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Abstract—Network coding has been proposed recently as an
efficient method to increase network throughput by allowing
network nodes to combine packets instead of simply forwarding
them. However, packet combinations in the network may increase
delay, complexity and even generate overly redundant informa-
tion when they are not designed properly. Typically, the best
performance is not achieved when all the nodes perform network
coding. In this paper, we address the problem of efficiently placing
network coding nodes in overlay networks, so that the rate of
innovating packets is kept high, and the delay for packet delivery
is kept small. We first estimate the expected number of duplicated
packets in each network node. These estimations permit to select
the nodes that should implement network coding, so that the
innovating rate increases. Two algorithms are then proposed for
the cases where a central node is aware of the full network
statistics and where each node knows the local statistics from its
neighbor, respectively. The simulation results show that in the
centralized scenario the maximum profit from network coding
comes by adding only a few network coding nodes. A similar
result is obtained with the algorithm based on local statistics,
which moreover performs very close to the centralized solution.
These results show that the proper selection of the network
coding nodes is crucial for minimizing the transmission delay
in streaming overlays.

Index Terms—Network coding, delay minimization, through-
put maximization, overlay networks.

I. I NTRODUCTION

The recent development of overlay networks is quite inter-
esting for multimedia transmission since these networks offer
significant network diversity that can be used for improved
quality of service. The traditional streaming systems based on
ARQ or channel coding techniques often fail to efficiently ex-
ploit this diversity, since they suffer from high computational
costs and are quite unreliable in large scale networks where
channel conditions are hard to estimate. A different paradigm
has been initiated recently with network coding [1], [2], where
some processing is requested from the network nodes in
order to improve the transmission performance. Specifically,
network coding nodes randomly combine the buffered packets
before forwarding them to next hop nodes. It is particularly
appealing in networks with diversity, as it does not impose
coordination between nodes. It allows for better adaptation to
the available bandwidth and even permits to approach max-
flow min-cut bound of the network graph. Overall, the network
coding systems show improved resiliency to dynamics, delays,
scalability and buffer capacities [3].

This work has been partly supported by the Swiss National Science
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Multimedia delivery systems, however, face important trans-
mission challenges due to strict timing constraints that impact
the design of network coding algorithms. A practical network
coding scheme is presented in [4], which proposes a proper
format for distributed transmission of multimedia streams.
This scheme adopts randomized network coding (RNC) tech-
niques [5] and devises a special protocol to deal with buffering
issues and timing constraints. Moreover, it introduces the
concept of generations that restricts the coding operations to
packets that share similar decoding deadlines. In this scheme,
the network coding coefficients are communicated along with
the data packets so that the decoder can recover the transmitted
information. However, network coding also induces delays
and computational overhead that increase with the number
of network coding nodes. As delay is critical in streaming
applications, nodes often have to perform packet combinations
with only a few packets from their receiving buffer. Hence, the
probability of generating purely redundant packets increases
when network coding operations are successively repeated in
many nodes. It becomes important to select efficiently the
subset of nodes that perform network coding in order to
maximize the performance of the streaming system.

In this paper, we discuss solutions for the placement of
network coding nodes in order to minimize the transmission
delays. We adopt the generation and buffer models of the
practical network coding scheme proposed in [4]. We estimate
the rate of innovative packets in the network nodes, and we
later select the network coding nodes in order to minimize the
redundant information in the network. We consider two cases
where (i) a central node is aware of full network statistics or
(ii) only local statistics are known by the nodes, respectively.
In both cases, we further design algorithms that iteratively
determine the positioning of a given number of network
coding nodes such that the innovative rate is maximized. The
simulation results show that only a few network coding nodes
lead to throughput gains close to max-flow min-cut bound
and greatly decrease the delay necessary for data delivery.
Moreover, the algorithm that only considers local network
statistics performs very competitively with the algorithmthat
uses full knowledge of the network topology. Both algorithms
even select the same nodes for network coding in most of
the cases. Furthermore, they both outperform solutions where
network coding nodes are selected randomly.

The problem of the selection of network processing nodes
has been addressed in a different context in [6]. The placement
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Fig. 1. Illustration of a system for streaming on overlay networks. Multiple
streaming servers (SS) send information to clients on a lossy packet network
via intermediate nodes that can be either network coding (NC) or ’store and
forward’ (SF) peers.

of a limited number of network-embedded FEC nodes (NEF) is
considered in networks that are organized into multicast trees.
The placement is chosen in order to enhance the robustness
to transmission errors and to improve the network’s through-
put. NEF nodes first decode and successively re-encode the
recovered packets in order to increase the symbol diversity. A
greedy algorithm is proposed for placing NEF nodes. Although
the proposed method is efficient, it is computationally expen-
sive and unrealistic to be deployed in dynamic networks. In
contrast to [6] we rather consider the placement of processing
nodes in the more general case of overlay mesh networks with
randomized network coding for distributed packet delivery.
Note finally that the problem of finding network codes with a
minimal number of encoding nodes has recently been studied
in [7] where the problem is shown to be NP-hard. In this
paper we rather consider randomized network codes for the
implementation of practical distributed systems where we try
to limit the number of coding nodes while large performance
gains are achieved.

II. SYSTEM DESCRIPTION

The overall streaming system consists of servers, clients
and intermediate nodes, as illustrated in Fig. 1. The network
is modeled by a directed acyclic graphG = (V, E) whereV

is the set of network nodes andE is the set of edges (links) in
the network. Each network link is characterized by its capacity
cij which is expressed in terms of packets per second as well
as the packet loss rateπi,j . We assume that all servers transmit
the same multimedia content to clients via intermediate nodes
that could either be network coding (NC) or “store and
forward” (SF) nodes. We consider that the intermediate nodes
are not interested in the transmitted content, but rather act
as helper nodes and assist the packet delivery system. The
system implements a push-based strategy which involves lower
communication and coordination overhead than a pull-based
solution. The servers also implement randomized network
coding for improved robustness, and the coded packets are
then pushed to the clients through the successive intermediate
nodes.

The intermediate nodes that perform network coding com-
bine randomly the buffered packets in order to generate

network coded packets that are sent to neighbour nodes. As
suggested in [4], the NC nodes first check whether the received
packets are innovative.1 Non-innovative packets are discarded
immediately as they do not increase the symbol diversity into
the network. Then the nodes randomly combine the remaining
packets with coding operations performed in large Galois fields
in order to reduce the probability of generating duplicates. The
SF nodes simply transmit at each opportunity the first packet
in their incoming buffer, which has not been sent previously.
The buffer is managed in a first-in-first-out manner, where the
oldest packets are replaced by the new ones when the buffer is
full. When the outgoing bandwidth is larger than the incoming
one, a SF node randomly replicates packets from its buffer by
making sure that the packet diversity is maximal for each of the
outgoing links. Finally, the clients perform network decoding
after receiving enough packets to build a full rank decoding
system.

When the network is mostly composed of SF nodes, there is
a non-zero probability for the reception of duplicate packets in
the network nodes. The duplicates can be generated by a node
that does not receive enough diverse packets, or from different
nodes that independently transmit identical packets. These
duplicate packets decrease significantly the packet diversity
especially in networks containing bottlenecks. However, the
careful placement of a few network coding nodes in the
overlay can help to reduce the number of duplicates in the
network. Indeed, the network coding nodes act somehow
similarly to sources in the sense that they refresh the set of
packets in the network by coding operations. However, when
the number of network coding nodes becomes too large, the
probability for the randomized network coding operations to
generate duplicate packets becomes non-negligible. In addi-
tion, the delay and computational overhead in the system
generally increase with the number of coding nodes. This
clearly outlines the tradeoff underlying the effective placement
of network coding nodes.

III. SELECTIVE PLACEMENT OFNC NODES

We now propose algorithms for an effective placement of
the network coding nodes. The objective is to minimize the
average delay at decoder by reducing the packet replication
with network coding, and hence maximizing the innovative
flow rate in the network. We first estimate the packet replica-
tion probability at the clients and later propose two iterative
algorithms for network coding node selection.

A. Packet replication probability

In order to compute the packet replication probability, we
only consider the SF nodes in the overlay. We assume that the
NC nodes cancel the replication effects and we do not consider
them in the computation of the packet replication probabilities.
We then definepn

c (k) as the probability for the clientc to
receivek times a packet sent from noden. This probability
can be computed recursively starting from the clients to the
servers. We defineDn as the set of children for noden. The
probabilitypn

c (k) is then given by

1Innovative packets are the packets that carry novel information.



pn
c (k) =

∑

m∈Dn

ρn,m · (1 − πn,m) · βm · {θm(M)·

Pm
c (M + 1, k) + (1 − θm(M)) · Pm

c (M + 2, k)}

(1)

whereρn,m = cnm
∑

m∈Dn

cnm

is the probability that a packet from

noden is forwarded to a descendant nodem. The parameter
βm represents the probability that a packet received by the
nodem is not deleted due to buffer overflow. It is written as

βm =

{

bo(m)
bi(m) , bo(m) < bi(m)

1, bo(m) ≥ bi(m)

bo(m) andbi(m) are respectively the cumulative incoming and
outgoing capacity (in packets) of nodem.

By the design of our packet replication protocol, the number
of replications is the same for every packet with at most one
unit difference. In particular, a packet can only be duplicated
eitherM or M + 1 times, with

M =

⌊

rm

bi(m)

⌋

,

whererm is the total number of duplicates generated at node
m (i.e., rm = bo(m)− bi(m)). We denote byxm the number
of duplicates transmitted by the nodem for each packet it
receives. We can define the probability that this number of
duplicates isM as

θm(M) = Prob(xm = M) = 1 −

(

rm

bi(m)
− M

)

.

Respectively, we haveθm(M + 1) = 1 − θm(M). Finally,
Pm

c (M, k) in Eq. (1) is the probability thatk duplicates
of a packet reach the clientc, when M replicates of this
packet had originally been generated by nodem. Note that
k might be larger thanM due to successive replication stages
in the network. We assume that each packet replica travels
independently through the network, and we can compute the
probabilityPm

c (M, k) as

Pm
c (M, k) =

k
∑

l1=0

w2
∑

l2=0

· · ·

wM−1
∑

lM−1=0

M−1
∏

j=1

pm
c (lj) · p

m
c (wM ) (2)

wherewi = k−
∑i−1

j=1 lj . By iterating between Eq. (1) and Eq.
(2), we can estimate the number of duplicates received from
any source in the network. Note that, for the special case where
k is zero (i.e., no copy of a packet transmitted from noden

is received at clientc), the probability of replicates can be
written as

pn
c (0) =

∑

m∈Dn

ρn,m · {πn,m + (1 − πn,m) · (1 − βm) +

(1 − πn,m) · βm · {θm(M) · Pm
c (M + 1, 0) +

(1 − θm(M)) · Pm
c (M + 2, 0)}} .

(3)

The three terms in the right side of Eq. (3) correspond
respectively to the fact that a packet can be either erased on
the link connecting nodesn andm, lost due to buffer overflow

at m, or all replicas are lost in the case the packet has been
replicated at nodem.

We can now compute the packet replication probabilities
at the clients with an iterative algorithm, as illustrated in
Algorithm 1. The algorithm starts by first initializing the
probabilities for all clients. All paths in the directed acyclic
graph are visited backwards from clients to servers. Every in-
termediate node computes by Eqs. (1) and (2) the probabilities
that each client receivesk replicas. The intermediate nodes are
considered only when all their child nodes have been already
processed. The NC nodes are excluded from the analysis. This
process terminates at servers. When a packet is receivedk

times by a client, it meansk− 1 duplicates are received (only
the first received packet is innovative). Therefore, the expected
number of packet replicas received by each clientc is given
by

N(c) =
∑

s∈S

{

bo(s) ·

Nmax
∑

k=2

ps
c(k) · (k − 1)

}

(4)

whereS denotes the set of servers and NC nodes andNmax

is the maximal number of duplicates that can be generated by
the network. The expected flow of innovative packets at client
c is finally given by

I(c) = bi(c) − N(c) (5)

Algorithm 1 Computation of innovative flow rates
1: Initialization: set the probabilities of the client nodes:

pj
c(1) =

{

1, j = c

0, j 6= c
pj

c(k) = 0, k 6= 1

2: while there are unprocessed nodes remainingdo
3: Process next node (in inverse topological order), apply-

ing recursively Eqs. (1) and (3).
4: end while
5: The expected number of duplicate packetsreceived by

each clientc is computed from Eq. (4).
6: The expected flow of innovative packetsfor client c is

computed from Eq. (5).

B. Node selection algorithms

The problem of the optimal selection of the NC nodes is
known to be an NP-hard problem. We focus here on a greedy
approach that searches at each step the optimal placement for a
novel network coding node, assuming that all other NC nodes
are known. The candidate nodes for turning into NC mode
are only the SF intermediate nodes. The algorithm iteratively
examines all nodes backwards from clients to servers and
finally outputs the subset of nodes that should implement
network coding.

We now consider two different cases with (1) a centralized
solution with global knowledge of the network and (2) a
solution where all the nodes only have a local view of the
network. The Algorithm 1 is used in both cases to compute



the innovative rates, whose computation stops before reaching
the server in the second scenario.

1) Global information: A fully centralized algorithm is
devised to accurately determine the number of duplicate
packets received by each client node (see Algorithm 2).
Global information about the network is used to compute the
innovative rate at each client. This leads to the selection of
K NC nodes by iteratively computing the change that would
maximize the increment in innovative rate at the clients. The
value ofK can be determined based on the maximum number
of nodes that the network can support or the delay that the
transmitted data can tolerate.

Algorithm 2 Centralized NC node selection
1: for i = 1 to K do
2: for each candidate nodentest in the set of SF nodes.

do
3: Add ntest to the set of NC nodes.
4: Estimate the flow of innovative packets received by

every client (Algorithm 1).
5: Removentest from the set of RNC nodes.
6: end for
7: Select among the different candidates the nodentest

that maximize the innovative rate.
8: Add this node permanently to the set of NC nodes.
9: end for

2) Local information: The centralized approach above is
probably unrealistic in large networks because it requiresthat
a hypernode is aware of the network status and is able to track
all packet replications. We therefore propose to distribute the
node selection algorithm to address a scenario where each
node only has a local view of the network. An algorithm
similar to the centralized solution is applied in each node’s
neighbourhood in order to compute the benefit of replacing a
SF node by a NC node. We assume that every node knows
the total input capacity of the clients even if clients are not
part of the node’s subnetwork. Thus, the information about
clients’ total input capacity is propagated upwards on the
network. Every node uses the receivedpm

i (k) and clients’
input capacitiesNI(i) for computing its probabilitiespn

i (k).
This data are successively forwarded to the ancestor nodes.
The above procedure is repeated till the servers are reached.

Note that, in a fully distributed scenario, each node inde-
pendently decides whether it should be replaced by a NC node
and the decision is taken by comparing the estimated benefit
with a predetermined threshold value. In our implementation
the decision is, however, greedy and centralized. Thus, each
node independently computes the potential gain that arisesif
it turns into a NC node. These gains are sent to a central node
that eventually decides about the location of the NC nodes.
The algorithm used for selectingK network coding nodes is
illustrated in Algorithm 3.

IV. SIMULATION RESULTS

We evaluate here the performance of the proposed network
coding node selection algorithms for multimedia streamingin

Algorithm 3 Distributed NC node selection
1: for i = 1 to K do
2: for every SF noden do
3: Estimate the flow of innovative packets received by

every client when noden is not NC (computation is
limited to the neighbourhood ofn).

4: Temporarily transform noden into NC.
5: Estimate the new flow of innovative packets received

by every client (computation is limited to the neigh-
bourhood ofn).

6: Compute benefit of transforming into NC.
7: end for
8: Globally select node with largest benefit and add it

permanently to the set of NC nodes.
9: end for

irregular overlay networks using NS-3 [8] simulator. We create
the irregular network topologies starting from regular graphs
where nodes are grouped into coding stages, depending on
the hop distance to the server. The regular topologies have
the same number of nodes per coding stage and each node is
connected to all nodes in the next coding stage. We consider
regular graphs with 26 coding stages and 4 nodes per coding
stage where all the nodes have the same number of parent
and children nodes. Then we create irregular topologies by
randomly pruning or shifting network links. Pruning simply
consists in removing a link from the regular topology. Shifting
consists in randomly changing the destination of some links,
while making sure that cycles are avoided. The link pruning
and shifting probabilities follow uniform distribution and the
pruning and shifting rates are set to 5 %. We also force all
peer nodes to have at least two incoming and two outgoing
links, since path diversity is at the core of network coding
solutions. Finally, the packet loss rate of each link is set to
5% and the capacities of the link follow uniform distribution
in the range[5, 20] packets/second.

The network coding operations are performed in a Galois
field of size GF(256), and the size of a coding generation is 32
packets. The decoding is performed by gaussian elimination.
We analyze the performance in terms of decoding delay. We
compute the average delay as the time needed for each client
to receive 32 linearly independent packets (i.e., a generation)
in order to be able to decode the source information. The
decoding times are, however, not included in the overall delay
analysis as they mainly depend on the implementation. Finally,
all simulation results are averages of 100 simulations.

First, we compare the proposed centralized algorithm (Algo-
rithm 2) with two methods that choose the position of 10 NC
nodes in an overlay network consisting of 108 nodes by: (a) a
scheme (greedy search) using Algorithm 2 but using instead of
estimates the real network statistics and (b) randomly place the
NC nodes. Fig. 2 (a) and (b) shows respectively the average
delay times for each client and the effective throughput. From
the results, it is obvious that the decay of decoding times and
the corresponding increase of throughput is sharp for the first
few selected NC nodes. The gains become less pronounced
after the addition of 8 NC nodes. We can also see that the
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Fig. 2. Performance of the NC node selection algorithm for anirregular network of 108 nodes. Linear NC and routing flow correspond to the extreme cases
where all nodes are NC and SF nodes respectively.

proposed algorithm performs similarly to the greedy exhaus-
tive algorithm. The random replacement algorithm performs
poorly and is comparable to the other methods only for large
number of NC nodes. We also compare with the case when
all nodes perform network coding. From Fig. 2(b) we observe
that with 10 NC nodes the maximum throughput is almost
achieved, but with a significantly smaller computational cost
compared to a full network of NC nodes. Finally, the routing
flow denotes the achievable multicast throughput when the
network only contains SF nodes. We note that the throughput
becomes smaller than that of the routing scheme when there
are less than two NC nodes, which is due to the random
forwarding policy of our scheme.

We also investigate the performance of the distributed
solution from Algorithm 3, where the number of replicas is
estimated locally, but the decision on the position of NC nodes
is made globally. We analyze the influence of the sizer (in
hops) of the neighbourhood that represents the local view of
each node. We use the same network settings as above. The
average delays and throughput are presented in Fig. 2(c) and
(d) respectively. From the results, it can be seen that whenr

is equal to one the distributed scheme performs similarly to
the random selection scheme. In this case, the local network
statistics are not sufficient for an effective selection of NC
nodes. Whenr increases, however, the distributed solution
performs close to the centralized algorithm.

V. CONCLUSIONS

We have presented a streaming system based on network
coding for multimedia transmission in overlay mesh networks.

In our scheme, only a few nodes perform RNC in order to
meet a tradeoff between computational complexity, delay and
packet duplicates. Two different algorithms are proposed for
an effective placement of the NC nodes. The first algorithm
assumes full network knowledge, while only local statistics are
available for the second one. The experimental evaluation on
irregular networks shows that both schemes could achieve the
same throughput as a full network coding system with only a
few well-positioned NC nodes.
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