantification and linear dynamic range.
Therefore more protein concentration points will have to be
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Fig. 3. (a) Constant height image of tagged BSA protein spots over a PVDF membrane in an aqueous solution of 2.1 mM Kj;[Fe(CN)g] in 0.1 M KNOs;. Tagging reaction
conditions: benzoquinone = 20 mM, reaction time = 3 h and pH = 6.15. Imaging conditions: translation speed 50 um s~!, step 50 um, d =4 pm and E; = —0.2 V. (b) Current
difference between the protein region and the background (Air) as a function of the BSA concentration.



F. Cortés-Salazar et al./Journal of Electroanalytical Chemistry 635 (2009) 69-74 73

considered and a special attention to the generated background
noise will have to be given.

As compared to other techniques, the developed approach pre-
sents the advantage of being suitable for both general or cysteine
selective protein detections, since the selectivity of the tagging
reaction can be tuned simply by changing the pH of the reaction.
Under rather strong acidic conditions (pH < 4), only free cysteine
groups are tagged while a more universal detection is provided
when the tagging reaction is carried out under weakly acidic con-
ditions, where benzoquinone also reacts with other nucleophiles
(e.g. lysine and histidine). To demonstrate this capability, BSA
and MYO were employed as test proteins. BSA contains 35 cysteine
groups, but only one free cysteine is available for the tagging reac-
tion and MYO does not contain any cysteine amino-acid residues
inside its structure. The results shown in Fig. 4 confirm this capa-
bility. Thereby, relevant information for protein identification
and sensitive protein quantification may be obtained in parallel.
The low background current observed over the protein spot of
MYO at pH 2.44 is more likely originating from the electrochemical
activity of the iron contained in the protein rather than from a par-
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tial tagging. These results are in good agreement with the results
obtained by performing the same reaction at different pH’s and
studying the reaction products by mass spectrometry [40]. As far
as we know, there is no other protein detection method that can
be employed for both general and cysteine selective protein
detections.

3.4. SECM imaging of human fingerprint

Just as silver staining [34], this new protein detection method
can be employed in conjunction with SECM for various applica-
tions. As an example, its application to the imaging of human fin-
gerprints is reported herein. After having obtained a human
fingerprint by a previously described protocol [34], the sample
was cut into two pieces, one being submitted to silver staining
and the other one to benzoquinone tagging. Afterwards, a portion
of each piece was imaged by SECM using either hexachloroiridiate
or ferrocyanide as redox mediator (Fig. 5). From the two images, it
is possible to identify several factors relevant for the verification of
a human identity (i.e. the position of the ridges and their deviations
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Fig. 5. Constant height images of a fingerprint developed by (a) silver staining (Er= 0.8 V) or (b) benzoquinone tagging (Er = —0.2 V). Imaging conditions: d =5 um, step
size = 50 pum, translational speed =50 um s~!, Pt UME (a =11 um, RG = 3-4), counter electrode Pt, reference electrode Ag-QRE. 2 mM Kj3[Ir(Cl)s] in 0.1 M KCl and 2 mM
K3[Fe(CN)e] in 0.1 M KNO5 were used as redox mediators for figure (a) and (b), respectively.
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Fig. 6. Normalized approach curves (dashed lines) on (a) silver stained (Er = 0.8 V) and (b) benzoquinone (Er = —0.2 V) tagged protein spots deposited over a PVDF membrane.
The dashed lines correspond to experimental curves and the open circles to the theoretical fittings. The continuous lines represent the theoretical approach curves over an

insulating and a conductive substrate from Ref. [23]. Experimental conditions: Pt UME (a =11 um, RG = 3), translation rate 0.5 um s~
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electrode Ag-QRE. 2.4 mM Kj3[Ir(Cl)s] in 0.1 M KCI and 2.2 mM K3[Fe(CN)g] in 0.1 M KNO5 were used as redox mediators for figure (a) and (b), respectively.
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as well as the shape and relative position of the pores of each part
of a ridge). Considering the Fig. 5, it appears that the new method-
ology reveals the same level of information than the actual SECM
state-of-the-art for fingerprint imaging. According to a previous re-
port [19], silver staining provides a higher sensitivity due to both a
higher number of active species per protein molecule and a higher
apparent heterogeneous kinetic constant. This is confirmed by
comparing approach curves performed either over a benzoquinone
tagged or silver stained protein spot (2 pg of BSA) with the model
proposed by Cornut and Lefrou [23] (Fig. 6). The values of the
apparent heterogeneous kinetic constant (k) for the reduction of
the benzoquinone-protein adducts and the dissolution of silver
nanoparticles were determined to be equal to 8.0 x 10~ cm s™!
and 2.5 x 1073 cm s !, respectively.

4. Conclusions

A new approach for protein detection on PVDF membranes has
been developed taking advantage of the reaction occurring be-
tween benzoquinone, proteins and peptides. By using a scanning
microelectrode and the recycling of a redox mediator (Fe(CN)Z™),
the spatial localization of tagged protein spots can be determined.
Depending on the requirements, cysteine selective or universal
protein detections can be achieved by simply tuning the pH during
the tagging reaction. Under rather strong acidic conditions, only
free cysteines are available for tagging while other aminoacids
such as lysine and histidine react at a higher pH. These results
demonstrate the feasibility of using SECM to detect benzoquinone
tagged proteins when immobilized on a porous membrane surface.
Besides being potentially suitable for protein quantification, the
proposed detection method should also be suitable for studying
the transduction of an oxidant signal into a biological response
and the elucidation of available cysteines groups within natural
or engineered proteins. It has also to be noticed that the reported
detection technique is fully compatible with mass spectroscopy.
As such, it might be considered as an interesting preliminary step
to improve the confidence of the identification process. In order to
thoroughly characterize the proposed methodology, future work
will include the optimization of parameters such as, the tag mole-
cule, the redox mediator, protein spots application procedure and
the minimization of the background signal originating from the
PVDF membrane topography.
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