
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Dr M. Farhat, président du jury
Prof. C. Ancey, directeur de thèse

Dr P. Fischer, rapporteur 
Prof. V. Michaud, rapporteur 
Dr B. Pouligny, rapporteur 

Rheophysics of Concentrated Particle Suspensions in a 
Couette Cell using a Refractive Index Matching Technique

THÈSE NO 4627 (2010)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 19 MARS 2010

À LA FACULTÉ ENVIRONNEMENT NATUREL, ARCHITECTURAL ET CONSTRUIT

LABORATOIRE D'HYDRAULIQUE ENVIRONNEMENTALE

PROGRAMME DOCTORAL EN MÉCANIQUE 

Suisse
2010

PAR

Sébastien WIEDERSEINER





Résuḿe

L’objectif principal de ce travail est de contribuer à une meilleure compréhension de la rhéométrie
et de la rhéologie des suspensions granulaires non colloı̈dales hyperconcentrées. Parmi les nombreuses
questions encore sans réponses, nous nous sommes tout spécialement intéressés, d’une part, aux problèmes
de rhéométrie associés à ce type de fluides et, d’autre part, à leur rhéologie dans les régimes frictionnels
et visqueux, ainsi que la transition entre les deux qui restebien mal comprise.

Pour s’attaquer à ces questions, il a fallu dans un premier temps développer des techniques capables
de mesurer de façon non invasive et locale l’écoulement deces suspensions hyperconcentrées. Une partie
de cette thèse est dédiée au développement et à la mise en œuvre de la technique de visualisation optique
au cœur de suspensions hyperconcentrées, qui a été développée au Laboratoire d’Hydraulique Environ-
nementale. Cette technique de mesure combine le développement de fluides iso-indice avec l’utilisation
de technique de vélocimétrie par image de particules fluorescentes.

Sur cette base, nous avons pu nous attaquer aux véritables questions concernant, d’une part, les
mesures rhéométriques de ce type de fluides et, d’autre part, les propriétés rhéologiques elles-mêmes.

Parmi les problèmes abordés, les questions suivantes furent les principales :

Est-il possible d’obtenir un rhéogramme pertinent pour les suspensions de particules concentrées à
partir des mesures macroscopiques ? Ceci en tenant compte dularge éventail de cisaillement au sein de
l’entrefer, l’hétérogénéité du matériau et les problèmes de résolution du problème de Couette en raison
du large entrefer ?

Quelles sont les propriétés rhéologiques principales des suspensions granulaires non colloı̈dales hy-
perconcentrées dans les régimes frictionnels et visqueux ? Qu’en est-il de la transition entre ces régimes ?

Mots-clés : mécanique des fluides expérimentale, suspensions de particules non colloı̈dales hypercon-
centrées, matériau granulaire, rhéologie, rhéométrie, écoulement de Couette, vélocimétrie par image de
particules fluorescentes, fluides iso-indice.
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Abstract

The main objective of this work is to gain insight into the rheometry and rheology of concentrated
non-colloidal particle suspensions. Among the many questions that have as yet received little answers,
we are especially interested in the rheometric problems associated with this type of fluid and in their
rheology in the frictional and viscous regimes, as well as the transition between both regimes—a topic
that is particularly unclear.

To address these issues, we had initially to develop techniques capable of measuring non-invasively
the velocity field within these concentrated suspensions. Part of this thesis is dedicated to the develop-
ment and implementation of an optical visualization technique inside concentrated suspensions, which
was developed at the Laboratory of Environmental Hydraulics. This measurement technique combines
the development of iso-index fluids and the use of fluorescentparticle image velocimetry.

On this basis, we could then tackle the real issues of this work, that is, on the one hand, rheometric
measurement techniques of these fluids and, on the other hand, the rheologic properties.

Among the issues discussed, the following were the main:

Is it possible to obtain a reliable flow curve for concentrated particle suspensions from bulk measure-
ment? And this by considering the wide shear range within thegap, the non-homogeneous material and
the inversion-technique problems due to the wide gap?

What are the main rheological properties of concentrated non-colloidal particle suspensions in the
frictional and viscous regimes? What about the transition between these two regimes?

Keywords: experimental fluid mechanics, non colloidal particle suspensions, granular matter, rheology,
rheometry, Couette flow, fluorescent particle image velocimetry, index-matching fluids.
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que sa dévotion sans limite à Alinghi. Je remercie NicolasAndreini sans qui la visualisation au cœur de
suspensions concentrées resterait encore opaque comme l’eau du Léman certains jours. Je remercie aussi
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Dimensionless number

Ba Bagnold number
Co Coulomb number
Le Leighton number
Re Reynolds number
St Stokes number
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Subscript

i ith component
ij Mixture of the two componentsi andj
f Fluid
p Particle
s Solid
l Liquid
r Relative

Abbreviation

CW Continous wave
CCD Charge-coupled device
DBH 1,6 Dibromohexane
FFT Fast fourier transform
FPP Flat parallel plate
FPIV Fluorescent particle image velocimetry
HB Herschel-Bulkley
in Inner
MRI Magnetic resonance imaging
max Maximum
min Minimum
out Outer
PC Polycarbonate
PCTFE Polychlorotrlfluoroethylene
PEEK Polyetheretherketone
PET Polyethyleneterephthalate
PIV Particle image velocimetry
PMMA Polymethylmethacrylate
PMMA
EA

Polymethylmethacrylate ethylacrylate

POM Polyformaldehyde
PS Polystyrene
PTFE Polytetrafluoroethylene
PTV Particle tracking velocimetry
PVA Polyvinylacetate
PVC Polyvinylchloride
RI Refractive index
SAN Styrene/acrylonitrile copolymer
SNR Signal-to-noise ratio
TFE Tetrafluoroethylene
tot Total
TRPIV Time-resolved PIV
Trimix Ternary fluid mixture



1Introduction

A large number of gravity-driven geophysical flows involve suspensions of particles in a fluid. Typ-
ical examples include snow avalanches, debris flows, turbidity currents, pyroclastic flows, etc. A long-
standing practice is to consider these suspensions as one-phase or two-phase continua on the bulk scale,
which makes it possible to use a fluid-mechanics treatment tocompute the motion features (velocity,
flow-depth, spreading, etc.). Usually the computations aremade by using depth-averaged equations of
motion. These equations rely on a number of assumptions suchas the long-wave approximation (that
involves assuming that flow-depth scales are far smaller than length scales, which leads to simplifying
a great deal the resulting equations). Primarily developedfor water floods (shallow-water equations),
depth-averaged equations of motion provide results in goodagreement with experimental and field mea-
surements for various flow conditions (gradually varied flowor transient flows like in the dam-break
problem) involving Newtonian or inviscid fluids.

Materials involved in geophysical flows exhibit non-Newtonian rheological properties and, over the
last few years, a great deal of work has been expended to adaptthe shallow-water equations to non-
Newtonian fluids. Comparison between theoretical and experimental results has revealed a few short-
comings in this approach, but it is still unclear whether they result from an improper account for nonlin-
ear rheological behavior and/or breakdown of basic assumptions such as the long-wave approximation.
Given the growing role played by numerical simulations based on depth-averaged equations in engineer-
ing applications, it is of great interest to take a closer look at this issue.

The objective of this work is to gain insight into the rheological behavior of concentrated non-
colloidal particle suspensions. This objective can be subdivided into three tasks. The first one aims
at developing measurement techniques, which provide reliable velocity profiles inside a concentrated
particle suspension. Task 2 addresses the question of how tomake meaningful rheologic measurements
in concentrated particle suspensions. Task 3 tackles the delicate issue of the rheologic interpretation of
experimental data, i.e. how to derive the flow curve from viscometric data. There are many impediments
to this derivation:

1. Because of the particle size, which is of the order of the gap for classic rheometers, wide-gap
geometries have to be used and most of the common geometries (i.e. cone and plate, parallel
plates) cannot be used for different reasons. We therefore focused our experiments on wide-gap
Couette geometries. Wide-gap cells involve solving the Couette inversion problem properly. To
date, there is no consensus about the best inversion technique. To try to answer, at least partially,
that question, performing simultaneously local and bulk flow measurements allow for comparisons
with two different inferring methods:

- a direct derivation of the flow curve by differentiation of the velocity profiles, hereafter re-
ferred to as therheophysical approach;

1



2 CHAPTER 1. INTRODUCTION

- a classic rheometric treatment, which consists in inferring theγ̇ − τ flow curve from the raw
angular velocity and torque measurements (Ωi,Ti) using a given inversion technique.

A schematic view is given by table 1.1.

Table 1.1: Classic rheometry vs rheophysical approach

Continuum mechanics approach Rheophysical approach
⇓ ⇓

Classical rheometry Velocity profile measurement
⇓

Angular velocity and torque (Ωi, Ti) ⇓
⇓

Solving the Couette inverse problemDirect differentiation of the velocity profile
⇓ ⇓

(τ , γ̇) flow curve (τ , γ̇) flow curve

2. Looking carefully at the rheology of non-colloidal particle suspensions, we are facing many open
questions. Several of their features are still poorly understood. As we will see in§ 2, concentrated
non-colloidal particle suspensions undergo different flowregimes, which depend on the prevailing
type of contact between the particles. These flow regimes give rise to different flow behaviors, for
which the transition from one to the other remains only partially understood. The present work
will focus on the frictional and viscous regimes and the transition.

This manuscript will begin by presenting a review of the current knowledge on the rheology and
rheometry of non-colloidal particle suspensions since thebeginning of the 20th century (§ 2). In § 3, we
will present the experimental techniques used to infer the rheological properties of concentrated parti-
cle suspensions using classic rheometry techniques (§ 3.1 to§3.2) and local measurements techniques,
which rely on refractive-index-matching techniques and PIV techniques (§ 3.3 to§3.5). Our experimen-
tal facility and the experimental procedure will be described in § 4. Experimental results concerning
the vane geometry and the associated wall slip effects will be presented and discussed in§ 5. Transient
and steady-state measurements will provide insight into the induced particle diffusion process. Bulk and
locally inferred flow curves will be also outlined and compared.



2Literature Review

The rheological behavior of particle suspensions is a longstanding problem in fluid mechanics, which
has attracted considerable attention since the seminal work of Einstein in 1906 on viscosity of dilute
suspensions [95, 96]. A large body of work has been done in this field, with substantial theoretical,
numerical, and experimental developments. A short and recent summary of the state of art can be found
in Mewis and Wagner, 2009 [198], but given the wide spectrum of topics covered by the rheology of
suspensions, there is no complete review of this growing field. Here I will set the scene by giving a brief
overview of the various problems encountered in studying concentrated suspensions of non-colloidal
particles. I will refer the reader to authoritative papers covering this domain for further information.

This chapter starts with a classification of dilute, semi-dilute and concentrated suspensions based
dimensional analysis (§ 2.1). I will briefly outlined the theoretical work on non-colloidal particle suspen-
sion rheology (§ 2.2). I will take a closer look at experiments conducted on coarse-particle suspensions
(§ 2.3), with emphasis given to bulk viscosity. In (§ 2.4), I will review much of the early work done on
the Couette cell in the study of concentrated suspensions.

2.1 Classification of particle suspensions: dimensional analysis

2.1.1 Dilute and semi-dilute suspensions

Particle suspensions are considered complex fluids becausetheir rheological behavior exhibit an
incredible wealth of properties depending on particle size, concentration, density, etc. In this respect, di-
mensional analysis is an efficient tool to get a better physical picture by delineating various flow regimes.
The presentation here closely follows that of Krieger [161,164], Jomhaet al. [143], and Ancey and his
coworkers [14, 16, 72].

The key idea is that although the material involves two phases on the particle scale, it behaves as
a continuum on the bulk scale, which makes it possible to describe its rheological properties through a
constitutive equation. On most occasions, we are interested not in the entire constitutive equation, but
in the bulk viscosityη, which is the ratio of the shear stress to the shear rate. We assume that the bulk
viscosity of the suspension can be expressed as a function ofmany variables

η = f(r, ρp, n, ηf , ρf , kT, γ̇, t)

which account for

• particles characteristics: particle radiusr, densityρp, and number densityn (number of particles
per unit volume);

• suspending medium properties: viscosityηf and densityρf ;

3



4 CHAPTER 2. LITERATURE REVIEW

• flow parameters: temperatureT (or thermal energykT ), shear ratėγ, and timet.

All terms in the previous equation can be expressed in units of mass, length, and time. By forming
dimensionless groups we can cast this equation into a dimensionless form

ηr = f(φ,∆ρ, Pep, Rep, tr) (2.1)

where

ηr =
η

ηf
φ =

4

3
πnr3

∆ρ =
ρp

ρf
Pep =

6πηfr3γ̇

kT

Rep =
ρfr2γ̇

ηf
tr =

tkT

ηfr3

When particle and fluid densities are different (∆ρ 6= 1), sedimentation occurs as a result of gravity,
which may lead to phase separation. In this case, the material behaves like a two-phase material on the
bulk scale rather a single-phase continuum and Equation (2.1) makes no longer sense.

An interesting end-member of the family of rheological behaviors represented by Eq. (2.1) is consti-
tuted by neutrally buoyant systems, i.e. taking the limit ofPep → ∞ andRep → 0 [55, 248, 267]. In
other words, we consider the class of fluid for which Brownianmotion, physical interactions (attractive
and repulsive forces such as van der Waals forces) as well as particle inertia are negligible contributions
to the bulk stress tensor. Since there is no density mismatchbetween the continuous and disperse phases
(∆ρ = 1), the bulk-viscosity function reduces to:

ηr = f(φ) (2.2)

This implies that the viscosity is a one-to-one function of concentration and hence the suspensions could
be Newtonian (the true story is more complicated since non-Newtonian effects may arise as a result of
particle arrangement, normal-stress effects, etc., as shown later in this chapter).

2.1.2 Concentrated suspensions

As shown in§ 2.1, the particle volume fractionφ remains the key parameter that controls the effective
viscosity of buoyant-coarse-particle suspensions. The simplicity of this relation has made it possible to
fit many empirical curves on experimental data (see Table 2.2), but it is somewhat misleading in that
it reflects many different physical processes that cannot bemerely encoded through a scalar relation.
Among the many issues, hidden or obvious, that arise in the study of particle suspension, there are two
major difficulties:

• Asymptotic behavior of the viscosity in the high-concentration limit : experiments have shown
that viscosity increases relatively slowly with particle volume fraction as long as the suspension is
dilute to moderately concentrated. In contrast, when approaching the maximum volume fraction
φmax, the viscosity function tends to infinity, which an asymptotic behavior often described by an
exponential or power-law function (see Table 2.2). Physically, this limit is no possible. In fact, the
systemjamswhenφ → φmax (see figure 2.1).
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• Definition of the maximum particle volume fraction: φmax is often defined as the fluidity limit
of a suspension of solid particles. It is the volume fractionof the solid below which the suspen-
sion behaves like a liquid in that an applied shear stress induces velocity gradients in the mixture.
Above the fluidity limit the suspension can support a finite shear stress and hence exhibits the
properties of a solid. Howφmax is precisely defined from both theoretical and experimentalstand-
points is fundamental to computing bulk-viscosity dependence onφ. Indeed, in the dilute and
semi-dilute regime, a small change in the particle volume fraction has almost no influence on the
apparent viscosity, which is almost independent of the maximum particle volume fractionφmax.
In contrast, for highly concentrated suspensions, whose viscosity function diverges forφ → φmax,
a small change in the value of the maximum particle volume fraction has a strong impact on bulk
viscosity. Unfortunately, there is no consensus on how to define the maximum particle volume
fraction φmax [291, 251] and several expressions can be found in the literature. They physically
depend on several parameters such as particle shape, size distribution [54, 81, 103, 321] or particle
arrangement (due to the flow or not). Even for a monodisperse suspension, there is no consensus
on the maximum random particle volume fraction value [291].Values usually range from about
0.60 to 0.68. In the case of a face-centered cubic lattice of a monodisperse suspension, the value
can be as high as0.74.

Particle arrangement, shape, size, and size distribution has a strong effect on the rheology of particle
suspension, especially at high particle volume fraction.

Figure 2.1: Relative viscosity increase with particle volume fraction near the maximum volume fraction.
(after [229])

Another critical value of the particle concentration playsa significant role: this is the concentration
φc above which particles start interacting through contacts (herecontactis taken in a loose meaning, it
merely describes the cases where two neighboring particlesare so close that they can physically touch).
According to Coussot and Ancey [72], as long as the solid concentration is low to moderate, particle
contacts (direct or lubricated contact) are almost impossible because of strong repulsive forces in the
squeezing flow between two approaching particles. Externalaction is necessary to overcome these forces
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and result in particle contact. For particle volume fractions in excess of a critical volume fractionφc, the
particle are so closely packed that they undergo lubricatedcontacts, which may degenerate into frictional
or collisional contacts when the contact forces exceed the resisting viscous forces. Ancey [16] and
Coussot and Ancey [14, 72] suggested using dimensionless numbers to determine the prevailing type of
contact. They considered that contacts can be classified into three main categories: frictional, lubricated,
and collisional contacts. They introduced the following dimensionless numbers:

• Leighton numberLe (lubricational vs frictional effects). The number is defined as the ratio of
lubrication forces to normal forces:

Le =
ηf γ̇b

Nǫ

whereηf is the fluid viscosity,̇γ the shear rate,b a characteristic mean distance between the center
of mass of two neighboring particles,N the normal stress andǫ the particle roughness;

• Coulomb numberCo (collisional vs frictional effects). The number is defined as the ratio of
particle inertia to normal forces:

Co =
ρpr

2γ̇2

N

whereρp is the particle density,r the particle radius,̇γ the shear rate andN the normal stress.
Note that this number is also called the Savage number or the inertial number

• Bagnold numberBa (collisional vs lubricational effects). The number is defined as the ratio of
particle inertia to lubrication forces:

Ba =
ρpγ̇rǫ

ηf

whereρp is the particle density,̇γ the shear rate,r the particle radius,ǫ the particle roughness and
ηf is the fluid viscosity.

2.2 Theoretical outline

Paralleling the different approaches to defining the bulk stress tensor in continuum mechanics, the
methods used in rheology to compute the bulk viscosity can becategorized into two approaches

• Energy-based approach: the stress tensor is inferred from the dissipated energy rate Pd and the
strain-rate tensordij [95, 96]

τij =
∂Pd

∂dij
,

which gives in the case of simple shear flow:τ = Pd/γ̇.

• Kinetic theory approach: the suspension stress tensor is inferred from ensemble averages of local
stress tensors [28, 75, 175, 176, 249, 318, 319]

τ =< τl >

where< · > denotes ensemble average.
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Figure 2.2: Conceptual classification of flow regimes of particle suspensions as function of shear rateγ̇
and solid fraction. (after [72])

A homogeneous and monodisperse suspension of non-colloidal spherical particles in a Newtonian
liquid has a viscosity that varies with the bulk particle concentration. The viscosity increases with par-
ticle concentration has been attributed to high dissipation rates in the squeezing flow in the narrow gaps
between approaching particles [104]. Marrucci [188] proposed for the viscosity increase with concen-
tration, large-scale coordination motion instead.
Ever since the work of Einstein in 1906 [95, 96] on very dilutesuspensions (rigid uniform sphere moving
without slip in a medium of equal density at concentration below φ = 0.01, people have related the vis-
cosity of a suspension to the viscosity of the suspending fluid and the particle concentration. For dilute
and semi-dilute suspensions of spheres, all models and measurements have assumed that the viscosity of
suspensions is independent of shear rate and increases withparticle content.

In addition to theoretical derivations of the bulk stress tensor, there have been many attempts to
compute bulk viscosity on the basis of heuristical arguments and experimental observations. One of the
ideas pursued so far has been to expand the bulk viscosity into a power series ofφ [97, 98, 99, 112, 113,
114, 157, 274]. The first-order contribution is given by Einstein’s expression, which holds for very dilute
suspensions. The Einstein equation has been extended by several authors by adding a second-order term
with coefficient values ranging from2.5 to 14.1.

ηr = 1 + k1 · φ + k2 · φ2 with k1 =
5

2
and2.5 < k2 < 14.1

Experiments provided evidence that this equation is valid for concentrations as high as0.15 − 0.20
[29, 30, 32, 93, 94, 301]. The expansion also received theoretical support. Taking into account first-order
effects between particles, Batchelor [29] calculated the second order coefficient being7.6 for a pure
strain flow and5.2 for shear flow.

For higher concentrations, several empirical equations have been proposed. Table 2.2 summarizes
the main equations available to date. Instead of reviewing all equations and approaches, I just give some
indications on how these equations were obtained. Using shear-rate and particle-size effect considera-
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tions, Thomas successfully collapsed viscosity data on a single mastercurve [287]. Batchelor [29, 32]
developed the first theoretical treatment of suspension rheology beyond the dilute regime. He used ex-
plicitly a pair distribution function to take into account particle microstructure. In addition, in one of
his review papers [31], Batchelor concluded that it is almost hopeless to try to find a single constitutive
relation between mean stress and mean rate of strain, which is accurate to order O(φ2) and which ap-
plies to all flow fields. He stated that one should add one (or more) parameter to take into account the
microstructure generated by the flow. Brady and Morris [37] showed that in thePep → ∞ limit surface
roughness or non-hydrodynamic effects result in an asymmetric pair distribution function and therefore
in non-Newtonian normal stresses. Phan-Thien [240, 241, 242] proposed a model by considering sus-
pensions composed of doublets of particles. More recently Zarraga [316] proposed a new equation that
describes the increase in viscosity with particle concentration.

Particle migration has also attracted special attention. Using the approach initially taken by Leighton
and Acrivos [170], Phillipset al. [243] developed a model that includes a particle flux term proportional
to the shear gradient. This model assumes suspensions to be collections of discrete particles moving in
an incompressible fluid; it does not say anything about particles’ interactions with the interstitial fluid
since in the highly concentrated regime, the only significant interactions in the material are assumed to
be binary particle interactions. Leighton and Acrivos proposed a mechanism for particle migration in a
shear flow, representing migration as a balance between competing particle fluxes that arise in response
to gradients in macroscopic quantities in the flow system (gradients in inter-particle collision frequency,
gradients in viscosity). As a result, gradients in particleconcentration and shear rate drive particle dif-
fusion, often in opposite directions, so that a steady stateis reached when the collisional and viscosity
driven fluxes balance. This model provides satisfactory results for Couette and Poiseuille flow, but is
inadequate for other viscometric flows, specifically the parallel-plate and cone-and-plate geometries.
Another approach was proposed by Nott and Brady [222]. In their model the particle flux arises directly
from the particle stress. They incorporated the granular temperature and energy fluctuation of McTigue
and Jenkins [140, 193] into a two-phase model. Comparison was made with the measurement of Lyon
and Leal [181, 182]. The Morris and Brady model [37, 209, 210]is identical to the Nott and Brady
model, but with different particle volume fractions as coefficients in the equations. Buyevich [49] pro-
posed a very similar model to the temperature models. A new and unique feature of Buyevich’s model
is that it allows the suspension temperature to be an anisotropic tensor. Finally, Mills and Snabre [202]
presented a model based on lubrication forces between colliding particles and Morris and Boulay [208]
proposed a normal stresses shear-induced model. All these models are summarized on table 2.1.
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2.3 Experimental observation

2.3.1 Phenomenological law for the relative viscosity of concentrated particle suspension

A large body of experimental work has been devoted to the dependence of bulk viscosity on particle
fraction. Experimental data served to fit new empirical models or test existing equations. Table 2.2 sum-
marizes empirical relations together with experimental investigations. Good agreement is usually found
between data and models for dilute to moderately concentrated suspensions. At higher concentration the
differences between experiments, empirically and theoretically derived viscosity functions increase sub-
stantially. Non-Newtonian behavior has been reported for solid concentration above0.4: concentrated
suspensions are generally shear-thinning and shear-thickening occurs at high shear rate [143]. Beyond
the shear-thickening region, the rheological behavior is still unclear. In the zero shear rate limit, the sus-
pension are often Newtonian except for very concentrated suspensions where yield stress behavior has
been reported (see below).

2.3.2 Non-Newtonian effects

As already mentioned in§ 2.1, whereas for dilute and moderately concentrated particle suspensions,
the Newtonian viscosity law is a correct approximation to the rheological behavior, it is no longer valid
at high concentrations as a result of several effects: Normal stresses, particle migration and jamming
events have been reported.

Normal stress

Bagnold [23] observed that normal stresses scaled linearlywith shear rate in steady-shear flows of
suspensions, but most of his measurements were in the collisional regime. In addition, the experimental
setup used by Bagnold was unlikely to be adapted to this kind of measurements [133]. Gadala-Maria
[106] found that the normal stress differenceN1 − N2 was positive and scaled linearly with shear rate
in steady shear flow. Prasad and Kytoma [246] also measured the axial normal stress in a parallel-
plate device. However they equilibrated fluid pressure withquiescent fluid through a perforated plate,
thereby they measured only the stress arising from particlecontacts. Bagnold [23], Leighton [171] and
Phan-Thien [240] attributed the normal stresses to anisotropic local microstructure, i.e. to the spatial
arrangement of the particles. More recently Zarragaet al. [316] performed normal stress experiments
on highly concentrated suspensions using three different techniques. They showed that bothN1 andN2

are negative and proportional to the shear stress and with|N2| > |N1|. The most recent work by Singh
and Nott [276] based on Couette and parallel-plate geometries with constant shear and superimposed
sinusoidally varied shear rate. They also obtained a linearly varying normal stress with shear rate in the
particle volume fraction ranging from0.3 to 0.45. Their result agrees with Zarraga’s experiments.

Shear induced particle diffusion

Leighton and Acrivos [170] performed experiments that provided evidence of a diffusion-like process
in which particles migrate from regions of high shear rate toregions of low shear rate, even with a sys-
tem of non-Brownian and non-inertial suspensions. This migration process results in a non-homogeneous
particle concentration. In rotational rheometry, migration can be observed by taking a well-stirred sam-
ple and shearing it continuously. The torque decreases continuously with time. Because of the absence
of Brownian motion, the time of rest has no effect on migration. Even after a long rest, the suspen-
sion retains the same apparent viscosity as it had at the timeof flow cessation. This phenomenon is
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observed in coaxial cylinder [106, 170], cone-and-plate [250, 281] and parallel-plate geometries. No
transient behavior is apparent at low concentration. Particle migration becomes difficult to measure at
very high concentrations because the inner cylinder cuts a hole in the suspension and looses contact with
the material.

A few constitutive equations, which include particle migration, have been tested against experimental
data. First comparisons with the NMR measurement have been carried out by Phillipset al. [243]
using Abbott and Graham’s data [4]. A comprehensive description and comparison with LDV (Laser
doppler velocimetry) measurement has been carried out by Shapley [268] and Shapleyet al. (2002, 2004)
[269, 270] with the five previous models (Nott and Brady, Morris and Brady, Buyevich, Phillips, McTigue
and Jenkins). Recently, Lenobleet al. [172] also did some comparisons with optical measurements.

Yield stress and jamming

For some fluids, the flow curve when plotted in theγ̇ − τ plane exhibits ayield stress: when the rate
is decreased towards zero, the shear stress tends towards a constant value. For colloidal systems, a simple
phenomenological model can explain this behavior: competition between re-structuration (aggregation
of colloids, which is mainly dependent on the material) and de-structuration (resulting from flow, i.e.,
mainly dependent on the instantaneous shear rate) leads to acontinuously increasing viscosity for low
applied stresses. If restructuration overwhelms destruction caused by the flow, the system eventually jams
and stops flowing. For granular systems, another explanation has been proposed: change in the spatial
arrangement of particles induce viscosity variations. Liuand Nagel [177] stated that glassy, pasty, or
granular materials show similar mechanical behavior in that these materials are jammed at rest, but start
flowing when the load to which they are submitted increases beyond a critical value.

At very low shear rates, highly concentrated suspensions exhibit a yield stress [74, 78, 139, 253,
229]. The apparent macroscopic stress plateau in the frictional regime [15] was shown (using MRI
techniques) to result from shear localization near the inner cylinder [229]. This is in agreement with
the viscosity bifurcation experiments of Huanget al., Da Cruzet al. and Jarnyet al. [78, 132, 139].
These experiments provided evidence of the existence of a critical shear rate below which no steady flow
is possible. Localization maintains the true shear rate above that critical value. We should not confuse
this shear localization with the one that arises when increasing the local particle concentration near the
close-packing limit. As already discussed in section 2.1.2, this jamming phenomenon is related to the
viscosity divergence whenφ → φmax. At the microscale, the velocity profiles seem to be self-similar; in
particular, a mastercurve on which all velocity collapse can be obtained using the inner cylinder velocity
and the sheared layer thickness [229].

Other effects

• Shape
As shown by Tsaiet al. [293] and Kitano [152], quasi-monodisperse irregularly shaped sand par-
ticles exhibited significantly greater relative viscosityand substantially smaller maximum packing
fraction compared to spherical glass beads despite a broader size distribution of the irregularly
shaped sand.

• Size
The effect of particle size on the relative viscosity appears to be controlled by diffusion and it and
correlates almost linearly with the particle Péclet number Pep [295].
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• Size distribution
For dense packings for polydisperse suspensions, the maximum concentration is shifted to higher
values (compared to monodisperse systems),which means that the relative viscosity at a given
value ofφ is lower for a polydisperse system than for a monodisperse suspension. Therefore for
polydisperse systems lower relative viscosities are foundgenerally [259]. The size ratio and the
type of distribution is of importance [102]. Rheological experiments with bimodal, multimodal,
and polydisperse systems emphasize the relation betweenφmax and suspension viscosity.

• Liquid polarity
For a moderate shear-rate range, Tsai [294] showed that for concentrated suspensions (φ up to
0.58), liquid polarity has a significant effect on the pseudoplastic behavior of the suspension in
presence of strong interparticular van der Waals forces. Pseudoplasticity increases as liquid po-
larity decreases. At high shear rate, the hydrodynamic force dominates over such interparticular
force and the suspensions become Newtonian.

• Particle ordering
Depending on the particle size distribution and the shear rate, particles can rearrange in various
ways, therefore influencing the suspension rheology. Lightscattering experiments [129, 250] have
shown that at low shear rate, particles are ordered, but beyond a critical shear rate, particle arrange-
ment is destroyed. Another related effect is the liquefaction observed for non-buoyant-particle
suspensions: at higher shear rates, the suspension becomesviscous (not Newtonian because of
the presence of normal stress differences apparently due toan anisotropic particle microstructure
[171]). Visual observation by Abbottet al. [4] and Völtz et al. [303] showed particle ordering
in two-dimensional hexagonal structures at the outer wall.At higher shear rate, the suspension
exhibits shear thickening (for a review, see Barnes [26] or Stickel [280]). This behavior probably
stems from a transition from the viscous regime to a collisional regime where dissipation due to
grain-grain collisions replaces the interstitial fluid viscous dissipation. Furthermore the ordered
structure in the viscous regime disappears and gives way to arandom three-dimensional distribu-
tion [130, 250].

2.4 Rheophysics of concentrated particle suspensions in a wide-gap Cou-
ette cell

Despite many attempts using classical rheometry to get a better insight into the rheology of noncol-
loidal concentrated particle suspension, many questions have as yet received little answers. As we will
see in more details in chapter 3, experimental studies of these materials are faced with measurement
problems which make the results tough to process, interpret, and to understand. All usual difficulties en-
countered in rheometry such as bottom-end effects, sample rupture (especially at high particle fraction),
free surface deformation and flow instabilities are amplified, with little ways of alleviating their disturb-
ing effects. It is worth recalling that these effects include wall slip (due mainly to particle depletion at the
wall [24, 138], for a more detailed discussion, please referto section 4.4.2), shear localization [15, 71],
particle migration/segregation, and the finite-size limitif one wants to use classical narrow-gap Couette
cells. These difficulties have promoted the use of wide-gap geometries, but the associated Couette in-
verse problem (i.e., deriving the flow curveτ(γ̇) from torque measurements) calls for more sophisticated
techniques than those used classically for narrow gaps. This point remains an open field of research
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when studying complex fluids such as concentrated suspensions (for a more detailed discussion, please
refer to section 3.2 and 4.5.1).

As a typical result of investigations into the behavior of coarse-particle suspension, we report the
experimental results obtained by Anceyet al. [11, 15] on glass beads immersed in various interstitial
fluids and sheared by a vane. Figure 2.3 shows the variation inthe dimensionless shear stressS =
τ/(ρgh) (h is the thickness of material sheared by the vane,ρ its density) as a function of a dimensionless
numberΓ = µΩ/(ρ′gh) (whereΩ is the rotational speed of the vane,ρ′ the buoyant density,µ the
interstitial fluid viscosity). This experiment shows the transition from a frictional (Coulomb) regime to a
viscous-like regime:

• At low shear velocities (Γ ≪ 1), S is independent ofΓ, which implies that: (i)τ ∝ σzz (where
σzz denotes the vertical normal stress) and (ii)τ does not depend on the shear rate.

• At high rotational speed, all the material was sheared in thegap. We observed thatS ∝ Γ, that is,
in terms of dimensional variables,τ ∝ γ̇.

���� ���� ���� ���� ������ �����	 ���
 ���� ���� ��
 ������
�
�� ����� � �������� ������� φ� !"����� � �������� ���#$��� φ� !"����� � �������� ���%#��� φ� !"����� & '���() ���%%��� φ� !*+� �φ,� ! #������ ���-%��� ���! φ� !"$����� ���$- ��� ���! φ� !"$�(� ���--��� ���! # .

Γ

Figure 2.3: Variation in the dimensionless shear stress as afunction of the dimensionless numberΓ. The
line slope is unity and indicates a linear variation ofS with Γ. Suspensions made up of glass beads and
various interstitial fluids: air (µ = 1.8 × 10−5 Pa.s), water (µ = 10−3 Pa.s), water-glycerol solution
(µ = 0.96 Pa.s,ρf = 1260 kg/m3), and water-kaolin dispersion. The particle diameter was either 0.3
mm, 0.8 mm, 1 mm, 2 mm, or 3 mm. After [11].

If this transition is well understood qualitatively from the theoretical viewpoint, certain points remain
unclear. For instance, the point of transition between the frictional and viscous regimes was found to be
particle-size dependent, which remains unexplained.

There has been a significant change of perception in rheometry over the last two decades. Until
the late 1980s, most of the knowledge in concentrated particle suspensions stemmed from macroscopic
measurements. In the last 20 years, a new trend has emerged, where flow behavior is investigated locally
using visualization techniques. Recently sophisticated tools such as Magnetic Resonance Imaging (MRI)
[34, 73, 229] have been used to visualize flow behavior insidea rheometer. Good reviews on the use MRI
in fluid mechanics can be found in Callaghan [50] and Fukushima [105]. Making use of this technique,
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experimentalists are faced with severe constraints that limit their interest for studying complex, time-
dependent rheological behavior.
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Table 2.2: Relative viscosityηr functions of concentrated particle suspensions

ηr = 1 + 2.50 · φ [95, 96]

ηr = 1 + k1 · φ + k2 · φ2 [29, 32, 93, 94, 167, 301]

ηr =
25

16

(
φ2

(1 − φ/φmax)2

)

[94]

ηr = exp

[

C
hφ

(1 − hφ)

]

[19]

ηr = exp

[
5

2

(
φ

(1 − Kφ)

)]

1.35 < K < 1.91 [205]

ηr = exp(1 + k1 · φ + k2 · φ2) [258]

ηr =
54

4f3

(
φ2

(1 − φ/φmax)3

)

1 < f < 2 [275]

ηr =
1

(1 − φ)5/2
[43, 256]

ηr = 1 +
2

√

(φ/φmax)2 − 1
tan−1

(√

φ/φmax + 1

φ/φmax − 1

)

[5]

ηr = (1 − φ/φmax)n [52, 164, 165, 197, 244, 245]

ηr =

(

1 − φ

φmax

)−2

[152, 187]

ηr =
9

8

(

(φ/φmax)1/3

1 − (φ/φmax)1/3

)

[104]

ηr∞

ηr0

= (1 − 1.47φ)−1.82

= (1 − 1.75φ)−1.50

}

[230, 310]

ηr =

[

1 + 0.75

(
(φ/φmax)

1 − φ/φmax

)]2

[62]

ηr =

(

1 − 1.033
φ

φmax

)−1.8

[55]

ηr = 1 + C
3π

8

β

β + 1

[
3 + 4.5β + β2

β + 1
− 3

(

1 +
1

β

)

ln(β + 1)

]

[266]

β =
(φ/φmax)1/3

1 − (φ/φmax)1/3
, C ∼ 1

ηr =
exp(−2.34φ)

(1 − φ/φmax)3
[316]



3Measurement techniques

In rheometry, particle suspensions pose substantial difficulties of different nature:

• measurement problems: the idea underpinning rheometry is that by imposing a simple shear flow
(viscometric flow in the parlance of rheologists), we shouldbe able to take bulk measurements
that can be interpreted in terms of stress and strain rate. Achieving viscometric flows in modern
rheometers is rather simple for usual fluids, but remains a challenge for complex fluids because of
the occurrence of several disturbing processes (slip, shear banding, size effect, etc.);

• inference problems: the flow curveτ(γ̇) from bulk measurements is usually derived within the
framework of viscometric flow theory. This theory relies on anumber of assumptions and approx-
imations, which may be not be satisfied.

In this chapter devoted to experimental techniques, we willreview the different difficulties encountered
in the rheometry of coarse-particle suspensions. We first start in § 3.1 by recalling some basic problems
when selecting an appropriate rheometrical geometry. On the basis of past experience, the Couette cell
(also called coaxial-cylinder geometry) turns out to be themost efficient geometry for our purposes. In
§ 3.2, we will tackle the delicate problem of the flow-curve derivation, i.e. reconstructing the fieldτ(γ̇)
from a discrete set of bulk measurementsMi(Ωi) with M torque andΩ spindle’s rotational velocity.
This derivation involves solving an inverse problem (Fredholm equation) for which several methods are
now available. We will test and compare the various techniques.

To get around experimental difficulties with classic rheometers, a growing number of scientists have
been tempted to derive the flow curve by directly measuring the velocity field inside the cell. Indeed, if
flow is viscometric, the shear stress distribution across the gapτ(r) (with r being the radial coordinate)
is imposed and known (using the momentum balance equations for continua), which implies that if we
are able to measure the fluid velocityv (orthoradial component) and differentiate it, we can obtain the
local shear ratėγ(r) = r−1∂θv and thereby, the flow curveτ(γ̇). Nuclear Magnetic Resonance (NMR)
and Magnetic Resonance Imaging (MRI) have been increasingly used to obtain velocity measurements
inside sheared samples. Although these techniques are efficient, they involve expensive tools and heavy
procedures. In this thesis, I took another approach: there are now several visualization techniques based
on particle image velocimetry(PIV) andparticle tracking velocimetry(PTV) that enable visualization
inside concentrated suspensions. There are many advantages of this approach over MRI and NMR tech-
niques: reasonable cost, robustness and versatility of thetechniques, greater accuracy. There are also
some drawbacks: we must work with transparent suspensions and experiments are highly sensitive to
temperature and humidity, which imposes drastic temperature and humidity control. In§ 3.3, I show
how PIV techniques can be used to obtain the velocity profilesof highly concentrated particle suspen-
sions. To obtain information on the disperse phase, we must be able to track tagged particles within the
interstitial fluid. In§ 3.4, I present techniques coupling fluorescent dyes and PIV,which are referred to

17
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as fPIV techniques. Within this experimental framework, the crux lies in suspension transparency. Since
particle suspensions are not transparent in the visible spectrum, we must select fluid and particles with
the same refractive index. The principle is straightforward, the technique is heavy. In§ 3.5, I present the
procedures I followed to match refractive indices of continuous and disperse phases.

3.1 Rheometrical investigations

Coarse particle suspensions have been studied in rheometryusing several different tools. These tools
can be classified as follow:

• viscometric flow tools: concentric-cylinder, parallel-plate, cone-and-plate, cone-cone, capillary
tubes, etc.

• non-viscometric flow tools: rotating ball rheometer [264],falling needle viscometer [232].

We restricted ourselves to viscosimetric flow tools where noempirical constant has to be used to derive
the flow curve of a suspension. When studying rheological properties of particle suspensions, experi-
mentalists are faced with a number of problems resulting from the presence of particles:

• For noncolloidal particle suspensions, the typical particle size is most often large relative to the
gap of usual rheometers. This leads to developing large rheometers or adapting conventional ge-
ometries.

• Disturbing effects such as slipping and particle depletionat the shearing surface affect measure-
ments. This motivates the development of specific procedures and new tools. For instance, the vane
shear cell (imported from soil mechanics) is now increasingly used in rheometry [25] although it
was vigorously criticized in the 1990s.

• Imposing a simple shear flow is a difficult task: ill-understood phenomena such as secondary flow
(loss of stability induced by inertia), fracturation, shear localization, and particle migration can
substantially influence rheological behavior.

• Rheometrical measurements can be affected by large stress (or shear-rate) fluctuations, which
poses two problems:

– Does it make sense to only measure mean properties? Let us usethe analogy with turbulent
flows: measuring turbulent viscosity with a rheometer is meaningless since this bulk viscosity
is not an intrinsic property of the fluid, but depends on the boundary conditions and flow
geometry.

– The flow curveτ = f(γ̇) (namely the relationship between the shear rateγ̇ and the shear
stressτ ) is obtained by solving an inverse problem. Usual methods are very sensitive to noise
and can lead to inconsistent results [35].

• The principle of rheometry is to impose viscometric flow conditions, that is, ideal flow conditions
where the stress and/or shear-rate distributions are knownin advance. For particle suspensions, the
only information that can be provided by a rheometer is the flow curveτ = f(γ̇) and, sometimes,
one of the normal stresses. Contrary to a trixial cell used insoil mechanics, a rheometer cannot
explore various “loading” paths and therefore, it is not experimentally possible to measure all the
components of the stress tensor.
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Because of the rheometrical difficulties described above and our particular interest in the rheophysics
of concentrated non-colloidal particle suspension, we have developed an innovative experimental setup
by combining classical concentric-cylinder rheometricalmeasurements and visualization techniques. We
preferred the concentric-cylinder geometry over other geometries because it seems to be the most suitable
geometry for the study of coarse-grain suspensions.

3.2 Wide-gap rheometry and the Couette inverse problem

A longstanding problem in rheometry is the so-called Couette inverse problem, in which one tries to
derive the flow curveτ(γ̇) from the torque measurementsM(Ω) in a coaxial cylinder (Couette) rheome-
ter, whereτ is the shear stress,γ̇ denotes the shear rate,Ω is the rotational velocity of the inner cylinder,
andM represents the torque per unit height (Colemanet al. [68], Ttot = h · M , Ttot is the total torque
andh is the immersed height of the rod). The shear stressτin exerted on the inner cylinder of radiusRin

can be directly related to the measured torqueM by τin = αM , with α = 1
2πR2

in
, independently of the

form of the constitutive equation. The shear rate is relatedto the rotational velocityΩ by

Ω =

∫ Rout

Rin

γ̇(r)

r
dr, (3.1)

whereRout denotes the outer-cylinder radius and it is assumed that (i)the rotational velocity of the outer
cylinder is zero and (ii) there is no slip between the inner cylinder and the sheared material. In order to
recover the flow curve from measurements of the rotational velocity Ω(M), one must be able to

1. infer the shear stressτ from the torque measurementsTtot,

2. find out a means of inverting the integral relationship 3.1to obtain the shear ratėγ,

3. relate the functioṅγ(r) to τ(r),

4. estimate the continuous functionγ̇(r) from a set of discrete values(Ωi,Mi).

For a broad class of fluids (calledsimple fluidsin viscometry), the first and third steps are system-
atically achieved since there is a one-to-one relation between the shear stress and the shear rate for
steady viscometric flows:̇γ = γ̇(r). Using narrow-gap Couette cells and solving the Couette inverse
problem with standard narrow-gap approximation formulas (FPP [68, 86, 183], Euler [66, 86], Mooney
[204, 206]) or truncated infinite series [159] (see table 3.1) performs very well.

For more complex fluids (such as yield stress fluids, particlesuspensions,...), inferring the flow curve
τ = f(γ̇) from the torque and angular velocity (Ωi,Mi) measurements is not obvious. It is not always
straightforward to infer the shear stress from the total torque because the local shear stress may depend
on flow height, i.e. on normal stresses as shown by Ancey and Coussot [15] for particle suspensions
in the frictional regime. Furthermore inverting equation (3.1) requires an homogenous flow in the gap.
Therefore the experimentalist has to check for shear localization and wall slip. Finally, the flowing
material is supposed to be homogenous. Some of the existing techniques use ana priori known velocity
profile in the gap, i.e. ana priori known fluid rheology (see Table 3.2 number 2a, 4, 5). Typical fluids
are power law fluids, Casson fluids, Bingham fluid or Herschel-Bulkley fluids. Some of the techniques
do not require a fluid rheology. An extensive review of the existing techniques for solving the Couette
inverse problem can be found in Table 3.2.

As briefly mentioned in§ 2.4, because of the particle size in concentrated non-colloidal particle
suspensions and the resulting finite size effect in a narrow-gap rheometer, one has to use wide-gap ge-
ometries for experimental studies of coarse-particle suspensions. In this way, we get rid of the size
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effects, but we have to face a delicate issue: we have to solvethe Couette inverse problem to obtain the
flow curveτ(γ̇) = f(γ̇) from a set of measurements values(Ωi,Mi).

Figure 3.1 shows the effect of increasing the gap, i.e.decreasing the radius ratioκ, with a given fluid
(artificial Herschel-Bulkley (HB) fluid). The data shown in figures 3.1 to 3.7 were obtained using formula
No. 8 in Table 3.2 and by generating numerically a set of “artificial measurement data” (Ωi, Mi). Using
then Couette solving methods, we calculated the flow curve (γ̇, τ ) from these data. The performance of
each method can finally be evaluated by comparing it with the known true flow curve (thick blue line). In
the caseκ = 0.9 (fig. 3.1 (a)), one can use almost all methods (except infinite-gap methods) to retrieve
the right flow curve. One can also see in Figure 3.1 (b), (c) and(d) the departure with decreasingκ of
the different methods from the true flow curve.
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Figure 3.1: Comparison of Couette solving methods with respect to the cylinder radius ratio for a
Herschel-Bulkley fluid (τ0 = 30 [Pa], K = 60 [Pa s−n] and n = 0.7 [-])κ = Rin

Rout
: (a) κ = 0.9,

(b) κ = 0.75, (c) κ = 0.5 and (d)κ = 0.2; the two black horizontal lines are where the yield stressτ0 is
equal to the inner and outer shear stressτin andτout.
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S
h

ea
r

st
re

ssτ
[P

a]

Analytical curve
Ancey (2005)
Yeow (2000)

MacSporran (1986)
Krieger (1952)
Krieger (1953)
Krieger (1968)

De Hoog Mid point (2005)
De Hoog Modified mid point (2005)

De Hoog TTFD (2005)
De Hoog MTTFD (2005)
De Hoog FTFD (2005)

De Hoog MFTFD (2005)

(c)

10−4 10−3 10−2 10−1 100 101

0

100

200

300

τin= τ0

Shear ratėγ [1/s]
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Figure 3.1: Comparison of Couette solving methods with respect to the cylinder radius ratio for a
Herschel-Bulkley fluid (τ0 = 30 [Pa], K = 60 [Pa s−n] and n = 0.7 [-]) κ = Rin

Rout
: (a) κ = 0.9,

(b) κ = 0.75, (c) κ = 0.5 and (d)κ = 0.2; the two black horizontal lines are where the yield stressτ0 is
equal to the inner and outer shear stressτin andτout.

One method that clearly performs better with increasingκ is the infinite-gap method proposed by
Krieger (1952) [159]. With a yield stress fluid an infinite gapis equivalent to a partially sheared gap, i.e.
when the outer shear stressτout is below the yield stressτ0. Figure 3.2 and 3.3 show the almost exact
recovery of the flow curve in a partially sheared state and thecurve take-off atτout = τ0.
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Figure 3.2: Comparison between the HB analytical flow curve (τ0 = 30 [Pa], K = 60 [Pa s−n] and
n = 0.7 [-]) and the data obtained with the infinite-gap exact equation proposed by Krieger (1952) [159],
the horizontal lines are where the yield stressτ0 is equal to the inner shear stressτin (lowest horizontal
black line) and outer shear stressτout (colored lines) for various radius ratios.

10−1 100

40

60

80

100

120

κ = 0.9

κ = 0.75

κ = 0.5

Shear ratėγ [1/s]
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Figure 3.3: Zoom of the take-off atτout = τ0 of theκ = 0.9 andκ = 0.75 flow curves of figure 3.2.

Using the exact infinite series formula proposed by Krieger and Elrod (1953) [158] gives accurate
results, but one has to compute high-order derivatives, which remains a difficult task when data are
noisy. Fgure 3.4 shows how well the method performs when increasing the number of terms. Krieger
proposed also a method for Newtonian and power-law fluids (Krieger 1968,1969 [163, 162]). This
method performs poorly with yield stress fluids, especiallyif it is partially sheared within the gap and
also with noisy data (Borgia and Spera (1990) [35]). In this case, Nguyen and Boger (1992) [214] have
proposed using the Krieger (1952) infinite-gap exact formula. Noise is also an important parameter for
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more sophisticated techniques such as the discretized integral approach proposed by MacSporran (1987)
[185]. The effect of various noise level on the (Ωi,Mi) is shown in Fig. 3.5. To solve this problem,
regularization techniques were used (MacSporran 1989 [184], Yeow et al. 2000 [312] and Leonget
al. 2003 [174]). However, when the rheological behavior exhibits singularities such as a yield stress
or rapid shear-thickening, the regularization procedure can lead to unrealistic results by smoothing out
the singularities (see for example Fig. 3.6). For complex rheological responses, it becomes difficult to
discern rheological properties, noise effects, and discretization errors.
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Figure 3.4: Comparison between the HB analytical flow curve and the data obtained with Krieger and
Elrod infinite series [158] with 1, 2 and 3 terms of the series with κ = 0.5
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Figure 3.5: Effect of noise on the discretized integral approach of MacSporran (1987) [185]: (a) no noise,
(b) and (c) increasing noise on the angular velocity / torque(Ωi,Mi) data.
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Figure 3.5: Effect of noise on the discretized integral approach of MacSporran (1987) [185]: (a) no noise,
(b) and (c) increasing noise on the angular velocity / torque(Ωi,Mi) data.
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Figure 3.6: Smoothing effect of regularized least square techniques on singularities (Bingham fluidτ =
τ0 + Kγ̇, τ0 = 30 Pa andK = 60 Pa·s): Tikhonov regularization technique with the regularization
parameterλ = 7.6 · 10−7 (Yeowet al. [312])
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Figure 3.7: Comparison between the HB analytical flow curve (τ0 = 30 [Pa], K = 60 [Pa s−n]) and
the data obtained with the various Bernoulli polynomial solutions by varyingα: (a) n = 0.7 and (b)
n = 0.3.

Methods derived from a generalization of the Krieger and Elrod infinite series have recently been
proposed by De Hoog and Anderssen [84, 86] (refer to table 3.2for the detailed formula). When dealing
with wide-gap geometries, the results obtained with this Bernoulli polynomial solution will vary between
the Krieger-Elrod result (α = 0) and the mid-point approximation proposed by De Hoog and Anderssen
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(α = 0.5). The gap between both curves increases with decreasing radius ratioκ. Unfortunately as we
can see in figure 3.7, the best method varies with the fluid rheology. In the case of a HB fluid, the most
relevant parameter influencing to choice of the bestα is the shear rate exponentn. For a fluid having a
small exponentn, a method with a highα performs better; in contrast, with a fluid with a high exponent
n, a method with a smallα performs better.
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Figure 3.7: Comparison between the HB analytical flow curve (τ0 = 30 [Pa], K = 60 [Pa s−n]) and
the data obtained with the various Bernoulli polynomial solutions by varyingα: (a) n = 0.7 and (b)
n = 0.3.

The wavelet-vaguelette decomposition proposed by Ancey (2005) [13] takes its roots in a recent
extensions of the adjoint-operator method called wavelet-vaguelette decomposition (WVD). This theory
was developed by Donoho (1995) [90] to solve certain classesof inverse problems. As shown by Ancey,
it performs better on a Casson fluid than the Tikhonov regularization method and allows to get rid of
the smoothing effect of the regularization term. This is of great importance for complex fluid exhibiting
particular features in the flow curve such as rapid change, discontinuous shear rate distribution near the
yield point. Main drawbacks of this technique are the mathematical complexity, computational cost and
the need for denoising and interpolation techniques for theraw experimental data.

3.3 Particle Image Velocimetry

Particle image velocimetry (PIV) is an efficient method for measuring two-dimensional (and even
three-dimensional) flow velocity fields. It is a non-invasive technique (i.e. it does not change the flow
being measured) and possesses a fine spatial and temporal resolution. PIV is a technique based on image
acquisition and pattern recognition within or between images to deduce the displacement field within the
flow between these two (or more) instants. To gain quantitative knowledge of the flow motion, tracers
are added to the (clear) fluid. These tracers are visible tinyparticles that follow the fluid motion. By
shining a laser sheet on the area of interest to enlighten thetracers, we can record the patterns produced
by the random particle arrangement on successive images using a high-speed camera. Once image have
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been captured, we can divide the images into sub-windows (typically 16 × 16 to 64 × 64 pixels). Auto-
or cross-correlation is then used in the corresponding sub-windows to measure the pattern displacement
(i.e. the fluid displacement)∆x between the images. Using advanced algorithms also allows for pattern
distortion measurement. Knowing the time∆t between the exposures, we can compute the instantaneous
velocity of the fluid in the sub-window. This can be done in allother sub-windows and images to end up
with an instantaneous velocity map. Finally in a post-processing step, spurious vectors are removed as
much as possible.

This section is divided into four parts, which are devoted toPIV in general: image acquisition in
§3.3.1 to§3.3.4, PIV processing in§3.3.5, PIV post-processing in§3.3.7, and specific PIV techniques
in § 3.3.8). Good reviews and books on PIV can be found in [8, 111, 252, 292].

3.3.1 Tracer particles and seeding for particle image velocimetry

Small particle motion in flow

In the limit of low Reynolds numbers, the equation of motion of a small spherical particle immersed
in a fluid flow is given by

4

3
πr3

pρs
dv

dt
=

4

3
πr3

pρf
Du

Dt
non-inertial force

+
4

3
πr3

p(ρp − ρf )g net body force

+ 6πµrp(u− v) quasi-steady drag force

+ µπr3∇2u Faxen force (see [121])

+
2

3
πr3

pρf

(

u̇− v̇ −
r3
p

10

d

dt
∇2u

)

added mass force (see [189])

+ 6r2√πρfµ

(∫ t

0

u− v√
t − t′

dt′ +
(u − v)0√

t

)

Basset force (see [255])

+ Lsaff Saffman lift force (see [82, 192, 260])

+ Lmag Magnus force

whereu is the velocity of the surrounding fluid,v the particle velocity. This equation is known as the
Basset-Boussinesq-Oseen equation (details of its derivation can be found in Croweet al. [76], see also
[33, 67, 190]). For very small tracers as those used in PIV, the first part of the quasi-steady viscous
term (Stokes drag) dominates the right-hand side of the equation. AssumingDu/Dt = dv/dt, we can
estimate the difference between the particle and fluid velocities as

v − u =
2

9

r2(ρp − ρf )

µ

dv

dt
(3.2)

Clearly from 3.2 the choice of neutrally buoyant particles leads to tracers that closely follow the flow.
This condition can be easily fulfilled for liquid flow. It cannot be achieved easily in gas flows.

Tracer “slavery” is quantified through the particle Stokes numberStk, defined as the ratio between,
on the one hand, the product of particle relaxation time and,on the other hand, the fluid velocity to a
characteristic dimension of the obstacle:

Stk =
τu0

l
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Figure 3.8: Time response of tracers particle with different diameters in a decelerating air flow:µ =
1.8 · 10−5 Pa·s,ρp = 900 kg/m3.

whereτ is the relaxation time of the particle,u0 is the fluid velocity of the flow away from the obstacle
andl is the characteristic dimension of the obstacle. As can be seen in figure 3.8, particles as small as
possible have to be used to track fluid motion and not particlemotion.

Small particle imaging

As show above, particles must be as small as possible to be tracers. However, at the same time, they
have to scatter enough light to be visible. For that purpose,particle size must lie within the micrometer
range (for gas flows) or tens of micrometers (for liquid flows). This implies that scattering is in the so-
calledMie scattering regime. Another approach is to use particles containing a fluorescent dye; the light
absorbed by the dye is emitted at a longer wavelength, which makes it possible to distinguish tracers
form other objects.

Mie scattering of small particle

Particle scattering depends on the particle diameter, the wavelength, the refractive index of the parti-
cle relative to the surrounding fluid and the scattering angle. Most of the light is scattered in the forward
direction, a substantial part is scattered backwards and at90 ˚ (for standard 2D PIV), the scattered amount
is usually very low. This is why PIV needs strong light. Because of the smaller refractive-index differ-
ence in liquid flows, bigger particles must be used to receiveenough light. Fortunately in that case, it
is much easier to find neutrally buoyant particle; using bigger particles (as large as tens of micrometers)
can still fulfill the low-Stokes-number condition.

Fluorescent tracer particle

Particles can be tagged with a fluorescent dye (e.g. Rhodamine). The dye absorbs incident light,
which is then re-emitted at a longer wavelength. This makes it possible to distinguish the tracers from
other objects such as bubbles, droplets, other particles, walls, etc., by means of an appropriate optical
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filter. The emission of fluorescence is isotropic, thus thereis no intensity dependence on the viewing
angle. Fluorescence intensity depends on the amount of fluorescent dye on the tracers; this is in general
proportional to either the particle volume (d3

p, in Mie scattering) or particle surface (d2
p), depending on

the particle tagging (bulk or surface tagging). The duration of fluorescence is typically of the order of 10
ns.

Particle generation

Some of the best suited particles for PIV measurements, suchas polymers, hollow SiO2 microbal-
loons or metallic-coated spheres, are quite complicated tofabricate (although they are today commer-
cially available). Since these particles are quite expensive, they are better suited for closed loop systems.
When larger quantities of particles are required, more economical solutions are sought and special par-
ticle generators offer a good solution, some of which are also commercially available. Particle gener-
ation can be divided into solid and liquid particles. Solid particles or powders are used to seed liquid
flows and in applications such as combustion, where liquid droplets tend to evaporate. In either case, a
monodispersed size distribution and a spherical particle shape are desirable, the latter condition being
automatically fulfilled by small liquid droplets. Essentially, droplet can be generated by vapor conden-
sation of highly saturated vapor stream or by liquid atomization in a gas flow. For solid particle seeding,
the two main methods are constituted by dry powder and atomization as for liquid droplet. In the case
of atomization, the idea is that after atomization the liquid or solvent evaporates, leaving solid particles
behind.

Achieving optimum flow seeding is generally recognized as the most difficult part of PIV experi-
ments. Once the flow is uniformly seeded at required concentration, the experiment has high chance of
success. The seeding process will not be discussed in details here. For further information, the reader
should refer to Melling 1997, Raffel or Tropea ([196, 252, 292], see figure 3.9).

3.3.2 Light source and light sheet optics

Lasers are routinely used for PIV measurements because theyemit monochromatic light with high
energy density, which can easily be bundled into a thin lightsheet for illuminating and recording the
tracer particles. There are two types of lasers: continuouswave (CW) lasers and pulsed lasers. In§ 3.3.4,
we will see how image acquisition depends on the laser type.

The light sheet can be obtained using commercially available sheet generators or by means of a set
of spherical and cylindrical lenses (see for example [87, 238, 273]) and, in special cases, with an extra
optic fiber [153].

The finite width of the laser sheet produces an uncertainty onthe absolute position of the seeding
particle in the direction perpendicular to the light sheet.This transversal motion is captured in stereo-
scopic PIV to get the third velocity component. Following the theory of Gaussian beam propagation
(which is not absolutely valid for lasers used in PIV such as Nd:YAG lasers), the sheet thickness in the
area of interest (AOI) can be calculated. Depending on laser, lenses, geometrical configuration of the
experimental setup, and flow behavior, optimization of the sheet width, divergence and thickness (over
the whole area of interest) can be achieved. A system of four lenses (one spherical and three cylindrical)
allows to control the spreading (sheet width and divergence) and focusing of the light sheet (focusing
distance and evolution of the sheet thickness) [89, 247].
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Figure 3.9: Light sheet generator (after [89]).
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3.3.3 Digital camera

The present state-of-the-art in digital image allows to saythat almost all PIV applications use digital
cameras for recording. Immediate image availability and thus feedback during recording as well as a
complete avoidance of photochemical process are some of theadvantages brought by digital cameras.
Even if the trend suggests that electronic recording pushesthe photographic methods aside, photographic
films still have higher spatial resolution than the digital cameras used in PIV and may be a better solution
in some specific applications. As we will see in§3.3.4, depending on the recording technique, two
pictures have to be captured in a very short period of time. Actually there are commercially available
cameras that allow time lapses as short as100 ns. Furthermore, because cameras have their sensitivity
peak in the visible green color, green laser are used for particle illumination.

3.3.4 Image recording

Recording techniques

There are several PIV recording techniques, which are listed below:

• Single frame / Single exposure

• Single frame / Two (multi) exposure

• Two (multi) frame / Single exposure

• Multi frame / Multi exposure

In single frame/single exposure PIV, a CW laser is used and the camera shutter remains open long
enough so as to get strips produced by the particle motion on the images. The longer the stripes are,
the higher the velocity is. An example is showed on figure 3.10. As there is no way to distinguish the
beginning of a stripe to its end, a flow direction ambiguity remains with single frame techniques. This
can be very problematic in complex flows. There are various methods to resolve that ambiguity such as
image shifting, pulse tagging or color coding.

In single frame/single exposure, the achievement of quantitative measurement is quite difficult from
an image-processing point of view.

In single frame/multiple exposure, the shutter is opened several times during the same frame acqui-
sition. As in single frame/single exposure PIV, the directional ambiguity also exists here and the sub-
window autocorrelation process gives rise to opposite correlation peaks (two peaks in single frame/double
exposure).

In two or multi frame/single exposure techniques, the direction ambiguity disappears because the
order in which the images were taken is known. This is the mostconvenient technique for image post-
processing. Unfortunately in some experiments, for technical reasons, this technique cannot be used.

Most PIV experiments are actually done following a two frame/single exposure technique. There-
after we will essentially focus on single exposure techniques.

Continous wave versus pulsed laser acquisition method

In CW-laser PIV, the laser continuously enlightens the measurement volume and the camera shutter
is used to “freeze” the flow. The exposure time of each frame must be much shorter than the interframe
time∆t and for technical reasons (shutter speed, data transfer andwriting), it cannot be reduced as much
as desired. For this reason, CW PIV can only be used for low velocity flows.
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Figure 3.10: Single frame / Single exposure image in a Couette geometry.

Pulsed laser PIV is a way to extend the technique to high-speed flows. In that case, the effective
exposure in images is conditioned by a light pulse fired by thelaser. The rest of the time during exposure
(hatched in figure 3.11) has no effect because there is no light entering the camera. The light pulses can
be shifted to the end of the first image and to the beginning of the second to reduce∆t to a technical
minimum, which is the camera interframe time between two images. This technique is called “frame
straddling” acquisition technique. Specific cameras designed for PIV allows interframe times as short as
100 ns. Unfortunately it cannot be used for time-resolved PIV (TRPIV).

Tunable experimental parameters

In this final section on acquisition, the reader will find a short summary of the tunable parameter in
PIV image acquisition:

• Particles

– Concentration of seeding particles

– Particle diameter

– Particle type (material, coating, fluorescent dye, dye concentration, etc.)

• Laser and optics

– Thickness and width of the light sheet

– Light energy density

– Time interval between exposure (in case of pulsed lasers)

– light sheet overlap between the pulses (recombination optics of the two laser cavities)

• Camera

http://www.snf.ch/F/NewsPool/Pages/mm_08mai26.aspx


38 CHAPTER 3. MEASUREMENT TECHNIQUES

Time

Frame A Frame B

Pulse A Pulse B

Interframe

time

min.

Closed

Open

Open

Closed

Laser

Q−switch

Shutter

Camera

∆t

Effective∆t

Figure 3.11: Frame straddling technique used in pulsed PIV to follow high speed flows.

– Time interval between exposure (in case of CW lasers)

– Lens magnificationM

– f-number of the camera lens

– Particle image diameter

– Size and shape of the interrogation spots

3.3.5 PIV evaluation

Pre-processing: image restoration and enhancement

Image restoration attempts to “repair” undesirable effects due to imaging such as perspective distor-
tion, image blur, etc. To optimize PIV, a dark uniform background is necessary. In some experiments,
this is not trivial and sometimes impossible to achieve experimentally. A common way to deal with
noisy background is to pre-process the images by subtracting a mean image calculated from several PIV
images. Unfortunately, part of the information is lost in the process and it produces an increase in the
discretization error (peak locking effect). For weak AOI enlightening, lots of particle are weakly visible.
To enhance images, one can apply a nonlinear relation between intensity and pixel gray values. This is
called ashistogram equalization.

PIV image correlation

For the definition of image intensity field, auto- and cross-correlation and associated notation, please
refer to Appendix B.

Autocorrelation technique for doubly exposed images In the case of doubly exposed images, the
image intensityI+ is composed of the image intensity of two imagesI andI ′ separated by a time lapse
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∆t:

I+(X,Γ) =I(X,Γ) + I ′(X,Γ)

=

N∑

i=1

(V0(Xi)τ(X −Xi) + V0(Xi + D)τ(X − Xi − D))

It can be decomposed into five terms: (3.3)

RI+(s,Γ,D) =RC(s,Γ) + RF (s,Γ) + RP (s,Γ,D)

+ RD+(s,Γ,D)) + RD−(s,Γ,D) (3.4)

with D is the particle displacement,s the separation vector in the correlation plane,Xi is thei th particle
position,Γ describes the state of the particle ensemble at a given timet, V0(Xi) is the transfer function
giving the light energy of an individual particlei inside the interrogation volumeVI and its conversion
into an electronic signal,V0(Xi) = W0(X,Y )I0(Z), whereI0 is the intensity profile of the laser sheet
(typically Gaussian or almost constant if the laser beam intensity profile is a top-hat beam) andW0(X,Y )
is nonzero if the particle is inside of the laser sheet and zero otherwise and finallyτ(X) is the intensity
transmissivity point spread function of the photograph (commonly taken as Gaussian in the literature).

RC(s,Γ) can be viewed as the convolution of the mean intensities,RF (s,Γ) the fluctuating noise
component,RP (s,Γ) the self-correlating peak located at the origin of the correlation plane,RD+(s,Γ)
the displacement correlation peak, correlation of images of particles in exposure 1 with images of the
same particles in exposure 2 and finallyRD−(s,Γ) the wrong displacement correlation peak, correlation
of images of particles in exposure 2 with images of the same particles in exposure 1.

Cross-correlation of 2 singly exposed images In the case of several single exposed images, we have
two image intensitiesI andI ′ separated by a time lapse∆t and hence by a displacementD.

I(X,Γ) =

N∑

i=1

V0(Xi)τ(X − Xi) andI ′(X,Γ) =

N∑

j=1

V ′
0(Xj)τ(X − Xj −D)

RI(s,Γ,D) =
1

aI

N∑

i,j

V0(Xi)V
′
0(Xj + D)

∫

aI

τ(X − Xi)τ(X − Xj + s − D)dX

︸ ︷︷ ︸

Rτ (Xi−Xj+s−D)

=
1

aI

N∑

i6=j

V0(Xi)V
′
0(Xj + D)Rτ (Xi − Xj + s− D)

︸ ︷︷ ︸

RC(s,Γ)+RF (s,Γ)

+ Rτ (s − D)
N∑

i=1

V0(Xi)V0(Xi + D)

︸ ︷︷ ︸

RD(s,Γ)

It can be decomposed into only three terms:RC(s,Γ), RF (s,Γ), andRD(s,Γ). RC(s,Γ) can be
viewed as the convolution of the mean intensities,RF (s,Γ) the fluctuating noise component from the
i 6= j terms,RD(s,Γ) the displacement correlation peak, correlation of images of particles in exposure
1 with images of the same particles in exposure 2. It reaches amaximum fors=D.
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3.3.6 Optimization of correlation

As we have seen in§ 3.3.4, we can change several parameters in the acquisition step to enhance
images for the correlation processing step.

• Effect of time between two light pulses∆t [7, 168]
Increasing the time∆t between images reduce the relative error made on∆x (and also on∆t even
if it is almost always assumed as free of error). In the same time it does reduce the signal-to-noise
ratio (SNR) due to loss-of-pairs effects. On the other hand,with a vanishing pulse separation
(∆t → 0) there is no loss of pairs anymore but the small error made on the particle displacement
becomes much more important. A trade off has to be found for the∆t because of the displacement
range in the interesting part of the studied flow.

• Effect of particle seeding
As shown by Keaneet al. [149], if we want to have a valid detection probability of 90%, the
sub-window particle density must be greater than 15 particles. Depending on the size of AOI and
the laser sheet thickness, seeding concentration has to be adapted to get enough particles in the
sub-windows.

• Duration of the signal acquisition
In CW-laser PIV the camera shutter controls the duration of an image acquisition. If the flow
motion is somewhere too fast compared to the shutter openingtime, part of the image will be
blurred. Finally the correlation peak in the fast flow regionwill be stretched in the flow direction,
leading to worse SNR. As shown in figure 3.11 for pulsed laser PIV, the image is frozen by the
laser pulse which is usually short enough to avoid any problems.

• Effect of particle image diameter
An optimal particle image diameter exists in range of 1.5 to 3pixel per particle depending on the
recording technique.

• Effect of laser power
By changing the laser light power, the effective laser sheetthickness and therefore the interrogation
volume is accordingly modified. If both laser pulses have thesame power, the same volume will
be illuminated. Otherwise this leads to an increase of the out-of-plane loss-of-pairs and therefore
to a worse SNR.

• Misalignment of the two lasers combining optics
In most cases if the optics are misaligned, the out-of-planeloss of particles will increase and the
signal to noise ratio (SNR) too. In some cases, if the velocity component orthogonal to the laser
sheet is significant and relatively constant, we can misalign the combining optics voluntarily to
reduce the out-of-plane loss of particle.

• Effect of displacement gradient
As in PIV, the velocity measurement is based on the correlation of the displacement of a pattern in
a sub-window, if the velocity gradient across the sub-window is significant, it results in a biased
measured displacement.

• Correlation calculations
PIV correlation maps can be either calculated directly in the spatial domain or through the fre-
quency domain using FFTs. Direct calculation is computationally very expensive (O[N4], N
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being the length of a sub-window). Using the frequency domain reduces the cost toO[N2 log2 N ]
operations. However care must be taken with aliasing effects, bias errors that arise with FFT tech-
niques.

Advanced digital interrogation techniques

Over the years various, techniques were developed to enhance PIV correlation algorithms. We just
mention here some of them: multi-pass schemes, offset schemes, multi-grid schemes, desampling, sub-
pixel estimator (peak centroid, parabolic fit, gaussian peak fit).

3.3.7 Post-processing

The post-processing step in PIV consists of the validation of raw data, replacement or removal of
spurious vectors, data reduction, and analysis of the data to have a physical insight into the flow motion.

3.3.8 Specific PIV techniques

Some derived techniques from PIV are listed in Table 3.3. Some of the techniques can be used
simultaneously.

Table 3.3: Specific PIV techniques.

Defocusing PIV It uses a mask with two or more apertures shifted away from the optical axis to
obtain multiple images from each scattering source and allows to infer
the third velocity component [141, 235, 236, 237]

Dual plane PIV By using an additional light sheet parallel tothe first one, one can estimate the
out-of-plane velocity component by using three images att, t + ∆t, andt + 2∆t,

FPIV This is a PIV technique that uses fluorescent particle instead of light scattering
µ-PIV PIV in some micrometer scale flows where measurement volume is not defined

by the laser sheet thickness but by the focal depth of the objective,
Stereo PIV PIV using two cameras to measure the third velocity component perpendicular

to the laser sheet
Super resolution PIV This is a technique that combines successively PIV techniques for an estimate

of the velocity as an input to particle tracking velocimetry(PTV) to measure the
velocity of each individual particle

Time resolved PIV In Time resolved PIV, all successive images can be used to measure an instantaneous
velocity profile

Tomographic PIV This is a PIV technique that uses four cameras to obtain the three velocity components
in a volume.
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3.4 Fluorescent particle image velocimetry

Contrary to classical PIV techniques, where tracers are added to the flow without disturbing fluid
motion, it is not obvious that in concentrated particle suspensions adding a given amount of particles,
even small compared to the coarse particles, does not disturb motion and, thereby, does not affect mixture
rheology [17, 56, 186]. In this context, classic PIV techniques may become invasive and can be no longer
suitable to studying concentrated suspensions.

To overcome this potential problem (which is a field of research in its own right), a strategy is to
track the solid (disperse) phase directly. As we will see in§ 4.2.7, fluid and particles arerefractive-index-
matched(RIM) so that the mixture becomes clear, which makes it possible to use optical visualization
at the heart of fluid flow. In this way, particles in RIM fluid hardly scatter laser light, as can be seen in
Fig. 3.12. To get a better idea of the difference between the techniques, let us compare the RIM-fluid
technique with a classic PIV setup. With a viewing angle of90 ˚ , standard polystyrene tracers of20 µm
in diameter in water (see Fig. 3.12 (a)) scatter at least10′000 times more (see Fig. 3.12 (d)) than particles
in the refractive-index-matched (RIM) fluid (see Fig. 3.12 (c)). Note that for the RIM-fluid experiments
used in this comparison, the refractive index (RI) mismatchwas particularly high (close to10−4) as a
result of defects in the measurement tools and our fluid preparation procedure, whcih means that the
differences between PIV and RIM-fluid techniques are even more pronounced when the RI mismatch is
optimized.

As light scattering cannot be used in RIM suspensions, we added a fluorescent dye (rhodamine 6G)
to a fraction of the PMMA particles and used them as PIV tracers. Figure 3.13 sketches the FPIV
measurement procedure. The laser light excites the dye on the tagged particles, the fluorescence of the
dye is emitted isotropically. A high pass filter (see Fig. 3.14) in front of the camera blocks the eventually
scattered and reflected laser light and allows only fluorescent light to enter the camera. This enhances
the images, especially in the wall regions, and it improves the SNR.
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Figure 3.12: Calculated Lorentz-Mie small particle light scattering (I⊥ in blue andI‖ in red): (a) Classi-
cal polystyrene PIV tracers in water (particle diameter is20 µm), (b) PMMA particles used in the present
experiments in water (200 µm), (c) PMMA particles used in the present experiments with the RIM fluid
and with the largest uncertainty in the refractive-index-matching value, see§ 4.2.7 (particle diameter is
200 µm) and (d) is the ratio of the values in (a) and the values in (c)between 80 and 100 ˚ .
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Figure 3.12: Calculated Lorentz-Mie small particle light scattering (I⊥ in blue andI‖ in red): (a) Classi-
cal polystyrene PIV tracers in water (particle diameter is20 µm), (b) PMMA particles used in the present
experiments in water (200 µm), (c) PMMA particles used in the present experiments with the RIM fluid
and with the largest uncertainty in the refractive index matching value, see§4.2.7 (particle diameter is
200 µm)and (d) is the ratio of the values in (a) and the values in (c)between 80 and 100 ˚ .
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Figure 3.13: Sketch of the FPIV procedure

Figure 3.14: Transmission curve of the sharp edge dielectric high-pass filter, green line is the laser line,
red line is the filter transmission curve, cyan line is the rhodamine 6G absorption curve, blue line is the
rhodamine 6G emission curve and the magenta line is the pyrromethene 597 emission curve.
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3.5 Refractive index matching

3.5.1 Refractive index mixture rules

It is often desirable to determine the refractive index (RI)of a solute. This index can be estimated
from the RIs of solution and solvent by using a suitable “mixture rule”. There are several available
methods in the literature (see for example Aminabhavi, Heller, Shindo or Tasic [10, 126, 272, 286] for
an overview) All theoretically derived rules are based uponthe electromagnetic theory of light and can
apply only if there is no change of volume during the mixing:

Lorentz-Lorenz equation (theoretical) [180] :

(n12 − 1)

(n2
12 + 2)ρ12

=

(
n2

1 − 1

n2
1 + 2

)
p1

ρ1
+

(
n2

2 − 1

n2
2 + 2

)
p2

ρ2
(3.5)

Wiener equation (theoretical) [308] :
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(3.6)

Heller equation (theoretical) [125] :

n12 − n1

n1
=

3

2
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,m =
n2

n1
(3.7)

Dale-Gladstone equation (theoretical) [79, 80] :
n12 − 1

ρ12
=

n1 − 1

ρ1
p1 +

n2 − 1

ρ2
p2 (3.8)

Arago-Biot equation (empirical) [18] :

n12 = φ1n1 + φ2n2 (3.9)

Lichtenecker equation (empirical) [125] :

log(n12) = φ1log(n1) + φ2log(n2) (3.10)

Newton equation (theoretical) :

n2
12 = φ1n

2
1 + φ2n

2
2 (3.11)

3.5.2 Small particle index matching methods

As far as we know, there is no method to measure directly the RIof small particles accurately and
conveniently. Thus, it is not possible to measure the RI of particles first and then adjust the RI of the
interstitial fluid by changing it’s composition so that it has the same RI. Therefore one has to measure it
indirectly. There are two main types of methods to obtain theRI:

• By using a bulk solid sample and measuring the reflection/refraction of a light beam.

• By measuring transmitted light through a suspension sampleby varying either the sample temper-
ature or the light wavelength. Using this method requires tohave good knowledge of the particle
RI because it allows precise matching over a very limited range of refractive indices only.

For the second type of methods, all variants use the Christiansen effect:
“ It is based on the various dispersions of two different media. A Christiansen filter is a narrow band-

pass optical filter which consists of an optical cell which isstuffed with a crushed substance (i.e. here
PMMA particles) and a liquid. The liquid is chosen accordingto the substance, so that the dispersion
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curves coincide at one wavelength. For this wavelength the filled optical cell behaves like a plane-
parallel, homogeneous disk and allows transmission. All other wavelength ranges of the spectrum are
reflected, scattered as well as refracted at the many interfaces between substance and liquid. A change
of the transmission behavior of this dispersion filter can beachieved by variation of the liquid, the tem-
perature or variation of the pressure. The fundamental consequence is the change of the refractive index
of the liquid.” 1

The bulk sample–laser method

Nouri et al. [223] proposed an ingenious way of matching the RI of their particles and the interstitial
fluid. They shined a laser beam into a solution containing a large rod made up of the same material as
the particles. By varying the composition of the solution (thus varying its RI), the laser beam passed
through the system with different degrees of deflection depending on the mismatch between the rod and
the fluid. The point of perfect match was attained when the beam passed through the system without
any deflection. A variant of this technique consists to monitor the backward reflection of light on the
immersed solid sample.

R = [(1 − nl/ns)/(1 + nl/ns)]
2 (3.12)

whereR is the ratio of reflected beam power to incident beam power.

Figure 3.15: The backward reflection method (after [45]).

Figure 3.15 illustrates the apparatus to perform RI tuning based on equation (3.12). First, solution
components must be chosen such that it is possible to obtain the RI of the solid with a mixture of
them. Next, a flat sample of the solid material with one polished surface is held in a stirred tank of the
liquid mixture. The sample is held so that reflected beam is just a few degrees away from backward
reflection. The reflected beam is projected onto a photodetector. Finally, match is achieved by varying
the component ratio of the liquid mixture until the reflectedbeam intensity attains a minimum.

To use this method, one needs to possess a bulk sample made up of the same material as the particles
and has to be sure that the RI of the bulk sample has not been modified during the manufacturing process.

The bulk sample–refractometer method

Most refractometers can also be used to measure the RI of a solid. A small sample of the solid with
one flat polished surface is placed in optical contact with the refractometer prism. Optical contact is

1. afterhttp://en.wikipedia.org/wiki/Christiansen_effect

http://en.wikipedia.org/wiki/Christiansen_effect
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established by filling the gap between the prism and the sample with a liquid. The index of refraction of
the fluidnf must be below that of the prismnprism and above that of the unknown samplensample.

nsample < nf < nprism

A gem (or jeweler’s) refractometer can also be used to measure the RI of a solid. Refractometry of solids
is described at length in Sinkankas and Hurlburt [134, 277].To use this method, we must have a bulk
sample of the same material used for the particles.

The wavelength method

As a result of the differences in optical dispersion of each phase, the refractive indices can be matched
for only one wavelength. Light with a different wavelength is refracted at the solid-liquid interfaces,
with the angle of refraction growing with distance from the matching wavelength (Christiansen effect,
[64, 65]). As shown in Fig. 3.16 this phenomenon results in a transmittance curve with a maximum at
the matched wavelength. Once this curve has been measured, one can deduce the RI of the particles by
mesuring the RI of the fluid at the wavelength corresponding to the maximum of transmittance using
a spectrophotometer. During this experiment, care must be brought keeping the temperature constant
because it does also vary the RI of the components. This method is described in details in Stöhr [282].

Figure 3.16: The wavelength method (after [282]).
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The temperature method

Since the RI of the liquid phase and the solid phase depend differently from temperature, we can
match the RI only for a given temperature. As shown on Fig. 3.17, shining a laser beam through a
temperature-controlled suspension sample and recording the transmitted light results in a curve with a
maximum at the matched temperature. We have finally to measure the RI of the fluid at that temperature
to obtain the RI of the beads.

����
����
����
����
����
����

����
����
����
����
����
����

Photodetector

Particle
suspension

more than 500 interfaces

pinhole

Mesurement

Laser 532nm

Figure 3.17: The temperature method (after [154, 155]).

3.5.3 Index-matching material for concentrated particle suspensions

The packing dictates the choice of interstitial fluid. It must be transparent, which reduces choice to
plastics, glasses, and certain synthetic rubbers. Nylon, PC, PEEK, PET, PS, PVC, SAN and glasses are
almost excluded because they exhibit too high refractive indices (RI from 1.48 to 1.60). They are dis-
carded since their use would require liquids with refractive indices above 1.580. Indeed, such substances
are rare and most of them are toxic. Some examples are Aniline(n=1.586), Bromoform (n = 1.590),
Iodobenzene (n = 1.620), Quinoline (n = 1.620) and Carbon disulfide (n = 1.625). Some interesting
candidates are simply too expensive. There are many plastics (RI from 1.37-1.60) which are transparent
when free of fillers or other impurities provided that they are in the amorphous state or have a crystalline
structure smaller than the wavelength of the light incidentupon the plastic. Among synthetic rubbers
only silicone rubber (n = 1.42) is transparent. Only one plastic, polymethylmethacrylate (n = 1.49) is
normally manufactured industrially in the transparent (amorphous) form. However crystalline polymers
may be rendered transparent by heating above the “melting temperature”, where there is a transition
to the amorphous state, followed by rapid quenching to room temperature. The plastics listed in the
following table have refractive indices lower than 1.49 in the amorphous state.
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Table 3.4: RI matching possible candidates.

RI Melting temperature [ ˚ C]
Fluorinated ethylene-propylene (FEP) 1.34 340
Fused quartz 1.458 1650
Glass 1.47 to 1.65 500 to 1100
Polychlorotrlfluoroethylene (PCTFE) 1.435 216
Polyformaldehyde (POM) 1.41 175-180
Polymethylmethacrylate (PMMA) 1.49 130-140
Polysiloxanes(Silicone rubber) 1.40 300
Polytetrafluoroethylene (PTFE) 1.38 327
Polyvinylacetate (PVA) 1.466 230
Silica gel 1.472 1610
Tetrafluoroethylene (TFE) 1.34 -

Table 3.5: RI matching possible candidates with high-indexfluids.

RI Melt temperature [ ˚ C]
Nylon 6,6 1.565 255
Polycarbonate (PC) 1.586 267
Polyetheretherketone (PEEK) 1.65-1.77 334
Polyethyleneterephthalate (PET) 1.575 68
Polystyrene (PS) 1.59 100
Polyvinylchloride (PVC) 1.54 80
Styrene/acrylonitrile copolymer (SAN) 1.57 100





4Facility and experimental procedure

4.1 Rheo-optical facility

4.1.1 Overview of the experimental setup

The basic components of the TSI PIV system used here are the PIV camera, frame grabber, camera-
laser synchronizer, and the acquisition software. Combined to the TSI system, a Quantel CFR 200 is
used for enlightening. A homemade laser sheet generator wasbuilt with a set of one spherical and three
cylindrical lenses. For the rheometrical part, a Bohlin Gemini 200 from Malvern Instruments is used
with a clear quartz cell for visualization. The rheometer ismounted on a vertical linear stage, which
allows us to measure optically the flow at various levels in the Couette cell.

The camera is a Powerview Plus2 Mpixel (1600 × 1200), model630057. The maximum frame rate
is 32 Hz at full resolution. It can be increased at reduced resolution. The dynamic range is12 bit and
the minimum frame straddling time is of200 ns. Combined to the camera and for calibration purpose,
we use a telecentric lens from Opto-Engineering, model TC 4M48 with a fixed magnification factor of
0.368 and accordingly a fixed AOI of32.2× 24.2 mm with our CCD captor. The depth-of-view is7 mm
and the working distance is134.6 mm. A dielectric filter commercialized by L.O.T. Oriel (LOT-Oriel
GmbH & Co. KG), model CH-RS532-50 is used in front of the CCD. It rejects the532 nm laser light
for the FPIV. It is a sharp edge high-pass filter with transmission band starting at538.4 nm (see Fig. 3.14
for the transmission curve).

The frame grabber is a Coreco X64-CL Full frame grabber from Dalsa Corporation.
The Delay generator for synchronization of the experiment is the LaserPulse Synchronizer Model

610034 manufactured by Berkeley Nucleonics Corporation for TSI. It has one input trigger and6 output
triggers for camera, laser and other equipment that need to be synchronized. Four of them are used to
trigger the flashlamps and Q-switch of the laser. It allows tocontrol the time interval between exposure
and in the mean time to tune the pulse energy of both cavities.The fifth output triggers the camera
acquisition. The last output trigger remains free for a future synchronization with the rheometer.

The Quantel CFR 200 is a water cooled laser with two optical cavities at2 × 30 Hz. It is a doubled
Nd:YAG laser working at532 nm and with a beam energy up to180 mJ per pulse at30 Hz.

The laser sheet is composed of four lenses following Diemunsch (1987) and Prenel (1998) [89, 247].
It allows a precise independent control of the sheet thickness, beam waist position, sheet width, and
lateral spreading.

The Couette cell is a cup made up of two glued quartz parts, a60 mm inner diameter hollow cylinder
and a flat circular bottom plate. Its design will be presentedin more detail in section 4.1.3.

The rheometer is mounted on a vertically movable table with astroke of100 mm thanks to a linear
stage manufactured by SKF (SKF Linear Motion and Precision Technologies), model RSK 150.410.100.-
AR2. The linear stage is adjusted vertically with an uncertainty of 0.02 ˚ in both angular directions. The

51
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maximal horizontal displacement generated is of order of30 µm over the whole stroke. By taking
two images with the camera looking at the Couette cell from the bottom, we were unable to see any
horizontal shift. This means that the precision of the adjustment was below20 µm because of the CCD
pixel size and the zoom used. The rheometer can be moved back and forth on70 mm on the table to
allow homogeneous illumination of the whole Couette cell and measurement on either sides of the inner
cylinder or vane. The reproducibility for the vertical positioning of the movable table is of10 µm. This
very fine adjustability of the Couette cell positioning allows us to make measurement at different heights
during a rheometrical experiment and considerably simplify the calibration process as we will see in
§4.5.2.

(a)

Figure 4.1: (a) Scheme of AOI and Couette cell imaging system, (b) Scheme of the rheo-optical facility
(c) Picture of the rheo-optical facility.
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Figure 4.1: (a) Scheme of AOI and Couette cell imaging system, (b) Scheme of the rheo-optical facility
(c) Picture of the rheo-optical facility.
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4.1.2 Temperature-controlled chamber

As we have seen in§ 3.5, the Christiansen effect induces a change from a turbid suspension to a
clear suspension by changing the temperature, pressure or light wavelength. In our case the pressure
and the wavelength (laser line and near fluorescence) are almost constant. The temperature must be as
constant as possible. The performance of temperature control will strongly affect our ability to carry out
measurement deep into the suspension. To achieve this, an insulated chamber connected to a thermal
water bath (Julabo KTB 30) was built around the Couette cell. Figure 4.2 shows temperature fluctuations
in the chamber. We were able to control temperature within0.05 ˚ C keeping buoyancy and turbidity
effects negligible for the duration of the experiments.
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Figure 4.2: Example of temperature control of the chamber around the Couette cell, the main figure
shows the temperature fluctuations around20 ˚ C and the insert shows to whole temperature range starting
from the room temperature at23 ˚ C.

4.1.3 Couette flow Cell

The Couette cell dimensions must be chosen such that the ratio R/d is sufficiently large to contain
enough particles across the gap to avoid finite size effects so that the measured properties would be
independent of the gap width-to-particle ratio. This meansthat the concentric cylinder radius ratioκ =
Rin/Rout departs from1. Therefore, as explained in§ 3.2, standard methods for solving the Couette
inverse problem fail and more sophisticated techniques must be used. It is not clear how well these
methods perform when studying coarse-grain concentrated suspensions. The gap width must also be
kept small enough in order to minimize vertical-end effects.

The Couette cell used for the FPIV measurement is a quartz cupmanufactured byEPOND S.A.,
Vevey. The cell has an outer diameter of60 ± 0.01 mm and a height of60 ± 0.1 mm. The side and the
bottom of the cell are transparent and can be used for laser shining and camera visualization. The cell
was mounted on aGemini CVOR 200commercial rheometer manufactured byMalvern Instruments Ltd.

Several stainless steel or titanium inner cylinders or inner 6-blade vanes with different radii (� 8.75
to 27 mm) were used with the quartz cell. To reduce wall slip, the inner cylinder was roughened either
by sandblasting or by gluing sandpaper on it. The gap width ofat least 30 particle diameters is above
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the empirical threshold of about15 particles that allows us to consider the suspension as a continuum.
The inner geometry bottom-end was conical to have an almost continuous shear rate transition from the
Couette flow to the cone-plate flow near the bottom. The main drawback of this bob tip was the necessity
to take into account bottom-end effect on the torque measurement. We preferred this kind of bottom-end
for the inner geometry over others since it had a smaller influence on torque measurement and avoided
a low shear-rate region where particle would migrate, as observed in the experiments of Leighton and
Acrivos [169, 170] and Chowet al. [63].

The inner geometry alignment with the quartz Couette cell was controlled before each suspension
loading so as to ensure a relative eccentricityer below 1% in the worst case, wither = e/(Rout − Rin)
and wheree is the distance between the inner and outer cylinder axes. Therefore the effect due to
eccentricity with a Newtonian fluid on the torque measurement remains below 0.2 % [123, 135, 194].

4.2 Materials

4.2.1 Particle description

The particles selected were copolymer of polymethylmethacrylate ethylacrylate (PMMA EA) parti-
cles, manufactured by ARKEMA. In order to ensure a suspension that is as monodisperse as possible, we
used only the particles in the size range180 to 200 µm following the wet sieving procedure explained in
§ 4.2.5. For the polydisperse experiments, we used unsieved particles supplied by Altuglas (see Fig. 4.6).
We chose particles in this size range for three reasons. First, these particles had the greatest clarity in
the laser transmission experiments we performed. Second, they had also quite good sphericity and they
were in the peak of the particle size distribution of the raw material. Third, being produced industrially,
these particles are relatively inexpensive. The particlesused in the experiment came from a single lot.

4.2.2 Fluid Description

To match the refractive index (RI) and the density of the particles at the same time, we had to use
a mixture with at least three components. The fluid mixture composition is based on a recipe used, and
subsequently fully characterized, by Lyon [181, 182]. We adapted it to our particles. A non-exhaustive
list of refractive index matching fluid recipes used in the literature can be found in appendix A.

The particle density and refractive index were matched by a fluid mixture with mass fractions of
about 50% Triton X100, 28% DBH, and 22% UCON oil. Each of thesecomponents provides a different
feature of the mixture. Triton X100 has high refractive index, DBH has high density and by using
different UCON oils, we can adapt the fluid viscosity in a relatively wide range. This last property of
the UCON oil family was not used during the present study. Thefinal mixture density is1.184 ± 0.0005
g/cc, the refractive index at532 nm and20 ˚ C is 1.48847 ± 0.0001 and its viscosity is0.124 ± 0.0025
Pa·s at20 ˚ C. For the matching procedure, please refer to§ 4.2.6 and§ 4.2.7.

4.2.3 Fluid viscosities

In the temperature range between 15 and 25 degrees, the fluid viscosities of Triton X-100 and UCON
oil 75-H450 decrease almost linearly with increasing temperature. With the largest available Couette
geometry in our laboratory, we performed the 1,6 dibromohexane viscosity measurement near the lower
torque limit of our rheometer (10−6 Nm). Therefore, the results (see appendix C) were relatively noisy
and we were not able to measure the viscosity decrease with temperature. We could only deduce an upper
bound. If suitable, the viscosity measurement was performed with two Couette geometries and also with
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a cone-plate (CP) geometry. The viscosities varies as follows with temperature (see also Fig. 4.3 and the
raw measurements in appendix C):

η
X100

(T ) = 0.9856 − 0.0280T

ηUCON (T ) = 0.5645 − 0.0143T

η
DBH

(T ) ∼= 0.009 − 0.0002T

η
Trimix

(T ) = 0.2840 − 0.0080T

From this linear interpolation viscosity gradient with temperature in the15 to 25 ˚ C range and the
temperature fluctuation of0.05 ˚ C in the temperature-controlled chamber during an experiment (see
§4.1.2), we can conclude that temperature effects can be neglected in the experiment. Furthermore, tem-
perature measurements within concentrated suspensions were performed during shearing and no notable
temperature change was noticed in the studied regimes.
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Figure 4.3: Dynamic viscosity of: (a) Triton X100, (b) UCON oil 75-H-450:
closed circles are cone-plate (CP) measurement (� 40 mm and4 ˚ ) and open squares are bottom end
corrected concentric cylinder measurements (inner and outer � of33–37 mm and25–27.5 mm respec-
tively).
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Figure 4.3: Dynamic viscosity of: (a) Triton X100, (b) UCON oil 75-H-450:
closed circles are cone-plate (CP) measurement (� 40 mm and4 ˚ ) and open squares are bottom end
corrected concentric cylinder measurements (inner and outer � of 33–37 mm and25–27.5 mm respec-
tively).
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Figure 4.4: Raw viscosity measurement at various temperature of the ternary mixture of Triton X-100,
UCON oil 75-H450 and 1,6 dibromohexane:
closed circles are cone-plate (CP) measurement (� 40 mm and4 ˚ ) and open squares are bottom end
corrected concentric cylinder measurements inner and outer � of 33–37 mm (open squares) and25–27.5
mm (filled squares) respectively).
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4.2.4 Important dimensionless numbers

From the particle properties, fluid properties and the Couette cell dimensions several relevant dimen-
sionless numbers can be computed. The particle Reynolds number

Rep =
ρr2

pγ̇max

ηf

∼= 10−4

is small enough for particle inertia to be neglected.
The Péclet number

Pe =
6πηfr3

pγ̇min

kT
∼= 107

is high enough for Brownian motion and colloidal forces to beneglected.
The overall flow Reynolds number

Re =
ρU(Rout − Rin)

η
∼= 10−5 to 2.5 · 10−3

depending on the gap, the velocity and the solid fraction in the suspension is small.
The Taylor number, which indicates whether a Couette inertial instability occurs,

Ta = 2

(
U(Rout − Rin)ρ

η

)2 (Rout − Rin)

Rin

remains always below 6 for the most dilute suspension at the maximal rotation speed. This value is far
below the critical value of∼ 3400 for the onset of Taylor secondary flow for Newtonian fluids.

4.2.5 Sieving procedure

For the monodisperse or quasi-monodisperse experiments, the PMMA particles were sieved using
a Retsch AS200 Control (Retsch GmbH) sieving machine and a180 µm and200 µm sealed sieving
stack. Several sieving procedure were tested (dry sieving,wet sieving, etc.). We finally modified the
sieving stack column to perform the sieving in a recirculating flow of ethanol. In this way, we obtained
reproducible size distribution and we got rid of surface tension effects (water) and electrostatic effects
(dry sieving). Figure 4.6 shows a comparison between the rawmaterial and the sieved size distribution.
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Figure 4.5: Sketch of the wet sieving setup.
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Figure 4.6: Raw (blue, mean= 168µm, s.d.= 54 µm) and sieved (red) particle size distribution, Gaussian
fit of the sieved particle distribution with a mean of199.1 µm and a standard deviation of5.1 µm

4.2.6 Density matching procedure

The most difficult part when matching the fluid and particle densities was to measure the particle
density. We did not have a density gradient column available[44, 70, 228, 296, 297, 298], so our match-
ing method involved mixing many different fluids with a rangeof densities close to the PMMA datasheet
values and observing the time it took for the particles to rise or sink. The mixtures where the particles
remained in suspension the longest gave an estimate of the particle density. The densities of the fluid
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mixtures were estimated as the average of the component densities weighted by the volume fractions of
the components in the mixture. When a mixture was prepared inthis way on the basis of the datasheet’s
densities of the fluids, a measure of the true mixture densitywas performed with a high precision aerom-
eter (GECO-GERING,0209 Aerometer DIN12791 Serie L50, without Therm., Kl.“H”, precision of
5 · 10−4 g/cc) in a temperature-controlled column at20 ˚ C because of the density variation of the fluid
with temperature (see for example Fig. 4.7).

We prepared fluids with densities ranging from1.1800 to 1.1865 g/cc by steps of5 · 10−4 g/cc.
Because of the possible small variations of particle density, we prepared particle-suspension samples
with a solid fraction of0.3 in sealed small bottles with a fluid height of3 cm (i.e. on the same order or
magnitude as the Couette cell of our experiments). Using a suspension of particles allowed us to infer
the mean particle density, but because of the Boycott effectand of the reduced sedimentation velocity in
“dense” (typicallyφ >∼ 0.2) suspensions, the effective sedimentation velocity was lower than the single
particle velocity at low Reynolds number:

V∞ =
1

18

(ρp − ρf )gD2
p

η

In an ideal geometry, the theoretical velocity of a suspension is:

Vsedim = V∞(1 − 6.55φ)

This expression was deduced by a development at the first order of the sedimentation velocity at con-
centrationφ, taking into account two-particle interactions. In practice this velocity will depend on the
container. For example in a spherical vessel, this velocitybecomes:

Vsedim = V∞(1 − 3.55φ)

It was therefore not possible to calculatea posteriori the density mismatch from the sedimentation ve-
locity. We could, however, obtain an upper bound (the terminal velocity of a single particle). The bottles
were immersed in a thermal bath (20 ± 0.05 ˚ C) for one week. A periodic observation of the particle
sedimentation (rise or sink) of the particles was performed. In the best matched fluid, we could not see
any sedimentation effect after this one-week experiment. Taking a fluid sedimentation of1 cm/week (this
is faster than what we could see) and calculating with the single particle terminal velocity, we can infer
that the density mismatch must be below10−4 g/cc. This value being below the uncertainties due to our
capability to measure the fluid density (5 ·10−4 g/cc) added up with the effects due to the uncertainties in
the control of temperature (±0.05 ˚ C). As the Couette cell and the sedimentation vessel have dimensions
of the same order of magnitude, we concluded from this experiment that we could perform experiments
for a few days without sedimentation effects. Figure 4.7 shows the particle-suspension-sedimentation
experiment after one week. The final density of the matching mixture was1.1840± 5 · 10−4 g/cc, where
the uncertainty resulted from various processes (e.g., thedensity fluctuation of the beads within the batch
provided by our supplier, errors in the temperature control, errors in the fluid-density measurements).
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Figure 4.7: Density variation of DBH and Triton X100 with temperature.
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Figure 4.8: The one week sedimentation experiment: from left to right, fluid densities of1.1830; 1.1835;
1.1840; 1.1850 and1.1865 g/cc. The bright part is due to a concentration of particles while the dark part
means that the corresponding local volume is almost free of particules. In the1.1840-g/cc sample, no
demixing could be noted (in this experiement, particle and fluid were only density matched to allow a
better sedimentation visualisation

4.2.7 Refractive index matching procedure

In §3.5, we presented different methods to match the refractiveindex (RI) of a fluid mixture with
that of small particles. In our experiments we used the temperature method proposed by Kohet al.
[154, 155] because it allowed us to prepare directly the suspension at the laser wavelength used in the
FPIV and LIF measurements and not just to select the clearestsuspension to the naked eye. It allowed
us to obtain a better index match and therefore to look further into the concentrated suspension. It
limited also the mixture control to temperature. Furthermore we had no means to be sure that a bulk
sample of PMMA made up of the same beads as the particles we used had the same RI. First because
there are some variations of RI from one manufacture batch ofthe particles to another one and it was
impossible to obtain beads and a bulk piece of PMMA out of the same batch. Secondly we preferred
to use the particles directly because the RI may change slightly during the production of a bulk piece
of PMMA. For the index matching experiments we always started with binary density matched fluids
(Triton X100/DBH and UCON oil/DBH mixtures) prepared as explained in§4.2.6. This avoided any
sedimentation effects to take place during the turbidity experiments.

As the temperature variation technique needs to have a gooda priori estimate of the RI of the par-
ticles, we took the RI value at20 ˚ C of PMMA from the literature [51] and we prepared several fluid
samples with different RI around that value (from 1.4830 to 1.4910 in our case). We performed prelimi-
nary turbidity experiments as described thereafter with this set of fluids. Results can be seen in Fig. 4.9.
It can be seen that the high transmittance peak is very narrowand an accuracy up to the fourth digit in the
fluid’s refractive index must be achieved if we want to take measurements in a concentrated suspension.
However, one should keep in mind that the further you want to see, the more precise the fluid’s refractive
index matching must be.

For the rough tuning of the RI we used the following variant ofthe Arago-Biot equation (3.9) based
on the fact that we worked with density matched components:

(m1 + m2) · n12 = m1n1 + m2n2 (4.1)

We chose this equation for calculation convenience and it appeared to be precise enough for rough
matching. For fine tuning, we proceeded by trials and errors by adding a small amount of one of the
binary fluids to increase or decrease the mixture RI and measuring the RI of the ternary mixture after
sufficient mixing with an Atago RX-5000α refractometer (ATAGO CO., LTD).



4.2. MATERIALS 63

1.484 1.486 1.488 1.49 1.492
0

0.2

0.4

0.6

0.8

1

nD [-]

In
te

ns
ity

[a
.u

.]

Figure 4.9: Results of preliminary turbidity experiments.

Once a suspension was prepared, a turbidity experiment as that sketched in Fig. 4.10 was performed.
We used a continuous wave Hulk Series 200-mW laser (ChangChun Dragon Lasers Co., Ltd). A 532-nm
laser beam was sent through a 50/50 beam splitter (CVI MellesGriot - France, Part number BSNP-532-
50-1025). The beam splitter was used to monitor continuously the laser power fluctuation in time and
avoid biased transmission curve due to power fluctuation. Half of the laser beam then passed through
the particle suspension sample. The sample was temperature-controlled by two water cooled plates
connected to a thermal bath (Julabo F34-HE circulator). Furthermore a Pt100 temperature probe was
directly immersed into the sample to record precisely the sample temperature during the experiments. A
typical turbidity experiment temperature profile involving five ramps is shown on Fig. 4.11. The offset
between the sample temperature (Fig. 4.11, red curve) and the thermal bath (Fig. 4.11, blue curve) is due
to ambient temperature. The suspension was stirred continuously during the experiment with a magnetic
stirrer to ensure thermal homogeneity and improve the transmittance signal by changing the particle
configuration into the beam. A pinhole was placed in front of the transmittance powermeter to reduce
scattered light as much as possible.

The transmittance curve corresponding to the temperature profiles of Fig. 4.11 is shown on Fig. 4.12.
In this experiment, the solid concentrationφbulk was15%, the mean particle diameterdp was100 µm.

As can be seen on Fig. 4.13 the temperature gradientdT
dt of ±1.25˚C

hrs was small enough so as to
avoid any skewness in the transmission curves due to thermalinertia. Otherwise the differences from
the ramps up and ramps down should be noticeable. From the mastercurve of Fig. 4.13 one can now
deduce the temperature at which the ternary fluid matches theparticles. We have still to measure the
refractive index of the fluid at the maximum transmittance temperature using a refractometer. In the case
of Fig. 4.13, the maximum was at19.10 ˚ C. On Fig. 4.14, several turbidity experiments were performed
with different ternary fluid proportions and matching the PMMA particles at different temperature. As
shown on Fig. 4.14 the RI of our PMMA particles was finally obtained from a linear interpolation of
the turbidity experiments and was of1.48847 at 20 ˚ C. The variation of the RI with temperature was of
about−1.3 · 10−4 C−1. This value is in good agreement with measure from the literature [51] with bulk
PMMA as can be seen on Fig. 4.15.

Conaghan and Rosen [69] developed a theory that quantifies the degree of light scattering in a sus-
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Figure 4.10: Sketch of the turbidity experiment setup.
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Figure 4.11: Thermal control of a typical turbidity experiment involving five ramps, the offset between
the two curves is due to the ambient temperature difference.

pension as a fonction of the refractive indices of the two phases. The transmittance of light through a
sample of thicknessx is defined as:

T ≡ I

I0
= e−τx (4.2)
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Figure 4.12: Experimental result from a typical turbidity experiment:φmean = 15%, dp,mean = 100µm,
λ = 532nm.
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Figure 4.13: Mastercurve from the five turbidity ramp experiments of Figs. 4.11 and 4.12.

For a perfectly matched system,T = 1; otherwise,T < 1. The turbidity is given by:

τ =
3φK

2dp
(4.3)

Normally, it is necessary to solve Maxwell’s equation to obtain K. However for large particles
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Figure 4.14: RI of the PMMA particles deduced from several turbidity experiments.

Figure 4.15: RI variation with temperature of solid PMMA (after [51]), solid line is the experimental
result of Cariouet al. [51] and crosses represent the experimental results obained by Waxleret al. [306].

(dp ≫ λ), Van De Hulst [300] derived the following relation:

K = 2 − 4

ρ
sin(ρ) +

4

ρ2
(1 − cos(ρ)) (4.4)

where

ρ =
2πdpns

λ

∣
∣
∣
∣

nf

ns
− 1

∣
∣
∣
∣

(4.5)

Figure 4.16 shows the experimental result of Figs 4.11 to 4.13: φbulk = 15%, dp,mean = 100 µm,
λ = 532 nm, and Conaghan’s theoretical result [69] with a concentration φbulk of 15% and4%. The
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discrepancy between our experimental data and Conaghan’s theoretical result is likely to come from
two partially satisfied hypotheses in the experiment. First, one of Conahan’s assumption is the use of
monodisperse particles. Even if our particles were in a narrow particle size range (unsieved50 − 300
µm range), they were not monodisperse. Secondly, in Conaghan’s derivation, only single scattering is
considered. In the case of a15% suspension, multiple scattering might occur. To find the origins of
discrepancy, we should have conduct further experiments with monodisperse and lower concentration
suspensions. Another explanation may lie in the fact that bystirring the suspension in the laser beam
path, we reduced the particle concentration in the highly sheared laser beam area. A4% suspension in
Conaghan’s equation seems to match our experimental results quite well, but we were unable to quantify
shear-induced segregation in our cell. A quantitative comparison is therefore not possible.
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Figure 4.16: Transmission vs RI rationf

ns
of the typical experiment of figures 4.11 to 4.13, marks are

experimental:φbulk = 15%, dp,mean = 100 µm, λ = 532 nm, and comparison with the theoretical
transmittance curve (ns = 1.48872) with a concentrationφbulk of 15% and4%.

Final density and RI matched ternary fluid

The particle density and refractive index were matched using a fluid mixture with mass fractions of
about 50% Triton X100, 28% DBH, and 22% UCON oil. Each of thesecomponents provides a different
feature of the mixture.Triton X100 has high refractive index, DBH has high density and by using different
UCON oils, one may adapt the fluid viscosity within a relatively wide range. This last property of the
UCON oil family was not used during the present study. The final mixture density is1.184±0.0005 g/cc
at20 ˚ C, the refractive index at532 nm and20 ˚ C is1.48847±0.0001 and the viscosity is0.124±0.0025
Pa·s at20 ˚ C.

4.2.8 Molecular tagging procedure

The fluorescent dye used in the experiments was rhodamine 6G.As can be seen on Fig. 3.14 the
absorption peak occurs at524 nm and the emission peak at565 nm. The onset of fluorescence is below25
ps and the light emission duration (99% decay) is of14.5 ns. It is therefore suitable to PIV measurement
because these delay and duration lead to error of less than0.10/00 on ∆t. Rhodamine 6G was chosen
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because of the closeness of the laser line to the maximum absorption of the dye and its high quantum
yield. Furthermore because of the quantum efficiency of the CCD (Charge-coupled device) captor of the
camera, which decrease from 55% at500 nm to 39% at600 nm, rhodamine 6G was prefered over other
dyes (such as pyromethene 597). Nevertheless, even if they emit a weaker signal and the suspension
becam more turbid farther away form the laser line, these other dyes may be used for tagging other
particle species and make simultaneous measurements with two or more species using appropriate optical
filters. I will just reduce somehow the depth at which we can perform measurements.

Figure 4.17: Quantum efficiency of the Powerview Plus2 Mpixel camera (after [1]).

To maximize the amount of fluorescent light arriving at the CCD camera and, as a result, to exploit
the camera intensity dynamic range, we were tempted to increase the dye concentration as much as pos-
sible until saturation is reached. On the other hand, we had to keep the concentration as low as possible
to keep the refractive index of the tagged particles in a reasonable range. As measured by Oki in 2002
[226], the addition of a fluorescent dye to PMMA increases thePMMA refractive index with the dye
concentration. As we can see on Fig. 4.18,∆n varies linearly with the rhodamine 6G concentration,
with slope∆n/∆C of 1.8750 M−1. Assuming that:

• the difference in composition between the PMMA of Oki’s measurements and ours has no effect
on∆n/∆C,

• the rhodamine 6G concentration in our particles after tagging is the same as the dye-solvant mix-
ture concentration (leading to a dye concentration of6 · 10−4 M in the PMMA particle),

leads us to find variations in the tagged-particle refractive index on the order of1.1 ·10−3. Unfortunately,
for technical reasons, this value could not be checked experimentally. However, this seems reasonable. A
small part of the particles being tagged, the effect of the refractive-index mismatch for this small amount
of particles seems to have almost no visible effect on suspension turbidity.
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Figure 4.18: RI of dye-doped PMMA as fonction of a concentration of dopant: Circles, rho-
damine 6G; Diamonds, 4-dicyanomethylene-2-methyl-6-p-dimethylaminostyryl-4H-pyran DCM; Trian-
gles, Coumarin 500 (after [226]).

4.3 Measurement procedure

4.3.1 Interstitial fluid synthesis procedure

As explained in§4.2, the PMMA particle density and refractive index was determined at the given
working temperature of20 ˚ C. First, two binary mixtures of 1,6 dibromohexane (DBH) / Triton X-100
and DBH / UCON 75H450 were prepared in a 10-liter thermally-controlled vessel so as the density to
match the1.1840 g/cc determined earlier (see§4.2.6). The correct fraction of each fluid in both mixtures
was first calculated from the densities provided by the manufacturer. The fluid was then mixed by a
propeller overnight to ensure fluid homogeneity. Both binary mixtures having the same density as the
PMMA particles, the refractive index of the ternary mixturecan be adapted without affecting the final
fluid density. Using the two binary mixtures (high RI mixtureof Triton X100 and Dibromohexane and
low RI mixture of UCON oil and Dibromohexane), we prepared the final ternary fluid by calculating
the proportion using the Arago-Biot equation (3.9) and (4.1). Fine tuning was then perform by trial and
error.

4.3.2 Suspension synthesis procedure

The particle suspension was prepared by mixing a given amount of fluid with particles to obtain
the desired suspension concentration. For measurements with rhodamine-6G tagged particles, a small
amount of tagged particles was mixed with the raw batch of particle prior to mixing with the fluid part.
The amount of particles and fluid was measured using a high precision scale. In the worst case, the
suspension concentration error remained below0.1 % for all the suspensions studied.
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4.3.3 Suspension loading procedure

After synthesis (see§4.3.1 and§ 4.3.2), the particle suspension was gently poured into the quartz
Couette cell to avoid formation of air bubble. The cell was then mounted on the rheometer in the
controlled-temperature chamber. The suspension remainedat rest for one hour for the temperature gra-
dient to vanish. Finally the inner cylinder/vane was slowlypulled down into the suspension.

4.4 Estimation of experimental side effects

4.4.1 End effects

The total torqueTtotal applied on the inner cylinder/vane can be divided into two major contributions.
A first one is due to the viscometric flowTvisc while the second one results from bottom end effects
Tbottom.

Ttotal = Tvisc + Tbottom

Only the viscometric componentTvisc should be used in the flow-curve reconstruction (see 3.2). To
estimate the bottom-end contributionTbottom and thereby to be able to to properly measure the viscomet-
ric part, several authors proposed methods for slurries andconcentrated suspensions [11, 15, 212, 278].

4.4.2 Wall slip

Wall slip is a special case of shear banding when it occurs at awall. In particle-suspension rheometry,
it is usually stated that it results from a local reduction inparticle concentration, which arises from
geometrical constraints [24]. Usually rough surfaces are used to reduce wall slip. Vane geometries have
become popular over the years. Their supporters claim that it is equivalent to a cylinder with a wall made
up of the studied fluid itself.

Authors who tried to take wall slip into account in classic rheometric procedures suggested conduct-
ing several (usually 2 or 3) experiments with inner cylinder/vane of different diameters. First, Mooney
[204] proposed this technique, followed by Krieger [159], Schlegel [265], and Kiljanski [151]. This
kind of technique was applied successfully to various homogenous materials. It is not clear if it can be
used for concentrated particle suspensions. Indeed, because of the shear induced migration in the gap,
the material does not remain homogenous and therefore the wall/suspension interaction does not remain
identical between two experiments with varying geometries. In our experiments, knowing the velocity
profiles of the flow, by using the measured suspension velocity at each wall, we were able to avoid this
kind of techniques and all the associated unanswered questions. The velocity measurements were then
directly used to correct the rheometer’s angular-velocitymeasurement.

4.4.3 Effects of Brownian motion

The particle Péclet numberPe, an estimate of how important the viscous forces are as compared to
Brownian forces, should be larger than unity for the suspension to be in a hydrodynamically-dominated
regime. The Péclet number is defined as

Pe =
ηγ̇r3

p

kT
. (4.6)

with k the Boltzmann constant,T the temperature (293 ˚ K), η the fluid viscosity,γ̇ the shear rate, andrp

the particle radius.
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In our experiments, the Péclet number was of orderO(106), which is much larger than unity. We
then deduce that Brownian motion was not important, even at the lowest measured shear rates.

4.4.4 Effects of inertia

The particle Reynolds numberRep, an estimate of the relative importance of inertial forces compared
to viscous forces, should be much smaller than unity for the suspension to be in the viscous dominated
or even in the frictional regime. A generalizedRep number for shear-thinning fluids can be defined as

Rep =
ρf γ̇r2

p

η(γ̇)
. (4.7)

In the worst case, the generalized Reynolds number was of orderO(10−4), which was much smaller
than 1. We conclude that the inertial effects were not expected to play any role.

4.4.5 Effect of gravity

In the worst scenario for sedimentation with density difference of0.5 kg/m3 between the particles
and the fluid, the sedimentation speedu0 of a single particle in a viscous fluid can be calculated as
follows:

u0 =
2(ρp − ρf )gr2

p

9η
∼ 10−8m/s = 0.8 mm/day. (4.8)

Considering the duration of the experiments, we can therefore neglect the sedimentation effect and as-
sume a buoyancy-free flow.

4.5 Data reduction method

4.5.1 Classical rheometry

As already discussed in§2 and 3.2, inferring the flow curveτ = f(γ̇) from the torque and angular
velocity (Ωi,Mi) measurements is not obvious for concentrated particle suspensions. It is not always
straightforward to infer the shear stress from the total torque because the local shear stress may depend
on the flow height, i.e. on normal stresses as shown by Ancey and Coussot [15] for particle suspensions
in the frictional regime. Usual techniques require an homogenous flow and fluid. Therefore the experi-
mentalist has to check for shear localization and wall slip.This can be done quite easily by looking at
the velocity profile as mentioned in§ 4.4.2. As we will see in chapter 5 and especially in§ 5.3.1, we
measured wall slip at both the inner and outer cylinder for concentrated suspensions. It varied with the
tool surface roughness, tool geometry (cylinder vs vane), cylinder velocity, mean concentration, local
concentration profile (due to shear induced migration) etc.Because the wall slip effect results from lots
of different interacting processes, we did not try to avoid wall slip. Instead we inferred the apparent (in-
ner or outer) cylinder velocity from the measured velocity profiles and we used them to correct the inner
cylinder angular velocities. Some of the existing techniques use ana priori known velocity profile in the
gap, i.e. ana priori known fluid rheology. Typical fluids are power-law fluids, Casson fluids, Bingham
fluid, and Herschel-Bulkley fluids. Some of the existing techniques do not require any assumption on the
fluid rheology. Direct measure of the flow profiles gives the opportunity to compare a large spectrum of
Couette inversion techniques against the true flow curve derived from the local profile.
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A first working basis for the appropriate methods for the frictional/viscous transition regime was
provided by the papers of Nguyenet al. [213, 214]. More recent techniques such as the Tikhonov
regularization technique proposed by Yeow [312], the simple formula techniques proposed by De Hoog
and Anderssen [84, 86, 85], and the wavelet-vaguelette decomposition technique proposed by Ancey
[13] can then be compared.

4.5.2 Spatial calibration

As shown on figure 4.1, the entire rheometer is mounted on a linear stage that allows to move the
Couette cell vertically and to shine the laser sheet everywhere within the Couette cell. The very fine
adjustability of the Couette cell position allows to make measurement at different heights during a single
rheometrical experiment with a vertical position reproducibility of 0.02 mm.

The camera was mounted vertically on a tripod just below the quartz cup and at the working distance
of 134 mm from the laser sheet with the telecentric lens. The telecentric lens has a magnification of
0.368, which corresponds to a nominal conversion factor of19.44 µm/pixel for our CCD camera. The
lens manufacturer guarantees that image distortion remains below0.1 %. It allows therefore to perform
measurements with a single conversion factor for the whole image. We preferred a non-invasive cali-
bration technique over test pattern techniques because immersion of any kind of pattern into a highly
concentrated suspension is an extremely difficult task. Furthermore it cannot be performed before start-
ing the experiment because it would strongly interact with initial homogeneous conditions and modify
them somehow. One could perform them afterwards, but with the risk of wasting the whole experiment
(several days !!!) as a result of a wrong manipulation. As we will see, the non-invasive technique greatly
simplifies the calibration process without interacting with the suspension and disturbing it.

Because of intrinsic magnification uncertainty of the lens and the alignment and relative positioning
between the camera, Couette cell, and laser sheet, we just need to estimate the physical distance between
two points. Having two concentric cylinders in our images, we could use the two circles delimited by the
cylinders to retrieve the Couette cell center and to correctthe lens conversion factor. Figure 4.19 shows
a typical calibration image. Alignement of the Couette cell, laser sheet, and camera is performed using a
high precision spirit level.

The overall error on the velocity field because of spatial calibration remains in all the experiments
below 1%. The positioning error of the Couette cell center (and therefore the velocity profile position
with respect to the radius) was evaluated to be at±3 pixels, which means about0.06 mm.
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(a)

(b)

Figure 4.19: Spatial calibration and determination of the rotational axis of the Couette cell. (a) Typical
raw image integrated over 100 measurement images, (b) Determination of the inner (blue) and outer
(red) cylinder that allows calculation of the axis center position and the spatial conversion factor. In that
example the axis is at position(786,−402) in pixels and the conversion factor is19.55 µm/pixel.
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4.5.3 Velocity profiles

Velocity fields were computed using a modified version of the open source software called MatPIV1

[283]. Computations were performed using a multiple pass scheme with a sub-window size reduction
from 128×128 to 64×64, 32×32 and finally16×16 pixels. SNR, global, local and velocity range filters
were used to reject spurious correlation peaks and therefore wrong velocity vectors. As the velocity spans
over a wide range, computation of the velocity profile cannotbe performed using only one set of images
with a given∆t. Indeed if the∆t was optimized near the inner cylinder, the PIV algorithm could not
compute the velocity field correctly next to the outer cylinder and vice versa. For this reason, the velocity
profile was obtained using several sets of images with different∆t.

Figure 4.20: Typical PIV image in the Couette cell with a 0.55volume fraction coarse particle suspension
at20 mm into the suspension (Color is only a pseudocolor scale that represent the light intensity scale).

1. http://www.math.uio.no/ ˜ jks/matpiv/

http://www.math.uio.no/~jks/matpiv/


5Experimental results

This chapter is concerned with the experimental data that weobtained with concentrated particle
suspensions using a Couette cell. We first present validation tests, where the acquisition method was
tested against homogeneous Newtonian fluids. Emphasis is given to the inner shearing tool, which could
be either a 6-blade vane or a roughened metallic cylinder. Although the vane has been routinely used
in the rheometry of slurries and pastes (because it has been supposed to provide better-viscometric flow
conditions), it induces undesired effects (e.g., secondary flows), which precludes us from using it for our
rheometric experiments. Focus is then given to velocity profiles, which can be used to derive the flow
curve. I compare the flow curves obtained by differentiatingthe velocity profiles and those obtained by
solving the inverse Couette problem.

5.1 Validation of the measurement setup with a seeded Newtonian fluid

For validation purpose, we used a Newtonian trimix and PMMA particles as seeding particles for
the PIV/PTV treatment (they are the same as those used for theconcentrated suspensions). Figure 5.1
reports the radial and azimuthal velocity profiles that wereexperimentally obtained as well as the exact
analytical solution for the Couette geometry. Good agreement is found, which provides evidence that the
acquisition method performs well.

5.2 Vane geometry

The use of vane geometries has become quite popular over the past 25 years for measurements of
flow properties of non-Newtonian liquids, which are prone toundergo large slip effects at smooth walls.
Originally, these geometries were used to measure the apparent yield stresses of dispersions [257], but
they have recently been used to measure other rheological parameters. A recent review of the vane
geometry can be found in an article of Barnes [25]. As strong wall slip effects have to be expected in
concentrated suspension with a high packing fraction, we performed in parallel all measurements using
a 6-bladed vane geometry and a rough sand-blasted inner cylinder with the same diameter. As we will
see in this section, we are facing two major issues when usinga vane with concentrated suspensions:

• recirculation vortices between the vane blades, which led to higher wall slip (at the apparent cylin-
der cut by the blade tips) compared with a sand-blasted cylinder (see§ 5.2.1) than with a smooth
cylinder;

• discrepancies between the measured, almost hexagonal, 6-bladed-vane flow field and a circular
Couette flow (see§5.2.2).

75
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Figure 5.1: Setup validation using trimix Newtonian fluid with a negligible amount of tracer particles for
PIV measurements: dimensionless velocity profile (inner cylinder angular velocity is1 rad/s and inner
cylinder diameter is25 mm).

5.2.1 Interblade recirculation

In his review of the vane geometry [25], Barnes already mentioned limitation in its use for high-
viscosity liquids. He also mentioned the possible formation of vortices behind the vane blades for low-
viscosity liquids. However, this has remained so far an assumption. In our experiments, we used a
6-bladed vane with a diameter of25 mm, and as can be seen on figure 5.2, the velocity field showed
a flow recirculation in the clearance between the blades, confirming Barnes’ hypothesis. Our spacial
resolution allowed to clearly identify the main vortex justbehind each blade. It seems to be a secondary
vortex with an opposite vorticity in front of the blade, nextto the inner shaft. As we will see in§ 5.3.1,
this recirculation process has a strong impact on the apparent inner cylinder wall slip. For non-colloidal
particle suspensions, the presence of a vortex behind the blades is enhanced by the shear-induced diffu-
sion process (see§ 2.2 and§2.3.2). Indeed at high packing fraction, the MRI measurements of Ovarlez
et al. [229] have shown concentration differences within the2 − 4% range between the inner cylinder
and the outer cylinder in these concentration range. These differences correspond to a change in local
viscosity of about two to three orders of magnitude. Therefore the effective viscosity next to the vane
will be relatively low compared with the outer wall region. This questions the use of vane geometries
for measuring rheological properties of non-colloidal particle suspension (except for yield stress mea-
surements). As we will see in§ 5.3.1, we were never able to obtain a no-slip condition with the vane
geometry, which remains yet its main purpose.
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Figure 5.2: Streamlines of the interblade flow recirculations using a vane geometry: the inner 6-bladed
vane has a diameter of25 mm and an angular velocity of1 rad/s, the particle suspension has a volume
fraction of0.5. The color scale represents the dimensionless velocity magnitude in the frame of reference
attached to the vane (adimensionalized with the apparent outer cylinder velocity. Vane diameter is25
mm, and the outer cylinder rotates clockwise in this frame ofreference).

5.2.2 Gap stream

As can be seen at the blade tips on figure 5.2 and 5.3, the flow deviates substantially from a circular
Couette flow. It looks more like a hexagonal flow near the vane and slowly rounds off when increasing
the radius. This result is qualitatively in agreement with the numerical simulations of Barnes and Carnali
[27]. Figure 5.4 shows the radial component of the velocity field around one blade. The whole width
of the gap is influenced by a vane blade. The radial component ranges from about−7 % to 7 % of the
inner cylinder velocity. We performed experiment for two different particle volume fractions (0.5 and
0.55) and several angular velocities between0.01 and10 rad/s. The velocity fields were similar when
adimensionalized by the apparent inner cylinder velocity.We retrieved in each case a radial velocity
component up to 7–10 % of the inner apparent cylinder velocity.

Finally, because of this interblade recirculation vortices, which generated non-negligible apparent
wall slip and because of the non-circular streamlines in thegap, we preferred to the inner sand-blasted
cylinder for the rheological measurements (see§ 5.3 and§5.5).
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Figure 5.3: Streamlines in the gap using a vane geometry: Thecolor scale represents the dimensionless
velocity magnitude (adimensionalized with the apparent inner cylinder velocity, inner 6-bladed vane with
� = 25 mm, angular velocity1 rad/s, particle volume fraction of0.5).
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Figure 5.4: Radial velocity component around one blade ( positioned atθ = 0, adimensionalized with
the apparent inner cylinder velocity, inner 6-bladed vane with � = 25 mm, angular velocity1 rad/s,
particle volume fraction of0.5).
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5.3 Steady-state measurements

All the measurements presented here were made when the velocity and particle concentration profiles
reached a steady state, i.e. when the shear-induced diffusion process was at equilibrium. During an
experiment, the shear flow reduced residual settling; no substantial change in the measured torque was
observed. The reason why steady-state measurements are attractive is that they are easily reproducible.
Furthermore, as shown by Ovarlezet al. [229] (see figure 5.5), as soon as a steady state is reached, the
concentration profile seems to be independent of rotationalvelocity. As we will see in§5.3.3, this is
useful to infer the true locally-derived flow curve.

Figure 5.5: MRI concentration profile of concentrated particle suspension in a Couette cell for a suspen-
sion of mean volume fraction58% at various rotational velocities (after [229]).

5.3.1 Wall slip

As already mentioned in§ 4.4.2 and§4.5.1, wall slip is an important issue in particle suspension
rheometry. The actual trend in standard rheometry is to try to reduce it by any possible means because
it is the easiest way to obtain valuable results without any recourse to heavy techniques such as the
use of several inner cylinders as mentioned in§4.5.1. In concentrated particle suspensions, wall slip
reduction has been done either by using an inner vane insteadof the inner cylinder or by gluing sandpaper
on the geometries. From our velocity field measurements, we could infer the velocity at the walls by
an extrapolation of azimuthal velocity profile within the gap and compare it to the angular velocity
measured or imposed by the rheometer. In all our measurements with concentrated particle suspensions,
we measured a wall slip at both the inner and outer cylinder. We were never able to reduce wall slip to
zero.

In this section, we will take a closer look at wall slip for both geometries in the steady-state regime.
As we will see, wall slip is very complex and has various origins. In subsequent experiments, we did not
try to avoid wall slip at any price, which is hopeless to our eyes. Instead, we used the measured inner and
outer extrapolated slip values inferred from the velocity profiles to correct the angular velocity values
measured by the rheometer. As we will see here, this task is relatively easy for wall slip on the outer
cylinder because the shear rate tends there to zero. On the contrary, at the inner cylinder, the shear rate is
at its maximum and it is relatively difficult to estimate wallslip accurately. In all experiments presented
in this section, we used either a 6-blade vane (�25 mm) or a rough sand-blasted inner cylinder (�25
mm). For the outer cylinder, we used a smooth quartz cup (�60 mm). The velocity profiles were taken
at25 mm from the bottom of the cell (i.e. at mid-height).
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Inner cylinder velocity effects
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Figure 5.6: Inner cylinder wall slip: inner cylinder wall slip velocity vs angular velocity
Values of the extrapolated inner slip velocities versus theinner cylinder angular velocities. The velocities
are adimensionalized with the inner cylinder velocities (inner sand-blasted cylinder� = 25 mm, particle
volume fractionφ = 0.55 (◦) and0.5 (×)).

As shown on figure 5.6, wall slip at the inner cylinder is not constant with the inner cylinder velocity.
The raw velocity profiles next to the inner cylinder can be found in appendix D. The measurements
first show a slip increase whenΩ lies between0.01 rad/s and0.05 rad/s; then, the wall slip reduces to
about20% for Ω ∼ 10 rad/s. This trend seems to be weakly dependent on mean concentration (for the
concentration range we worked in).

On the contrary, at the outer cylinder (smooth quartz cup in our case), in the steady regime (i.e. once
the shear induced diffusion is at equilibrium), wall slip was almost independent of the inner cylinder
velocity. Within our measurement errors, we were unable to see any trend in its variation with the inner
cylinder velocity. Once an apparent steady-state regime was reached, the slip velocity seemed to be in-
fluenced essentially by the wall, the particles, the fluid, and the proportion of each of them. This is in
agreement with the concentration profiles measured by Ovarlezet al. [229], which showed an indepen-
dent steady-state concentration profile with the inner cylinder velocity. More focused experiments on this
issue should be carried out to really understand what occursat the smooth outer wall. This goes beyond
the scope of this work. We just limited ourselves here to the fact that the measured slipping velocity
was independent of the inner cylinder velocity. As shown on figure 5.7, this means that at low rotational
velocities (i.e.∼ 0.01 − 0.5 rad/s), wall slip may be not negligible at the outer cylinder, with a relative
value of a few percent of the inner cylinder velocity, whereas at higher velocity, it becomes completely
negligible (see also figure D.2 and D.3 in appendix D for the raw velocity profiles). We finally used this
value for the wall-slip-corrected flow curve in§5.3.2.

Inner geometry

As shown in§ 5.2, the 6-blade vane induces recirculation loops in the inter-blade space. For this
reason, at the apparent inner cylinder cut by the vane blades, the suspension velocity was not that of
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Figure 5.7: Outer cylinder wall slip: wall slip vs angular velocity
Value of the extrapolated outer slip velocity versus the inner cylinder angular velocity. The velocities are
adimensionalized with the inner cylinder velocities (inner sand-blasted cylinder� = 25 mm, particle
volume fractionφ = 0.55 (◦) and0.5 (×)).

the blade tips. It was rather influenced by the vortex recirculation velocity. As shown on figure 5.8,
compared with a sand-blasted inner cylinder, the apparent wall velocity was lower for the vane than
the sand-blasted cylinder, i.e. there was more slip with thevane. For this reason and those presented
in § 5.2 (keeping a flow as viscometric as possible), in order to compare the local measurements with
those obtained in classic rheometry, we mainly concentrated our measurement on the sand-blasted inner-
cylinder experiments.
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Figure 5.8: Inner cylinder wall slip: inner cylinder vs vane
Values of the extrapolated inner slip velocity for an inner cylinder (◦) and an inner 6-bladed vane (×).
The velocities are adimensionalized with the inner cylinder velocity and the inner apparent cylinder
velocity (inner sand-blasted cylinder� = 25 mm and inner 6-bladed vane� = 25 mm, particle volume
fractionφ = 0.55).

5.3.2 Rheometric flow curve

Once wall slip has been measured correctly, the raw angular velocity can be properly corrected
(see figure 5.9 (a) and 5.10 (a) for the corrected and uncorrected measurements). Moreover, as already
discussed in§ 3.2 and illustrated with artificial Herschel-Bulkley data,deriving the flow curve from
Couette-cell measurements (with a wide-gap cell) gives rise to inversion problems. As we have already
seen, the inferred flow curve may be relatively different depending on the inversion technique. Figure
5.9 (b) and 5.10 (b) show the inferred flow curves using several different techniques with and without
wall slip correction. The differences between curves are indeed quite large. These results again show the
problems associated with the rheometry of concentrated particle suspension, which requires the use of
wide-gap rheometers to avoid finite-size effects and, as a result, generates:

• measurements with a wide range of shear rate within the gap (see figure 5.12),

• a non-homogenous material (see figure 5.5),

• a Couette inversion technique problem (see§3.2).

As discussed in§ 2.4,§ 3.1, and§ 3.2, from these bulk measurements alone, it is not possible to an-
swer the underlying questions addressed in this work associated with the above listed effects:

“Is it possible to obtain a reliable flow curve for concentrated particle suspensions from bulk
measurement? And this by considering the wide shear range within the gap, the non-homogeneous

material and the inversion techniques problems due to the wide gap?”
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As we will see in§ 5.3.3, local measurements will help us to understand further the different aspects and
try to answer, at least partially, that question.
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Figure 5.9: Cylinder wall slip: effect on the bulk measurements
Semi-logarithmic plot of wall slip uncorrected (•) and corrected (×) raw rheometric measurements (a)
and the inferred flow curves (b) obtained with following inversion methods: Mooney (•, ×) [204], New-
ton ( •, ×), power law (•, ×), mid-point formula (•, ×) [86, 84], modified mid-point formula (•, ×)
[86, 84] , quart-point formula (•, ×), three-eight-point formula (•, ×), modified first-term Krieger-Elrod
formula (•, ×) [86, 84], modified-quart-point formula (•, ×), modified-three-eight-point formula (•, ×),
Krieger (1952) (•, ×) [159], Krieger (1953) (•, ×) [158], Krieger (1968) (•, ×) [163], Mac Sporran (•,
×)[185], Tikhonov regualrization (•, ×) [312], wavelette-vaguelette decomposition (•, ×) [12] (inner
sand-blasted cylinder� = 25 mm, particle volume fractionφ = 0.55).
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Figure 5.10: Cylinder wall slip: effect on the bulk measurements
Log-log plot of wall slip uncorrected (•) and corrected (×) raw rheometric measurements (a) and the
inferred flow curves (b) obtained with following inversion methods: Mooney (•, ×) [204], Newton (•,
×), power law (•, ×), mid-point formula (•, ×) [86, 84], modified mid-point formula (•, ×) [86, 84] ,
quart-point formula (•, ×), three-eight-point formula (•, ×), modified first-term Krieger-Elrod formula
(•, ×) [86, 84], modified-quart-point formula (•, ×), modified-three-eight-point formula (•, ×), Krieger
(1952) (•, ×) [159], Krieger (1953) (•, ×) [158], Krieger (1968) (•, ×) [163], Mac Sporran (•, ×)[185],
Tikhonov regualrization (•,×) [312], wavelette-vaguelette decomposition (•, ×) [12] (inner sand-blasted
cylinder� = 25 mm, particle volume fractionφ = 0.55).



86 CHAPTER 5. EXPERIMENTAL RESULTS

5.3.3 Rheometry versus rheophysics

In the steady-state regime (i.e. when shear induced particle diffusion is at equilibrium), the measured
azimuthal-velocity profiles of concentrated particle suspensions experience a sup-exponential decay next
to the inner cylinder. However, near the outer cylinder, we measured an abrupt change in the profiles. Its
origin is not yet clear. Figure 5.11 shows the azimuthal velocity profiles for the inner-cylinder angular
velocity ranging from0.01 to 10 rad/s for a suspension with a particle volume fraction of0.55. From
these velocity profiles, the shear rate distribution in the gap can then be calculated for each rotational
velocity. These are represented in Fig. 5.12. As shown by this figure, the shear rate within the gap spans
over two (0.01 rad/s curve) to six (10 rad/s curve) orders of magnitude. For some unknown reasons,
because of the well-marked velocity-profile slop change in the outer wall region, the measured shear rate
never went below10−4 1/s. This phenomenon is unclear and should be examined more carefully.
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1.11 rad/s
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Figure 5.11: Dimensionless azimuthal velocity profile at several inner cylinder velocities:0.01 rad/s (•),
0.01802 rad/s (•), 0.03246 rad/s (•), 0.05848 rad/s (•), 0.1054 rad/s (•), 0.1898 rad/s (•), 0.342 rad/s
(×), 0.6162 rad/s (×), 1.11 rad/s (×), and2 rad/s (×). The velocities are adimensionalized with the inner
cylinder velocities (inner sand-blasted cylinder� = 25 mm, particle volume fractionφ = 0.55). For
clarity, the measurement between2 and10 rad/s where not reproduced here. Raw measurements can be
found in figure D.9 and D.10

Nevertheless, from inferred shear-rate profiles and measured steady-state torques at the inner cylin-
der, local flow curves can be derived. Figure 5.13 shows (i) the calculated flow curves using several
inversion techniques for solving the Couette equation and (ii) the locally-inferred flow curves at each
angular velocity. The bulk measurement cross the local onesat a given point (we will come back to this
thereafter). What seems to happen in fact in global methods is that at a given angular velocity, the bulk
measurements somehow average the values over the whole gap.

If the locally-inferred flow curves would fulfill all the assumptions presented in§ 3.2, they should
collapse on a single curve, which is not the case. There is a simple reason for that: as briefly mentioned
in chapter 2 and at the beginning of§ 5.3, the shear-induced particle diffusion process generates a non-
homogeneous material in the gap. Therefore, to infer properly the flow curve in a wide-gap Couette
rheometer with a wide range of shear rate and a non-homogeneous material, simultaneous measurements
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Figure 5.12: Steady state shear rate within the gap: at0.01 rad/s (−), 0.01802 rad/s (−), 0.03246 rad/s
(−), 0.05848 rad/s (−), 0.1054 rad/s (−), 0.1898 rad/s (−), 0.342 rad/s (--), 0.6162 rad/s (--), 1.11 rad/s
(--), 2 rad/s (--),2.759 rad/s (--), 3.807 rad/s (--), 5.253 rad/s (-·-), 7.248 rad/s (-·-), and10 rad/s (-·-).
(inner sand-blasted cylinder� = 25 mm, particle volume fractionφ = 0.55 and inner cylinder angular
velocity Ω = 0.1 rad/s).

of the velocity and particle concentration fields have to be carried out. Unfortunately we have not been
able as yet to perform reliable concentration measurements. MRI steady-state concentration profiles
given in the literature [229] have shown, that these profilesare independent of the angular velocity at
which the measurement is taken. Following this, we can plot the flow curve for a given particle volume
fraction by plotting the data at a given radial position. Figure 5.14 shows again the local measurements
reploted in this way. As can be seen in the linear plot of figure5.14 (a), the flow curves seem to be fairly
linear, i.e. Newtonian, with an increasing viscosity, whenmoving away from the inner cylinder. The
local viscosity versus radius relation can be found in figure5.15. Again to compare this data with other
measurements in the literature would require the concentration profile in the gap, so as to be able to give
a concentration value for each of the locally inferred flow curves of figure 5.14. The bulk measurement
seems to be in quite good agreement with the flow curve at radius r∼= 17 mm.

The Newtonian behavior seems to break down in the outer wall region where the velocity profiles
have significantly changed. Further investigation should be carried out in this region.
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Figure 5.13: Concentrated particle suspension steady-state flow curve: lin-lin (a) and log-log plot (b)
The line-connected closed symbols represent the wall-slip-corrected bulk rheometric measurement using
different Couette-inversion techniques: Mooney (•) [204], Newton (•), power law (•), mid-point formula
(•) [86, 84], modified mid-point formula (•) [86, 84], quarter-point formula (•), three-eight-point formula
(•), modified first-term Krieger-Elrod formula (•) [86, 84], modified-quarter-point formula (•), modified-
three-eight-point formula (•), Krieger (1952) (•) [159], Krieger (1953) (•) [158], Krieger (1968) (•)
[163], Mac Sporran (•) [185], Tikhonov regualrization (•) [312], wavelette-vaguelette decomposition
(•) [12].
The unconnected symbols represent the local measurement, i.e. the flow curves derived from the steady-
state velocity profile at mid-height of the Couette cell: at0.01 rad/s (×), 0.01802 rad/s (×), 0.03246
rad/s (×), 0.05848 rad/s (×), 0.1054 rad/s (×), 0.1898 rad/s (×), 0.342 rad/s (+), 0.6162 rad/s (+), 1.11
rad/s (+), 2.0 rad/s (+), 2.759 rad/s (+), 3.807 rad/s (+), 5.253 rad/s (∗), 7.248 rad/s (∗), and10 rad/s
(∗),
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Figure 5.14: Corrected concentrated particle suspension steady-state flow curve: linear plot (a) and log-
arithmic plot (b). The line-connected closed symbols represent the wall-slip-corrected bulk rheometric
measurement using different Couette-inversion techniques: Mooney (•) [204], Newton (•), power law
(•), mid-point formula (•) [86, 84], modified mid-point formula (•) [86, 84], quarter-point formula (•),
three-eight-point formula (•), modified first-term Krieger-Elrod formula (•) [86, 84], modified-quarter-
point formula (•), modified-three-eight-point formula (•), Krieger (1952) (•) [159], Krieger (1953) (•)
[158], Krieger (1968) (•) [163], Mac Sporran (•) [185], Tikhonov regualrization (•) [312], wavelette-
vaguelette decomposition (•) [12].
The line connected symbols are the locally inferred flow curve at several radii: at14mm (×), 15 mm
(×), 16 mm (×), 17 mm (×), 18 mm (×), 19 mm (×), 20 mm (+), 21 mm (+), 22 mm (+), 23 mm (+),
24 mm (+), and25 mm (+)
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Figure 5.15: Relative viscosity distribution in the gap inferred from the local measurements (continuous
line) and thedashed red linerepresent the bulk measurement viscosity (inner sand-blasted cylinder� =
25 mm, particle volume fractionφ = 0.55).
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5.4 Transient measurements: shear-induced particle diffusion process

As discussed in§ 2.2 and§ 2.3.2, shear-induced particle diffusion takes place within the gap in con-
centrated particle suspensions. As we will see, this process also affects wall slip in the transient regime
(§5.4.1), the velocity profile within the gap and hence the inferred shear rate distribution (§ 5.4.2).

5.4.1 Wall slip

In our experiments, when starting from a homogeneous suspension, wall slip slowly reduces at the
inner cylinder with the number of inner cylinder rotations,i.e. with the diffusion process. Figure 5.16
shows the inner slip velocity as a function of the number of inner-cylinder rotation. The last measurement
taken after 3100 rotations corresponded to a steady state, i.e. when the measured torque at the inner
cylinder reached an almost constant value. These measurements seem to be in agreement with the idea
that slip decreases with local particle concentration. As shear-induced diffusion takes place and pushes
the particle away from the inner cylinder, wall slip decays.It would tend to a no-slip condition if the
local particle concentration would decrease further at theinner interface.
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Figure 5.16: Inner cylinder wall slip: wall slip vs number ofinner cylinder rotations
Values of the extrapolated inner slip velocity versus number of inner cylinder rotations. The velocities
are adimensionalized with the inner cylinder velocity (inner sand-blasted cylinder� = 25 mm, particle
volume fractionφ = 0.55 and inner cylinder angular velocityΩ = 0.1 rad/s).

As shown figure 5.17, a similar process takes place at the outer wall. With increasing number of
inner cylinder rotation, the wall slip decreases as well, even if the local particle concentration increases.
Therefore, the particle content cannot explain this phenomenon. It should, on the contrary, increase wall
slip effects. Furthermore, as the steady-state measurements with various mean concentration showed it
(see figure 5.7), an increasing mean concentration and thereby an increasing local concentration at the
outer wall lowers outer-wall slip. Therefore particle concentration cannot be the sole process involved.
Another assumption comes up by looking at the shear-rate evolution in the gap during the diffusion
process. The shear-rate profile changes substantially as a result of particle migration. In the outer part
of the gap, the shear rate at the end of the diffusion process is two orders of magnitude lower than the
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value measured at the first times, whereas close to the inner cylinder, it remains approximately constant.
Figure 5.18 shows 4 different shear-rate profiles after 50, 80 , 540 and 3100 inner cylinder revolutions.
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Figure 5.17: Outer cylinder wall slip: wall slip vs number ofinner cylinder rotations
Value of the extrapolated outer slip velocity versus numberof inner cylinder rotations. The velocities
are adimensionalized with the inner cylinder velocity (inner sand-blasted cylinder� = 25 mm, particle
volume fractionφ = 0.55 and inner cylinder angular velocityΩ = 0.1 rad/s).

5.4.2 Velocity profile

Our velocity field measurements highlighted strong changesin the azimuthal velocity profile within
the gap during the shear-induced migration process. Figure5.18 and 5.19 show the dimensionless veloc-
ity profiles after wall-slip correction for a concentrated suspension starting from a homogenous state with
particle volume fraction of0.55 and the corresponding inferred shear rate. For clarity, we plotted only
part of the data (raw measurements can be found in appendix D on figure D.6, D.7, and D.8). During the
shear-rate-induced particle diffusion process, the innerpart of the velocity profile seems to change from a
sub-exponential to a super-exponential, whereas in the outer part of the gap, a plug-like region develops.
The super-exponential steady-state velocity profile seemsto be, at least qualitatively, in agreement with
the MRI measurements of Ovarlezet al. [229]. For the outer plug region and for the remaining transient
measurements, to our knowledge, there is no other measurement in the literature to compare with.

As unfortunately we have not been able as yet to measure the concentration profile of the suspension
in the gap, this transient measurement cannot be used to infer a flow curve of the sheared material. This
also means that we have no way to compare these measurements with the steady-state ones, nor we can
have a look at consistency between both measurements.

5.5 Normal stress or bottom-end effect

As shows figure 5.20 (a) for a suspension with particle volumefraction of0.55 and sheared at0.01
rad/s, the velocity profile does not seem to be influenced by the bottom end of the cell for flow depth in
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Figure 5.18: Shear rate evolution during the particle diffusion process: after50 inner cylinder revolutions
(–), 80 revolutions (–), 540 revolutions (–), and 3100 revolutions (–) (inner sand-blasted cylinder� = 25
mm, particle volume fractionφ = 0.55 and inner cylinder angular velocityΩ = 0.1 rad/s).

excess of5 to 10 mm. This was checked for several angular velocities. However, if one does look at the
logarithmic plot of figure 5.20 (b), the outer region velocity profiles seem to show greater slip velocity
(at the outer wall) at deeper positions in the cell. The reason for this wall slip effect is not clear. It may
result from normal stress effects, but this remains speculative. If one gets rid of inner and outer wall slip
velocities, the profiles collapse on a single curve, as can beseen on figure 5.21.
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Figure 5.19: Dimensionless azimuthal velocity profile evolution: profile after 50 inner cylinder rotations
(•), 540 rotations (×), 3100 rotations (◦) (inner sand-blasted cylinder� = 25mm, particle volume
fractionφ = 0.55, angular velocityΩ = 0.1 rad/s).
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Figure 5.20: Linear plot (a) and logarithmic plot (b) of the dimensionless azimuthal velocity profile at
several height in the gap: at5 mm (•), 10 mm (•), 15 mm (•), 20 (•), 25 mm (•), and30 mm (•) (inner
sand-blasted cylinder� = 25 mm, particle volume fractionφ = 0.55, angular velocityΩ = 0.01 rad/s).
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Figure 5.21: Logarithmic plot of the dimensionless wall-slip corrected azimuthal velocity profile at sev-
eral height in the gap: at5 mm (•), 10 mm (•), 15 mm (•), 20 (•), 25 mm (•), and30 mm (•) (inner
sand-blasted cylinder� = 25 mm, particle volume fractionφ = 0.55, angular velocityΩ = 0.01 rad/s).



6Conclusion

The aim of this PhD thesis was to contribute to a better understanding of concentrated non-colloidal
particle suspensions. We developed refractive-index-matching techniques, which allowed us to gain
insight into their flow behavior. We performed experiments down to 35-mm depths (more than350
particle-fluid interfaces to look through) and used suspensions with particle volume fraction as large as
60%. Combined to FPIV techniques, these techniques allowed usto get an improved time and spatial
resolution compared to MRI technique, which have also been used for this kind of experiments.

With the help of this combined refractive-index-matched technique (developed at the Laboratoire
d’Hydraulique Environnementale) as well as FPIV, I addressed different questions:

• Is it possible to obtain a reliable flow curve for concentrated particle suspensions from bulk mea-
surements? And this by considering the wide shear range within the gap, the non-homogeneous
material, and the inversion-technique problems due to the wide gap?

Rheometric measurements of concentrated non-colloidal suspensions had to be taken in wide-gap
geometries (because of the particle size). Comparison between bulk and local measurements has
shown that all the Couette inversion methods average both (i) the fluid properties and (ii) the
resulting flow behavior over the gap:

i. as the particle concentration changes across the gap (a few percent), the fluid is no longer
homogeneous and, for example in the viscous regime, the local viscosity can change by a
factor of105 over the gap;

ii. as the shear rate in the gap spans orders of magnitude, theflow may undergo different flow
regimes within the gap and therefore, inversion methods maynot identify these regimes
properly.

Current sophisticated inversion techniques are able to solve the wide-gap effect satisfactorily.
However, the point measurement of angular velocity and torque (Ωi, Ti) at the inner (or outer)
wall does not contain enough information and therefore these techniques cannot properly take ef-
fects (i) and (ii) into account. In the viscous regime, by accounting for particle migration and hence
for the local viscosity and shear rate, one may improve the existing inversion techniques. However,
this would relegate the inversion technique to a method using ana priori knowledge of the fluid
behavior. This is unavoidable because of the lack of measured information. One has to keep in
mind that there is no consensus on particle migration. Very accurate concentration-profile mea-
surements should be carried out in transient (especially atthe beginning) and steady-state regimes
to obtain thisa priori knowledge. And even if we were able to obtain such information, we would
have to face many unclear points, e.g. how do particle size, size distribution, particle shape, surface
roughness, etc, affect rheological properties?
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• What are the main rheological properties of concentrated non-colloidal particle suspensions in the
frictional and viscous regimes? What about the transition between these two regimes?

Unfortunately, since to date, we are unable to accurately measure the concentration profile in the
gap, part of the problem is still unsolved and we cannot give proper answers to these questions.
Most measurements within the flow showed that the flow exhibited a viscous behavior. This could
be anticipated since we worked with buoyant particles. Notethat a thin region around the outer
cylinder departed from this behavior. This region still underwent small deformation; it was there-
fore not a plug region slipping at the outer wall. This seems to provide evidence for another
flow behavior of non-colloidal particle suspension, which differs significantly from the viscous
regime. As it has been inferred from local measurements, this behavior cannot be related to the
bulk-measured apparent frictional regime. However, sincewe used buoyant particles, we cannot
exclude that this behavior reflects some plastic process. Further investigation should be carried
out.

Concerning the transition between these two regimes, all our local measurements have shown a
kink in the velocity profiles (the thickness of the transition region is approximately the particle
size). Therefore, there is apparently no region where both regime coexist.

Perspectives

In the present work, image processing techniques were chosen because of their spatial and time
resolution. Once the refractive-index-matching technique is well harnessed, its versatility is an additional
key advantage over other techniques to tackle problems in various geometries and transient applications
related to concentrated particle suspensions. Our know-how was first developed within the laboratory
for the Couette cell experiments presented in this thesis and is now being carried over to other flow
geometries such as the dam-break experiment of concentrated particle suspensions.

• To improve the measurement technique for highly transient flows, e.g., during migration process
in a Couette cell or when tracking the front wave in dam break experiments, we plan to combine
refractive-index-matching techniques and time-resolvedPIV using a high frame rate laser and
camera. Figure 6.1 shows an image (side view) of the front of adam-break flow in a flume.

• As we have seen in this work, the rheology and velocity field inconcentrated particle suspensions
are strongly affected by the local particle concentration.The next step to improve our understand-
ing of concentrated non-colloidal particle suspensions isthe particle-concentration measurement
in these index-matched fluids.
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Figure 6.1: Flow front (dam-break experiment) of a concentrated and refractive-index-matched suspen-
sion with a particle volume fraction of 0.55 and an inclination of 0 ˚ , images have been taken from the
side at a depth of20 mm into the fluid. The suspension flows from left to right and the bright dots are
marked particles advected by the fluid, which are used as tracers to infer fluid velocity.





ARefractive index matched fluid recipes

In this section, the reader will find other recipes used in theliterature to match the refractive index of
particles.

• PMMA (Polymethylmethacrylate)

– Potassium thiocyanate solution [108]

– Triton X100 (Sigma Aldrich) [138, 146]

– Glycerin 40.67% by weight, ethylene glycol 22.82% by weightand styrene glycol 36.51%
by weight [169]

– Aqueous zinc iodide solution [127]

– Kerosine and an oil mixture (Shellflex 214 BG) [36]

– Demineralized water, zinc chloride [282]

– Dow Corning fluid 550 84% by weight and Dow Corning fluid 556 16%by weight [38, 239,
254, 282]

– Dow Corning fluid 550 and Dow Corning fluid 200 [142]

– Dow Corning fluid 556 98% by weight and Dow Corning fluid 200 2% by weight [282]

– Demineralized water, zinc chloride and Triton X100 (Sigma Aldrich) [39, 40, 41, 42, 166,
290]

– 1,1,2,2 tetrabromoethane (Eastman Kodak) 14.07% by weight, polyalkylen glycol (UCON
oil 75 H 90’000) 35.66% by weight, Triton X100 (Sigma Aldrich) 50.27% by weight and
Tinuvin 328 (Ciba Specialty Chemicals) 0.1% by weigth [3, 22, 109, 201, 271]

– Decahydronaphthalene, tetrahydronaphthalene and cyclohexylbromide [57, 107]

– Decahydronaphthalene, tetrahydronaphthalene and carbontetrachloride [150]

– Decahydronaphthalene, tetrahydronaphthalene [6]

– Cyclohexylbromide and decahydronaphthalene [88, 305, 307]

– Cyclohexylbromide, decahydronaphthalene and tetrabutyl-ammonium chloride [148]

– Polyalkylene glycol oil (UCON oil 50-HB-5100, Union Carbide) and 1,1,2,2 tetrabromoethane
(Aldrich Chemical Company) [110]

– Di-butylphtalate [313]

– para-cymene [115, 116, 117, 122]

– Tetraline and 40% by weigth turpentine [131, 146, 178, 179, 223, 225, 224, 288]
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– Polyglycol oil (UCON oil 50-HB-5100, Union Carbide) 33.7% by weight, terpineol 41.8%
by weight, 1,1,2,2 tetrabromohethane (Aldrich Chemical Company)24.4% by weight and
Tinuvin (Ciba Geigy) 0.1% by weight [203]

– L42 organosilicone fluid (Union Carbide Co.) 27% by weight and 550 fluid (Dow chemical
Co.) 73% by weight [92, 219, 220, 221]

– Ethyl and benzyl alcohol [122]

– Aqueous sodium iodide solution and glycerin [317]

– Aqueous sodium iodide solution ( 60% concentration) [122, 227, 233, 299, 314]

– 1,6 dibromohexane (Aldrich caltalogue no. D4,100-7), polyalkylen glycol (UCON oil 75 H
450) and Triton X100 (Sigma Aldrich) [181, 182]

– Hexadecane and microscope oil (Sigma-Aldrich S150) [172, 173]

– Aqueous solution of potassium thiocyanate and ammonium thiocyanate [46]

– Tetrachloroethylene [145]

• PS (polystyrene)

– 1-methylnaphtalene (Aldrich catalogue number M5,680-8),1-chloronaphtalene (Aldrich C5,765-
0), polyalkylene glycol (UCON oil 75-H-90’000, Dow Chemicals Co.) [154, 155]

– 1-methylnaphtalene 28% by volume, 1-chloronaphtalene 31%by volume and tetraline 41 %
by volume [77]

• PVA (Polyvinyl alcetate)

– Polyglycol oil (UCON oil 50-HB-5100, Union Carbide) and 4% by volume tetrabromo-
hethane [147]

• Nylon

– Pale 4 oil (oxidized castor oil, Baker Castor oil Co.) and tetrabromoethane [147]

• Glass

– Glycerine and water [231]

– Soddard solvent and mineral oil [231]

– Glycerol [53, 207]

– Esso Marcol 82 and Primol 352 [261, 262]

– Dow Corning fluid 550 and Dow Corning fluid 556 [304, 311]

– Oil (Pharma 5, DEA) and a light protective liquid (Eusolex, Merck) [156]

– Tetrechloroethylene and Freon113 [302]

– Methylbenzoate at 25˚C [320]

– Light fuel oil and 30% by volume of palatinol C [91]

– Xylen and 44% by volume and Varsol [100]

– Tetralin and silicone oil in proportion (1:2.57, by weight)[58, 199, 200]

– Alkyl benzyl phthalate plasticizer, named Santicizer 278 and produced by Monsanto [118,
215, 216, 217]
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– Isopropyl alcohol and methylnaphthalene [122]

– Diethylphthalate [122]

– Sodium Iodide water solution (55% by weight) [60, 136, 195, 284]

– Tetralin and clear coal oil [315]

• Silica gel

– Chloroform and water [2]

– Water solution of sodium iodide (50%) [59, 60, 61, 144, 211, 309]

– Benzyl alcohol 45% by volume and ethyl alcohol 55% by volume [77]

• Fused quartz

– Tertaethylene glycol [279]

– Tetrahydropyran-2-methanol [279]

– Cyclooctane and cyclooctene [279]

• Other

– Silicon rubber with methylcylohexane and water glycerin mixture [48]

– Glycerol and potassium dihydrogen phosphate (monobasic) [9]

– Ethanol and Epsom salt solutions [20]

– Sugar and Epsom salt as solutes in water [191]

– Ethyl alcohol and salt (NaCl) [83, 119, 120]

– Fluoropolymer (FEP) was tested in water [122]

– Sucrose-water continuous phase; trichlorotrifluoroethane-1- octanol droplet phase liquid-
liquid system [45, 47]

– n-heptane and 50% water glycerol mixture [21]

– silicone oil and a water glycerol mixture [218]





BPIV pattern images and image correlation

The main equations used in the following are token from Raffel 2007 [252].

Image intensity field of PIV images

A typical PIV image intensity field can be written as:

I = I(X,Γ) = τ(X) ∗
N∑

i=1

V0(Xi)δ(X − Xi)

=

N∑

i=1

V0(Xi)τ(X − Xi)

with

• Xi is theith particle position,

• Γ describes the state of the particle ensemble at a given timet,

• V0(Xi) is the transfer function giving the light energy of an individual particlei inside the interro-
gation volumeVI and its conversion into an electronic signal,

– V0(Xi) = W0(X,Y )I0(Z)

– I0 is the intensity profile of the laser sheet (typically gaussian or almost constant if the laser
beam intensity profile is a top-hat beam)

– W0(X,Y ) =

{
Wxy if the particle is inside of the laser sheet
0 if outside

• τ(X) is the intensity transmissivity point spread function of the photograph (commonly token as
gaussian in the literature),

• δ(X − Xi) is the Dirac function.
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Correlation

Autocorrelation

RI(s,Γ) = < I(X,Γ)I(X + s,Γ)) >

=
1

aI

∫

aI

N∑

i=1

V0(Xi)τ(X − Xi)

N∑

j=1

V0(Xj)τ(X − Xj + s)dX

=
1

aI

N∑

i6=j

V0(Xi)V0(Xj)

∫

aI

τ(X − Xi)τ(X − Xj + s)dX

︸ ︷︷ ︸

RC(s,Γ)+RF (s,Γ)

+
1

aI

N∑

i=j

V 2
0 (Xi)

∫

aI

τ(X− Xi)τ(X − Xj + s)dX

︸ ︷︷ ︸

RP (s,Γ)

(B.1)

with

• < I(X,Γ) >= 1
aI

∫

aI
I(X,Γ)dX, the spatial average,

• s the separation vector in the correlation plan,

• aI the interrogation area.

RC(s,Γ) can be viewed as the convolution of the mean intensities,RF (s,Γ) the fluctuating noise
component from the i6=j terms andRP (s,Γ) the self correlation peak located at (0,0) in the correlation
plane.

Cross-correlation of 2 images

I(X,Γ) =

N∑

i=1

V0(Xi)τ(X − Xi) andI ′(X,Γ′) =

N∑

j=1

V0(Xj)τ
′(X− Xj)

RI(s,Γ,Γ′) = < I(X,Γ)I(X + s,Γ′)) >

=
1

aI

N∑

i,j

V0(Xi)V0(Xj)

∫

aI

τ(X − Xi)τ
′(X − Xj + s)dX
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CRaw viscosity measurements
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Figure C.1: (a) Raw viscosity measurement at various temperature of Triton X-100 (bottom-end effect
corrected), (b) Raw viscosity measurement at various temperature of UCON oil 75-H450 (bottom-end
effect corrected), (c) Raw viscosity measurement at various temperature of 1,6 dibromohexane (bottom-
end not effect corrected) (closed circles are cone-plate (CP) measurement (�40 mm and 4 ˚ ) and open
squares are bottom-end corrected concentric cylinder measurements (�33 - 37 mm and 25 - 27.5 mm))
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Figure C.1: (a) Raw viscosity measurement at various temperature of Triton X-100 (bottom-end effect
corrected), (b) Raw viscosity measurement at various temperature of UCON oil 75-H450 (bottom-end
effect corrected), (c) Raw viscosity measurement at various temperature of 1,6 dibromohexane (bottom-
end not effect corrected) (closed circles are cone-plate (CP) measurement (�40 mm and 4 ˚ ) and open
squares are bottom-end corrected concentric cylinder measurements (�33 - 37 mm and 25 - 27.5 mm))
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Figure C.2: Raw viscosity measurement at various temperature of the ternary mixture of Triton X-100,
UCON oil 75-H450 and 1,6 dibromohexane (closed circles are cone-plate (CP) measurement (�40 mm
and 4 ˚ ) and squares are bottom-end corrected concentric cylinder measurements (�33 - 37 mm (open
squares) and 25 - 27.5 mm filled squares)))





DRaw velocity profiles

D.1 Wall slip

D.1.1 Inner cylinder wall slip vs angular velocity
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Figure D.1: Inner cylinder wall slip: impact of the inner cylinder velocity
Dimensionless azimuthal velocity profile at several inner cylinder velocities:0.01 rad/s (•), 0.01802 rad/s
(•), 0.03246 rad/s (•), 0.05848 rad/s (•), 0.1054 rad/s (•), 0.1898 rad/s (•), 0.342 rad/s (×), 0.6162 rad/s
(×), 1.11 rad/s (×) , 2 rad/s (×), and10 rad/s (×). The extrapolated inner cylinder slip velocity (solid
lines) are shown on figure 5.6. For clarity in the figure we removed the data that are influenced by the
presence of inner cylinder wall in the data processing algorithms. The velocities are adimensionalized
with the inner cylinder velocities (inner sand-blasted cylinder � = 25mm, particle volume fraction
φ = 0.55).
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D.1.2 Outer cylinder wall slip vs angular velocity
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Figure D.2: Outer cylinder wall slip: impact of the inner cylinder velocity
Azimuthal velocity profile at several inner cylinder velocities: 0.01 rad/s (•), 0.01802 rad/s (•), 0.03246
rad/s (•), 0.05848 rad/s (•), 0.1054 rad/s (•), 0.1898 rad/s (•), 0.342 rad/s (×), 0.6162 rad/s (×), 1.11
rad/s (×) , 2 rad/s (×), and10 rad/s (×)(inner sand-blasted cylinder� = 25mm, particle volume fraction
φ = 0.55).
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Figure D.3: Outer cylinder wall slip: impact of the inner cylinder velocity
Dimensionless azimuthal velocity profile at several inner cylinder velocities and its impact on the outer
cylinder wall slip: at0.01 rad/s (•), 0.01802 rad/s (•), 0.03246 rad/s (•), 0.05848 rad/s (•), 0.1054 rad/s
(•), 0.1898 rad/s (•), 0.342 rad/s (×), 0.6162 rad/s (×), 1.11 rad/s (×) , 2 rad/s (×), and10 rad/s (×).
The extrapolated outer cylinder slip velocity (solid lines) are shown on figure 5.7. The velocities are
adimensionalized with the inner cylinder velocities (inner sand-blasted cylinder� = 25mm, particle
volume fractionφ = 0.55).
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D.1.3 Shear induced particle diffusion
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Figure D.4: Inner cylinder wall slip: impact of shear induced particle migration (starting with an homo-
geous sample)
Dimensionless azimuthal velocity profile next to the inner cylinder: profile after 50 inner cylinder rota-
tions (•), 80 rotations (•), 540 rotations (•), 3100 rotations (•). The extrapolated apparent suspension
velocities at the inner cylinder (solid lines) are shown on figure 5.16. The vertical dashed line represent
the inner cylinder surface position (sand-blasted inner cylinder, � = 25mm, particle volume fraction
φ = 0.55, angular velocityΩ = 0.1 rad/s).
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Figure D.5: Outer cylinder wall slip: impact of shear induced particle migration (starting with an homo-
geous sample)
Dimensionless azimuthal velocity profile next to the outer cylinder: profile after 50 inner cylinder rota-
tions (•), 80 rotations (•), 540 rotations (•), 3100 rotations (•). The extrapolated apparent suspension ve-
locity at the outer cylinder (solid lines) are shown on figure5.17(sand-blasted inner cylinder,� = 25mm,
particle volume fractionφ = 0.55, angular velocityΩ = 0.1 rad/s).
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D.2 Shear induced particle diffusion
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Figure D.6: Dimensionless azimuthal velocity profile evolution: (a) linear plot, (b) semi-logarithmic
plot of the profiles after 50 inner cylinder rotations (•), 80 rotations (•), 120 rotations (•), 180 rotations
(•), 250 rotations (•), 360 rotations (•), 540 rotations (×), 780 rotations (×), 1200 rotations (×) ,and
3100 rotations (×) (inner sand-blasted cylinder� = 25mm, particle volume fractionφ = 0.55, angular
velocity Ω = 0.1 rad/s).
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Figure D.7: Dimensionless wall-slip-corrected azimuthalvelocity profile evolution: (a) linear plot, (b)
semi-logarithmic plot of the profiles after 50 inner cylinder rotations (•), 80 rotations (•), 120 rotations
(•), 180 rotations (•), 250 rotations (•), 360 rotations (•), 540 rotations (×), 780 rotations (×), 1200
rotations (×) ,and 3100 rotations (×) (inner sand-blasted cylinder� = 25mm, particle volume fraction
φ = 0.55, angular velocityΩ = 0.1 rad/s).
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Figure D.8: Shear rate evolution during the particle diffusion process: after50 inner cylinder revolutions
(–), 80 revolutions (–), 120 revolutions (–), 180 revolutions (–), 250 revolutions (–), 360 revolutions
(–), 540 revolutions (- -), 780 revolutions (- -), 1100 revolutions (- -), and 3100 revolutions (- -), (inner
sand-blasted cylinder� = 25mm, particle volume fractionφ = 0.55).
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D.3 Steady velocity Profiles
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Figure D.9: Linear plot of wall-slip uncorrected (a) and corrected (b) dimensionless azimuthal velocity
profile at several inner cylinder velocities:0.01 rad/s (•), 0.01802 rad/s (•), 0.03246 rad/s (•), 0.05848
rad/s (•), 0.1054 rad/s (•), 0.1898 rad/s (•), 0.342 rad/s (×), 0.6162 rad/s (×), 1.11 rad/s (×), 2 rad/s
(×), 2.759 rad/s (×), 3.807 rad/s (×), 5.253 rad/s (+), 7.248 rad/s (+), and10 rad/s (+). The velocities
are adimensionalized with the inner cylinder velocities (inner sand-blasted cylinder� = 25mm, particle
volume fractionφ = 0.55).
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Figure D.10: Logarithmic plot of wall-slip uncorrected (a)and corrected (b) dimensionless azimuthal
velocity profile at several inner cylinder velocities:0.01 rad/s (•), 0.01802 rad/s (•), 0.03246 rad/s
(•), 0.05848 rad/s (•), 0.1054 rad/s (•), 0.1898 rad/s (•), 0.342 rad/s (×), 0.6162 rad/s (×), 1.11 rad/s
(×), 2 rad/s (×), 2.759 rad/s (×), 3.807 rad/s (×), 5.253 rad/s (+), 7.248 rad/s (+), and10 rad/s (+).
The velocities are adimensionalized with the inner cylinder velocities (inner sand-blasted cylinder� =
25mm, particle volume fractionφ = 0.55).
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