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Résumé 
 

 

Le présent travail de thèse est consacré à l’étude de la réduction de l’oxygène à l’interface 

entre deux solutions électrolytiques immiscibles (ITIES), et catalysée par différents types de 

porphyrines. Des approches à la fois électrochimiques et spectrophotométriques ont été 

utilisées afin de caractériser les mécanismes de transfert à ces interfaces.  

La réduction de l’oxygène et l’oxydation du décamethylferrocene (DMFc) en phase organique 

(1,2-DCE), ainsi que la production de peroxyde d’hydrogène (H2O2) en phase aqueuse, ont été 

étudiées et sont basées sur la réaction contrôlée par un ion commun à l’interface entre deux 

phases.  

La stabilité du DMFc et DMFc+ au cours de la réaction, à l’interface entre les deux phases, a 

été mise en évidence par spectrométrie de masse en mesurant la phase 1,2-DCE. Des 

simulations numériques basées sur la théorie de la fonctionnelle de la densité (Density 

function theory, DFT) ont été menées afin de définir un chemin réactionnel.  

L’effet catalytique du 5,10,15,20-tetraphenylporphyrinatocobalt(II) [Co(tpp)], 

2,3,7,8,12,13,17,18-Octaethyl-porphine cobalt(II) (CoOEP) ainsi que de deux porphyrines 

« base libre » , 5,10,15,20-meso-tetraphenylporphyrin (H2TPP) et 2,3,7,8,12,13,17,18-

octaethyl-21H,23H-porphyrin  (H2OEP), a été étudié à l’interface polarisée eau|1,2-DCE afin 

de réduire l’oxygène en présence de donneur d’électrons  (i.e. des dérivés du ferrocène) et à 

différents pH. La catalyse de la réduction d’oxygène à cette interface en fonction de la 

différence de potentiel appliquée est suivie par voltamétrie cyclique. En effet, les donneurs 

d’électrons en phase organiques se combinent aux protons en phase aqueuse pour réduire 

l’oxygène.  Le signal observé correspond au transfert d’électrons couplé aux protons (proton-

coupled electron transfer, PCET) qui a été confirmé par l’inhibition du courant et donc de la 

réaction en l’absence d’un catalyseur  ou d’oxygène. 

Les catalyseurs, [Co(tpp)] and CoOEP, sont similaires aux porphyrines conventionnelles le 

cobalt, en activant l’oxygène par coordination lors de la formation de la structure superoxide. 

L’avantage majeur du présent système est la capacité est de contrôler avec précision le 

transfert de protons de la phase aqueuse à la au phase organique et donc le transfert couplé 

d’électrons, notamment grâce contrôle du potentiel Galvani interfacial.  
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Le transfert assisté de protons utilisant deux porphyrines “base libre” telles que le H2TPP et  

H2OEP a été étudié à l’interface eau|1,2-DCE.  La formation de di-acid H4TPP2+
 et H4OEP2+, 

liée à la double protonation de H2TPP et H2OEP au niveau des nitrogènes tertiaires dans le 

cycle,  a été observée à l’interface par voltamétrie  du transfert d’ions ainsi que par 

spectroscopie en UV visible. De plus, les derivés neutres et ionisées de H2TPP ont été 

déterminés dans le “diagramme de partition ionique” pour illustrer les diverses contributions 

de H2TPP. 

 

Mots-Clés: Réduction de l’oxygène, porphyrine cobalt, porphyrine base-libre, Ferrocène, 

liquide|liquide, interface. 
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Abstract 

 
This thesis is devoted to the study of oxygen reduction reaction catalysed by porphyrins at the 

interface between two immiscible electrolyte solutions (ITIES). Electrochemical and 

spectrophotometric techniques are introduced to these interfaces in order to gather more 

information about the transfer mechanism.  

Furthermore, the reduction of oxygen and the oxidation of decamethylferrocene (DMFc) in 

1,2-DCE and production of hydrogen peroxide (H2O2) in the aqueous phase, on the basis of 

the two-phase reaction controlled by a common ion are investigated. Mass spectrometric 

measurements were carried out for the 1,2-DCE phase before and after two-phase reaction 

with an aqueous phase containing acid to indicate the stability of DMFc and the DMFc+ over 

the course of the two-phase reaction. Density function theory (DFT) computations have been 

performed based on developed a reaction pathway.  

Catalytic effect of 5,10,15,20-tetraphenylporphyrinatocobalt(II) [Co(tpp)], 

2,3,7,8,12,13,17,18-Octaethyl-porphyrin cobalt(II) (CoOEP) and two free-base porphyrins 

5,10,15,20-meso-tetraphenylporphyrin (H2TPP) and 2,3,7,8,12,13,17,18-octaethyl-21H,23H-

porphyrin  (H2OEP) have been investigated as a catalyst for a two electron reduction of O2 in 

presence of an electron donor at various pH values at the polarized water|1,2-DCE interface. 

Using voltammetry, it is possible to drive this catalytic reduction at the interface as a function 

of the applied potential difference, where aqueous protons and organic electron donors 

combine to reduce O2. The signal observed corresponds to a proton-coupled electron transfer 

(PCET) reaction, as no current and no reaction can be observed in the absence of either 

catalyst, acid or O2. [Co(tpp)] and CoOEP catalysis work like conventional cobalt porphyrins, 

activating O2 via coordination by the formation of a superoxide structure. The advantages of 

the present system is that, by controlling the interfacial potential difference, the proton 

transfer from water to 1,2–DCE can be accurately controlled. Accordingly, the driving force 

for proton–coupled electron transfer reactions is also effectively harnessed.  

Assisted proton transfer (APT) reactions were studied across the water|1,2-DCE interface 

facilitated by two free-base porphyrins such as  H2TPP and H2OEP.  

At a water|1,2-DCE interface, the interfacial formation of di-acid H4TPP2+
 and H4OEP2+

 are 

observed by ion-transfer voltammetry and UV-Visible spectroscopy, due to the double 

protonation of H2TPP and H2OEP at the tertiary nitrogens in the ring. Additionally, “Ionic 
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Partition Diagram” of neutral and ionisable H2TPP compounds is plotted to illustrate the 

various contributions of  H2TPP. 

 

Keywords: Oxygen Reduction; Cobalt Porphyrin; Free–Base; Ferrocene; Liquid|Liquid 

Interface 
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Abbreviations 

 

Abbreviation            Description 

1,2-DCE 1,2-dichloroethane 

TPAs+ Tetraphenylarsonium cation 

TPB — Tetraphenylborate anion 

TBA+ Tetrabutylammonium cation 

NB Nitrobenzene 

TAA+ Tetraalkylammonium cation 

Ach+ Acetylcholine cation 

TCNQ 7,7,8,8-tetracyanoquinodimethane 

DPPC Dipalmitoyl phosphatidyl choline 

OEP Octaethylporphyrin 

TPP Tetraphenylporphyrin 

MPc Metal phthalocyanines 

CoP Cobalt porphyrin 

Py Pyridyl 

MT(PCP)P Meso tetrakis [2,2]paracyclophanyl metalloporphyrin 

DMFc Decamethylferrocene 

FMN Flavin mononucleotid 

CQH2 Tetrachlorohydroquinone 

C60
– Fullerene monoanion 

H2TPP 5,10,15,20-tetraphenyl-21H,23H-porphyrin 

H2OEP 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphyrin 
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[Co(tpp)] 5,10,15,20 meso-tetraphenyl porphyrin cobalt(II) 

CoOEP 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphyrin 

cobalt(II) 

TMA Tetramethylammonium  

TEA Tetraethylammonium  

TBA Tetrabutylammonium  

BA Bis(triphenylphosphoranylidene)ammonium 

TPBCl Tetrakis(4-chlorophenyl) borate 

TB Tetrakis(pentafluorophenyl)- borate 

DFc 1,1’-dimethylferrocene 

Fc Ferrocene 

ZnTPP 5,10,15,20 meso-tetraphenyl porphyrin zinc 

NHE Normal hydrogen electrode  

Cp Cyclopentadienyl ring 

H2OETPP Octaethyltetraphenylporphyrin 

H2DPP Dodecaphenylporphyrin 

TFA Trifluoroacetic acid 

B Mono-base 

TATB Tetraphenylarsenium tetraphenylborate 

Ox or O Oxidized form of redox couple 

Red or R Reduced form of redox couple 

CT Charge transfer 

ET Electron transfer 

IT Ion transfer 

EC Electrochemical reaction 
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C Chemical reaction 

CV Cyclic voltammetry 

ACT Aqueous Complexation followed by Transfer 

TIC Transfer by Interfacial Complexation 

TOC Transfer followed by Organic Complexation 

TID Transfer by Interfacial Decomplexation 

pzc potential of zero charge 

SHE Standard hydrogen electrode 

UV-Visible Ultra Violet-Visible 

SECM Scanning Electrochemical Microscopy 

MEMED Microelectrochemical measurements at expanding droplet 

NMR  Nuclear Magnetic Resonance 

MCD Magnetic circular dichroism 

ESR Electron spin resonance  

PDT Photodynamic therapy 

BNCT Boron neutron capture therapy 

FC Fuel cell 

ORR Oxygen reduction reaction 

PEMFC Polymer electrolyte membrane fuel cell 

Nafion Nf 

SCE Standard calomel electrode 

CE Counter electrode 

RE Reference electrode 

GC Glassy carbon electrode 

RDE Rotating disk electrode  
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RRDE Rotating ring-disk electrode 

APT Assisted proton transfer 

PCET Proton-coupled electron transfer 

MS Mass spectrometer 

ATP Adenosine triphosphate 

ITIES Interface between two immiscible electrolyte solution 

UME 

A 

D 

M 

 

Ultra microelectrode 

Acceptor 

Donor 

Metal 
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Glossary of symbols 
 
 

Symbol       Description 
 
φ  Galvani potential [V] 

ia    Activity of i [-] 

iφ  Potential drop across the inner layer [V] 
w
oφΔ  Interfacial (Galvani) potential difference [V] 

0
et

w
oφΔ  Standard electron transfer potential [V] 
w 0
o etφ

′Δ  Formal electron transfer potential [V] 

tr
0GΔ  Standard Gibbs transfer energy [J mol-1] 

tr,iGΔ  Gibbs energy of ion transfer [J mol-1] 

ΔGIS   Gibbs energy for ion-solvent interaction [J mol-1] 

Cdiff   Differential capacitance [F] 

C   Interfacial  capacitance [F] 

Cdl Double-layer capacitance [F] 

c       Concentration [M] 

µi
α    Chemical potential of i in phase α [J mol-1] 
0μ  Standard chemical potential [J mol-1] 

μ~    Electrochemical potential [J mol-1] 

Zf    Faradaic impedance [Ω] 

z   Charge number  [-] 
0E  Standard electrode potential [V] 

E    Amplitude of the potential modulation [V] 

e            Elementary charge [C] 

Ire           Real part of current magnitude [A] 

Iim   Imaginary part of current magnitude [A] 

ISC Cathodic steady-state current [A] 

ISA Anodic steady-state current [A] 

j Current density [A cm-2] 

ISS Steady-state current [A] 

R Resistance [Ω] 

Rs     Solution resistance [Ω] 
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R Universal gas constant [J K-1  mol-1] 

r           Molecular radius [m] 

ε0       Vacuum permittivity [C2 J-1 M-1] 

εr Relative permittivity  [-] 

n Number of electrons transferred [-] 

NA          Avogadro constant [mol-1] 

F  Faraday constant [C mol-1] 

Ka Acid dissociation constant [M] 
γ  Activity coefficient [-] 

T  Temperature [K] 

t  Time [s] 

D  Diffusion coefficient [cm2 s-1] 

ω      Frequency [s-1] 

λmax Maximum wavelength [nm] 

λ Wavelength [nm] 

v  Scan rate [V s-1] 

w     Water [-] 

o            Organic [-] 

A   Absorbance [-] 

δ    Diffusion layer thickness [m] 

P0 Standard partition coefficient [-] 

a Radius of the tip [m] 

V Volume [L or dm3] 
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Chapter 1 

Introduction 

This chapter presents an introduction to electrochemistry at liquid|liquid interfaces, which is 

an important aspect of this thesis. The structure, types and the various charge transfer 

reactions at the interface are detailed. 

1.1 Electrochemistry at liquid|liquid interfaces 

Liquid|liquid interfaces, also named the Interface between Two Immiscible Electrolyte 

Solutions (ITIES) in the electrochemical literature[1, 2] are formed between two liquid solvents 

of low (ideally zero) mutual miscibility, each an electrolyte for electrochemical applications. 

One of these solvents is usually water, and the other is a polar organic solvent with moderate 

or high dielectric permittivity, such as nitrobenzene (NB) or 1,2-dichloroethane (1,2-DCE). 

The ITIES is, by nature, a molecular interface characterized by unique electrical, structural 

and dynamical properties.  

Charge transfer processes across the ITIES, including electron and ion transfer, have attracted 

a great deal of interest for two reasons. First, the biomimetic features of these processes have 

been a concern for over one century and they are regarded as fundamental steps in vital 

processes, such as photosynthesis and mitochondrial respiration.[2] There is a wide range of 

practical applications of liquid|liquid interfaces in chemistry and industry, including solvent 

extraction,[3, 4]phase-transfer catalysis, drug delivery systems,[5-10] electroanalysis with ion 

selective electrodes,[11] artificial photosynthesis and pollutant destruction.[12, 13] 

1.2 Review of electrochemical studies at liquid|liquid interfaces 

Studies at liquid|liquid interfaces using electrochemical methods started in 1902, when 

Nernst and Riesenfeld observed the transfer of ions during the passage of current through 

water|phenol|water interfaces.[14] In 1906, Cremer pointed out the analogy between the 
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water|oil|water system and biological membranes and their surrounding electrolytes.[15] The 

interest in ITIES spread to physiologists using ITIES as a model for the investigation of the 

potential differences and currents observed in biological cells. In 1939, the first theoretical 

study on ITIES was introduced by Verwey and Niessen,[16] who presented a physical model of 

the ITIES as two back-to-back Gouy-Chapman diffuse layers.  

The 1970s, this field witnessed renewed interest for two reasons. A first breakthrough came in 

the late 1960s when Gavach et al. demonstrated that ITIES could be polarized and the 

Galvani potential difference between the two phases could be used as a driving force for 

charge transfer reactions.[17] The concept of polarisability of ITIES, based on the standard 

Gibbs energy of ion transfer, was later developed by Koryta et al.[18] During the period that 

followed these pioneering contributions, most of the experimental work was based on 

controlled current techniques, such as chronopotentiometry. But due to a lack of knowledge 

of the interfacial structure and associated potential drop across interfaces, progress in 

electrochemistry at liquid|liquid interfaces was rather slow. The second breakthrough came in 

1977 when Samec et al. introduced the four-electrode potentiostat with iR drop compensation 

by means of a positive feedback loop.[19-21] This experimental approach opened a new route to 

use controlled potential techniques including cyclic voltammetry,[20, 21] 

chronoamperometry,[22]current scan polarography,[23] differential pulse stripping 

voltammetry,[24] ac voltammetry[25] and ac impedance[26] to study interfacial charge transfer 

reactions. In 1986, micrometer-sized ITIES was introduced by Taylor and Girault, by means 

of supporting the interface at the tip of a pulled glass micropipette.[27] Later, they developed 

another method to fabricate micro-ITIES by making a microhole in a thin inert membrane 

using an UV laser photoablation technique to support the interface.[28] Compared with the 

traditional macroscopic ITIES, micro-ITIES minimize problems caused by charging currents 

and ohmic potential drop, and significantly increase the mass-transfer rate in kinetic 

measurements. This format has been widely employed in amperometric and potentiometric 

sensors.[29-31] In the 1990s, membrane stabilized ITIES[32-34] and organic polymer membranes 

incorporating selective ionophores[35]were also used in the analytical fields as the 

electrochemical ion sensors. Many new approaches, both computational and experimental, 
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have been employed to study liquid|liquid interfaces in recent years. Computer calculations 

using molecular dynamics simulations were introduced by Benjamin to provide information 

on the structure and dynamics of neat liquid|liquid interfaces.[36, 37] Studies of interfacial 

molecular orientation using the technique of surface second harmonic generation,[38, 39] kinetic 

studies of interfacial charge transfer processes using both spectro-electrochemical 

approaches[40]and scanning electrochemical microscopy,[41-45] as well as dynamic studies of 

photo-induced electron transfer,[46, 47] have also been well developed. Very recently, 

promising new applications of liquid|liquid interfaces have considered functionalized ITIES 

with deposited nanoparticles[48-50] and adsorbed photosensitive reactants,[51-55] which can be 

alternative approaches to two-phase electrocatalysis and solar energy conversion, based on the 

photo-induced electron transfer at liquid|liquid interfaces.   

Finally, the level of interest in the ITIES system currently remains high with many more 

aspects of fields yet to be discovered and with the possible developments of further 

applications. 

1.3 Interfacial structure and electrical double layers 

The structure of the liquid|liquid interface becomes more difficult to picture in the presence 

of electrolytes in the adjacent phases. The first description of the ITIES used a direct 

transposition of the existing models for solid|liquid systems.  Electrical double layers exist at 

all boundaries between two ionic or electrically conducting liquid phases. In the case of 

liquid|liquid interfaces, the electrical double layer is an interacting electrical (ionic and 

dipolar) region involving two extended regions where ionic species are distributed. 

Traditional electrochemical experiments at liquid|liquid interfaces have contributed much to 

the understanding of the electrical double layers and interfacial structure. The liquid|liquid 

interface is an inhomogeneous environment and, consequently, a molecular interface with its 

own dynamical properties. It is difficult to define an interfacial structure as the time scale 

becomes a parameter in the definition. Thus, whether the interface is sharp or diffuse is 

dependent considerably on the timescale. Early work on the structure of liquid|liquid 

interfaces was limited to the macroscopic level and the liquid|liquid interface was 

characterized by a modified Verwey-Niessen model,[16] comprising an ion-free layer of 
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oriented solvent molecules (inner layer) separating two back-to-back diffuse double layer 

region, as shown in Figure 1.1. 

 

Figure 1.1: Modified Verwey-Niessen model of an ITIES and definition of potential differences involved. Full 

circles represent point-charge ions X2
w and X2

o are the positions of the ions at the planes of closest approach 

(outer Helmholtz planes) to the hypothetical plane of contact in the water (w) or oil (o) phase, respectively. 

Verwey and Niessen represented the interface as two back-to-back diffuse layers, with one 

phase containing an excess of the positive space charge and the other phase an equal excess of 

the negative space charge.[16] The diffuse layers were described in terms of the Gouy-

Chapman theory, and the boundary between the two liquids was visualised as a dimensionless 

geometrical surface separating the two space charge regions. Early surface tension[56] and 

capacitance[26] measurements were found compatible with the Verwey-Niessen model at 

potentials close to the point of zero charge. 

Analysis of the potential dependence of ion transfer kinetics led to formalism similar to the 

Butler-Volmer equation familiar to electron transfer dynamics on metal electrodes.[1, 57] Based 

on these results, Gavach et al. proposed a revised model based on the Stern modification of 
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the Gouy-Chapman theory.[58] The so-called modified Verwey-Niessen model introduces the 

concept of an ion-free layer of oriented solvent molecules separating the space charge region. 

The Galvani potential difference w
oΔ φ  between the two phases is split into three contributions. 

The result of the model is that the interfacial (Galvani) potential difference can be expressed 

by three contributions:[59] 

w w o
o 2 2

Δ = − + iφ φ φ φ                                                                                                                 (1.1) 

Where φ  represents the Galvani (or inner) potential of the respective phases, w
2φ  and o

2
φ  are 

the potential drops across the diffuse layer in the aqueous and organic phases, respectively, 

and iφ  is the potential drop across the inner layer composed of solvent molecules, such as 

water, with ordered dipoles generating a dipolar contribution, as depicted in Figure 1.1. 

Samec et al. further proposed that ions could penetrate into the inner layer over some 

distance.[60]While, Girault and Schiffrin suggested that the interfacial region was not 

molecularly sharp,[61] but consisted of a mixed solvent layer with a continuous variation in the 

solvent composition. Ions could penetrate the mixed solvent layer owing to interfacial ion 

pairing with ions of the other phase (see Figure 1.2). The mixed solvent layer model was 

supported by theoretical calculations for a lattice-gas model of the liquid|liquid interface by 

Schmickler,[62] which suggested that the thickness of the inner layer depended on the 

miscibility of the two solvents. In recent years, it has been possible to study the structure of 

the liquid|liquid interface in some detail.[36, 63]  
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Figure 1.2: Schematic representation of the mixed solvent layer model, the potential distribution across the 

interfacial region and the evolution of the chemical potential in term of Gibbs energy. 

Molecular dynamics computer simulations performed by Benjamin et al. have supported the 

idea that the interface is molecularly sharp but very rough with finger-like distortions due to 

one solvent penetrating the other on the pico-second time scale.[64-70] This roughness is 

dynamic and driven by thermal fluctuations that produce an apparent finite width defining the 

interfacial region. The transition from one solvent to the other occurs within about 1 nm, i.e. a 

few layers of solvent molecules. On the other hand, the existence of an inner layer of 

thickness about 1 nm has been verified by neutron reflectivity[68]and ellipsometry 

experiments.[69] Schlossman et al. determined the ionic distribution profile at the ITIES using 

X ray reflectivity.[71] 
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1.4 Thermodynamics of the liquid|liquid interface 

1.4.1 Physical meaning of the interfacial potential difference 

Considering that the interfacial (Galvani) potential difference is a very important parameter 

for the thermodynamics of liquid|liquid interfaces, the physical meaning of φw
oΔ  is stated 

briefly in this section. The potential difference at an ITIES is usually assumed to comprise 

two contributions, from the inner layer and from the diffuse layers. The former arises from the 

presence of a layer of oriented molecular dipoles, from the ionization of surfactant head 

groups and from the adsorption of ions present in the environment.[72] The diffuse layer is 

formed by dissolved ions from the ambient solution which are attracted to the intrinsically 

charged interface and the potential difference across it can be as high as 500 mV.[73, 74] At the 

potential of zero charge, the potential drop in the compact inner layer has been calculated to 

be about 5-50 mV.[64-66, 75, 76] Specific adsorption can substantially elevate the potential 

difference in the compact layer.[77] The potential difference across the compact layer of 

oriented molecular dipoles is almost independent of electrolyte composition, while the 

potential in the diffuse Gouy-Chapman layer is strongly affected by the ionic strength of the 

medium.[77] The sum of the potential drops in both dipole and diffuse layers is referred to as 

the interfacial potential w
oΔ φ .  

1.4.2 Nernst equation at ITIES  

In the following we will consider two immiscible solvents denoted by the indices "o" and 

"w", both containing the ionic species "i". The energy required at equilibrium to transfer i 

from the bulk of solvent w to the bulk of solvent o can be expressed as 

w o o w
tr,i 0i iG μ μ→Δ = − =                                                                                                            (1.2) 

Where w
iμ and o

iμ  represent the electrochemical potentials, i.e. the work required to transfer 

the ion i from the vacuum into the corresponding phase. The electrochemical potential can be 

separated into chemical and electrical contributions: 
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i i iz Fμ μ φα α α= +                                                                                                              (1.3) 

0, lni i iRT aα α αμ μ= +                                                                                                               (1.4) 

Where zi is the charge of the ion i , µi
α is the chemical potential of i in phase α and αφ  is the 

Galvani potential of the phase α. Combining Equations (1.3) and (1.4), can be written as 

 
0, lni i i iRT a z Fα α α αμ μ φ= + +                                                                                                 (1.5) 

 

Thus, with the use of Equations. (1.2) and (1.5), the equilibrium condition of liquid|liquid 

interfaces results into the following relationship: 

0,w w w 0,o oln ln o
i i i i i iRT a z F RT a z Fμ φ μ φ+ + = + +                                                                    (1.6) 

From this expression, the standard Gibbs energy of transfer from w to o can be expressed as: 

o
w o o w 0,o 0,w w
tr,i ow( ) ln i

i i i i i
i

aG RT z F
a

μ μ μ μ φ→ ⎛ ⎞
Δ = − = − + − Δ⎜ ⎟

⎝ ⎠
                                                      (1.7) 

Where w o
tr,iG →Δ  represents standard Gibbs transfer energy for the ion from the water to the oil 

phase, w w 0
oφ φ φΔ = − is the Galvani potential difference between the two phases as a result of 

the partitioning of the ion i, which is given by Equation (1.8) from Equation (1.7): 

0,w o
tr,w

o wln
o

i i

i i i

G aRT
z F z F a

φ
→Δ ⎛ ⎞

Δ = + ⎜ ⎟
⎝ ⎠

                                                                                              (1.8) 

Where 0,w
tr,

o
iG →Δ is the standard molar Gibbs energy of ion transfer from phase w to phase o, 

which is given by the difference in the standard molar Gibbs energy of ion solvation in the 
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two phases. Then, the standard potential of transfer for i, w 0
o iφΔ , can be defined as: 

0,w o
tr,w 0

o
i

i
i

G
z F

φ
→Δ

Δ =                                                                                                                    (1.9) 

Thus, the Nernst equation for ion transfer across ITIES is: 

o
w w 0
o o wln i

i
i i

aRT
z F a

⎛ ⎞
Δ = Δ + ⎜ ⎟

⎝ ⎠
φ φ                                                                                                  (1.10) 

Equation (1.10) can be expressed in terms of concentration by replacing the standard ion 

transfer potential by the formal ion transfer potential w 0'
o iφΔ including the ratio of the activity 

coefficients (γ ): 

o
w w 0'
o o wln i

i
i i

cRT
z F c

φ φ
⎛ ⎞

Δ = Δ + ⎜ ⎟
⎝ ⎠

                                                                                                 (1.11)                        

Where 
o

w 0' w 0
o o wln i

i i
i i

RT
z F

γφ φ
γ

⎛ ⎞
Δ = Δ + ⎜ ⎟

⎝ ⎠
                                                                                               (1.12) 

Similar formalism can be applied to the case of heterogeneous electron transfer between redox 

couples across the liquid|liquid interface. Consider that the following reaction occurs at the 

interface: 
w w
1 1O  R-

1n e ⎯⎯→+ ←⎯⎯                                                                                                              (1.13) 

o o
2 2R O -

2n e⎯⎯→ +←⎯⎯                                                                                                              (1.14) 

w o w o
1 2 1 2O R  R O2 1 2 1n n n n⎯⎯→+ +←⎯⎯                                                                                          (1.15) 

 

Where O1
w and R2

o are the reactants in the aqueous and organic phases, respectively, and R1
w 

and O2
o are corresponding products in the two phases. At equilibrium, the electrochemical 

potentials of the reactants and products are equal:[72] 
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1 2 1 2

w o w o
O R R O2 1 2 1n n n nμ μ μ μ+ = +                                                                                               (1.16) 

Equation (1.16) can be written as 

1 2 2 1

ow
0,w 0,o 0,o 0,w O2R1
R O R O w o

O1 R 2

w o
R1 O1 O2 R 2

ln

( ) ( ) 0

2 1n n

2 1 1 2

2 1

aan n n n RT
a a

n z z F n z z F

μ μ μ μ

φ φ

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟+ − − + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

− + − =

                                            (1.17) 

                                            
( ) ( )1 1 2 2

0,w 0,o 0,w 0,o ow
R O O Rw O2R1

o w o
O1 R 2

ln
2 1n n

2 1

1 2 1 2

n n aaRT
n n F n n F a a

μ μ μ μ
φ

⎛ ⎞− + − ⎛ ⎞ ⎛ ⎞
⎜ ⎟Δ = + ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

                              (1.18) 

 

Where zo1-zR1=n1 and zo2-zR2=n2, i.e. the difference of the charges of the reactant and product 

couples. Introducing the standard chemical potentials into Equation (1.18) yields 

2 1ow
w w 0 O2R1
o 0 et w o

1 2 O1 R2

ln
n n

aaRT
n n F a a

φ φ
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟Δ = Δ + ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

                                                                         (1.19) 

Where the standard electron transfer potential w 0
o etφΔ  is defined as 

( ) ( )1 1 2 2

0,w 0,w 0,o 0,o
2 R O 1 O Rw 0

0 et
1 2

n n

n n F

μ μ μ μ
φ

− + −
Δ =                                                                            (1.20) 

2 2 1 1

0,o 0,w
1 O /R 2 O /Rw 0

0 et
1 2

n E n E
n n

φ
−

Δ =                                                                                                   (1.21) 

As in the case of ion transfer, the Nernst equation can be expressed in terms of 

concentrations:     
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2 1ow
w w 0' O2R1
o o et w o

1 2 O1 R2

ln
n n

ccRT
n n F c c

φ φ
⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟Δ = Δ + ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

                                                                        (1.22) 

1.5 Polarisation of liquid interfaces 

w
oΔ φ  can be varied in three ways in experiments:[59] (1) by dissolving a common salt in the 

two phases; (2) by using a common potential determining ion in the two phases; (3) via an 

externally applied potential. The first two interfaces are named as ideally non-polarisable 

interfaces and the third represents ideally polarisable interface.  

1.5.1 Ideally non-polarisable ITIES 

A non-polarisable ITIES is formed in the presence of common ions in the two phases. The 

first type of non-polarisable ITIES is that where a single binary electrolyte, A+B—, is present in 

both phases and completely dissociated into a cation A+ and B— an anion  in each phase, as 

Equation (1.23):[72]  

( ) ( )+ - + -A B o |A B w                                                                                                              (1.23) 

Considering that the concentrations of A+ and B— are equal in each phase, the interfacial 

potential difference established at equilibrium is: 

w 0 w 0 w o
w o A o B A B
o o w

A B

ln
2

RT
F

⎛ ⎞Δ + Δ
Δ = + ⎜ ⎟

⎝ ⎠

φ φ γ γφ
γ γ

                                                                                 (1.24) 

Therefore, the Galvani potential difference across the interface is independent of the 

electrolyte concentration, and is entirely controlled by the ability of the ions A+ and B— to 

transfer from one phase to the other. The second type of non-polarisable ITIES is formed 

between the two phases containing only a single common ion C+, as Equation (1.25):  

( ) ( )+ - + -C D O ||C E W                                                                                                            (1.25) 
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In this case, the counter ions D— and E— are sufficiently hydrophobic and hydrophilic, 

respectively, to remain confined in their respective phase, so that C+ is the unique ion that can 

transfer across the interface. w
oΔ φ  between the two immiscible solvents is determined by the 

activity ratio of C+ in two phases, according to the Nernst equation: 

o
w w 0
o o     wln C

C
C

aRT
F a

φ φ
⎛ ⎞

Δ = Δ + ⎜ ⎟
⎝ ⎠

                                                                                               (1.26) 

In the experiments, w
oΔ φ  can be controlled by varying the electrolyte concentrations (i.e. the 

concentrations of C+) in both phases. Normally, non-polarisable ITIES are commonly used as 

organic reference electrodes because they can form ion selective electrodes (ISEs) for organic 

ions.[72] 

1.5.2 Ideally polarisable ITIES 

When a system comprises two different electrolytes A1B1 and A2B2 in phases w and o 

(Equation (1.27)), it has the properties of an ideally polarisable ITIES.  

( ) ( )1 1 2 2A B w |A B o                                                                                                             (1.27) 

In this case, the aqueous supporting electrolyte ions A1
+ and B1

— are very hydrophilic and 

organic supporting electrolyte ions A2
+ and B2

— are very hydrophobic, i.e.,  

1

w 0
o A

0φ +Δ  and 
1

w 0
o B

0φ −Δ                                                                                            (1.28) 

2

w 0
o A

0φ +Δ  and 
2

w 0
o B

0φ −Δ                                                                                           (1.29) 

Under these conditions, w
oΔ φ  is controlled by the electrical charge in the interfacial region, 
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which can be supplied from an external source.  

1.5.3 Potential Window  

As previously mentioned, no faradaic process occurs at an ideally polarisable interface, since 

all components of a system are considered having an infinite standard Gibbs energy of 

transfer (Equations 1.28 and 1.29). As ionic species have finite solubility in any electrolyte 

phase, ideally polarisable liquid|liquid interface can be defined in a limited potential range. 

“polarisation range” (Figure 1.3), means the range of potentials controlled by the potentiostat.  

 

Figure 1.3: Scheme of interfacial processes within the potential window. 

When, the applied potential reaches high positive values, the cations A1
+ or the anions B2

— 

gain a sufficient energy to transfer in the adjacent phase. In the same way, very negative 

potentials supply enough energy for B1
— or A2

+ to transfer in the other phase. In both cases, the 

chemical composition of the adjacent phases is altered by an interfacial faradic current, so that 

the interface becomes non ideally polarisable. The behaviour of the interface all along the 

applied range is called “potential window” and is schematically described in Figure 1.3. As in 

the case of metal|electrolyte interfaces, faradaic transfer processes can be studied under 

potentiostatic control only within the polarization range. This window can be expanded by 

using very hydrophobic and hydrophilic supporting electrolytes in the oil and water phase 

respectively, since this kind of salts require a high energy to transfer into the adjacent phase. 
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1.6 Charge transfer process at ITIES 

Charge transfer reactions are of fundamental importance due to the wide range of applications 

of these processes in chemistry and biology.[18] The study is also important at the theoretical 

level, as the heterogeneous environment is characterised by a number of unique properties 

that are expected to influence the behaviour of a chemically active system in a way that is 

significantly different from its behaviour in bulk solution. Here studies of charge transfer 

reactions at the ITIES have been classified into three groups: ion transfer, facilitated ion 

transfer, electron transfer. 

1.6.1 Simple ion transfer at ITIES 

Let us consider the same system as this described by Equation (1.27), with a moderately 

hydrophilic cation C+ dissolved in both phases. In absence of any current flow, the partition 

equilibrium of C+ gives rise to a potential difference defined by the Nernst equation: 

o
eqw w 0

o o weq
,eq

ln
,C'

C
C C

cRT
z F c

φ φ
+

+

+ +

⎛ ⎞
⎜ ⎟Δ = Δ +
⎜ ⎟
⎝ ⎠

                                                                                    (1.30) 

The ionic redistribution will generate a current response. Effectively, to restore the 

electroneutrality of each phase, redox reaction will take place at the counter electrodes present 

in aqueous and organic solutions. By convention, the current is taken positive for the passage 

of a positive charge from water to the oil phase. For the cation C+, a positive over-potential 

gives rise to a positive current as the cations transfer across interface from water to organic 

phase. Conversely, a negative potential perturbation favours the inverse passage resulting in a 

negative signal. The total voltammetric wave obtained for a reversible cation transfer at a 

micro-interface is schematically shown in Figure 1.4. In the case of an anion transfer, the 

inequalities related to the concentration ratio are reversed, resulting in a transfer from water to 

oil for negative over-potentials and from oil to water for positive over-potentials. 
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Figure 1.4: Steady state representation of the current evolution for cation or anion transfer. 

The standard transfer potential of an ion is not available by direct measurement on the 

current-potential curves. Effectively, the Galvani potential difference is offset with respect to 

the potential applied to the reference electrode. This offset arises from the series of 

liquid|liquid and solid|liquid junctions present in the electrochemical cells. For this reason 

there has been a permanent interest in the evaluation of the Galvani potential difference.  

To establish an ionic scale, many different assumptions have been suggested. the most 

commonly used approach is “TATB” assumption, which is based on the assumption that the 

standard Gibbs transfer energies of tetraphenylarsonium (TPAs+) cation 0,w o
tr,TPAsG +

→Δ and 

tetraphenylborate (TPB—) anion 0,w o
tr,TPBG −

→Δ  in an arbitrary pair of solvents are equal due to their 

similar sizes and shapes where the charge is masked under the phenyl groups.[78, 79] When the 

standard Gibbs energy of transfer of the salt TPAs+TPB— (tetraphenylarsonium 

tetraphenylborate) is known for an arbitrary pair of solvents, a scale of standard Gibbs 

transfer energies of ion and standard potential differences can be calculated. Consequently, 

their solvation energies can be taken as equal in magnitude, resulting in the equality of their 

Gibbs energies of transfer for any pair of solvents: 

0,w o 0,w o 0,w o
tr,TPAs tr,TPB tr,TPAsTPBG G 1/ 2 G+ −

→ → →Δ = Δ = Δ                                                                            (1.31) 

This assumption does not take into account the fact that the As-C and B-C bond lengths are 

not equivalent [80] each having values of 1.92 and 1.63 Aº, respectively. Therefore, the cation 
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and anion will be solvated to different degrees and difference in radii between the two ions 

may result in different Gibbs energies of transfer.  Using this property and assuming that both 

ions have similar diffusion coefficient (same size), Valent et al.[81] stated that, when 

TPAsTPB is used as organic supporting electrolyte, the center of symmetry of the current-

potential curve corresponds to the zero point of the Galvani potential difference scale. 

Obviously, the evaluation of the zero point is only valid provided TPAs+ and TPB— are the 

potential window limiting species. Other authors used the TATB assumption to reference the 

Gibbs energy of ion transfer determined by solubility[82] or partition  [83]measurements.  It 

should be noticed that standard Gibbs energies of transfer estimated from partition data 

(Gibbs energies of partition) are related to ion transfer between two mutually saturated 

solvents, whereas Gibbs transfer energies refer to pure solvents. Nevertheless, these values 

are equal when the ion of interest is not strongly hydrated[1], i.e. is not present as hydrate in 

water saturated solvent.  

Girault and Schiffirin [84] proposed another way to define the potential scale by using the 

potential of zero charge (pzc) as the zero point. The pzc is a readily accessible quantity that 

may be measured by using a streaming electrolyte electrode [85, 86] or by plotting 

electrocapillary  curves, the maximum of which corresponds to the pzc.[87] 

Gavach et al. [88]studied the transfer of the tetrabuthylammonium cation (TBA+) from an 

aqueous solution of tetrabuthylammonium bromide in presence of sodium bromide as the 

supporting electrolyte to a nitrobenzene (NB) solution containing tetrabutylammonium 

tetraphenylborate (TBATPB).This pioneering experiment showed that the observed current 

from water to the NB phase was due to the diffusion controlled transfer of the TBA+ cation. 

Gavach et al. also studied the kinetics of the transfer reaction of a series of 

tetraalkylammonium (TAA+) ions (i.e. calculation of the standard rate constants) at the 

water|NB interface. 

Samec et al. studied the transfer of cesium and picrate ions across water|NB interfaces using 

cyclic voltammetry employing a four electrode potentiostat. The rapid development of this 

field allowed a vast accumulation of thermodynamic data i.e. determination of Gibbs energies 
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of simple ion transfer reactions from half wave potential measurements and also kinetic 

parameters such as charge transfer coefficient and reaction rate constant, obtained using ac 

impedance techniques.[89] Senda et al. extended the kinetic studies of ion transfer reaction to 

monovalent anions across water|NB interfaces.[90]The effect of varying the physical properties 

of one of the solvents on the transfer of acetylcholine (Ach+) ion was studied by Girault et al. 

by chrono-coulometry.[91]Different experimental parameters were also systematically studied 

including the viscosity and the dielectric constant of the electrolyte phases by means of ac 

impedance techniques at the water|NB interface.[91, 92]  

1.6.2 Facilitated ion transfer at ITIES 

The first example of facilitated, or assisted, ion transfer reaction at polarized liquid|liquid 

interface was reported in 1979 by Koryta who studied the transfer of potassium and sodium 

ions facilitated by a natural antibiotic and a synthetic ionophore. [93] 

Different assisted ion transfer mechanisms have been studied and published since Koryta 

reported that the decrease in an ion Gibbs energy of transfer is due to the formation of a 

complex with a ligand or ionophore. [5, 93]Since the work of Koryta [93] extensive studies have 

been carried out on this type of reaction and numerous publications have appeared covering a 

wide range of natural or synthetic macromolecule ionophores such as valinomycin [94-96] 

,tetracycline,[97]monensin, [98, 99]nonactin,[100, 101]nigercin,[102]DB18C6,[103-106] hydrophilic 

crown ethers [107] and lithium selective ionophore ETH 1810. [107] Because of the diversity of 

ligands and metallic cations, a great variety of mechanisms have been reported by several 

authors and then compiled by Shao et al. [108] The physico–chemical properties of the ligand 

(partition constant, charge, acid–base activity, etc.) as well as its chelating capacity for a 

given cation (complex formation constants in both phases, and stoichiometry of the formed 

complexes) determine the nature of the charge transfer process across the liquid|liquid 

interface.  

Most of metal ions were previously unable to be studied because they were too hydrophilic 

for their transfer to occur within the polarization range. In presence of specific ionophores in 

the organic phase, the energy necessary to transfer the ion from the water to the oil phase is 

lowered as a result of the stabilization effect brought by the complexation reaction. The ion 
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transfer is then observed within the potential window. Considerable effort has been dedicated 

to explain the mechanisms of facilitated ion transfer reactions. In 1991, a new terminology, 

which accurately describes the reaction mechanism was introduced. Then four types of 

reaction mechanisms (Figure 1.5) can be distinguished.[108] 

ACT: Aqueous Complexation followed by Transfer 

TIC: Transfer by Interfacial Complexation 

TOC: Transfer followed by Organic Complexation  

TID: Transfer by Interfacial Decomplexation 

ACT mechanism was proposed by Lin et al. [109], who claimed that if a ligand was dissolved 

in the organic phase, the assisted ion transfer reaction would take place via the diffusion of 

the ligand from oil to water, followed by complexation in the aqueous phase and transfer of 

the complexed ion. This mechanism is only viable if the ionophore is also soluble in the 

aqueous phase. Samec and Papoff [104] and Kakutani et al.[110], however, concluded that the 

mechanism was transfer by TIC. This mechanism is favoured by choosing a ratio of 

concentration such that the ion in the aqueous phase is in excess compared with the 

concentration of the ligand in the oil phase. In the case of transfer by interfacial complexation 

(TIC), we have to consider the mass transfer of the different reactants to the interface. The 

third mechanism, ion transfer followed by complexation in the organic phase (TOC), is the 

ion transfer equivalent of an electrochemical mechanism in electrode kinetics. This 

mechanism was favoured in the early days by Koryta [93]. The symmetric mechanism of a TIC 

is a transfer by interfacial dissociation (TID).  Very large majority of the reactions studied 

follows a mechanism of transfer by interfacial complexation/decomplexation (TIC/TID 

mechanism).[108] 
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Figure 1.5: Schematic representations of the different reaction pathways for the assisted transfer process. 

1.6.3 Electron transfer 

Most of the analytical applications deal with transport of ions across the interface, either 

directly or in some facilitated form using a ligand to adjust the Gibbs energy of transport 

appropriately to fit into the potential window. However, in addition to ion transport across the 

ITIES, is also possible to observe processes involving electron transfer. Electron transfer (ET) 

between redox species confined to two immiscible solvents was first demonstrated more than 

20 years ago, and different theoretical treatments for this process have since then appeared. 
[13] Such processes typically require one redox system in each of the two phases and then the 

electron transfer can occur on the interface. The redox couples used were for example 

ferrocene-ferricinium for the nonaqueous phase and ferri-ferrocyanide in the aqueous 

phase.[111] Studies of the thermodynamics and kinetics of the electron transfer across the 

liquid|liquid interface are the focus problems in interface electrochemistry.[112-114] It is 

significant for us to realize and understand many important physiological processes, open the 

secret of life by exploring ET at the liquid|liquid interface and to set up perfect kinetics 

theory at the liquid|liquid interface.[115] Heterogeneous ET at ITIES is the transfer of an 

electron from a donor redox species present in one phase to an acceptor redox species in the 

opposite phase without any additional features as illustrated in Figure 1.6. 
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Figure 1.6: Schematic diagram of ET reaction across the ITIES. The letters D and A correspond to donor and 

acceptor species located in the organic and aqueous phase, respectively. 

Detailed investigation of ET kinetics using fundamental models has been hindered by 

primitive understanding of the interfacial structure and potential distribution across the ITIES. 

The contribution of solvent to the reorganization energy was calculated using models in 

which interface was represented as a sharp boundary between two dielectrics.[116] In this 

model, most of the interfacial potential drop occurred between the reacting redox species 

across the ITIES. In an alternative approach, the formalism for homogeneous ET reactions 

was extended to the ITIES, with the interface represented as mixed solvent area. 
[117]According to this model, the interfacial potential difference had two contributions to the 

ET reaction; changing the ET Gibbs energy and the interfacial concentration the reactants. A 

similar interfacial structure was assumed in a model developed by Schmickler, in which the 

potential drop between the reactants was small and effectively independent of the applied 

potential in solutions with high ionic strength.[118]Senda et al. put forward another theory, in 

which the electrical double layer consisted of an inner layer sandwiched between two diffuse 

layers on each side of the interface, and the charge transfer reaction occurred at the planes of 

contact of the inner layer with the two diffuse layers.[119] Experimental studies have been able 

to address ET kinetics across ITIES only in the last few years, which were able to test some 

the elements outlined above. Most of the early experimental studies on the potential 

dependence of ET reactions at ITIES were obtained at externally polarised interfaces. 

Schiffrin and co-workers employed cyclic voltammetry to study interfacial ET using the 

Nicholson method to extract standard rate constants.[120, 121] In another report, the 

conventional theory of faradic impedance and Butler-Volmer equation were applied to study 
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ET and ITIES [122] and the measured transfer coefficient was found to be potential, which 

was attributed to the double-layer effects and to ionic adsorption.  

Samec et al. found that the rate constant for ET between ferrocene in NB and aqueous 

ferrocyanide was almost potential independent, but the studies were complicated by the 

transfer of ferrocenium ion from the organic phase to the aqueous phase.[26] Girault and co-

workers studied the ET reaction between both 7,7,8,8-tetracyanoquinodimethane (TCNQ) and 

Fe(CN)6
4- and 1,1' dimethylferrocene (DFc) and Fe(CN)6

3- at a polarised water|1,2-

dichloroethane (1,2-DCE) interface using in situ  UV-Visible spectroscopy.[123] They found 

that the potential dependence of the observed rate constant did not show a purely Butler-

Volmer trend. Recent experimental studies used potential drop across the interface. Bard and 

co-workers have pioneered the scanning electrochemical microscopy (SECM) approach, 

where the ET rate constants were measured without the interferences of iR drop and charging 

current, using ClO4
— in each phase as a potential determining ion.[41, 42, 124] 

Microelectrochemical  measurements at expanding droplets (MEMED) method was used by 

Unwin and co-workers to investigate the ET reaction between Fe(CN)6
4- and TCNQ at the 

ITIES.[125]  

1.7 Applications of liquid|liquid interface 

1.7.1 Analytical applications 

Sun and Vanýsek demonstrated that the interface could be used for determination of lead (II) 

ion by its transport across the interface.[126] Because lead (II) itself is quite hydrophilic, the 

transport must be facilitated by a ligand former, such as polyethylene glycol. The class of 

compounds seeing recent interest, the dendrimers, were also investigated on the liquid|liquid 

interfaces.[127] In particular, it was the non-redox active species, poly(propylenimine) and 

poly(amidoamine), for which transfer across (acidified water)|1,2-DCE interface was a viable 

electroanalytical technique, since redox voltammetry is not possible. ITIES voltammetry 

allowed low micromolar detection of dendrimers. It was observed that the electrochemistry 

depended on the dendrimer family, the generation number, and the experimental pH. ITIES 

can be also successfully used for liquid|liquid extraction.[128-130] 
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 Jain et al. demonstrated the use of calixarene compound to preconcentrate and transport 

lanthanum(III) ion.[131] Transfer of permanganate ion was investigated across the water|NB 

interface with reported potential transfer, Gibbs energy of transfer, the transfer rate constant 

and the apparent α coefficient (symmetry factor equivalent in the redox electrochemistry) of 

this reaction.[132] The ion transfer in this case is quasi-reversible, because following the 

permanganate transport into the organic phase a chemical reaction occurs. The kinetic 

parameters were obtained by cyclic voltammetry and chronopotentiometric techniques. For 

many applications and even for theoretical calculations dealing with liquid|liquid interface it 

is necessary to know the diffusion coefficients and the transferring species and also the 

effective charges of the transferred species. Yuan et al. demonstrated how to do this by a 

chronoamperometric method.[133] They employed a micropipette electrode. Since the 

micropipette has a large time constant (due to high resistance and relative large capacitance of 

the thin glass surrounding the pipette), only measurements at times more than 5 ms were 

possible. The authors performed finite element simulation to show validity of the 

experimental data. The facilitated transport is very useful in situation where the ion itself falls 

outside the potential window of the supporting electrolytes, usually because it is too 

hydrophilic. To make the ion more oil soluble, complexation with large, usually neutral 

species is performed. Besides the already mentioned analytical applications [126] many other 

determinations with facilitated transport were reported, of which only selected few can be 

mentioned.[134-142] 

1.7.2 Biological, physiological and pharmaceutical applications 

 Antibiotics are one class of compounds that have enjoyed particular attention of the 

analytical work on the liquid|liquid interfaces. The typical function of an antibiotic involves 

facilitated transport of ions (even though, it is actually the ions, that facilitate the transport of 

the antibiotics) across a biological membrane. Therefore, antibiotics with appropriate 

modification will be transported across the ITIES. [98, 99, 102, 143, 144] It is not without interest 

that antibiotics can be also synthesized, using a two phase method, on a liquid|liquid 

interface.[145, 146] The interface is also a natural site where polar and in particular large 
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molecules can be absorbed. Phospoholipids [147], phosphatidylcholine [148-151], 

acetylcholine[152], cellular protein annexin , and proteins (bovine serum albumin), were all 

studied.[153] 

Janchenova et al. [154, 155] , studied adsorption and ion pairing interactions of phospholipids on 

the water|1,2-DCE interface. In particular, they were interested in dipalmitoyl phosphatidyl 

choline (DPPC) (L-α-lecithin), which appears to have rather complex behavior. Amemiya 

presented several analytical papers where the property of the liquid|liquid interface was used 

to detect species of biological importance. He demonstrated how heparin, negatively charged 

polysaccharide, can be detected on the 1,2-DCE interface.[156]  

The detection requires use of ionophores to accomplish the transfer. One of the more 

successful ionophores was octadecyl trimethylammonium ion (present as its bromide salt). He 

used protamines as a model species to demonstrate, first time ever, voltammetric observation 

of phase transfer of biological polyions at water|NB interfaces.[157] The smooth, unrestrained 

liquid|liquid interface is of great advantage in the X-ray studies on ITIES and it is certainly of 

some advantage in electroanalytical applications where the surface area is that of the 

geometrical area. However, in applications where large surface area is needed, such as in 

phase transfer catalysis or in the use for energy applications in possible solar cells, [46, 47, 51, 157-

159]the limited surface area is a problem. Girault et al. demonstrated that increase in surface 

are can be performed when a 3-dimensional ITIES experiment is performed on vitreous 

carbon.[160] 

An interesting nanotechnology procedure using liquid|liquid interfaces was demonstrated by 

Glaser et al. [161] where the hexane|water interface was used to align forming particles in a 

manner that a particle sphere consisting from two different materials, one on each side, is 

formed. These particles were formed from simultaneous growth of Au and Fe3O4. At least 

theoretically Kornyshev et al. suggested a principle of operation of a molecular device on 

ITIES that could transform the energy of light into repetitive mechanical motion.[162] 

When Nernst postulated the thermodynamic basis for electrode equilibrium potential, leading 

to what is known now as the Nernst equation, he also carried out with Riesenfeld experiments 



Chapter 1 

 

 

24

at liquid|liquid interfaces.[163] However, early work on liquid interfaces was mostly non-

electrochemical, focusing on extraction processes, salting-out in ion solvent extraction, 

measurements of physical properties such as interfacial tension, and physiological studies on 

model membranes.[164-169] Systematic electrochemical treatment did not begin until the late 

1970’s when Koryta et al. demonstrated that the liquid|liquid interface lends itself to the 

same formalism as a solution|metal interface and that similar, if not identical, experimental 

methodology could be used.[170] This led soon to development of various electrochemical 

techniques to study the liquid|liquid interface, including, among others, studies of the solvent 

dropping interface,[101, 171-174] cyclic voltammetry,[101] impedance measurements,[175-178] drop 

pressure method,[179] Galvanostatic pulse method[180, 181] stripping voltammetry and 

voltfluorometry,[182-185] and transport across a microinterface[28, 186, 187]. Electron transfer and 

photoinduced electron transfer have been also observed on ITIES or theoretically treated [46, 47, 

117, 120, 124, 188, 189], as well as electrochemical catalysis [190, 191] adsorption [150, 157, 192, 193] and 

electrodeposition. [194-205] Newer techniques have been more recently applied to ITIES, such 

as the quartz crystal microbalance [206] and scanning electrochemical microscopy on 

liquid|liquid interfaces.[41, 42, 152, 207, 208] Although the field of liquid|liquid electrochemistry is 

still relatively new, more scientists are finding its results or methodology relevant and 

important to their own work.[209] Recent efforts have led to many practical applications in 

analytical chemistry and electrochemistry.[12, 210] Charge transport across an interface between 

two immiscible ionically conductive media is very important both in naturally occurring 

systems and in designed applications. Examples include ion transport across biological 

membranes[157, 211] drug delivery,[212] behavior of ion-selective electrodes with liquid 

membranes and similar sensors[213], extraction processes in oil recovery[214] or nuclear waste 

reclamation and recovery[215], phase transfer catalysis in organic synthesis[216], 

pharmacology[217-219], and many applications in electroanalytical chemistry,[12, 219-223] applied 

or developmental. Fundamentally, the interface is equivalent to one side of a membrane of an 

ion selective electrode and thus these studies usually draw on the work of ITIES as well. 

Microinterfaces are another useful analytical tool, one already used to build sensors[224] or to 

be used in the scanning pipette electrochemical microscopy[225-227] or in other analytical 

detection schemes.[136, 186, 228, 229] Ionic liquids which recently gained popularity in chemistry 
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research also show promise for applications in the ITIES work.[230-233] Studies of charge 

transport, not only ion but also electron, across the liquid|liquid interface are often interpreted 

in terms of molecular or ionic ordering at the interface. Both computer simulations and 

analytic theories aiming to understand these electrochemical studies predict or assume very 

often existence of molecular ordering at the interface.[209, 234] However, there are few 

techniques that are capable to probe directly this interface on the molecular length scale. Such 

techniques include surface second harmonic generation [38, 235-240] , total internal reflection 

spectroscopy[241-243] , ac potential modulation spectroscopy [46, 239] vibrational sum-frequency 

spectroscopy[244] , and time-resolved quasi-elastic light scattering [245], as well as neutron 

reflectivity.[246-248] To answer fundamental questions about the structure and transport across 

this interface on the molecular length scale a method using X-ray surface scattering was 

developed.[71, 249-252]This X-ray method provides information on interfacial molecular ordering 

on the sub-nanometer length scale that is complementary to that provided by the 

electrochemical and optical techniques. 

1.8 General review on porphyrins 

1.8.1 Introduction to porphyrins 

The word porphyrins stems from the ancient Greek word porphura, which was used to 

describe the colour purple. Indeed all neutrally occurring and synthetic porphyrins are deeply 

coloured compounds. The porphyrin macrocycle is an aromatic system consisting of four 

“pyrrole-type” rings joined by four methine (meso) carbons (Figure 1.7).  

 

Figure 1.7: Structure of porphyrin and IUPAC numbering system. 

Although a porphyrin ring has a total of 22-π electrons, only 18 of them participate in any one 



Chapter 1 

 

 

26

of the several delocalization pathways. The delocalised aromatic character of porphyrins, 

which results from extensive conjugation (Figure 1.8), accounts for the one of the most 

striking features of these chromophores, namely their intense colour. 

 

Figure 1.8: Delocalised 18 π-electron conjugation pathway and tautomerism of porphyrins. 

In order to simplify the IUPAC numbering system in Figure 1.7 ,carbons 1, 4, 6, 9, 11, 14, 16 

and 19 are referred to as the α positions and carbons 2, 3,7 ,8 ,12 ,13 ,17 and 18 as the β 

positions and carbons 5, 10 ,15 and 20 as the meso positions.[253] The two inner NH groups 

(22, 24 or 21,23) lose proton under basic conditions in order to form a dianionic species. Such 

a porphyrins dianion is able to coordinate almost every metal within its cavity to form a 

metalloporphyrin. This incorporation may result in the distortion of the planar macrocycle in 

order to maximise the binding strength towards the metal fragment.[253] 

 Different types of groups or side chains can be attached to the β carbons of the pyrrole rings 

or the methine carbons (meso) which is the basis of the versatile structures of porphyrins. The 

metal complexes of porphyrin ligands (metalloporphyrins) are a large class of coordination 

compounds which can be found in many biological systems in nature. For instance, 

chlorophylls which are involved in the photosynthesis of green plants are magnesium 

chlorins. Chlorins are porphyrin derivatives with one pyrrole ring reduced. Hemoproteins, 

which play important functions in oxygen transport and storage in human bodies, contain an 

iron-porphyrin moiety. The chemistry of porphyrins has been a subject of extensive 

multidisciplinary research for several decades.[254] 

Porphyrins containing alkyl substituents at the β-pyrrole positions are commonly referred to 

as etio-type porphyrins. The most common naturally occurring etio-type porphyrin is 
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protoporphyrin IX which is a moiety of many hemoproteins.[255] Octaethylporphyrin (OEP) 

is the most common synthesized etio-type porphyrin. Those porphyrins having substituents 

only at the four methine bridges are known as meso-type porphyrins. The four substituents are 

most commonly derivatives of benzene or pyridine. Tetraphenylporphyrin (TPP) is the most 

common one of this type which is easily synthesized, but it does not occur naturally.  

1.8.2 Fundamental properties of porphyrins 

Porphyrins and related compounds, which have been the subject of intense interest since the 

early 19th century, have attracted scientists from many areas due to their immense biological 

importance and their fascinating physical, chemical, and spectroscopic properties.[256, 257] By 

varying the choice of the metal center, the bonding and characteristics of the  

metalloporphyrin may be critically affected. This diversity is one reason why 

metalloporphyrins have found many applications in modern life, such as magnetic 

materials,[258] photoconductive materials, non-linear optical materials.[259],[260] In order to 

evaluate the applications of MPs, it is necessary to understand the electronic structure and 

photophysical properties. To interpret their various electronic states, optical absorption 

spectra and luminescence properties, Martin Gouterman first proposed a four-orbital model in 

the 1960s and it remains an effective model for explaining the absorption spectra of 

porphyrins.[260] This model is depicted in Figure 1.9 and it illustrates the electronic density 

distributions in the orbitals. The a1u and a2u orbitals are HOMOs and the two LUMOs are 

identified as eg(π*). As seen in the Figure 1.9, the HOMO a2u orbital is mainly localized on 

the pyrrolic nitrogen and meso-carbon atoms while HOMO-1a1u has contribution mainly 

from the α and β atoms. The LUMOs are delocalized on the porphyrin ring. For a molecule 

with D4h symmetry, the eg(π*) orbitals are strictly degenerate whereas the two a orbitals are 

nearly degenerate.[261]  



Chapter 1 

 

 

28

 

Figure 1.9: Porphyrin HOMOs (bottom) and LUMOs(top); Electron densities are shown in red and blue.  

 

In the visible absorption spectra, porphyrins usually show an intense Soret band [262] at around 

400 nm, which results from the delocalized cyclic electronic pathway of porphyrins. Several 

weaker absorption bands between 450 nm and 800 nm, which are responsible for the rich 

color of porphyhrins, are also observed and known as Q bands. Metalloporphyrins all have 

characteristic absorption bands in the UV-Visible region. These bands are thought to arise 

mainly from the π→π* transitions due to the π-electrons of the porphyrin ring.[260] The ring 

centered oxidation and metal-centered oxidation usually give rise to distinctly different 

electronic spectral changes.[263] If the oxidation process is porphyrin-ring centered, the Soret 

band will usually blue shift, and its intensity is reduced considerably; the Q-bands will usually 

shift and decrease in intensity leading to a broad feature in the visible region. On the other 

hand, if the oxidation process is metal-centered, there is no major loss of intensity of the Soret 

band, but the peak position will shift. The two Q-bands are retained (with or without change 

in position).[263] 

Figure 1.11 describes the schematic diagram showing the possible transitions of 

metalloporphyrins. The absorption bands arise from transition between two HOMOs and two 

LUMOs (π→π*). Accordingly the lowest singlet excited configurations are 1(a1u, eg) and 
1(a2u, eg) both having the Eu character. The Q bands are the result of the transition dipoles 
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nearly canceling each other out, resulting in a weaker absorption band. The higher energy B 

band transition results from a linear combination of the two transitions adding the transition 

dipoles and it is intense.[264] 

 
Figure 1.10: A typical absorption spectrum of a metalloporphyrin. 

 

The four orbital model has been very effective in explaining the effects of various 

substituents, central metal ions and extraneous ligands.[265] As shown in Figure 1.9, molecular 

orbital theory calculations of the porphine core have shown that the a1u orbital has nodes at 

the pyrrole nitrogens and it cannot directly interact with metal. It also has nodes at the meso- 

carbons and is not expected to be influenced by meso substitution. In contrast, the a2u orbital 

should be strongly affected by meso substituents. On the other hand the a2u orbital puts less 

charge at the β carbons of the pyrrole rings than a1u orbital does. Less electronegative metals 

shift a2u to higher energy and more electronegative metals stabilize a2u. Hypso porphyrins 

show blue shifts of the absorption spectra compared to regular porphyrins. If the metal 

possesses filled d orbitals, dπ electron donation from the dxz and dyz orbitals to the empty eg-

π*-orbitals of the porphyrin may occur, raising the eg π* orbitals and lowering the dπ orbitals 

which have become bonding (metal to ring π back bonding, Figure 1.11). As a result the 

energy gap between the LUMO and HOMO will increase showing the hypsochromic shift. 
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Figure 1.11: Origin of the hypsochromic shift of the Q band. 

The porphyrin ring is generally stable under strongly acidic and basic conditions. Strong 

bases, such as alkoxides can remove the two protons (pKa ~16) on the inner nitrogen atoms of 

porphyrin to form a dianion. On the other hand, the two free pyrrolenine nitrogen atoms (pKb 

~9) can be easily protonated with acids such as trifluoroacetic acid, to form a dication. The 

inner protons can also be replaced by a metal. Various types of metals (e.g., Zn, Cu, Ni, Sn) 

can be inserted into the porphyrin cavity by using various metal salts.[266] Demetalation of 

metalloporphyrins can usually be achieved by the treatment with acids, and different types of 

acids are required. Alkylation of the pyrrolenine nitrogen atoms can also be achieved in a 

similar way to protonation and metalation.[267]  Aromatic compounds such as porphyrins used 

to be assumed to be planar. The X-ray structures of simple porphyrins showed the ring to be 

planar, recently, there have been tremendous numbers of nonplanar porphyrins reported in the 

literature.[268, 269]Nonplanar porphyrins have intriguing physical and biological properties due 

to the distortion of the porphyrin ring. Many different factors such as metalation, peripheral 

substitutions, alkylation of the pyrrolenine nitrogen atoms, and even protonation, can distort 

the nominally planar structure of the porphyrin macrocyle.  
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1.8.3 Electrochemistry of porphyins 

The redox behavior of porphyrins has been extensively investigated because of its relevance 

to many biological processes. Several studies in this area have been published in the 

literature.[257, 270] Most of the research has been carried out in nonaqueous media. Generally, 

metalloporphyrins may be oxidized or reduced at three discrete sites. In nonaqueous media, 

free base porphyrins (porphyrins without a central metal) and metalloporphyrins with 

'inactive' metals (eg Zn(II), Mg(II)) usually undergo two successive reversible one-electron 

oxidations, leading to the formation of corresponding π-cation radicals and dications, and two 

successive reversible one electron reductions, yielding the π-cation radicals and dianions, 

respectively. Metal centered electron transfer reactions are also observed for a number of 

metalloporphyrins containing electroactive metals (e.g. Mn(III), Fe(III), Ni(II). Co(II) ).[257] 

Various techniques have been employed to investigate the electrochemical behavior of 

porphyrins. In the 1960s and early 1970s, traditional electrochemical techniques such as 

polarography, cyclic voltammetry and rotating-disk voltammetry had been used mainly to 

study the electrode reactions of metalloporphyrin complexes.[257] Several 'rules' regarding the 

electrochemistry of metalloporphyrins have been proposed from these early works. For 

example, when measuring the redox potentials of a series of metallo-octaethylporphyrins, 

Fuhrhop and co-workers concluded that for almost all complexes the potential difference 

between the first oxidation to form a cation radical and the first reduction to form an anion 

radical was a constant, ΔE = 2.25±0.15V.[271] In addition, the difference in potential between 

the first and second reductions was 0.42± 0.05V, and the potential difference between the first 

and the second oxidation was 0.29±0.05 V. Similar results were observed for complexes of 

tetraphenylporphyrins.[271] These simple rules have been used to distinguish between the ring-

centered and metal-centered redox types .[272] Unfortunately, there are a number of exceptions 

to these simple rules, and many of these seem to involve the biologically important complexes 

of iron, manganese and cobalt porphyrins.[273-275] An important subject in the electrochemistry 

of metalloporphyrins is the assignment of the redox sites within porphyrins. For a 

metalloporphyrin containing an electroactive metal, the electron-transfer processes might be 

either porphyrin-ring centered or metal-centered. Both types of reaction have been found in 

biochemical processes in nature. For instance, for iron porphyrins, the Fe(II)/Fe(lII) redox 

couple is involved in many biological processes such as oxygen binding of hemoglobins and 
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electron transport reactions facilitated by cytochromes.[276, 277] The versatile roles of the iron 

in these naturally occurring systems reflect the great influence of the porphyrins ligands on 

the redox properties of the central metals. The transfer of electrons to or from the porphyrin 

ring, on the other hand, is also important in natural processes. Magnesium chlorin π-cation 

radicals have been proposed as intermediates in the photosynthesis processes of all green 

plants [278], and ferryl protoporphyrin IX π-cation radicals are found as intermediates in the 

enzymatic cycles of several peroxidases and catalases.[279] While voltammetry measurements 

can usually give useful information about the redox sites [271], in some cases the simple 

inspection of a voltammetric wave does not allow unambiguous identification of the electron 

transfer site within the complex. For instance, it is known that oxidation of Fe(III) porphyrins 

under different conditions may result in either loss of an electron from the porphyrin ring to 

give a π-cation radical,[280] or in loss of an electron from the iron, to produce hypervalent 

Fe(IV) species. [281] Felton and co-workers [282, 283] assigned the one-electron oxidation 

products of both Fe(III)TPPClO4 and Fe(III)OEPClO4 as Fe(IV) species based on 

irregularities of the half-wave potentials. However, formation of Fe(III)-cation radicals from 

these processes were confirmed by Phillippi and Goff,[284, 285] on the basis of magnetic-

susceptibility measurements and NMR studies. An assumption which has been frequently 

forwarded in support of identifying metal-centered oxidation against ligand-centered 

oxidation is that the half-wave potential for the oxidation of the porphyrin ring should be 

independent of the axial coordination of the central metal, whereas the metal oxidation 

potential should vary largely with the axial ligand.[257] As to the validity of this assumption, 

Hinman and Pavelich pointed out that this argument holds only where the overall charge of 

the complex remains unchanged on varying the axial ligand(s).[286] The half-wave potential 

for oxidation of the porphyrin ring in Zn(II)TPP shifts by up to about 300 mV on 

complexation with anions, while very little potential shift is observed on complexation with 

uncharged ligands. Therefore great caution must be exerted in ascribing unusual features of 

the voltammetry of metalloporphyrins which involve electrochemically active metals and 

spectroscopic techniques should be employed to further investigate these redox processes. 

Since products of these two types of reactions are usually spectroscopically distinct, some 

suitable spectroscopic methods could be able to distinguish them. Electronic spectroscopy has 
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been employed intensively to identify the site of oxidation/reduction in metalloporphyrins. A 

part from electronic spectroscopy, several other spectroscopic methods have also been 

explored to identify the site of the redox process. These methods include NMR,[287] magnetic 

circular dichroism (MCD),[288] vibrational spectroscopy, and ESR spectroscopy. The first two 

methods are less frequently used. The application of vibrational spectroscopy in 

metalloporphyrins has been of particular interest in recent years.  

1.8.4 Applications of porphyrins  

As mentioned above, porphyrins and related tetrapyrrolic compounds occur widely in nature 

and play important roles in various biological processes. For example, heme (Figure 1.12), the 

iron(II) protoporphyrin-IX complex, is the prosthetic group in hemoglobins and myoglobins, 

which are responsible for oxygen transportation in red blood cells and oxygen storage in 

living tissue. In addition to the vital roles these compounds play in biological systems, 

porphyrins, especially numerous synthetic porphyrins, have also found applications outside 

the modeling and mimicking of natural systems. For example, they have found applications in 

molecular sensors, molecular recognition, photodynamic therapy, boron neutron capture 

therapy, virus destruction, DNA cleavage, data storage, nonlinear optics and electrochromism. 

Due to their wide applications, the synthesis of porphyrins and their assemblies has become a 

very attractive research area.[257, 289] Due to their selective localization in tumor cells, 

synthetic tetrapyrrole pigments have tremendous applications in PDT (photodynamic therapy) 

and BNCT (boron neutron capture therapy).[290] PDT and BNCT are both binary cancer 

therapies and their side effects are limited. PDT involves the irradiation of a photosensitizer 

with light of a specific wavelength, which is absorbed by the photosensitizer and subsequently 

causes the excitation of the photosensitizer to its excited singlet state, then through 

intersystem crossing, to reach to its excited triplet state. 
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Figure 1.12: Structure of iron(II) protoporphyrin-IX complex. 

The resulting excitation energy is absorbed by the triplet ground state of dioxygen (found in 

all living cells) and the highly toxic singlet dioxygen (1O2) is generated; this kills the tumor 

cells. BNCT involves the capture of thermal neutrons by boron-10 nuclei, which have been 

selectively delivered to tumor cells. The captured neutron releases Li[268] and He[262] nuclei 

with kinetic energy. These two particles are extremely cytotoxic but can only travel a distance 

of about one cell diameter in tissues, thus it can selectively kill the tumor cell containing it. 

Porphyrins and metalloporphyrins are also ideal model compounds for studying light 

harvesting, energy and electron transfer, and multielectron redox catalysis.[257, 291] Porphyrin-

based multiporphyrin arrays and molecular wires have received much interest. In these model 

systems, it is important to know how individual molecules within arrays communicate with 

each other. So far, factors such as distance, orientation and geometry have been recognized to 

be important factors to control this intercommunication.[289]  
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Chapter 2 

Introduction to electrocatalysis of oxygen reduction 

2.1 Oxygen reduction catalysis for future energy resource 

The tremendous consumption of fossil fuels emitting carbon dioxide (CO2) is a serious factor 

contributing to the green-house effect. It is important to recognize that global warming is 

closely related to energy resources, and further, that the main energy resource, oil, could be 

exhausted by the mid-21st century. Consequently, the need to create renewable energy 

resources free of environmental pollution is urgent. For example, wind power plants and solar 

cells are attracting attention as candidates to create renewable energy in the near future. It is 

important that any new energy resource be compatible with the energy cycle on the earth. The 

main energy cycles, both of living things and fossil fuels, are supported by photosynthesis that 

utilizes solar energy. In this sense, artificial photosynthesis, which aims at creating energy 

resource from solar energy and water, is a promising candidate.[1-4] In addition to the artificial 

photosynthesis, a fuel cell (FC) is expected to be one of the most promising energy resources 

in the next generation. In an FC electric energy can be obtained from chemical energy (fuel), 

such as H2, methanol from carbon dioxide, natural gas, or gasoline. Hydrogen fuelled proton 

exchange membrane fuel cells have demonstrated great promise as future source of energy 

due to their high conversion efficiency, lower temperature of operation and lack of 

greenhouse emissions.  

2.2 Oxygen reduction  

2.2.1 Reaction pathway 

Oxygen reduction reaction (ORR) process includes several individual reactions depending on 

the electrode material (Scheme 2.1). For electrochemical catalytic ORR analysis, two general 

processes can take place; each containing few discrete steps. One is production of water 

through a direct four-electron pathway, and the other is production of hydrogen peroxide 
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through a two-electron pathway. The desired feature for a successful ORR catalyst would 

reduce oxygen molecules to water through the four-electron route. Incomplete reduction of 

oxygen to hydrogen peroxide not only leads to low energy conversion efficiency, but also 

produces this reactive intermediate that can further convert to harmful free radical species. 

Direct four electron pathway 

+ 0
2 2O +4H +4 2H O                           1.229 V-e     E                                                  (2.1) 

Peroxide pathway 

+ 0
2 2 2O +2H +2 H O                            0.695 V-e     E                                                  (2.2) 

Which can be followed by  

+ 0
2 2 2H O +2H +2 2H O                           1.776 V-e     E                                              (2.3) 

Or by the decomposition reaction 

2 2 2 22H O 2H O + O                                                                                                        (2.4) 

In general the following over-all scheme is given for this reaction:[1, 2]  

 

Scheme 2.1: The reaction pathway for oxygen reduction reaction 
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In which indicates a,* and b mean adsorbed species, vicinity of the electrode and bulk 

respectively. The reduction following the peroxide pathway (2.2) can, if reaction (2.3) also 

100% efficiently happens, of course give the same result as the direct four electron pathway 

will be governed by the equilibrium between the adsorbed H2O2 and the H2O2
* and the rate of 

hydrogen peroxide reduction. If hydrogen peroxide is reduced before it is desorbed no 

difference will be noticed with the four electron pathway. However, any hydrogen peroxide 

that will come into solution will be corrosive towards the carbon support material and the 

metal chelate. In the absence of adsorption effects the following intermediate steps can occur; 

The formation of the superoxide-ion 

0
2 2O  O                                           0.33 V-e E                                                    (2.5) 

And 

0
2 2O H +  HO                                   0.106 V- e E                                                 (2.6) 

0
2 2 2HO H +  H O                              1.5 V- e E                                                       (2.7) 

0
2 2HO 3H + 3  2H O                        1.674 V-e E                                                    (2.8) 

0
2 2 2H O H +  OH + H O                  0.714 V-e E                                                   (2.9) 

0
2OH H +  H O                               2.813 V-e E                                                 (2.10) 

The standard potentials are values vs the normal hydrogen electrode (NHE) at 25ºC.[3] The 

oxygen molecule has a bond strength corresponding to 0
fH = -498.7 kJ mole-1.[4] Compared 

with the C-C bond (-160 kJ mole-1), it is clear that O-O bond breaking is a major problem and 

that reduction process must be activated. In case of the superoxide-ion, the O-O bond strength 

is considerably lowered to approximately -350 kJ mole-1.[4] The formation of the superoxide-

ion 2O  is considered to be the rate determining step [5, 6] in the oxygen reduction and 
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specially this step is catalysed if oxygen accepting sites are present on the electrode surface.  

A multi-electron transfer is kinetically slow as it requires many steps, which suggests that a 

highly efficient and active catalyst site is required, and Pt and its colloidal particles are the 

most active and efficient catalysts for both O2 reductions.[7, 8] Till now Pt has been found to be 

the best electrocatalyst for the oxygen reduction reaction (ORR) due to higher electrocatalytic 

activity and stability. But the limitation is due to high costs incurred. In recent years lot of 

emphasis has been put on Pt alloy catalysts because of even higher activity and lower cost as 

compared to Pt catalysts.[9, 10]  However, the activity of a Pt catalyst often changes with the 

preparation method, because the activity strongly depends on the particle size and effective 

area of the catalyst. Since it is important to use efficient and stable catalysts for energy 

conversion, the application of such an unstable catalyst to the energy supply system is not 

desired. Pt is a rare, precious material, so that it is highly desirable to design and develop a 

new catalyst system to replace Pt, especially by means of molecular catalysts. 

2.2.2 The redox mechanism 

Oxygen binding involves binding with the d-orbitals of the central metal-ion and is of course 

influenced by the electron density on the metal center. The mechanism of the oxygen 

reduction, forming hydrogen peroxide, is commonly supposed to follow the redox patway 

(acid medium).[11]  

2 2M(II) + O M(III)-O                                                                         (2.11) 

+
2 2M(III)-O H + M(III)-O H-e                                                              (2.12) 

+
2 2 2M(III)-O H H + M(II) + H O- e                                                          (2.13) 

Or, with minor difference,[12] 

M(III) + M(II)-e                                                                                                         (2.14) 
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+
2 2M(II)-O H M(III)-O H                                                                                          (2.15) 

2M(III)-O H -e  Intermediates                                                                                   (2.16) 

In which the M(II) is the oxygen accepting site. If such a redox-mechanism is involved,the 

MIII/MII redox transition will be determining for the activity. The redox potential depends on 

the type of central metal ion, and will be influenced by an eventual fifth ligand (e.g.carbon 

surface group), and by the nature of the ligand, including side-chains.[12] Here the redox 

transition of the iron chelates is too cathodic for high activity (too stable FeIII) whereas the 

cobalt chelates have transitions at too high potentials for optimal activity (too stable CoII). 

Such a Volcano relation between the redox potential and the electrocatalytic activity has also 

been found for other reactions, as, for example, the oxidation of hydrazine and cysteine.[13] A 

study of different  phthalocyanines (Pcs) revealed that the high electron density on the cobalt 

center, the higher is the observed catalytic activity for the oxygen reduction.[14] the redox 

mechanism requires the stability of the 3+ and 2+ oxidation state of a metal, needed for 

oxygen activation, in the potential region of interests for the oxygen reduction. It has been 

found that Co and Fe porphyrins are active as long as the 3+ oxidation state is possible at 

given potential.[15] Although in most cases the M(II) site is assumed to be the oxygen-

accepting site (2.11) [16] and MIII/MII transition is thought govern the reaction (2.11-2.16).  

2.2.3 Molecular oxygen interaction with metal sites 

In the case of M-N4 chelates, the interaction between the metal and the nitrogen can be 

described as a  -coordination of nitrogen lone pairs  towards the metal and a  -back 

donatation between metal dπ -orbitals with nitrogen pπ -orbitals.[13] The mixing between 

the dπ  orbitals on the metal and the p orbitals on the nitrogen provide a mechanism for back-

bonding charge transfer from the metal to the ring, diminishing the electron density at the 

metal. The coordination around the metal ion gives rise to splitting of the d-orbital energy 

levels. The smaller the ring size, and consequently the shorter the metal nitrogen distances, 

the larger the ligand field effect (the phthalocyanine ring is larger than the porphyrin ring).[13] 
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Various adsorption configurations of oxygen on metal sites given in Scheme 2.2. Different 

models, Zagal et al.[17] postulated that the rupture of O-O bond leads to formation of water 

when oxygen interacts simultaneously with two active sites on the electrode surface (in the 

case of cofacial porphyrins). This favourable adopted oxygen-catalyst interaction is called 

‘bridge cis’ illustrated in Scheme 2.2. Other single site interactions lead to two electron 

transfer resulting in formation of hydrogen peroxide and they are ‘end-on, side-on and bridge-

trans’ (Scheme 2.2). Since degree of oxygen reduction completeness depends on the 

interaction of oxygen with the catalytic site, it is therefore expected that an adduct formed 

upon such an interaction should be long-lived. It follows also that the interaction is more 

likely to be successful when there is a high concentration of catalyst on the electrode surface. 

 

Scheme 2.2: Different configurations adopted by molecular oxygen upon interaction with metal sites. 

2.3 Fuel cell: reduction of O2 

Among FCs, the polymer electrolyte membrane fuel cell (PEMFC) shown schematically in 

Figure 2.1, has been considered to be the most promising candidate as a new energy resource, 

since PEMFC is expected to achieve a high power efficiency in a compact size.[7] In this 

scheme, (1) H2 is oxidized into H+ on the anode, (2) The H+ is then transported to the cathode 

through a H+conducting polymer electrolyte membrane such as Nafion (Nf) and (3) O2 is 

reduced via a multi-electron transfer. Both the basic science and the technology of catalytic 

2O  reduction has received much attention in the last three decades. The O2 reduction must be 

coupled with a H+ supply from the anode. As a strategy for fabricating O2 an efficient FC 



Introduction to electrocatalysis of oxygen reduction 

 

 

51

cathode, the investigation of O2 reduction by a molecular catalyst should essentially be carried 

out using a H+ exchangeable polymer membrane with a high O2 permeability. 

 

Figure 2.1: Schematic illustration of PEMFC. 

2.4 Metal catalysts 

Although great efforts to design and develop new active catalysts have been made, there have 

been few examples of efficient molecule-based catalyst capable of four-electron reduction of 

O2. The pioneering molecular catalysts of macrocyclic metal complexes (phthalocyanines, 

porphyrins, etc.) [18-21] are still insufficient as far as both activity and stability concerned, so 

that the improvement of the catalysis performance is still a continuous research subject. 

Molecular catalysts for O2 reduction will be described compared with metal catalysts. 

2.4.1 Pt catalyst  

Fuel cells are widely considered to be a sustainable energy conversion system and are a key 

technology for the development of a hydrogen economy. Low-temperature fuel cells have 

been undergoing rapid development for mobile applications and in particular for the transport 

sector. Platinum is commonly used as anode and cathode catalyst in low-temperature fuel 

cells. The cost of platinum, however, and the limited world supply are significant barriers to 

the widespread use of these types of fuel cells. To reduce the cost of the fuel cells, one of the 

important challenges is the development of platinum-free catalysts or catalysts with a lower 

content of Pt.  
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Platinum is used as an electrocatalyst for oxygen reduction in phosphoric acid fuel cells and 

proton exchange membrane fuel cells. Because catalysis is a surface effect, the catalyst needs 

to have the highest possible surface area. So, the active phase is dispersed on a conductive 

support such as high surface area carbon powders. But because of the elevated price and 

limited resources, Pt cannot be used for large-scale applications and alternative materials are 

needed. In addition, platinum used as anode material, at room or moderate temperatures is 

readily poisoned by carbon monoxide, present in the reformate gas used as H2 carrier. 

Moreover, Pt alone does not present satisfactory activity for the oxygen reduction reaction 

(ORR) when used as cathode material. For all these reasons, binary and ternary Pt-based 

catalysts and nonplatinum-based catalysts have been tested as electrode materials for low 

temperature fuel cells.[8, 22, 23] In the early 1990s, several binary Pt alloy systems such as PtNi, 

PtCo, and PtCr in small-scale fuel cells investigated to characterize kinetic parameters 

complemented by several X-ray techniques to examine lattice parameters, stability, and the 

nature of surface species.[24, 25] It has been observed that the base-metal elements smaller than 

Pt, when alloyed with Pt, enter the crystal structure through substitution and cause a lattice 

contraction. The increasing electrocatalytic activity of the Pt-alloys (such as PtCr, PtV, PtTi, 

PtW, PtAl, PtAg) show a strong correlation with a decrease in interatomic or nearest-neighbor 

distance between Pt atoms.[26] This effect has been attributed to the smaller Pt–Pt bond 

distances resulting in more favorable sites that enhance the dissociative adsorption of oxygen. 

There have been several attempts made to hypothesize the or at least draw strong correlations 

between the enhanced activity of Pt-alloys over Pt that may be broadly classified as structural 

factors, inhibition by anion adsorption, electronic factors, and surface sensitive factors. 

Although Pt catalysis is old, it remains the current catalyst most capable of an efficient four-

electron transfer reduction of O2 into H2O. Nafion (Nf) composed of a hydrophobic region 

based on the perfluorocarbon polymer backbone, and a hydrophilic region based on sulfonic 

acid side chain,[27] is a typical proton-conductive membrane used in PEMFC. A catalyst 

system composed of Pt and Nf is a typical model as the FC cathode to reduce O2. The Nf 

enhances the stability and dispersibility of Pt particles, showing a reproducible 

electrochemistry when used as an electrode-coated material.[28] Pt microparticles deposited in 

a Nf membrane were oxidized to the PtO species under anodic conditions (> 0.5V vs. SCE), 
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and it was found that the oxide surface catalyzed the two-electron reduction of O2 into H2O2. 

However, when PtO was reduced to Pt by applying the potential of (0 V vs. SCE) prior to O2  

reduction, no formation of H2O2 occurred, but four-electron reduction of O2 proceeded on the 

‘pure’ Pt surface. The schematic illustration of the O2 reduction at the PtO-covered Pt 

particles is shown in Figure 2.2.  

It is important to elucidate the characteristics of the electrode (and/or catalyst)/membrane 

interface to establish an efficient PEMFC cathode. As for this, catalytic O2 reduction at Pt 

black embedded in a Nf membrane was studied.[29] An O2 reduction at the interface between a 

Nf membrane and electrochemically oxidized glassy carbon electrode (GC) was also 

studied.[30] The design and development of electrode (and/or catalyst)/membrane interface 

composed of a kinetically efficient catalyst and a highly adjustable site of O2 will be one of 

key subjects to establish a practical FC cathode. 

 

Figure 2.2: Schematic view of mechanism of dioxygen reduction at PtO covered Pt particle-deposited GC 

electrodes. 

Okada et al. have exhibited that a small amount of impurity cation (Li+, Na+, K+, Ca2+, 

Fe3+,Ni2+ and Cu2+) remarkably influences the O2 reduction kinetics at a Pt/Nf interface.[31] 

The kinetic current for charge transfer of O2 reduction was found to decrease about 40 , 60% 

when compared with that for a pure membrane. Such suppression by impurity cations was not 
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observed at Pt/electrolyte solution interface. They ascribed such a specific event at Pt/Nf 

interface to a modification of electronic double layer, originating from a reorientation of the 

polymer network (change of polymer flexibility) in the presence of the impurity. A highly 

dispersed Pt/WO3/C was applied to O2 reduction, for comparison with a Pt/C 

system.[32]Although WO3 is an acid resistant oxide, the partially dissolved species from the 

oxide acts as a homogeneous catalyst to decompose H2O2 in an O2 reduction process, 

consequently leading to higher activity with Pt/WO3/C than with Pt/C. Dissolution and 

diffusion of the WO3 into bulk electrolyte can be suppressed by a Nf coating on the 

Pt/WO3/C. 

2.4.2 Macrocyclic metal complexes catalysts (phthalocyanines and 

porphyrins) 

Research into ORR catalysts based on non-noble metals began in 1964, when Jasinski found 

that cobalt phthalocyanine was an active catalyst for the reduction of oxygen [33] and has 

greatly proliferated since. Soon after Jasinski’s finding, catalysts were prepared by adsorbing 

similar FeN4 and CoN4 macrocycles on a carbonaceous support and pyrolyzing the resulting 

material in an inert atmosphere[34]. Then, a major breakthrough was achieved when it was 

demonstrated that these often-expensive macrocycles could be substituted by individual N 

and Co precursors.[35] This approach was followed by several groups. 

2.4.2.1 Metallo-phthalocyanines 

Metal phthalocyanines (MPc) and their sulfonatederivatives (MTsPc), where the central metal 

is often Co and Fe (the chemical structures are shown in Scheme 2.3), have been known as 

pioneering molecule based catalysts for O2 reduction. The effectiveness of these complexes 

has been discussed in terms of a molecular orbital theory .[36] The cobalt(II) phthalocyanine 

tetrasulfonic acid (CoPcs) work as a two-electron reduction catalyst yielding H2O2, while 

FePcs are capable of four-electron reduction of O2 into H2O, although the catalysis features 

change with the degree of the overpotentials applied, as well as the pH conditions 

employed.[31, 37, 38] 
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Scheme 2.3: Chemical structures of metal phthalocyanine. 

Especially when applying low overpotentials for FePc, the four electron reduction is 

attributed to dimeric species formation on a rough electrode surface.[38, 39]However, in these 

phthalocyanine catalyst systems, it has been recognized that a mono-layered deposition of the 

complex (i.e. the electrode/catalyst interface) is the most effective for the catalysis (when a 

thick-layered MPc was deposited onto the electrode, only a small fraction was effective).[40] 

The extremely poor electron conductivity of MPcs has seriously obstructed the developments 

of a new and efficient catalyst system. In order to overcome the inefficient electroactivity, a 

conductive organic polymer was employed as a matrix. 

2.4.2.2 Metallo-porphyrins 

Co porphyrin (CoP) and its derivatives (see Scheme 2.4) have often exhibited two-electron 

reduction catalysis for O2. Anson et al. have shown that coordination of Ru(NH3)5
3+ to the 

pyridyl (Py) sites in cobalt tetrapyridylporphyrin (CoP(Py)4) adsorbed on an electrode 

converts the catalysis performance from two-electron to four-electron reduction (selectivity of 

H2O formation was over 90% below +0.2 V vs. SCE).[41] The four-electron reduction of O2 by 

the simplest Co porphine adsorbed on an electrode was found to take place on applying an 

unusually positive potential of ~ +0.5 V, although H2O2 formation also occurred at relatively 

low potentials.[42] It was likely that the H2O formation originates from a dimer complex, 

cofacially orientated through Van der Waals interaction. However, since most part of the 

‘cofacial structure’ changed into a monomeric species after the catalytic O2 reduction, the 

selectivity for H2O formation remarkably decreased from >90 to ~35% . 
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Scheme 2.4: Chemical structures of metal porphyrin. 

When gold electrode coated with the b-cyclodextrin film containing cobalt porphyrin, H2O2 is 

the only product from O2 , probably because the formation of a dimeric structure that be 

responsible for a four-electron transfer reduction of O2 is suppressed, due to the formation of a 

supramolecular complex between the cyclodextrin polymer and the porphyrin. The Co ‘Picket 

Fence’ Porphyrin (cobalt 5,10,15,20-tetrakis(pivalamidophenyl) porphyrin) has been applied 

to O2 reduction system.[43] The ‘Pickets’ appended on one side of porphyrin ring results in 

unusually high affinity for O2 in the presence of an axial base (such as 1-methylimidazole). 

However, the existence of the ‘Picket’ causes hindrance of its catalysis towards O2 reduction, 

most probably due to the difficulty of dimeric formation (Co-O2-Co). Hematoporphyrin IX 

and Protoporphyrin IX were efficiently immobilized on a cellulose/ titanium (IV) oxide 

composite fiber surface by the reaction of –COOH group on the porphyrin with TiO2 , 

presumably by forming the –COO–Ti chemical bond.[44] Each complex acts as a catalyst for 

two electron transfer reduction of O2, indicating that it is difficult to achieve efficient four-

electron reduction in mono-molecularly orientated system. New catalyst films of meso-

tetrakis [2,2]-paracyclophanyl metalloporphyrin complexes (MT(PCP)P) with Mn(II), Fe(II), 

Ni(II), and Co(II) were synthesized by oxidative electropolymerization of cyclophanyl groups 

in EtCl2.
[45] Each MT(PCP)P exhibited efficient catalytic performance for the four-electron O2 

reduction in both acidic and basic media, most probably due to transannular interaction 

between porphyrin core and cyclophane. Murray et al. have reported electrocatalytic O2 

reduction using amino-, pyrrole-, and hydroxy-substituted tetraphenyl metallo-porphyrins.[46] 
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2.4.2.3 Cofacial  metallocomplexes  
 
Cofacial bis(metallo)porphyrins (Scheme 2.5) were initially prepared to study the interaction 

between closely lying electroactive centers such as in the case of cytochromes,[47, 48] to obtain 

multi-electron transfer,[49] or to find new catalysts for the reduction of small substrate 

molecule such as O2 .
[50] 

Catalytic activity in these systems can be easily detected with cyclic voltammetry (CV) or 

rotating disk electrode voltammetry (RDE).[51, 52]In the case of CV, a comparison of the 

current-voltage curves obtained for the substrate with a bare electrode and with an electrode 

modified with the cofacial bis(metallo)porphyrin will suffice to demonstrate catalytic activity. 

Higher current density and a decrease in the substrate overpotential when using the modified 

electrode are reliable indicators that the cofacial complex catalyzes the reduction or the 

oxidation of the substrate.[50] RDE is also very useful in that it provides more information 

about the kinetics of the catalytic process. In addition, rotating ring-disk electrode (RRDE) 

voltammetric experiments[52] help to gain insight into the electrochemical nature of the 

intermediary and final products of the catalytic reaction.  

This method study the number of the electrons donated to O2 . In studying oxygen reduction 

mediated by porphyrins, the technique of rotating ring-disk voltammetry, which permits the 

quantitative measurement of hydrogen peroxide production and allows discrimination 

between the formation of such peroxide as an intermediate or merely as a minor side product. 

The porphyrin to be tested as a reduction catalyst is applied to the graphite disk by irreversible 

adsorption from a dilute solution.[53] As the assembly is rotated, fresh, oxygen-saturated 

electrolyte is drawn vertically toward the disk surface and ejected radially across the disk and 

ring. The disk potential is controlled by a potentiostat and the (disk) current-potential profile 

records the oxygen reduction process. At the same time, the ring is held at a potential (+1.4 V) 

where any hydrogen peroxide reaching it is rapidly oxidized to dioxygen but no other 

electrode reactions proceed. The ring current response thus monitors hydrogen peroxide 

production, and the ratio of disk to ring currents, normalized for the collection efficiency, of 

the ring, defines the relative contributions of the four-electron and two-electron reduction 

processes. Moreover, possible contributions to the disk current arising from subsequent 

reactions of H2O2 (reduction to water or disproportionation to water and dioxygen) may be 
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evaluated by examining the dependence of the current ratio on electrode rotation rates. At 

higher rotation rates, H2O2 is removed from the disk surface before further reaction can take 

place, resulting in an increased ring current and decreased disk current. Invariance of the 

current ratio with rotation rate indicates the H2O2 is formed only as a parallel product in 

dioxygen reduction, not as an intermediate.[54] 

Electrochemical studies of cofacial porphyrins led to the conclusion that the rigidity and 

length of the spacer or linker between the two porphyrin units play a major role in how good a 

catalyst the cofacial complex is. If the spacer is too flexible, the two porphyrins do not adopt a 

face-to-face configuration.[55]Indeed, X-ray data revealed that the two units are laterally 

shifted with respect to each other to maximize π—π overlap. If the two porphyrin units are too 

tightly linked to each other, the geometry of the cavity where the binding of the substrate 

occurs is not flexible enough to accommodate the structural changes that will take place 

during the catalytic process 

          

N N
NN Zn

N N
NN Zn

      

Scheme 2.5: Examples of cofacial bis(metallo)porphyrins. 

If the linker is too long, communication between the two chromophores is absent. Anthracene 

and biphenylene linkers optimize this length/ rigidity compromise.[56] A proposed overall 

catalytic process is schematically represented in Scheme 2.6. 
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Scheme 2.6: Cofacial bis(metallo)porphyrins as electrocatalysts. 1) Formation of the active site; 2) and 4) 

substrate binding or product release; 3) multielectron transfer. L*.bulky ligand blocking the outer coordination 

sites (solvent molecule or imidazole, for example); L.smaller ligand that can be displaced by the substrate. 

The latter case exemplifies the use of electrochemistry as an effector of supramolecular events 

and as a detection technique. The substrate binding, which allows for the catalytic activity is 

controlled by the redox state of the substrate. The release of the product, on the other hand, 

from the cofacial bis(metallo)porphyrin is also redox-controlled. 

2.5 Oxygen reduction at liquid|liquid interfaces 

Oxygen reduction catalyzed by porphyrins is of great interest in fields as diverse as biology, 

photosynthesis and electrocatalysis.[57, 58] In nature, oxygen reduction occurs at soft interfaces, 

namely biomembranes that provide both a physical separation of the reactants and products, 
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and an electrochemical driving force resulting from the membrane electrical potential 

difference. Electrochemistry at liquid|liquid interfaces is a new type of bio-inspired 

electrochemistry. Indeed, ITIES also provide a physical separation of the reactants and 

products and the polarization of this soft interface provides an electrochemical control for 

different charge transfer reactions such as ion transfer, assisted ion transfer such as acid-base 

reactions involving an interfacial protonation or heterogeneous electron transfer reactions 

between an hydrophilic and a lipophilic redox couple.[59-61] The interface between two 

immiscible electrolyte solutions is formed between two solvents of a low mutual miscibility, 

such as water and 1,2-DCE, each containing an electrolyte. This type of electrochemistry 

without a solid working electrode provides a suitable model for investigating heterogeneous 

processes occurring in biological systems such as oxygen reduction reactions within aerobic 

living organisms. Oxygen reduction at the ITIES has been studied by using various lipophilic 

electron donors, decamethylferrocene (DMFc),[62-67] reduced flavin mononucleotid (FMN),[68] 

tetrachlorohydroquinone (CQH2)
[69] and fullerene monoanion (C60

–).[70]In the case of DMFc, 

the oxygen reduction produces H2O2, as evidenced by two-phase reactions[65] and in-situ 

detection of H2O2 using scanning electrochemical microscopy.[66] Furthermore, the catalytic 

effect of various porphyrin compounds including cobalt tetraphenylporphyrin[64, 67] on the 

oxygen reduction by DMFc at the water|1,2-DCE interface has also been investigated. The 

interfacial reduction of oxygen catalyzed by a metalloporphyrin, e.g. Co(II) porphine has been 

reported. Recently the catalytic effect of the protonated forms of 5,10,15,20-tetraphenyl-

21H,23H-porphine (H2TPP)[71] and metalloporphyrin, e.g. Co(II) porphine[72] on the oxygen 

reduction at the polarized water|1,2-DCE interface has been reported. 
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Chapter 3 

Experimental and Instrumentation 

3.1 Chemicals  

All reagents and solvents are of analytical grade (≥ 98% purity) and are used without further 

purification. 

3.1.1 Salts  

Sodium iodide (NaI)- Fluka 

Lithium chloride (LiCl)- Fluka 

Lithium solfate (Li2SO4)-Fluka 

Tetramethylammonium chloride (TMACl)- Fluka 

Tetraethylammonium chloride (TEACl)- Fluka 

Tetraethylammonium perchlorate (TEAClO4)-Fluka 

Tetrabutylammonium chloride (TBACl)- Fluka 

Tetrabutylammonium perchlorate (TBAClO4)-Fluka 

Bis(triphenylphosphoranylidene)ammonium chloride (BACl)- Fluka 

Potassium tetrakis(4-chlorophenyl) chloride (KTPBCl)- Fluka 

Lithium tetrakis(pentafluorophenyl)- borate (LiTB)- Boulder Scientific Company 
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3.1.2 Solvents 

Water (H2O)-Milli-Q reagent water system (Millipore Milli-Q185) 

1,2-dichloroethane (1,2-DCE)-Fluka 

Methanol (MeOH)-Fluka 

3.1.3 Porphyrin products 

Free-base 5,10,15,20-meso-tetrapehenylporphyrin (H2TPP)[1], Free-base 2,3,7,8,12,13,17,18-

octaethyl-21H,23Hporphyrin (H2OEP)[2, 3], 5,10,15,20 meso-tetraphenyl porphyrin cobalt(II)  

[Co(tpp)][4] and  2,3,7,8,12,13,17,18-Octaethyl-porphyrin cobalt(II) (CoOEP) were 

synthesized following the typical procedures.[5, 6] 

3.1.4 Others 

Sulfuric acid (H2SO4) -Sigma–Aldrich 

1,1’-dimethylferrocene (DFc)- Sigma–Aldrich 

Ferrocene (Fc)-Sigma–Aldrich 

Hydrochloric acid (HCl, 32%)-Merck 

Starch (from potatoes)-Fluka 

Decamethylferrocene (DMFc)- Alfa Aesar 

3.1.5 Synthesis of organic supporting electrolytes 

TMATPBCl, BATB and TMATB were prepared by metathesis of equimolar quantities of the 

corresponding salts dissolved in a 2:1 mixture of methanol:water. Both solutions are gently 

mixed together and the resulting precipitate is filtered, washed with water and dried under-

vacum. The salt is then re-crystallised in acetone and dried under vacuum before use. 
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3.2 Methodology for determination of bulk redox potentials  

The redox system ferrocenium/ferrocene (Fc+/Fc) has been proposed as a suitable internal 

standard for reference potential calibration in organic media. Such suitability lies in 

extrathermodynamic assumption that the activity of a univalent large symmetrical ion, with 

charge buried, is the same as activity of uncharged molecule of the same size and structure in 

all the solvents.[7] Use of the Fc+/Fc couple as an internal standard demands the observation of 

reversible electrochemistry in the investigated medium. Since only a form is required to be 

added in the solution, voltammetry has been extensively employed for ascertaining the 

reversibility of the system as well as to determine the standard (formal) reference potential of 

the redox couple. The redox potential of porphyrines was determined with 3-electrode system, 

reference electrode (Ag wire) working electrode (Pt microelectrode) counter electrode (Pt 

wire). The potential scale was referenced to the formal redox potential of ferrocene (Fc) 
o

/FcFc
E +

SHE

,1,2 DCE−⎡ ⎤⎣ ⎦ =0.64 V as an internal reference .We employ this value as a reference potential 

for the redox species in the same medium. The formal redox potentials of the porphyrins were 

obtained from cyclic voltammetry in 1,2-DCE on a 10µm diameter Pt microelectrode at 

25mVs-1. In all cases, the voltammetric responses described a well-defined sigmoidal curve. 

Formal potential of the porphyrins evaluated from cyclic voltammetric peak potentials 

recorded 5mM BATB in dry 1,2-DCE purged with argon (Ar). Diffusion coefficient (D) of 

porphyrins was calculated from Randles-Sevcik equation. Diffusion coefficient derived from 

the Equation (3.1) 

4nFDcai =                                                                                                                           (3.1) 

Where i is the steady state current, n is the electron transfer number, F (96485 c/mol) is the 

Faraday constant, D is the diffusion coefficient, c is the concentration and a is the radius of 

the tip UME (ultramicroelectrode) (10 µm, Pt). One example of the Voltammetric redox and 

diffusion coefficients is summerized in Table 3.1 
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Table 3.1: Data refer to 50 µM of porphyrin with 5mM BATB supporting electrolyte in dry 1,2-DCE a 20mVs-1 

 
Concentration  

(50 µM) 

 
E1 vs SHE / V 

 
E2 vs SHE / V 

 
E3 vs SHE / V 

 
D / cm2s—1 

ZnTPP 0.30 0.61 ─ 3×10—6 

3.3 Reference electrodes 

The two types of reference electrodes used are Ag/AgCl and Ag/Ag2SO4. These are prepared 

by connecting the silver wire and a counter electrode to the positive and negative terminals, 

respectively, of a 1.5 V potential difference. Both wires are subsequently placed in an 

aqueous solution of NaCl plus a small amount of HCl or Li2SO4 plus amount of H2SO4. The 

resultant current flow produced a layer of the insoluble silver salt on the silver wire.  

3.4 The four electrode potentiostat 

The possibility to apply a constant polarisation by means of a four-electrode potentiostat has 

led to considerable advances in the field of liquid|liquid interfaces. Indeed, many 

experimental results on the electrical double layer or heterogeneous charge transfer across the 

liquid|liquid boundary were obtained at polarisable interfaces, the polarisability allowing to 

externally control the electrical state of the interface. The thermodynamic state of these 

interfaces is generally controlled by electrochemical polarisation using a 4-electrode system.[8-

10] The 4-electrode potentiostate features two reference electrodes measuring the potential in 

each phase, as well as two counter electrodes supplying the current. The reference electrodes 

are usually placed inside Luggin capillaries located close to the interface in order to minimise 

the solution resistance.[11]  

3.5 The electrochemical cell 

The electrochemical cell used in cyclic voltammetry and capacitance is a homemade 

cylindrical glass vessel with a geometrical area of 1.53 cm2 as pictured in Scheme 3.1. For all 

cyclic voltammetry electrochemical experiments Autolab PGSTAT 30 potentiostat (Metrohm, 

Switzerland) is used. The interface is polarised by means of the two reference electrodes 

REwater and REDCE and the current is measured via the two platinum counter 
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electrodes CEwater and CEDCE. The interface is situated between two Luggin capillaries to 

minimise the influence of the ohmic resistance in the solution. In order to ensure that a 

constant potential drop is established at the reference electrode|liquid interfaces, the aqueous 

phase and the organic reference electrolyte solution contain ions common to the electrodes, in 

general chloride or sulfate. The counter electrodes are platinum wires. Polarisable ITIES are 

formed when the aqueous electrolyte is very hydrophilic and the organic salt very 

hydrophobic. The range of polarisation potentials (the potential window) is limited by the 

transfer of ions constituting the supporting electrolyte. 

 

Scheme 3.1: Schematic representation of the four electrode glass cell. 

3.6 Cyclic voltammetry and potential window at liquid|liquid 

interfaces 

Cyclic voltammetry was first successfully applied to liquid|liquid interfaces by Samec et 

al.[12], who investigated the reversible ion transfer of tetraalkylammonium ions. It is now a 

widely used technique for the study of charge transfer reactions across these molecular 

interfaces. The cyclic voltammogram and capacitance-potential curve in Figure 3.1 show the 

potential window associated with the electrochemical cell. The interface can be considered 

polarisable within the limits -0.4 to 0.4 V. Outside this range the current rises as the ions 

constituting the supporting electrolytes are transferred. In order to determine the standard 

Gibbs energies of charge transfer and to estimate the Galvani potential difference across the 

water|organic interface of interest, it is necessary to use an extrathermodynamic assumption to 

define the energy scale. The commonly used “TATB” assumption states that 

tetraphenylarsonium (TPAs+) and tetraphenylborate (TPB–) have an identical standard transfer 
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energy at the water|1,2-DCE interface.[13] On the basis of this assumption, the formal ion 

transfer potential of tetramethylammonium cation (TMA+) at the water|1,2-DCE interface is 

estimated as 0.160 V.[14] The voltammetric response in Figure 3.1 (a) shows the current rise 

associated with the transfer of Li+ and TB– at positive potentials and SO4
2— or BA+ at negative 

potentials. The quality of polarisability of liquid|liquid interfaces is far behind that of 

electrode|solution interfaces, both in terms of the magnitude of residual current density and 

the width of the potential window.[15] 

 

Figure 3.1: (a) Cyclic voltammogram in the absence (full line) or in the presence (dashed line) of TMA+ (b) and 

capacitance-potential curve at the water/1,2-DCE interface.(c)the cell composition was as in Figure 3.2. 

Several salts can be used as aqueous or organic electrolytes, yielding various potential 

windows. With 1,2-DCE as an organic solvent, a potential range spanning over about 0.8 V is 

obtained when the electrolytes Li2SO4 and BATB (Scheme 3.2 (c)) are used in the water and 

organic phases respectively. These salts have been used in this work for most experiments, 

unless specified otherwise. A schematic representation of the blank cell, in the absence of 

reagents, is displayed in Scheme 3.2 (c). 
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2 4

2 4 2 4

10 mM LiCl 10 mM Li SO5 mM BATB
Ag AgCl 1 mM BACl H SO (pH 5) Ag SO Ag

1, 2 DCEwater water−

(c)

 

Scheme 3.2: (a) Molecular structures of the organic ions bis(triphenylphosphoranylidene) ammonium (BA+) (b) 

and tetrakis(pentafluorophenyl)borate (TB¯) (c) schematic representation of the blank electrochemical cell. 

3.7 Differential capacitance measurements 

Differential capacitance is an important characteristic parameter of electrochemical interfaces 
[16]. It provides an accurate measure of the excess charge at an electrode surface [17-19] and 

contains detailed information about microscopic properties of the electrode interface.[20-24] 

Most traditional differential capacitance techniques use phase-selective ac voltammetry [17, 18, 

25-29] where a sinusoidal perturbation voltage at a fixed frequency is superimposed on the dc 

voltage of cyclic voltammetry (CV); the in-phase and quadrature components of the resulting 

ac current are measured as functions of the dc voltage and the measured parameters are 

converted to (voltage dependent) Cdiff . If these measurements are performed at more than one 

ac frequencies, then the dc voltage scan of CV is repeated every time the frequency is 

changed.[17, 18, 25, 26] This approach only is practical for systems held in ‘‘long-term’’ 

stationary state that provide identical surface conditions in repetitive CV cycles and 
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throughout the time (at least several minutes in most cases) necessary to complete the 

multiple dc scans. Scheme 3.3 shows equivalent circuit for the interface between two 

immiscible electrolyte solutions, C is the capacity of the interface, Zf the faradaic impedance 

and Rs the solution resistance between the tips of Luggin capillaries.[9,30] Capacitance 

measurements at liquid|liquid interfaces are a particular case of admittance measurements, 

where the frequency dependent current response is monitored as a function of the Galvani 

potential difference between the two phases.[31] In the absence of heterogeneous charge 

transfer reactions (Zf = 0) the system can be modelled by a resistance and capacitance in 

series.[32, 33] 

                     

Scheme 3.3: Equivalent circuit for capacitance measurements in the presence (a) and absence (b) of 

heterogeneous charge transfer.  

Under perturbation by a small sine signal at a given frequency.[34] 

sin( )e E ωt=                                                                                                                          (3.2) 

Where E is the amplitude of the potential modulation and ω the frequency, the admittance of 

this circuit is: 

( )1
1 1 ( )

2
s

2
s

s

R ωC - iωCY = =
+ ωR CR +

iωC

                                                                                         (3.3) 

And the current magnitude is: 
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With the real and imaginary parts: 
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                                                                                                              (3.6) 

Hence the interfacial capacitance can be calculated as: 

=
2 2
re im

im

I + IC
ωEI

                                                                                                                          (3.7) 

In the presence of adsorbates, the interfacial capacitance is affected by the additional charge 

or changes in the dielectric properties at the interface.[11]Capacitance-potential curves such as 

the one in Figure 3.1 (b) measured by applying Equation (3.7) at various frequencies. 

Capacitance measurements can provide a qualitative evidence of the adsorption of charged 

species at the liquid|liquid interface. 

3.8 Two-phase reactions controlled by a common ion 

The interface polarization can be controlled by the distribution of ions, for example by 

dissolving a hydrophilic and a lipophilic salt featuring a common ion (either cation or anion) 

in water and in the organic solution respectively. In this way, the Galvani potential difference 

across the interface is given by the Nernst equation for the distribution of this common ion 

and the interface is polarized but non-polarizable. As illustrated in Scheme 3.4, the Galvani 

potential difference across the interface can be varied by employing different common ions. 

This method allows a chemical control of the Galvani potential difference without supplying 

an external voltage. The Galvani potential difference across the water|1,2-DCE interface 

calculated for different common ions in Chapter 4. 
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Scheme 3.4: Illustration of the interface polarization by various common ions at the water/1,2-DCE interface.  

Two-phase reactions were performed in small glass flasks with a volume of 10 ml. A flask 

was filled first with equal volume solution containing reactants, followed by the addition of 2 

ml of aqueous solution containing 10 mM HCl/5 mM H2SO4. The salts of the common ion, 

were added in the same concentration to the aqueous and 1,2-DCE phases, respectively. After 

stirring and further waiting for the clear separation of two phases, the aqueous and organic 

solutions were isolated from each other. The organic phase was directly subjected to the UV-

visible spectroscopic measurement (Ocean Optical CHEM 2000 spectrophotometer, quartz 

cuvette with a path length 10 mm), while the aqueous phase was first treated by excess NaI 

(equivalent to 0.1 M) prior to the UV-visible spectroscopic measurement.  

3.9 Mass spectrometric measurements 

Mass analysis was carried out on LCT time of flight mass spectrometer combining with an 

electrospray ionization source (Micromass, Manchester, UK), also in positive ionization 

mode.  The MS power supply was set at 3.0 kV. The ion optics parameters were set in order 

to maximize the signal. 
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Chapter 4 

Hydrogen peroxide generation by decamethylferrocene in 

biphasic system 

4.1 Introduction 

Electrochemical polarization of ITIES can be used to drive electron transfer and ion transfer 

reactions, but also to control adsorption phenomena. Hence, such interfaces have been 

considered as suitable models for investigating heterogeneous reactions occurring in 

biological systems, which are in many cases ion-coupled electron transfer reactions. Within 

aerobic living organisms, proton-coupled oxygen reduction consumes protons on one side of 

the biomembrane to generate a transmembrane proton gradient, leading to a transmembrane 

potential difference to drive the synthesis of adenosine triphosphate (ATP) for life activities.[1]  

The reduction of molecular oxygen (O2) is a technologically important research topic, 

particularly in the context of a hydrogen economy. The O2 reduction reaction (ORR) can 

proceed by a direct four-electron reduction to produce water or a two-electron reduction to 

give hydrogen peroxide, with the former pathway being highly desirable for fuel cell 

applications. The development of fuel cells for the combined production of electricity and 

hydrogen peroxide (H2O2) has been proposed recently.[2-4] H2O2 is an industrially important 

product that is used on a scale of about three million metric tons per year worldwide. Its 

production is currently based almost exclusively on the anthraquinone hydrogenation and 

oxidation process.[5] Many alternative routes have also been developed, one of which is the 

electrochemical cathodic reduction of O2
[5-7] in the presence of molecular electrocatalysts such 

as cobalt tetraphenylporphyrin,[8-10] cobalt porphine,[11] free base tetraphenylporphyrin[12] and 

anthraquinones.[13-18] In this Chapter, we present an electrochemical method for producing 

H2O2 at a soft molecular interface and some thermodynamic considerations of O2 reduction 

by DMFc at the water|1,2-DCE interface. We chose the ORR by ferrocene derivatives, a 

reaction that has been known for many years, to illustrate this principle.[19-21] The main 
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advantage of the present biphasic system is that the ORR can be stopped at the formation of 

H2O2, which can be directly extracted into the aqueous phase during the reaction. H2O2 is a 

strong oxidant that readily oxidizes ferrocene derivatives, which usually leads to the absence 

of H2O2 in the final products of the homogeneous oxidation of ferrocene derivatives by O2.[21] 

A reaction mechanism similar to an EC type reaction at the conventional electrode|solution 

interface is proposed, in which a proton transfer assisted by DMFc across the water|1,2-DCE 

interface is equivalent to the electrochemical step giving rise to a measurable current signal 

and the following irreversible oxygen reduction reaction represents the chemical step. The 

two steps are coupled at the interface, with protons supplied by the aqueous phase and 

electrons provided by DMFc in 1,2-DCE. The standard redox potentials of O2 reduction 

calculated on the basis of a thermodynamic cycle also suggests that the O2 reduction is largely 

favored in 1,2-DCE. 

When an interface is formed between Li2SO4 and bis(triphenylphosphoranylidene) ammonium 

tetrakis(pentafluorophenyl)-borate (BATB) as the hydrophilic and lipophilic electrolytes, 

respectively, in water and 1,2-DCE results in a potential window from -0.5 to 0.4 V, as shown 

by the dotted line in Figure 4.1. This window is determined by the transfer of Li+ and SO4
2- 

ions from water to 1,2-DCE at positive and negative potentials respectively, since BA+ and 

TB– ions are too lipophilic to transfer first. If an ion having a medium lipophilicity, for 

example decamethylferrocenium (DMFc+) in 1,2-DCE, is present it will transfer within the 

above potential window, and this transfer can be monitored by cyclic voltammetry, as shown 

by the full line in Figure 4.1.The electrochemical cells is depicted as follows: 

2 4

2 4 2 4

Cell 1

10 mM LiCl 10 mM Li SO5 mM BATB
Ag AgCl 1 mM BACl 5 mM DMFc 5 mM H SO Ag SO Ag
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Cell 2

10 mM LiCl 10 mM LiCl5 mM BATB
Ag AgCl 1 mM BACl mM DMFc mM HCl AgCl Agp q

 

Alternatively, the interface polarization can be controlled by the distribution of ions, for 

example by dissolving a hydrophilic and a lipophilic salt featuring a common ion in water and 

in the organic solution, respectively. In this way, the Galvani potential difference across the 

interface is given by the Nernst equation for the distribution of this common ion. 

 

Figure 4.1: Polarization of a water/1,2-DCE  interface by various common ions. The dotted and full lines show 

the potential window and transfer of DMFc+ due to polarization by external voltages, respectively. 

As illustrated in Figure 4.1, the Galvani potential difference across the interface can be varied 

by employing different common ions. This method allows a chemical control of the Galvani 

potential difference without supplying an external voltage. 

4.2 UV-Visible spectroscopic measurements 

Figure 4.2 (a) illustrates an equal-volume (2:2 mL), two-phase reaction under static conditions 

using TB– as the common ion. The Galvani potential difference across the water|1,2-DCE 

interface is fixed at potentials 0.53 V.[22] A fresh solution of 5 mM DMFc in 1,2-DCE is 

yellow. After 1 h in contact with 10 mM Li2SO4, the 1,2-DCE phase turns green, thus 
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indicating the oxidation of DMFc to DMFc+, whereas the aqueous phase remains colorless. 

The two phases were then separated and the UV-Visible spectrum of the 1,2-DCE solution 

measured. As can be seen in Figure 4.2 (b) this solution shows an absorption band due to the 

DMFc+ cation (λmax=779 nm) whereas the absorption peak for DMFc (λmax =425 nm) has 

disappeared and has been replaced by a very large absorbance in the UV range.  

 

Figure 4.2: (a) Two-phase reaction controlled by TB– ions at the beginning (left) and after 1 h (right). (b)UV-

Visible spectra of the 1,2-DCE phase (black full line) and the water phase before (red dotted line) and after (red 

full line) treatment with 0.1M NaI after 1 h of the two-phase reaction; the spectrum of freshly prepared 5 mM 

DMFc (black full line) is also included for comparison. 

Figure 4.3 illustrates the influence of the Galvani potential difference on this two-phase 

reaction when employing different common ions. The Galvani potential difference at the 

water|1,2-DCE interface is set at  0.53, 0.160, -0.074, -0.23, and -0.75 V by the ions TB–, 

TMA+, TEA+, TBA+ and BA+,[22] respectively, as shown in Figure 4.1. It is clear from the 

colour change in Figure 4.3, as well as the UV-Visible spectra (Figure 4.4), that the reaction 

rate follows the order TB– > TMA+> TEA+> TBA+ > BA+. The reaction is very fast when TB– 

is used as the common ion. The colour change of the 1,2-DCE solution from yellow to green 

starts immediately at the interfacial region upon contact of the aqueous solution with the 1,2-

DCE solution, thereby indicating that the O2 reduction by DMFc occurs at the interface. 
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Figure 4.3:Two-phase reaction controlled by different common ions (TB–,TMA+,TEA+,TBA+, and BA+ from left 

to right; 5 mM in both phases) after a) 0 min, b) 62 min, c) 17.5 h, and d) 102 h. 

When TMA+ and TEA+ are used as the common ion, however, the green colour of the 1,2-

DCE phase can only be seen after more than 10 h, and in the case of TBA+ the 1,2-DCE phase 

remains yellow after 102 h and only a weak absorption band at λmax=779 nm can be seen in 

the UV-Visible spectrum. In contrast, the 1,2-DCE phase remains yellow after 102 h with 

BA+ as the common ion but the aqueous phase is slightly green. Absorption measurements 

show that the appearance of an absorption band at λmax =779 nm in the UV-Visible spectrum 

of the aqueous phase is concomitant with a decrease of the absorbance of DMFc in the 1,2-

DCE phase (λmax =425 nm); only a negligible absorbance is observed for the DMFc+ ion in 

the 1,2-DCE phase. This suggests that the DMFc+ ion formed in the BA+ controlled 

experiment is transferred from 1,2-DCE to water, which coincides with the illustration shown 

in Figure 4.1 and 4.3 clearly shows the influence of the Galvani potential difference on this 

biphasic reaction, which reflects the potential dependence of either the proton partition or the 

heterogeneous O2 reduction, or both. A control experiment using 5 mM H2SO4 and 5 mM 

LiTB in water with 0.5 mM DMFc and 5 mM BATB in 1,2-DCE was carried out to elucidate 

the stoichiometry of the reaction. 
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Figure 4.4:UV-Visible absorption spectra of the 1,2-DCE phase in the course of two-phase reaction controlled 

by various common ions: TB– (a), TMA+ (b),TEA+ (c) ,TBA+(d), BA+ (e).(f) the UV-Visible  absorption spectra of 

the aqueous  phase before and after 72 hours of two-phase reaction using BA+ as the common ion. The spectra 

(a)-(e) were recorded in the quartz cuvette filling with 0.7 ml 1,2-DCE solution on the bottom and 0.7 ml 

aqueous solution on the top. The cuvette was covered by a Teflon cap and further sealed by Teflon tape in the 

course of measurement. 

 

 



Chapter 4 

82 

4.3 Calculation of the Galvani potential difference across the 

liquid|liquid interface  

As shown in spectroscopic measurements, two-phase reactions were performed, where the 

Galvani potential difference across the liquid|liquid interface was controlled by the 

distribution of all the ions between the two phases. In order to calculate this potential, we first 

considered the Nernst equation for the different ionic species i present in the system: 

o
w w 0,w o
o o tr,i wln i

i i

cRT
z F c

φ φ →Δ = Δ +                                                                 (4.1)  

At the same time, the mass balance for the different species is considered: 

Vo

Vw

ci,  initial
o + ci,  initial

w =
Vo

Vw

ci
o + ci

w                     (4.2) 

w o w
, totali i ic c c= +                                                                                                                        (4.3) 

Where ci,initial
o  and ci,initial

w  stand for the concenrations of i initially added in the organic and 

aqueous phases, respectively.  The concentrations at the equilibrium are denoted as ci
o  and 

ci
w .[23-25] In our particular case, the volume ratio between the organic and the aqueous phase  

Vo/Vw was always unitary, ergo it will be no further considered. On the other hand, the 

calculations are always performed assuming equilibrium conditions; therefore the mass 

balance equilibrium concentrations correspond to those involved in the Nernst equation for 

the ion transfer process. Additionally, the electroneutrality condition must be fulfilled and 

reads: 

w 0
j

i i
i

z c =∑                      (4.4) 

( )o w w w 0,w o
o o tr,1 expi i i

Fc c
RT

φ φ →⎛ ⎞⎛ ⎞= + Δ −Δ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
                                                                            (4.5) 
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Which after being combined with Equations. (4.1) and (4.3) finally yields  
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0
1 exp
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i
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c
z

F
RT

φ φ →

=
⎡ ⎤+ Δ −Δ⎢ ⎥⎣ ⎦

∑                                                                               (4.6) 

Thus, after solving Equation (4.4), the potential drop across the interface can be obtained. 

Nonetheless, prior knowledge of the standard ion transfer potential is required for all the ionic 

species. Taking this into account, the formal standard ion transfer potentials of BA+ was 

assumed to be 60 mV more negative than that of Cl−. Analogously, this value for TB− was 

taken as 60 mV more positive than that of Li+. This assumption is quite reasonable since it is 

found experimentally in repetition cyclic voltammograms that the potential window is limited 

by the transfer of Li+ and Cl– in its positive and negative edges, respectively. The Galvani 

potential difference between the two phases resulting from the distribution of all the ions is 

dominated by the partition of the common ion, here TB– anion as an example. With such a 

choice of electrolyte, this distribution Galvani potential difference can be calculated knowing 

the respective Gibbs energy of transfer of the different ionic species and is found to be equal 

to 0.54 V.  At equilibrium the acid HTB is extracted in the organic phase at a concentration of 

3.57 mM, as shown in Table 4.1. After a short stirring of the reaction flask, the two phases 

were separated from each other and were analyzed. Finally, from the potential value 

calculated, the concentrations for all the ions in both phases become accesible after applying 

Equations (4.1) and (4.2), as shown in Tables 4.1.  

Table 4.1: Calculated equilibrium concentrations after contact with 5 mM BATB in 1,2-DCE with 10 mM HCl 

and 5 mM LiTB in water. 

 cH
+

 /mM cBA
+

 /mM cTB
—

 /mM cLi
+

 /mM cCl
— /mM 

Water 6.42 2.02e-21 0.052 3.63 10.00 
1,2-DCE 3.57 5 9.94 3.58 3.02e-18 
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The Galvani potential difference across the water|1,2-DCE interface calculated for different 

common ions in Table 4.2 

Table 4.2: Calculated Galvani potential difference of different common ions at water/1,2-DCE (5 mM H2SO4 use 

for acidic media). 

  Ion Counterion (w) Counterion (o) 0w
o φΔ  (V) 

TB– Li+ BA+ 0.53 

TMA+ Cl– TPBCl– 0.160 

TEA+ Cl– ClO4
– -0.074 

TBA+ Cl– ClO4
– -0.23 

BA+ Cl– TB– -0.753 

4.4 Standard redox potentials of O2/H+ reduction reactions in 1,2-

DCE 

4.4.1 General case 

The redox potentials of various O2 reduction reactions in water have been very well known, 

whereas those of in organic media have not. Hence, the standard redox potential of various O2 

reduction reactions in 1,2-DCE with respect to the Standard Hydrogen Electrode (SHE) were 

estimated on the basis of thermodynamic considerations as summarized in Table 4.3.  First, 

let us consider a general redox reaction: 

( ) ( )O s R sne−+ →                                             (4.7) 

The standard redox potentials for the redox couple O/R in the aqueous phase and organic 

phase with respect to SHE are defined as:[26] 
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Where 0
O

, sμ (s = o or w) and 0, s
Rμ (s = o or w) denote the standard chemical potentials of O and 

R, respectively. 0,w
Hμ + and

2

0
Hμ represent the standard chemical potentials of proton in water and 

of hydrogen in gas phase. From Equations (4.8) and (4.9) we can get: 

( ) ( )
( )

0 0 0, o 0, w 0, o 0, w
O/R O/R O O R R

w0 0, w o  w o
O/R tr, O tr, RSHE

o w

SHE SHE

0,               

E E nF

E G G nF

μ μ μ μ

→ →

⎡ ⎤⎡ ⎤ ⎡ ⎤= + − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= + Δ −Δ⎣ ⎦

                                              (4.10) 

Where 0, w o
tr, OG →Δ and 0, w o

tr, RG →Δ denote the standard Gibbs energy of transferring O and R from 

water to organic phase, respectively. Equation (4.10) tells that the work needed to reduce O to 

R in an organic phase can be equivalent to the sum of the work needed to reduce O to R in 

water and the work needed to transfer both O and R from water to the organic phase. As 

reported previously, a series of redox potentials of ferrocene derivatives, such 

as
o0

SHEDMFc /DMFcE +⎡ ⎤⎣ ⎦   = 0.07 V in 1,2-DCE, have been estimated with respect to that of 

ferrocene.[27] Moreover, in the case of proton reduction reaction in 1,2-DCE, its standard 

redox potential corresponds to the Gibbs transfer energy of proton across the water|1,2-DCE 

interface expressed in the voltage scale, that is 0.55 V.[26]  

4.4.2 
2 2

0
w

O O SHE/E •−
⎡ ⎤
⎣ ⎦  

In the case of superoxide formation in a solution: 

( ) ( )2 2O g O se
•−−+ →                                                    (4.11) 

The standard redox potentials for the redox couple 2 2O O •−  in the aqueous (s = w) and 

organic (s = o) phase with respect to SHE are: 
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( )2 2
2 2 2

0 0 0, w 0, w 0
HHO /O O

w

O
SHE

1
2

E Fμ μ μ μ•− •− +

⎡ ⎤⎛ ⎞⎡ ⎤ = − − −⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
                                      (4.12) 

2 2
2 2 2

0 0 0, o 0, w 0
O HHO /O O

o

SHE

1
2

E Fμ μ μ μ•− •− +

⎡ ⎤⎡ ⎤ ⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟⎜ ⎟⎢ ⎥⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎝ ⎠⎣ ⎦
                                               (4.13) 

Where 
2

0, s
Oμ  (s = o or w) and

2

0, s

O
μ •−  (s = o or w) denote the standard chemical potentials of O2 

and 2O
•−

, respectively. 0, w
H

μ + and 
2

0
Hμ  represent the standard chemical potentials of proton in 

water and of hydrogen in gas phase. Arranging Equations (4.12) and (4.13) leads to: 

( )
2 2 2 2 2 2 22 2

o w w
0 0 0, w 0, o 0 0, w o

O /O O O O /O tr, OO /O SHE SHESHE

E E F E G Fμ μ•− •− •− •− •− •−
→⎡ ⎤ ⎡ ⎤ ⎡ ⎤= + − = −Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

            (4.14) 

The Gibbs energy of transfer of 2O
•−

can be calculated knowing that the respective solubility 

of oxygen in water and 1,2-DCE are is 2.5×10–4 mol dm–3 [28]and 1.39×10–3 mol dm–3 [29] 

respectively. The standard Gibbs energy of transfer of molecular oxygen from water to 1,2-

DCE is then –4.25 kJ mol–1. On the basis of the Born solvation model, we can calculate the 

Gibbs energy of transfer of the superoxide anion with calculate the Gibbs energy of transfer 

of the superoxide anion with 

22
2

2
0, w o 0, w o

o wtr, Otr,O  
0 O

1 1
8

FG G
rπε ε ε−

→ → ⎛ ⎞Δ = Δ + −⎜ ⎟
⎝ ⎠

g                                        (4.15) 

Which yields assuming that the radius of molecular oxygen is equal to the bond length 

(120pm) a value of 46.3 kJ mol–1. With 
2 2

w
0
O /O SHE

E •−
⎡ ⎤
⎣ ⎦  = −0.330 V, one obtain 

2 2

DCE
0
O /O SHE

E −
⎡ ⎤
⎣ ⎦g  ≈ 

−0.81 V in 1,2-DCE.  
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4.4.3 
2 2 2

0
O /H O

DCE

SHE
E⎡ ⎤⎣ ⎦ , 

2 2

0
O /H O

DCE

SHE
E⎡ ⎤⎣ ⎦   and 

2 2 2

0
H O /H O

DCE

SHE
E⎡ ⎤⎣ ⎦   

In the case of two-electron two-proton reduction of O2 to H2O2 in a solution as expressed 

below: 

( ) ( ) ( )2 2 2O g 2H s 2 H O se+ −+ + →                              (4.16) 

The standard redox potentials for the redox couple O2/H2O2 in the aqueous (s = w) and 

organic (s = o) phase are: 

( )2 2 2 2 2 2 2

w0 0 0, w 0, w 0, w 0
O /H O O H O HH HSHE

12 2 2
2

E Fμ μ μ μ μ+ +

⎡ ⎤⎛ ⎞⎡ ⎤ = + − − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
                                        (4.17) 

( )2 2 2 2 2 2 2

o0 0 0, o 0, o 0, w 0
O /H O O H O HH HSHE

12 2 2
2

E Fμ μ μ μ μ+ +

⎡ ⎤⎛ ⎞⎡ ⎤ = + − − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎣ ⎦
                         (4.18) 

Thus we get: 

( ) ( )
( )

2 2 2 2 2 2 2 2 2 2

2 2 2 2 2

o w0 0 0, w 0, o 0, w 0, o
O /H O O /H O H O H O H HSHE SHE

w0 0, w o 0, w o
O /H O tr, H O tr, HSHE

2 2

                     2 2

E E F

E G G F

μ μ μ μ+ +

+
→ →

⎡ ⎤⎡ ⎤ ⎡ ⎤= + − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎡ ⎤= − Δ − Δ⎣ ⎦

                              (4.19) 

The standard Gibbs energy of transfer of H2O2 across the water|1,2-DCE has been estimated 

to be close to that of H2O2 being about 15.4 kJ mol–1.[30]  Therefore, with
2 2 2

w0
O /H O SHE

E⎡ ⎤⎣ ⎦ = 0.695 

V, one gets 
2 2 2

DCE0
O /H O SHE

E⎡ ⎤⎣ ⎦ = 1.165 V in 1,2-DCE. Similarly, the standard redox potentials for 

the redox couples O2/H2O and H2O2/H2O can be estimated to be 
2 2

DCE0
O /H O SHE

E⎡ ⎤⎣ ⎦ = 1.738 V and 

2 2 2

DCE0
H O /H O SHE

E⎡ ⎤⎣ ⎦ = 2.312 V, respectively.  
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The standard redox potentials of various O2 reduction reactions are summarized in Table 4.3. 

It is clear that O2 reduction to 2O
•−

in 1,2-DCE will be more difficult that in an aqueous 

medium. Indeed, the reaction creates an anion that is less solvated than in water. In contrast, 

all the proton-coupled oxygen reduction reactions are favored in an organic phase, because of 

the elimination of charges. For instance, O2 reduction to 2O
•−

by DMFc in 1,2-DCE is largely 

unfavored, whereas in the presence of proton the O2 reduction is significantly accelerated on 

the thermodynamic background. 

Table 4.3: Calculated standard redox potentials of various O2 reduction reactions, and those of the proton 

reduction reaction are also compared. 

  Reaction w0
SHE

E⎡ ⎤⎣ ⎦  / V 
DCE

SHE

0E⎡ ⎤⎣ ⎦ / V 

( ) ( )2
1H s H g2e+ −+ →  0 0.550 

( ) ( )2 2O g O se
•−−+ →  −0.330 −0.600 

( ) ( ) ( )2 2 2O g 2H s 2 H O se+ −+ + →  0.695 1.165 

( ) ( ) ( )2 2O g 4H s 4 2H O se+ −+ + →  1.229 1.738 

( ) ( ) ( )2 2 2H O s 2H s 2 H O se+ −+ + → 1.763 2.312 

4.5 Cyclic voltammetric measurements at a platinum microdisc 

electrode 

Formation of the DMFc+ ion was also confirmed by the cyclic voltammetric response of a 

platinum microdisc electrode (diameter: 25 µm) in the organic phase, as illustrated in Figure 

4.5. After 4 h of reaction, a steady-state current wave, which consists of a larger cathodic 

steady-state current (ISC) and a smaller anodic steady-state current (ISA), is observed at the 



Hydrogen peroxide generation by decamethylferrocene in biphasic systems 

89 

same potential as for DMFc in 1,2-DCE. As DMFc and DMFc+ ion have about the same 

diffusion coefficient, the percentage of DMFc oxidized can be calculated from the ratio ISC / 

ISS to be 74%, that is, a resulting concentration of 3.7 mM. Furthermore, the sum of the 

magnitudes of ISC and ISA is very close to that of freshly prepared 5 mM DMFc in 1,2-DCE 

(ISS), as can be seen from Figure 4.5. This voltammetric result provides two indications. First, 

DMFc is oxidized to the DMFc+ cation, which stays in the 1,2-DCE phase. This coincides 

with the full line shown in Figure 4.1 in that the transfer of DMFc+ ion from 1,2-DCE to 

water only occurs at negative Galvani potential differences. 

 

Figure 4.5: CVs obtained with a 25-µm Pt microelectrode of freshly prepared 5 mM DMFc (full line) and the 

1,2-DCE phase after 4 h of the two-phase reaction (dotted line).  

Mass spectrometric measurements were carried out for the 1,2-DCE phase containing 5 mM 

DMFc and 5 mM BATB on an LCT time of flight mass spectrometer combining with an 

electrospray ionization source before and after running 2 hours of two-phase reaction with an 

aqueous phase containing 5 mM H2SO4 and 5 mM LiTB. The 1,2-DCE solutions were diluted 

by CH3CN by 1000 times prior to MS measurements. Second, it indicates that both DMFc 

and the DMFc+ cation are stable over the course of the two-phase reaction and that no 

decomposition takes place. This was also confirmed by mass spectrometric measurements in 

Figures 4.6 and 4.7. The mass spectra do not display any peaks for iron ions or a free 

cyclopentadienyl ring. 
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Figure 4.6: Full range mass spectra obtained (a) freshly prepared 5 mM DMFc and (b) and the 1,2-DCE phase 

after the two-phase reaction in a positive ionization mode. 

  

Figure 4.7: Magnified mass spectra of DMFc shown in Figure 4.6. 

4.6 Titrating the aqueous phases with sodium iodide (NaI) 

The isolated aqueous solution was titrated with NaI to detect the formation of H2O2. Thus, 

29.98 mg (corresponding to 0.1M, a large excess) of NaI was added to 2 mL of the solution 

and, as shown in Figure 4.8(b) the solution changed from colorless to pale yellow (flask 2). 

Adding NaI to an aqueous solution containing 5 mM LiTB and 5 mM H2SO4 in a controlled 

titration did not lead to any color change within the present experimental time scale, thus 

confirming the presence of H2O2 in the aqueous solution. H2O2 is a strong oxidant that can 

oxidize I– to I3
–, which can be visualized by adding starch to give a red-brown color (flask 3). 

I3
– can be also detected by UV-Visible spectroscopy, as shown in Figure 4.8. Taking a εmax 
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value of 2.76×104 M–1cm–1,[31] the concentration of I3
– can be calculated to be 0.070±0.003 

mM, which corresponds to that of H2O2 formed.  

 

Figure 4.8: UV-Visible spectra of the (a) 1,2-DCE and (b) water phase;  flask 1: water phase after 1 h of the 

two-phase reaction; flask 2: flask 1+0.1M NaI; flask 3: flask 2+starch; flask 4: 5 mM LiTB+5 mM H2SO4+0.1M 

NaI + starch. 

The partition coefficient for the extraction of H2O2 into water was examined by performing a 

titration measurement of the H2O2 partition between water and 1,2-DCE using NaI. This 

experiment reveals that the transfer of the H2O2 initially present in water to 1,2-DCE is 

negligible (Figure 4.9). H2O2 transfer between water and 1,2-DCE has been measured by 

taking equal volume of water and 1,2-DCE stirring for 10 minutes and waiting 30 minutes for 

separation of the two phases (Solution1), the aqueous phase was then separated. Solution 2 

was freshly prepared aqueous solution containing 0.1 mM H2O2 and 5 mM H2SO4. To 

solutions 1 and 2 excess amount of NaI was added .After waiting 60 minutes, the UV-Visible 

spectra of these of two solutions were measured. 
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Figure 4.9: UV-Visible measurement on the transfer of H2O2 between water and 1,2-DCE by adding NaI 

to.Solution 1: aqueous phase after stirring for 10 minutes in contact with 1,2-DCE ,Solution 2: freshly aqueous 

solution containing 0.1 mM H2O2 and 5 mM H2SO4. 

Reduction of H2O2 by DMFc and/or decomposition must therefore account for the low 

quantities observed. H2O2 is a strong oxidant in acidic solution and it can readily oxidize 

DMFc to DMFc+.[32] H2O2 can also decompose in a reaction that is catalyzed by most 

transition metals and their compounds.[6] The rate of reaction is controlled by the Galvani 

potential difference across the interface, which has been determined chemically using various 

salts with a common ion. The resulting concentration of H2O2 has been measured and shows a 

yield of 20% with respect to the concentration of the reducing agent (DMFc).  

4.7 Proton transfer by DMFc 

Figure 4.10(a) compares the cyclic voltammograms in the absence (dotted line) and presence 

(full line) of 5 mM DMFc in 1,2-DCE at a water|1,2-DCE interface under aerobic conditions. 

Dissolving DMFc in 1,2-DCE results in clearly three new features with respect to the blank 

one: (i) an irreversible positive current on the positive potential regime (Signal I), (ii) a 

positive current offset in the middle of the potential window (Signal II, that can be more 

clearly observed when using LiCl as the aqueous supporting electrolyte as shown in Figure 

4.10(b), Figure 4.11 and 4.12), and (iii) a current wave in the negative potential range with a 

formal potential of w
oΔ φ  = −0.26 V (Signal III). 
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Figure 4.10: (a) CVs obtained with Cell 1 in the absence (x = 0, dotted line) and presence (full line, x = 5, 20 

scans) of DMFc in 1,2-DCE. The scan rate was 50 mV s–1; (b) CVs obtained with Cell 2 in the absence (p = 0, q 

= 100, full line) and presence (p = 5, q = 100) of DMFc under air (dotted line) and oxygen free (dashed line) 

condition. The scan rate was 25 mV s–1. 

As shown in Figure 4.10(b), Signal I is independent of the presence of oxygen and therefore 

of subsequent chemical reactions that were published to yield H2 under anaerobic conditions 
[11] and H2O2 in aerated solutions.[33, 34] Indeed, the two curves are identical if the offset 

current of Signal II is subtracted. Signal III displayed in Figure 4.10(a) is associated with the 

transfer of DMFc+ across the water|1,2-DCE interface produced either subsequent chemical 

reactions (similar data for anaerobic conditions). The Gibbs energy of transfer for DMFc+ 

obtained from the mid-peak potential value is equal to 25.1 kJ mol–1. Therefore, any Galvani 

potential difference more positive than –0.26 V is enough to keep DMFc+ in the organic 

phase, for example to hinder its reaction with H2O2 in water. As reported previously a 

ferrocenium cation can be a Fenton reagent that reacts with H2O2 to form OH• in water.[35] On 

the other hand, as it was shown in Figure 4.10(a) that upon successive cycles the current 

magnitude of Signal I does not change significantly whilst that of Signal III increases 

continuously. This fact indicates that when cycling the potential to the positive side where 

Signal I is observed more and more DMFc+ is produced by the subsequent chemical reactions, 

thus leading to the increment of DMFc+  transfer current.  The CVs compared in Figure 

4.10(b) therefore indicate, that both proton and oxygen reduction reactions are initiated by the 



Chapter 4 

94 

same step, which is likely to be the assisted proton transfer (APT) or proton-coupled electron 

transfer (PCET) by DMFc across the water|1,2-DCE interface: 

( ) ( ) ( )DCE   w   DCEDMFc H DMFc-H+ ++ →                                                                                (4.20) 

This is supported by the pH dependence of Signal I, which shifts with the aqueous pH by 

approximately 60 mV/pH (Figure 4.11), in accordance to the Nernst equation for the ion 

transfer process occurring at the liquid|liquid interface. Essentially, this step corresponds to 

the protonation of DMFc but occurs heterogeneously in the present biphasic system, which 

gives rise to the experimentally observed electrical current, i.e. Signal I, with the four-

electrode methodology at the liquid|liquid interface. Indeed, it is well known that ferrocene 

compounds can be protonated either on the iron or on the cyclopentadienyl ring (Cp) or on 

both via an agostic position bridging iron and Cp.[36] 

 

Figure 4.11: CVs obtained with Cell 2 in the presence of DMFc in 1,2-DCE (p = 5) at various pH. The pH was 

adjusted by HCl. The scan rate was 50 mV s–1. 

In addition, the current magnitude decreases with increasing the aqueous pH, which is due to 

a lower concentration of proton in water at a higher pH and the proton diffusion starts to be a 

controlling factor. Also, at a higher pH the transfer of Li+ will take place prior to that of 
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proton at the positive potential limit, since the formal ion transfer potentials of proton and 

lithium across the water|1,2-DCE interface are w 0
o H
φ +Δ = 0.549 V and w 0

o Li
φ +Δ = 0.591 V, 

respectively.[37] 

4.8 Oxygen reduction in aerobic conditions 

In aerobic conditions, the generation of hydrogen peroxide (H2O2) has been verified by redox 

titration with sodium iodide [33] and scanning electrochemical microscopy.[34] Quantitative 

analysis of the reaction products after a two-phase reaction controlled by a common ion, as 

reported previously, the yield of H2O2 with respect to the amount of DMFc+ is about 38%.[33] 

One of possible sources of the extra DMFc+ might be generated by the further reaction of 

produced H2O2 with DMFc as reported previously.[38] Indeed, H2O2 in 1,2-DCE is an 

extremely strong oxidant with a standard redox potential of 2.312 V as calculated in Section 

4.4. In this sense, from a viewpoint of H2O2 production a key advantage of the present 

biphasic system is to allow a very efficient collection of H2O2 by separating DMFc/DMFc+ 

and H2O2 with a liquid junction between two adjacent phases, blocking effectively their 

further reactions.[33] Indeed, in the industrial Riedl-Pfleiderer process H2O2 formed by the 

autooxidation of 2-ethyl-9,10-dihydroxyanthracene in a hydrophobic solvent (called the 

working solution) is also separated by an aqueous extraction.[39] Moreover, at the polarizable 

water|1,2-DCE interface the separation of DMFc+ and H2O2 is reinforced by controlling the 

interfacial polarization either with an external voltage or with the partition of an ion. O2 

reduction by ferrocene derivatives in organic media in the presence of an acid, such as 

carboxylic acids (trichloroacetic and trifluoroacetic acids) [19, 20] and perchloric acid,[38, 40] has 

been known for many years, although the reaction mechanism is yet unresolved. For example, 

the initial reaction step has ever been assigned to be the protonation of ferrocene[20, 36, 41-43], 

which leads to tilting of the rings and thus facilitates the binding of O2 at Fe atom.[20] 

Considering that insertion of triplet O2 is spin-forbidden, Fomin has proposed that an 

intermediate hydrogen-bonded structure of O2 sandwiched between two protonated ferrocenes 

is formed and thus H2O2 is generated by concerted breakdown of two Fe-H and formation of 

two H-O bonds.[32] Preliminary density function theoretical (DFT) computations support the 

hypothesis that triplet molecular oxygen O2 approaches Fe-H directly via a delocalized triplet 

(diradical) transition state [DMFc··H··OO·]+ to yield H2O2 finally. Based on the experimental 
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results and theoretical considerations, a reaction pathway illustrated in Scheme 4.1 was 

proposed here for O2/proton reduction by DMFc at the water|1,2-DCE interface.  

 

Scheme 4.1: Mechanism of O2 and proton reduction by DMFc at the water/1,2-DCE interface. 

APT represents the assisted proton transfer across the water|1,2-DCE interface by DMFc and 

C is the following O2/proton reduction reaction. C can be simply considered as an irreversible 

chemical reaction responsible for the absence of backward proton transfer (proton transfer 

back to water from 1,2-DCE). In this case, Scheme 4.1 is similar to an EC type reaction at the 

conventional electrode|solution interface. The APT or PCET step is equivalent to E, which is 

followed by the irreversible O2/proton reduction reaction in 1,2-DCE designated C. Here C is 

a homogeneous reaction and does not involve any charge flux across the water|1,2-DCE 

interface. 

4.9 DMFc partition and Signal II 

One remaining issue associated with the present experimental system is the current offset in 

the middle of the potential window, i.e. Signal II in Figure 4.10, which is almost constant and 

potential-independent and can be clearly observed in Figures 4.11 and 4.12(a). The current 

offset starts from the electrochemical wave of DMFc+ from water to 1,2-DCE, and its positive 

sign suggests that it corresponds to a positive charge transfer from the aqueous to organic 

phase. Moreover, the magnitude of this current offset linearly increases with increasing DMFc 

concentration in 1,2-DCE (Figure 4.12(b)). 
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Figure 4.12: (a) Linear scan voltammogram obtained with Cell 2 at various concentrations of DMFc in 1,2-

DCE (p = 0, 2, 5, 10 and 20, pH 2. The scan started from the left at a rate of 20 mV s−1; (b) Dependence of the 

electrical current at 0 V on the DMFc concentration. 

To unravel its origin, a biphasic test without electrochemical control was first performed, in 

which a concentrated 1,2-DCE solution containing 50 mM DMFc was put in contact with an 

acidic aqueous solution (pH 2 adjusted by HCl) in a volume ratio of 5:2 (v/v, 1,2-

DCE|Water). Apparently, the aqueous phase turned greener with time, as shown in Figure 

4.13.  

 

Figure 4.13: Illustration of a biphasic test without electrochemical control: a 5 ml of 1,2-DCE solution 

containing 50 mM DMFc was put in contact with a 2 ml aqueous solution (pH 2, adjusted by HCl).  

UV-Visible spectroscopic measurement (Figure 4.14) revealed the formation of DMFc+ in 

water with a characteristic absorption band at 779 nm, which grows continuously with time. 

Because the interface is not polarized and the 1,2-DCE phase is ion-free, the transfer of ions 
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including protons from water to 1,2-DCE can only occur in the presence of a very lipophilic 

counter ion. The production of DMFc+ in water therefore most probably proceeds by the 

partition of DMFc from 1,2-DCE to water followed by oxidation with O2 on the aqueous side 

of the interface, as illustrated by Scheme 4.2. 

 

Figure 4.14: UV-Visible spectrum of the aqueous solution after the biphasic test shown in Figure 4.13 (the top 

solution in the right flask). 

Furthermore, the transfer of thus formed DMFc+ from water to 1,2-DCE, that is the IT (ion 

transfer) step in Scheme 4.2, gives rise to the positive current offset observed in the CV under 

the electrochemical polarization. 

 

Scheme 4.2: Mechanism of partition of DMFc and reaction with O2 in water. 
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Indeed, previous investigations have found that the electron transfer between ferrocene and 

hexacyanoferrate(III) at the liquid|liquid interface occurs by the same route, partitioning of 

ferrocene to water and reaction with hexacyanoferrate(III) homogenously on the aqueous side 

of the interface.[44] Considering that oxygen is more soluble in 1,2-DCE than in water, oxygen 

reduction by DMFc on the aqueous side of the interface is likely to be accompanied by 

oxygen transfer from 1,2-DCE and by transfer from the surrounding air atmosphere.[28, 45-47] 

Considering Scheme 4.2, the current offset is the steady state diffusion current due to DMFc+ 

transfer back from water, following the partition of DMFc from the organic phase and H2O2 

production on the aqueous phase of the interface. Thus, if one assumes the aqueous reaction 

between DMFc and O2/H+ to be fast, the production of DMFc+ in water is controlled by the 

rate of arrival of DMFc from the bulk organic phase to the interface. As a matter of fact, the 

steady state diffusion current increases monotonically with the DMFc concentration, 

indicating that the reaction is not limited by oxygen and proton supply. Accordingly, the 

sustained production of DMFc+ on the aqueous side of the interface can be envisaged as a 

diffusion–limited reaction, as follows: 

o, o, 0 o, 
o oDMFc DMFc DMFc
DMFc DMFc

c c cj D D
δ δ

∞ ∞−
= − ≈ −                                        (4.21) 

Where δ represents the diffusion layer thickness in the organic phase and D the diffusion 

coefficient. Naturally, DMFc+ will be afterwards transferred across the interface, giving rise 

to the aforementioned steady–state current.  

4.10 Mechanisms 

In proton/oxygen reduction, the reaction proceeds via two steps: first a heterogeneous proton 

transfer facilitated by DMFc from the aqueous to the organic phase, followed by a 

homogenous proton/oxygen reduction in the organic phase. This points out that the initial step 

of proton/oxygen reduction by ferrocene and its derivatives is their protonation, which has 

been fully characterised by the liquid|liquid electrochemical protocols. However, how the 

following proton/oxygen reduction proceeds had remained unresolved. 
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DFT computations support a reaction pathway involving protonated DMFc, DMFcH+, as an 

intermediate species, which reacts with proton/oxygen to produce hydrogen/hydrogen 

peroxide.  But DFT computations do not support the hypothesis that triplet molecular oxygen 

O2 coordinates to the iron atom or inserts into the Fe-H bond through a spin-forbidden 

mechanism. Instead, O2 approaches the activated hydride directly via a delocalized triplet 

(diradical) transition state [DMFc··H··OO·]+ (Scheme 4.3) with an activation barrier of 15 kcal 

mol–1 in the gas phase (14.6 kcalmol–1in the solvent).This process leads to the formation of 

decamethylferrocenium (DMFc+) and a hydrogen peroxyl radical. The generation of H2O2 

from the latter is then expected to proceed rapidly. Note that other possible mechanistic routes 

occurring via either a superoxoiron [DMFc–O2] (i.e. protonation last) or a superoxide 

intermediate [DMFc–O2H]+ (i.e. insertion into the Fe-H bond) are all spin-forbidden. 

Computational investigations of these processes were found to have considerably higher 

activation barriers than the mechanism proposed. 

 

Scheme 4.3: DFT computation on oxygen reduction by DMFc. 

The interface functions as a proton pump driven by the Galvani potential difference and the 

reaction pathway can be expressed as: 
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( ) 2(DCE) 2 (DCE)  DCEDMFc-H  O    DMFc-HO   + ++ →                                                                    (4.22) 

2 (DCE) (DCE) (w ) (DCE) 2 2(DCE)DMFc-HO    DMFc   H  2DMFc  H O  + + ++ + → +                            (4.23) 

4.11 Conclusions 

In summary, we have shown that 2O  reduction by DMFc occurs in the absence of any noble 

metal catalysts at a polarized water|1,2-DCE interface. In the case of DMFc, it has been 

shown that oxygen reduction at the polarized water|1,2-DCE interface produces 

decamethylferrocenium (DMFc+) and hydrogen peroxide (H2O2), on the basis of the two-

phase reaction controlled by a common ion with post-reaction product analyses.  

The reaction can be equivalent to an EC type mechanism at the conventional solid solution 

interface, with the assisted proton transfer by DMFc across the water|1,2-DCE interface 

equivalent to the E step. The following irreversible oxygen reduction reaction and/or proton 

reduction reaction involving protonated DMFc in 1,2-DCE represent the chemical step.
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Chapter 5 

Proton pump for oxygen reduction catalyzed by 5,10,15,20- 

tetraphenylporphyrinatocobalt(II) 

 
5.1 Introduction 
 
Transition metal macrocyclic compounds, especially metalloporphyrins,[1-4] form a major 

category of non-Pt catalysts for oxygen reduction. The electrochemical reduction of molecular 

oxygen is important especially for devices such as metal air batteries (e.g., Zinc-Air batteries), 

fuel cells and air cathodes in many industrial electrocatalytic processes (e.g., chlor-alkali 

cells). Cobalt porphyrins have been extensively studied because of their catalytic activity 

toward molecular oxygen (O2) reduction reaction (ORR).[3-26] The catalytic mechanism 

involves coordination of  O2 to the cobalt(II) centre, which allows electron delocalization 

from CoIII  to bound O2 to form a superoxide like adduct of CoIII-O2
• or CoIII-O2

•H+ in the 

presence of proton, followed by the reduction of the adduct either by an electrode or by a 

molecular electron donor.[15-17] In most cases, monomeric cobalt porphyrins catalyze the 

electroreduction of O2 to hydrogen peroxide H2O2 whereas dimeric cofacial cobalt porphyrins 

demonstrate the catalysis of four-electron reduction of O2  to water.[3, 4, 7, 12, 14, 17, 18, 26-29] 

Employing ferrocene derivatives as electron donors, O2 reduction catalyzed by various cobalt 

porphyrins has been investigated by Fukuzumi et al. in organic media in the presence of 

HClO4.[15-17] In the reaction scheme, the steps of electron coordination to form a superoxide 

adduct and its reduction by ferrocene derivatives to produce H2O2/H2O and CoIII are fast, and 

that of reducing CoIII by ferrocene derivatives is slow and rate limiting. Liquid|liquid 

interfaces offer the possibility to physically separate reactants, and to carry out interfacial 

reactions. Recently, O2 reduction by DMFc at a polarized 1,2-DCE interface has been 

reported.[25, 30-33] In this case, one reactant, namely protons, is located in the aqueous phase, 

whereas the second one, namely the electron donor, is located in the organic phase. We have 

shown in Chapter 4 that in this biphasic system the ORR probably proceeds through a proton 



Chapter 5  

 

105 

transfer from water to 1,2-DCE followed by O2 reduction by DMFc in 1,2-DCE.[30] H2O2 

formed is then extracted to the adjacent water phase immediately after its generation in 1,2-

DCE. The oxidation of DMFc to DMFc+ has also been confirmed by UV-Visible 

spectrophotometric and electrochemical measurements. In the case of O2 reduction by DMFc, 

different electrocatalysts, such as interfacially deposited platinum particles[34] 5,10,15,20-

tetraphenyl-21H,23H-porphyrin H2TPP,[33,35] 5,10,15,20-tetraphenylporphyrinatocobalt(II) 

[Co(tpp)] [25]and cobalt porphine (CoP)[36]  have been studied at polarized water|1,2-DCE 

interfaces. 

In this Chapter, we study the role of [Co(tpp)] as a catalyst for a two electron reduction of O2 

by ferrocene (Fc) and its two derivatives, 1,1’-dimethylferrocene (DFc) and DMFc at the 

polarized water|1,2-DCE interface (Scheme 5.1).  

The Voltammetric redox and diffusion coefficients are summerized in Table 5.1. The reaction 

was found to proceed by a catalytic mechanism similar to that proposed by Fukuzumi et al. 

for bulk reactions,[16, 17] but in which the water|1,2-DCE interface essentially acts as a proton 

pump, allowing the control of the amount of protons in 1,2-DCE by the Galvani potential 

difference across the interface. Moreover, this biphasic system also allows for the very 

efficient collection of H2O2 by extraction immediately after its formation in 1,2-DCE to the 

adjacent water phase, thus decreasing the possibility of degradation and further reaction with 

ferrocene derivatives. 

 

 

Scheme 5.1: Structure of ferrocene derivatives. 
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Table 5.1: Data refer to porphyrin and ferrocene derivatives  with 5 mM BATB supporting electrolyte in dry 1,2-
DCE a 20mVs-1. 

 
 

Concentration   
 

E1 vs SHE / 
V 

 
E2 vs SHE / V 

 
E3 vs SHE / V 

 
D / cm2s—1 

[Co(tpp)], 50  µM 0.94 1.4 1.9 5.4×10—6 
Fc, 5 mM  0.64 ─ ─ ─ 

DFc, 5 mM 0.48 ─ ─ ─ 
DMFc, 5 mM 0.034 ─ ─ ─ 

 

5.2 Electrochemical measurements 
The cyclic voltammograms obtained at the water|1,2-DCE interface in the absence (dashed 

line) and presence (full line) of [Co(tpp)] (500µM) in 1,2-DCE, using LiCl (10 mM) and 

bis(triphenylphosphoranylidene)-ammonium tetrakis(pentafluorophenyl) borate (BATB, 5 

mM) as the aqueous and organic supporting electrolytes, respectively, can be seen in Figure 

5.1 (Cell 1 in Scheme 5.1). The aqueous pH was adjusted to 2 by the addition of HCl. The 

voltammetric response in the absence [Co(tpp)] is the classical potential window observed at 

the water|1,2-DCE interface. Adding [Co(tpp)] (500 µM) in an oxygen bubbled solution of 

the organic phase shows significant Faradaic charge transfer reaction compared to the 

blank.[33] The corresponding differential capacitance measurements revealed that adsorption 

of [Co(tpp)] at the interface occurs in the available potential window, as shown in Figure 5.2, 

the differential capacitance curve in the presence of [Co(tpp)] shows specific 

transfer/adsorption of [Co(tpp)] at the interface and manifests itself by perturbations of the 

differential capacitance. 

 

( )

Cell 1

5 mM BATB10 mM LiCl 10 mM LiCl
Ag AgCl 1 mM BACl M Co tpp 10 mM HCl AgCl Agx μ ⎡ ⎤⎣ ⎦

 

( )
2 4

2 4 2 4

Cell 2

5 mM BATB10 mM LiCl 10 mM Li SO

Ag AgCl 1 mM BACl M Co tpp 0.5 mM H SO Ag SO Ag

mM DMFc

x

y

μ ⎡ ⎤⎣ ⎦
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( )

Cell 3

5 mM BATB10 mM LiCl 10 mM LiCl
Ag AgCl 1 mM BACl M Co tpp 10 mM HCl AgCl Ag

mM DFc / Fc

x

z

μ ⎡ ⎤⎣ ⎦
 

Scheme 5.2: Composition of electrochemical cells used. 

 

 
Figure 5.1: Cyclic voltammograms (50mVs-1) Cell 1: in the absence (x=0, dashed line) and presence (x=500, 

full line) of [Co(tpp)] in 1,2-DCE. 

 

 
Figure 5.2: (a) differential capacitance and (b) alternating current (ac) voltammetry curves using Cell 1: in the 

absence (x=0, dashed line) and presence (x=500, full line) of [Co(tpp)] in 1,2-DCE. 
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The voltammetric responses of DMFc, DFc and Fc in the absence (dashed line) and the 

presence of [Co(tpp)] (full line) at the water|1,2-DCE interface are compared in Figure 5.3-5.5. 

In the presence of only DMFc in 1,2-DCE, a significant current increase (full line) relative to 

the blank (dotted line in Figure 5.1) can be observed at the positive potentials, as shown in 

Figure 5.3. This current response arises from proton transfer followed by O2 reduction by 

DMFc, as previously reported.[30] This reaction produces decamethylferrocenium (DMFc+) in 

1,2-DCE, whose transfer across the water|1,2-DCE interface resulted in a current wave at the 

negative potential ( w
o 1/2

Δ φ = -0.26 V). Further adding [Co(tpp)] in 1,2-DCE led to an increase 

in the current at the positive potentials, as well as an increase of the ion transfer current of 

DMFc+. These results mean that more DMFc+ was generated in the presence of [Co(tpp)], 

highlighting the catalytic role of [Co(tpp)] on the O2 reduction by DMFc. 

 

 
Figure 5.3: Cyclic voltammograms (50mVs-1) using Cell 2: in the presence of only DMFc (x=0, y=5, dashed 

line) and both DMFc and [Co(tpp)] (x=50, y=5, full line). 

 

For DFc and Fc (Figures 5.4 and 5.5) that are weaker reductants than DMFc, a small 

voltammetric wave was observed at a half-wave potential of -0.05 V and 0.04 V, respectively, 

when only DFc or Fc is present in 1,2-DCE. Each wave presents a peak-to-peak separation 

close to 60 mV and the peak current is linearly proportional to the square root of the scan rate.  
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Figure 5.4: Cyclic voltammograms (50 mVs-1) using Cell 3: in the presence of only Fc (x=0, z=5,dashed line) 

and both Fc and  [Co(tpp)] (x=50, z=5, full line). 

 

Figure 5.5: Cyclic voltammograms (50 mVs-1) using Cell 3: in the presence of only DFc (x=0, z=5,dashed line) 

and both DFc and [Co(tpp)] (x=50, z=5, full line). 

 

These results suggest that the two waves result from a monovalent ion transfer across the 

water|1,2-DCE interface, considering that no redox process could occur under the present 

experimental conditions. Therefore, they can be assigned to the ion transfer of DFc+ and Fc+, 

formed slowly in the air-saturated solution. Similar to DMFc, if [Co(tpp)] is present the ion 

transfer currents of DFc+ and Fc+ increase remarkably, suggesting that more DFc+ and Fc+ are 

produced. It convincingly verifies the catalytic role of [Co(tpp)] on the O2 reduction, since it 
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is known that DFc and Fc do not react with O2 or react slowly, that is, days, in the presence of 

a strong acid.[16, 17] 

 5.3 Shake flask experiments with Fc, DFc and DMFc 
 
Shake flask experiment [Co(tpp)] catalyzed O2 reductions by Fc, DFc and DMFc at a 

water|1,2-DCE interface at which the polarization was chemically controlled by a common 

ion, so called shake flask experiments, were performed as reported previously.[30] Dissolving 

lithium tetrakis( pentafluorophenyl)borate (LiTB, 5 mM) and HCl (10 mM) in water and 

BATB (5 mM) in 1,2-DCE (water/DCE=1:1 in volume), the Galvani potential difference 

across the interface is fixed by the common ion TB–at a potential 0.54 V.[30, 37] At this 

potential, proton initially present in water will partition into 1,2-DCE, leading finally to a 

distribution of proton in two phases according to the Nernst equation. If only [Co(tpp)] is 

present in 1,2-DCE, a Soret band (λmax=427 nm) and a Q band (λmax =540 nm) are observed 

after the shake flask experiment, which demonstrates a bathochromic shift relative to those of 

a fresh [Co(tpp)] solution at 410 nm and 526 nm, as shown in Figure 5.6.  

 

Figure 5.6: Absorption spectra of 1µM [Co(tpp)] in 1,2-DCE freshly prepared (full line) and after a shake flask 

experiment (dotted line). 

This shift corresponds to proton facilitated oxygenation of [Co(tpp)] to form an adduct 

[{CoIII(tpp)+-O2
–}]. [16, 17, 38] As a control experiment, O2 reduction by DMFc, DFc and Fc in 

the absence [Co(tpp)] was also performed in Figures 5.7 ,5.8 and 5.8. O2 reduction by Fc and 

DFc occurs as evidenced by the detection of Fc+ at 620 nm and DFc+ at 652 nm, respectively, 
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as shown in Figures 5.8 and 5.9. However, the reaction proceeds rather slowly and it takes 

several hours to observe the evolution of Fc+ and DFc+ absorption bands. In contrast, O2 

reduction by DMFc is much faster, as demonstrated in Figure 5.7, and in tens of minutes all of 

the DMFc is consumed. The difference in O2 reduction ability for Fc, DFc and DMFc is in 

agreement with that previously reported.[16, 17] 

 

 
Figure 5.7: Absorption spectra of 5 mM DMFc in 1,2-DCE freshly prepared (full line) and after shake flask 

experiments (doted line) for DMFc (30 minutes). 

 
 

 
 

Figure 5.8: Absorption spectra of 5 mM DFc in 1,2-DCE freshly prepared (full line) and after shake flask 

experiments (dotted line) for DFc (24 hours). 
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Figure 5.9: Absorption spectra of 5 mM Fc in 1,2-DCE freshly prepared (full line) and after shake flask 

experiments (dotted line) for Fc (24 hours). 

Upon an addition of [Co(tpp)], the rise of the absorption bands at 779, 652 and 620 nm, 

corresponding to DMFc+, DFc+ and Fc+, respectively, could be immediately observed, as 

displayed in Figure 5.10.  

 
Figure 5.10: Absorption spectra of the 1,2-DCE phase after 30 minutes of shake flask experiments in presence 

of 50 µM [Co(tpp)] with 5 mM DMFc (dashed line), DFc (dotted line) and Fc (full line). 

 

A time profile of the formation of Fc+ in the absence and presence of [Co(tpp)] (compared in 

Figure 5.11) shows that the oxidation of Fc is much faster in the presence of [Co(tpp)]. 
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Figure 5.11: Time profile of the formation of Fc+ in the absence (○) and presence (●) of 50µM [Co(tpp)] in 1,2-

DCE during the shake flask experiments. 

These results suggest that [Co(tpp)] has a catalytic role in the O2  reduction by ferrocene 

compounds. As for the top aqueous phase, excess NaI (equivalent to 0.1M) was added and 

UV-Visible spectroscopic measurements revealed the absorption characteristics of I3
¯ 

(λmax=287, 352 nm), as shown in Figure 5.12.  The detection of I3
¯confirms the production of 

H2O2 in the shake flask experiment, since H2O2 is a strong oxidant that can oxidize I¯ to I3
¯.[17, 

30] One more point should be mentioned is that in the shake flask experiments, the Q band of 

[Co(tpp)] (λmax=526 nm) was observed for all three ferrocene compounds, whereas that of 

[Co(tpp)]+ (λmax =540 nm) was not, as shown in Figure 5.10. This result suggests the 

reduction of [Co(tpp)]+ by Fc and its two derivatives.  
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Figure 5.12: Absorption spectra of the aqueous phase after treated with excess NaI after 30 minutes of shake 

flask experiments in presence of 50µM  [Co(tpp)] with 5 mM DMFc (dashed line ), DFc (dotted line) and Fc 

(full line). 

5.4 Mechanisms 
 
Based on above experimental results, it can be concluded that two-electron reduction of 2O to 

H2O2 by DMFc, DFc and Fc, could be effectively catalyzed by [Co(tpp)]. This is in agreement 

with a conclusion that made previously that monomeric cobalt porphyrins only catalyze two-

electron reduction of O2.[16, 17] One of advantages of the present system is that the liquid|liquid 

interface acts as a proton pump, controlled by the interfacial Galvani potential difference, 

driving the proton transfer from water to 1,2-DCE. The transfer of proton could be favoured 

by [{CoIII(tpp}+-O2
¯] to form [{CoIII(tpp}+-O2H•], followed by its reduction by ferrocene 

derivatives to generate H2O2 and regeneration of [Co(tpp)] from [CoIII(tpp)]+ by ferrocene 

derivatives, see Equations (5.1)–(5.4): 

                                                                       

( ) ( )
+ +

w DCEH H→                                                                                                              (5.1) 

( ) ( ) ( ) ( ) ( ){ }
( )

++ III •
2 2DCE DCEDCE DCE

Co tpp O H Co tpp -O H⎡ ⎤⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎣ ⎦
+ + →                                              (5.2) 

( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( )

+III • + ++2 2 2DCEDCE DCE DCEDCEDCE
Co tpp -O H Fc H Co tpp +H O Fc+⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎣ ⎦⎣ ⎦

+ + →           (5.3) 

 
( ) ( ) ( ) ( ) ( ) ( )

+
DCE DCEDCE DCECo tpp Fc Co tpp Fc+⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦+ → +                  (5.4)        
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This reaction chain leads to a reaction cycle displayed in Scheme 5.4, which is very similar to 

that proposed by Fukuzumi et al. for the homogenously [Co(tpp)] catalyzed O2 reduction by 

ferrocene derivatives.[16, 17]  

 

Scheme 5.4: Reaction scheme of the proton pump controlled by the Galvani potential difference for [Co(tpp)] 

catalyzed oxygen  reduction by ferrocene compounds. IT=ion transfer, ET=electron transfer. 

As proven by the quantity of H2O2 generated by DMFc, DFc and Fc, which follows an order 

of DMFc>DFc>Fc with a molar ratio of 4:1.3:1 (Figure 5.12); the reduction of [CoIII(tpp)]+ by 

DMFc, DFc or Fc is the rate limiting step.  

However, it should be mentioned that the reaction rate is in part controlled by the mass 

transport of proton across the water|1,2-DCE interface [Equation(5.1)]. Shake flask 

experiments indicated that the rate of formation of ferrocenium derivatives was dependent on 

the Galvani potential difference tuned by using various common ions.  
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Figure 5.13: Time profile of the formation of Fc+,DFc+ and DMFc+ in presence 50µM [Co(tpp] in 1,2-DCE 

during the shake flask experiments. 

5.5 Conclusion 
The interface essentially acts as a proton pump controlled by the Galvani potential difference 

across the interface, driving the proton transfer from water to 1,2-DCE, which is followed by 

[Co(tpp)] catalyzed O2 reduction by Fc, DFc and DMFc to produce H2O2. The catalytic 

mechanism is similar to that proposed by Fukuzumi et al. for bulk reactions.[16, 17] This 

interfacial system favours the collection of H2O2, by extraction immediately after its 

formation in 1,2-DCE to the adjacent water phase, thus preventing degradation and further 

reaction with ferrocene derivatives, which for bulk systems usually leads to an overall 

reaction stoichiometry higher than 2.[16, 33] 
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Chapter 6 

Cobalt(II) Octaethylporphyrin catalysis for dioxygen 

reduction at liquid|liquid interfaces 
 

6.1 Introduction 
Oxygen reduction reaction is a spin-forbidden process, which is kinetically slow at ambient 

temperature unless a catalyst is present. Number of metalloporphyrins have been chemically 

synthesized [1-3] and their catalytic activity has been investigated extensively using the 

modified electrode methodology[4-15]or using molecular electron donors, such as Fc and its 

derivatives, in homogeneous solutions.[16-18] Reduction of O2 by Fc in acidic solutions 

proceeds rather slowly, and the presence of catalytic amount of metalloporphyrins can 

significantly accelerate the reaction rate.[18-21] 

Another way to study the catalytic properties of different porphyrins as showed in Chapter 4 

and 5 is to study oxygen reduction at polarised liquid|liquid interfaces. Indeed, such 

interfaces can be polarised i.e. the potential difference between the two phases can be 

controlled and furthermore they offer the possibility to physically separate reactants, such as 

the protons in water and the electron donors in the organic phase to carry out interfacial 

proton-coupled electron transfer reactions.  

Electrochemistry at liquid|liquid interfaces is a new type of bio-inspired electrochemistry.  

Indeed, the electrochemical control of ITIES provides a very efficient method to control the 

rates of either proton or electron transfer across the interface that are both potential dependent. 

On the other hand, ORR is a proton-coupled electron transfer (PCET) reaction. When 

studying ORR on a solid electrode, one measures by amperometry the electron transfer rate 

but it is not possible to control the proton transfer step by controlling the electrode potential. 

Electrochemistry at a liquid|liquid interface, has manifested recently itself as a unique 

approach to study PCET reaction with the possibility of locating protons in the aqueous phase 

and electron donors in the organic phase.[22]  
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In this Chapter, proton-coupled oxygen reduction by Fc involving cobalt porphyrin catalyst, 

2,3,7,8,12,13,17,18-Octaethyl-porphyrin cobalt(II) (CoOEP), at a polarized water|1,2-DCE 

interface is reported. CoOEP serves as a redox catalyst like conventional cobalt porphyrins, 

activating on O2 reduction via coordination with the cobalt(II) (CoII) center by the formation 

of a superoxide structure. The present system provides an example of molecular 

electrocatalysis for oxygen reduction; molecular catalyst is a molecule like in homogeneous 

catalysis and electrocatalysis because the ORR depends on the applied Galvani potential 

difference between the two phases. 

 

6.2 Interfacial electron transfer  
 
Figure 6.1(a) shows the cyclic voltammogramme of the base electrolyte, HC1 in water and 

BATB in 1,2-DCE. 

Cell 1

10 mM LiCl 5 mM BATB
Ag AgCl 10 mM HCl AgCl Ag

M CoOEP1 mM BACl x 
 

From the voltammogram in Figure 6.1, two signals were observed on the forward scan, with 

wave (A) and the other signal was observed on the reverse sweep, peak (B). 

The first plateau (wave A) could correspond to a catalytic current from the presence of both, 

protons and [(Co-O2)-OEP]. It is also clear that the magnitude of this signal is strongly 

dependant on the concentration of the porphyrin but not on the pH. 

 
Figure 6.1: Cyclic voltammograms (50 mV s-1) curves obtained using Cell 1(a) in the absence (x=0, dashed line) 

and presence (x=200, full line) of CoOEP in 1,2-DCE (b) at various scan rate: 0.02, 0.03, 0.05, 0.064,0.08 

and 100 mV s−1. 
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This also indicates that the reaction might be limited by the diffusion and further adsorption 

of CoIIOEP form the bulk solution to the interface. The positive current signal at the end of 

potential window corresponds to a proton-coupled electron transfer (PCET) reaction, in which 

proton transfer and electron transfer are tightly coupled. PCET reaction that depends on the 

interfacial polarization, i.e. on the potential difference applied between the two phases. 

 

 

Figure 6.2: The relationship between the current of (a) forward and (b) return peak as a function of square root 

of scan rate. 

 

The voltammetric response in Figure 6.1(b) shows typical CVs at the ITIES containing 

CoOEP in the organic phase and illustrates the influence of the scan rate, v, on forward (A) 

wave and reverse (B) peak current. The forward wave current (A) in Figure 6.2(a) was found 

proportional to the square root of scan rate, according to Randles-Sevcik equation[23] 

indicating a semi-linear diffusion controlled process. 

Adsorption/transfer characteristic of CoOEP at water|1,2-DCE was studied by differential 

capacitance measurements (Figure 6.3) and perturbation of interfacial capacitance observed 

(in presence of faradic current). Specific transfer/adsorption of CoOEP at the interface 

manifests itself by an increase of the differential capacitance. The symmetrical potential 

dependence of the capacitance around the zero charge was strongly affected the addition of 

CoOEP, suggesting that the porphyrin molecules are adsorbed at the molecular boundary 

between water and 1,2-DCE, introducing substantial changes in the potential distribution 

across the interface.  
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Figure 6.3: (a) differential capacitance and (b) ac voltammetry curves using Cell 1: in the absence (x=0, dashed 

line) and presence (x=200, full line) of CoOEP in 1,2-DCE. 

 

Cyclic voltammograms of CoOEP at various acidic pH values as shown in Figure 6.4. The 

wave potential shifts 60mV/pH toward higher potential value when the pH in the aqueous 

phase increases. This shift confirms the implication of a proton. It is also interesting to notice 

that the positive current is rather constant and not affected by the pH, whereas the reverse 

peak appears larger at high pH values. 

 
Figure 6.4: CVs obtained (50 mV/s) at a water/1,2-DCE interface with cell 1 when (x = 200) at different pH.  

 

The effect of CoOEP concentration on the signal (A) was studied in Figure 6.5. The required 

amount of CoOEP and 5mM BATB solution was directly added to the organic phase to adjust 

the desired CoOEP concentration and the transfer was then measured by cyclic voltammetry. 

The measured peak currents also linearly increase with the CoOEP concentration. This 
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confirms that the ion transfer reaction limited by the diffusion of CoOEP species in the 

organic phase.  

 
Figure 6.5: Linear dependence of the irreversible current at 350 mV on the CoOEP concentration at a 

water/1,2-DCE interface with Cell 1 in various concentrations of CoOEP. 

 

The irreversible current wave as shown in Figure 6.6 enhanced under oxygen-saturated 

conditions compare to nitrogen-saturated, thereby producing more [(Co-O2)-OEP]. This 

voltammetric data undoubtedly shows that this irreversible wave results from the combined 

presence of CoOEP and O2.  

 
Figure 6.6: CVs obtained at a water/1,2-DCE interface using cell 1 with  x=200 under N2-saturated (full line) 

and O2-saturated (dashed line) conditions.  

 

The irreversible current depends on the oxygen concentration, and it is also directly 

proportional to the CoOEP concentration when O2 and protons are in excess. CoOEP 
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catalyzed O2 reductions at a water|1,2-DCE interface at which the polarization was 

chemically controlled by a common ion, so called shake flask experiments, were performed as 

reported previously.[24]  

 

6.3 Two-phase reactions controlled by common ion 

Two-phase reactions were performed by 1,2-DCE solution containing 5 mM BATB and 200 

μM  CoOEP in contact with an aqueous solution containing 5 mM LiTB and 10 mM HCl in a 

small flask. The Galvani potential difference across the water|1,2-DCE interface was 

polarized at a very positive value of 0.54 V by two salts, LiTB and BATB, having a common 

anion of TB. At such potential values, protons can be transferred from water to 1,2-DCE and 

the aqueous TB– ions act as a proton pump dragging with them as they transfer to the organic 

phase. As shown in Figure 6.7 after 30 minutes stirring of the reaction flask, the two phases 

were separated from each other and were analyzed. When only CoOEP was present, the 

colour and UV-Visible spectrum of 1,2-DCE phase changed, indicating that the reaction took 

place, and a red shift of both Soret (λmax=390 nm) and Q bands (λmax =515, 550 nm) were 

observed.[25-28]  Its UV-Visible spectrum, which is ascribed to the oxygenation of [CoII(OEP)] 

by the formation of superoxide adduct considered formally as [(CoIII-O2)-OEP] at λmax=409 

nm, 523 and 557 nm, as shown in Figure 6.8. 

 

 

 

Figure 6.7: Two-phase reaction controlled by TB– partition (a) before (b) after 30 minutes shaking: the top 

aqueous phase containing 5 mM LiTB + 10 mM HCl; the bottom 1,2-DCE phase contained 5 mM BATB + 200 

M CoOEP in the flask. 
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Figure 6.8: Absorption spectra of 5 µm CoOEP in 1,2-DCE freshly prepared (full line) and after a shake flask 

experiment (dotted line). 

 

The isolated aqueous solution was titrated with NaI to detect the formation of H2O2. Thus, 

0.1M of NaI was added to 2 mL of the solution and, the solution changed from colourless to 

pale yellow. Adding NaI to an aqueous solution containing 5 mM LiTB and 10mM HCl in a 

controlled titration did not lead to any colour change within the present experimental time 

scale, thus confirming the presence of H2O2 in the aqueous solution. I3
— can be also detected 

by UV-Visible spectroscopy, as shown in Figure 6.9 (sharp absorption band at λmax =287, 352 

nm). Taking a max value of 2.76×104 M–1·cm–1,[29] the concentration of  I3
—  can be calculated 

to be 0.023 mM. 

 
Figure 6.9: Absorption spectra of the aqueous phase after treated with excess NaI after 30 minutes of shake 

flask experiments in presence of 200 µM CoOEP. 
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A time profile of the formation of H2O2 in the presence of CoOEP in the case of TB at two 

pH value was observed in Figure 6.10, which shows that production of H2O2 occurs more in 

acidic water.  

 
Figure 6.10: Time profile of the formation of H2O2 during the shake flask experiments after 30 minutes of shake 

flask experiments by TB common ion in presence of 200 µM CoOEP. 

 

As demonstrated in Figure 6.10, titration of the aqueous solutions by excess NaI suggested 

that the amount of H2O2 produced decreases with increasing the aqueous pH, which is due to a 

lower concentration of proton in water at a higher pH and the proton diffusion starts to be a 

controlling factor for oxygen reduction reaction. 

Based on above experimental results, it can be concluded that two-electron reduction of O2 to 

H2O2 catalyzed by CoOEP. Complexation of CoII could occur with O2 to form CoIIIO2
•. This 

complex that adsorbs at the interface with the oxygen pointing to the aqueous phase. At low 

pH complex likes to protonate and produce CoIII-O2H+. From Table 6.1, we know the redox 

potential of CoOEP is 0.69 V, which is close to the redox potential of ferrocene (0.64 V). 

Thus, CoOEP play a similar role as the ferrocene, [CoIII-O2H]+ is reduced by CoOEP. The 

hydroperoxide is attacked by protons to give H2O2. The reaction mechanism is in  agreement 

with a conclusion that made previously by Osakai  for the interfacial electron transfer (ET) 

reaction by simulation of cyclic voltammograms at water|oil interface.[30]  

 

 

 

 

 

 



Cobalt(II) Octaethylporphyrin catalysis for dioxygen reduction at liquid/liquid interfaces 

 

127 

Table 6.1: Data refer to 50 µM of porphyrins with 5mM BATB supporting electrolyte in dry 1,2-DCE a 20mVs-1 

 
 
Concentration  

(50 µM) 

 
E1 vs SHE / V 

 
E2 vs SHE / V 

 
E3 vs SHE / V 

 
D / cm2s—1 

CoOEP 0.69 1.23 1.83 ─ 

 

6.4 CoOEP catalyzed oxygen reduction by Fc 

Figure 6.11 compares the CVs obtained under different experimental conditions. First, in the 

presence of only Fc in 1,2-DCE under aerobic conditions a small voltammetric wave with a 

half-wave potential at o
w1/2 = 0 V was observed, which corresponds to the transfer of 

ferrocenium (Fc+) produced by a slow oxidation of Fc in air and in solution.[22, 31]  

Cell 2

5 mM BATB 10 mM LiCl
10 mM LiCl

Ag AgCl M CoOEP 10 mM HCl AgCl Ag
1 mM BACl mM Fc

x

y


 

 

Figure 6.11: (a) Cyclic voltammetry obtained at a water/1,2-DCE interface with cell 2: x = 50 and y = 0 (blue 

line), x = 0 and y = 5 (black line) and x = 50 and y = 5 (red line ); (b) Same with x = 50 and y = 5 under air-

saturated (black line), N2-saturated (red line) and O2-saturated (blue line) conditions. 

 

However, when both Fc and CoOEP were dissolved in 1,2-DCE, an irreversible positive 

current signal appeared in the positive potential range. A control experiment under anaerobic 

conditions showed that this current signal did not appear (red line in Figure 6.11(b)). These 

facts suggest that CoOEP, O2 and Fc must be present at the same time to observe this signal. 
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Therefore, similar to that observed with cobalt porphine,[22] this irreversible current signal 

corresponds to a proton-coupled oxygen reduction process catalyzed by CoOEP. This process 

produces Fc+, thus accounting for the significant increment of the Fc+ transfer current wave 

located at 0 V as shown in Figure 6.11(a). In fact, when cycling the potential to the positive 

values repeatedly more Fc+ will be produced, leading to a continuous increase of the Fc+ 

transfer current.  

The reduction of O2 by Fc was also proved by shake flask experiments performed as reported 

previously.[22] The Galvani potential difference across the water|1,2-DCE interface was 

polarized at a very positive value by two salts, LiTB and BATB. Results of the shake flask 

experiments are shown in Figure 6.12. 

 

Figure 6.12: Photographs of two phase reactions. The composition of top aqueous phase is the same for two 

flasks: 5 mM LiTB + 10 mM HCl and  1,2-DCE phase contains (a)  fresh solution of 5 mM Fc+5 mM BATB (b)  

fresh solution of 5 mM Fc + 50 M CoOEP + 5 mM BATB (c) 5 mM Fc +5 mM BATB after contacting with the 

water solution (d) 5 mM Fc + 50 M CoOEP + 5 mM BATB after contacting with the water solution. 

 

As shown in Figure 6.12, 10 mM HCl was present in water in two flasks, and the 1,2-DCE 

phase contained only 5 mM Fc in flask (a), 50 µM CoOEP and 5mM Fc in flask (b). It was 

observed that the 1,2-DCE phase in flask (b) changed its colour from orange to dark green 

immediately (flask (d)) after being put in contact with the water solution. In contrast, the 1,2-

DCE phase in flask (a) remained the same (c). The two phases were then separated from each 

other for further spectroscopic and colorimetric tests. 

First, UV-Visible spectra of the separated 1,2-DCE solutions were measured, as shown in 

Figure 6.13(a). The formation of Fc+ in the 1,2-DCE solution from flask (d) was revealed and 

the absorption band with a maximum at 620 nm represents its signature (blue dotted). 

The colour change is thus due to the oxidation of Fc to Fc+ and the colour of 1,2-DCE phase 

in the flask (d) reflects a mixed colour of green Fc+ and orange CoOEP. In contrast, in the 
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presence of Fc only in 1,2-DCE (flask (c)) no Fc+ was detected, because no change in colour 

and in the absorption spectrum (dotted black compared to full black) was observed. As for the 

isolated aqueous solutions from three flasks, excess NaI equivalent to 0.1 M was added. It 

was observed that the one from flask (d) changed from colourless to yellow as illustrated in 

Figure 6.13(b).  

 
Figure 6.13: (a) Absorption spectra of the 1,2-DCE phases shown in Figure 6.12: flask a (full black), flask b 

(full blue), flask c  (dotted black) and flask d (dotted blue) (b) UV-Visible spectra of the aqueous solutions flask c 

(black line) and flask d (blue line) after 30 minutes shake flask experiment. 

 

As shown previously, this colour change can be due to the presence of H2O2 in the solution. 

In contrast, no H2O2 was detected at all in the aqueous solutions from flask (c). Above 

experimental facts clearly demonstrated that H2O2 and Fc+ were produced in water and 1,2-

DCE, respectively, only when both Fc and CoOEP were present (flask (b)). The concentration 

of I3
— can be calculated to be 0.058 mM.  

A time profile of the formation of Fc+ in the absence and presence of CoOEP shows that the 

oxidation of Fc is much faster in the presence of CoOEP and the reaction rate for TB is 

higher than TMA+, which suggests that the heterogeneous reduction of H2O2 located in acidic 

water by Fc in 1,2-DCE does not occur. Upon an addition of CoOEP, the rise of the 

absorption bands at 620 nm, corresponding to Fc+, could be immediately observed, as 

displayed in Figure 6.14. These results indicated that the rate of formation of ferrocenium was 

dependent on the Galvani potential difference tuned by using various common ions and 

CoOEP plays a catalytic role in the O2 reduction by ferrocene compounds. 
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Figure 6.14: Time profile of the formation of Fc+ in the absence (○) and presence (▲) of 50 µM CoOEP in 1,2-

DCE during the shake flask experiments with (a) TB and (b) TMA as a common ion. 

 

A control cyclic voltammetry measurement also proved that in the available potential window 

no reaction takes place between Fc in 1,2-DCE and H2O2 in acidic aqueous phase, as shown 

in Figure 6.15. Therefore, the irreversible current wave in Figure 6.11(a) corresponds to an 

interfacial proton-coupled oxygen reduction process, where the electron and proton transfer 

occur concomitantly. 

2 2

Cell 3

5 mM BATB 10 mM LiCl10 mM LiCl
Ag AgCl mM Fc 10 mM HCl AgCl Ag

1 mM BACl mM H O

x

y

 

 
Figure 6.15: CVs obtained at a water/1,2-DCE interface with cell 3 illustrated in Scheme 1: x = 5 and y = 0 

(black line) and x = 5 and y = 1 (red line).  
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6.5 CoOEP catalyzed oxygen reduction by DMFc 

The voltammetric responses of DMFc in the absence (black line) and the presence of CoOEP 

(red line) at the water|1,2-DCE interface are compared in Figure 6.16 under aerobic and 

anaerobic conditions (Cell 4). Dissolving DMFc in 1,2-DCE results an irreversible positive 

current on the positive potential regime. This current response arises from O2 reduction by 

DMFc, as previously reported.[24]  

Cell 4

5 mM BATB 10 mM LiCl10 mM LiCl
Ag AgCl M CoOEP 10 mM HCl AgCl Ag

1 mM BACl mM DMFc

x

y


 

 
 

Figure 6.16: Cyclic voltammetry obtained at a water/1,2-DCE interface with cell 4: x = 0 and y = 5 (black line),  

x =50 and y = 5 (red line) under air-saturated and x = 50 and y = 5 (blue line) under N2-saturated condition. 

 

When CoOEP and DMFc were both present, a large irreversible positive current wave was 

observed at positive potentials. Figure 6.16 clearly shows that the irreversible current wave 

disappears under anaerobic conditions and is enhanced under oxygen-saturated conditions 

This voltammetric data undoubtedly shows that this irreversible wave results from the 

combined presence of CoOEP, DMFc and O2.  

In the following, two-phase reactions were performed. Typically, a 1,2-DCE solution 

containing 5 mM TMATB and 5 mM DMFc/50 μM CoOEP was put in contact with an 

aqueous solution containing 5 mM TMACl and 10 mM HCl in a small flask. In this case, the 

Galvani potential difference between the two phases resulting from the distribution of all the 

ions is dominated by the partition of the common ion, here TMA+ anion. With such a choice 

of electrolyte, this distribution Galvani potential difference can be calculated knowing the 
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respective Gibbs energy of transfer of the different ionic species and is found to be equal to 

0.16 V. After a few minutes stirring of the reaction flask, the two phases were separated from 

each other and were analyzed. As shown in Figure 6.17, when only DMFc was present (a), the 

colour and UV-Visible spectrum of 1,2-DCE phase did change to green indicating that  

reaction took place in flask (c).  

 

 
Figure 6.17: Photographs of two phase reactions. The composition of top aqueous phase is the same for two 

flasks: 5 mM TMACl + 10 mM HCl and 1,2-DCE phase contains (a)  fresh solution of 5 mM DMFc+5 mM 

TMATB (b)  fresh solution of 5 mM DMFc + 50 M CoOEP + 5 mM TMATB (c) 5 mM DMFc +5 mM TMATB 

after contacting with the water solution (d) 5 mM DMFc + 50 M CoOEP + 5 mM TMATB after contacting with 

the water solution. 

 

In the presence of both DMFc and CoOEP (b) the colour of 1,2-DCE solution changed 

instantaneously upon contacting with the aqueous solution, and the final colour (d) indicates a 

mixture of DMFc+ and CoOEP. In the UV-visible spectrum, a strong absorption band at 779 

nm due to DMFc+ was observed in Figure 6.18 that suggests that all DMFc was oxidized to 

DMFc+. By titrating the aqueous phases with sodium iodide, hydrogen peroxide was detected 

in the aqueous phase of both flask (c) and d (Figure 6.18 (b)). The H2O2 amount detected in 

flask (c) and (d) were 0.004 and 0.067 mM, respectively. Figure 6.18 undoubtedly confirms 

the occurrence of an oxygen reduction reaction catalyzed by CoOEP in this biphasic system. 

Moreover, both voltammetric and two-phase reaction data (Figures 6.16 & 6.18) clearly show 

that this catalytic oxygen reduction reaction requires the concomitant presence of H+, CoOEP, 

DMFc and O2 at positive Galvani potential differences fixed either with a potentiostat (Figure 

6.16) or chemically by salt distribution (Figure 6.18).  
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Figure 6.18: (a) Absorption spectra of the 1,2-DCE phases shown in Figure 6.17: flask a (full black), flask b 

(full red), flask c  (dotted black) and flask d (dotted red) (b) UV-Visible spectra of the aqueous solutions flask c 

(black line) and flask d (red line) after 20 minutes shake flask experiment. 

 

As reported previously by Fukuzimi et al. in a homogenous organic system, O2 reduction by 

Fc derivatives  in the presence of an organic soluble acid proceeds rather slowly but can be 

significantly accelerated in the presence of cobalt porphyrins as the catalyst.[16, 17] In bulk 

phases, the reaction proceeds by a PCET reaction with electron transfer from Fc to O2 and 

proton transfer from an organic soluble acid to O2. The catalysis originates from the formation 

of a superoxide-like intermediate, in which an electron partially delocalizes from porphyrin to 

O2. In the present biphasic system, the proton-coupled oxygen reduction by Fc occurs also 

interfacially as observed by voltammetry, with protons from the aqueous phase and electron 

donors from 1,2-DCE.  

 

6.6 Mechanism  
A mechanism is as follows: 

II
22

(ads)(ads)
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                                               (6.2) 

(ads)

(ads)

III II
2

(DCE)

III II
2

(DCE)

(Co -O H)-OEP Co OEP

(Co -O H)-OEP Co OEP






       

   
   

    (6.3)         
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An overall reaction of oxygen reduction with Fc catalyzed by CoOEP is: 

 
2Fc

DCE   2H
  w   O

2 DCE 
CoOEP  2Fc

  DCE   H
2
O

2 w                                                   (6.4) 

A corresponding reaction Scheme 6.1 involving the adsorption of (Co-O2)OEP, proton-

coupled oxygen reduction and regeneration of CoOEP+ by Fc. These steps can be expressed 

as follows:                                                             

   
2 2 2(w) (DCE) (DCE) (DCE) (w)

(ads)

+(Co-O )-OEP 2H Fc CoOEP Fc H O                       (6.5)                         

 
CoOEP

(DCE) Fc(DCE)   CoOEP (DCE) Fc(DCE) 
                                                              (6.6) 

 
Scheme 6.1: Catalysis mechanism 

6.7 Conclusions 
In summary, we have shown that O2 reduction by CoOEP occurs at a water|1,2-DCE 

polarized interface. CoOEP serves as a catalyst like conventional monomeric cobalt 

porphyrins, activating O2 for the reduction to H2O2. Oxygen reduction by Fc has been 

investigated as well. Reduction of O2 to H2O2 by using a weak (Fc) and strong (DMFc) 

reductant could be effectively catalyzed by CoOEP. Two-phase reactions with the Galvani 

potential difference between the two phases controlled by a common ion partition were 

performed, which not only proved the catalytic activation of CoOEP on O2 reduction but also 

suggested a two-electron reduction pathway to produce H2O2. The voltammetry at soft 
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interfaces is a very powerful tool to study proton coupled electron transfer reactions of 

biological interest such as the interfacial reduction of oxygen catalysed by a metallic 

porphyrine. As in biosystems, the reactants can be phased separated, the protons in the 

aqueous phase and the electron donors in the organic phase. This work is to the best of our 

knowledge the first voltammetric study of an electrocatalytic reaction at a soft interface, 

where the rate of the catalytic reaction is controlled by the interfacial polarization, i.e. by the 

applied potential difference.  
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Chapter 7 

Assisted proton transfer by free-base porphyrin and 

catalyzed oxygen reduction at polarized interface 

7.1 Introduction 

The protonation of the porphyrin macrocycle has been extensively studied.[1, 2] Indeed, 

diprotonation of the porphyrin core has important effects on the static and dynamic 

photophysical properties when compared to their free-base parents. Some of these effects, 

such as those derived from increased symmetry, are analogous to those that occur upon 

formation of a corresponding metal derivative. Additionally, relative to the parent free-bases, 

the diacids exhibit broadened optical bands, increased spacing between absorption and 

emission maxima. All these effects are in particular enhanced in H2TPP diacids.[3] 

In free-base porphyrins the symmetry of the macrocycles is lowered from D4h to D2h due to 

the presence of the pyrrole protons. Porphyrin diacids typically have nonplanar structures 

with mainly saddle-type distortions of the porphyrin core, as revealed by X-ray 

crystallography.[4-7] The deviations from planarity for diacids bearing meso-phenyl rings, such 

as H2TPP diacids, approach in magnitude those seen in peripherally crowded porphyrins, such 

as free-base octaethyltetraphenylporphyrin (H2OETPP)[8], dodecaphenylporphyrin (H2DPP).[9] 

The porphyrin diacids is usually the chromophore of the protonated form and monocations 

can be obtained under special experimental conditions. Alsoph et al. have reported the 

protonation of porphyrin in 60% glacial acetic acid and 40% acetone.[10] They observed four, 

three, and two Q bands for the free-base, monoprotonated and biprotonated porphyrins, 

respectively. Voltammetry at liquid|liquid interfaces is a very useful to study the protonation 

of molecules not soluble in water as pioneered by Hofmanova et al.[11] In recent years, the 

transfer of H+ ion facilitated by ion carriers or extractants has been studied extensively in the 

literature. [12-15] Homolka et al. investigated proton transfer across the (W|NB) interface 

assisted by a series of amines with an aromatic ring, discussed the dependence of the transfer 
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process on the structure of the proton acceptors and obtained the kinetic and thermodynamic 

parameters of the process. [12, 13] Additionally, the transfer mechanism of protonated l,l0-

phenanthroline and its derivatives between the aqueous phase and 1,2-DCE phase was 

elucidated by Yoshida and Freiser using current scanning polarography at an ascending water 

electrode.[14] The transfer behaviour of protonated acridine across the W|NB interface has 

been studied by Liu and Wang [15] using chronopotentiometry with linear current scanning, 

polarography with the electrolyte dropping electrode [16, 17]and cyclic voltammetry.[18, 19] Ion 

transfer voltammetry at the ITIES has now become a well-established method to study the 

acid-base properties of molecules dissolved in an organic phase in contact with an aqueous 

electrolyte. As shown by Reymond et al. for the study of therapeutic molecules, this 

methodology allows the determination of pK values, and the drawing of ionic partition 

diagrams.[20-22]The transfer behavior of H+ ion facilitated by porphyrins, which play an 

important role in metabolism in the biological body, has been reported previously.[23] The 

effects of the more hydrophobic free-base 5,10,15,20-meso-tetraphenylporphyrin (H2TPP) 

and its first transition-metal coordination compounds (MTPP) on the H+ ion transfer across 

the W|NB interface were investigated.[23] The kinetic of electron and proton transfer was 

investigated at micro-and macroscopic interfaces.[24] In this Chapter we present a simple 

methodology to illustrate the existence of monoacid and diacid of tetraphenylporphyrin based 

on ion-transfer voltammetry and its catalytis effect for oxygen reduction at the polarized 

water|1,2-DCE interface and organic pK values are also estimated. 

7.2 Visible absorption spectroscopic titration of H2TPP with 

trifluoroacetic acid  

The acid-base behavior of porphyrins has been widely studied in the last 60 years largely 

because of the strong influence of the protonation state on their structural and photophysical 

properties.[4, 25, 26] This behavior depends, among other factors, on peripheral substitution, 

nature of the titrating acid or base, and dielectric constant of the solvent.[27-33] The tetrapyrrole 

ring of a free-base porphyrins contains two tertiary nitrogen atoms, which allows the gain of 

protons to form a monoacid and a diacid, as illustrated for the free-base H2TPP in Scheme 

7.1, while the monoprotonated species has not been usually detected.[4, 27, 29, 34-37] In a few 
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cases, the existence of these monoacid species was pointed out only by the lack of isosbestic 

points in UV-Visible titrations or through kinetic experiments.[38-48] 

 

Scheme 7.1: Protonation of H2TPP to form monoacid and diacid. 

Diprotonation of porphyrin can be achieved in the presence of strong acids, such as 

trifluoroacetic acid (TFA), to give the porphyrin dication.[49]In the diacid adducts, there 

appears to be close interactions between the diprotonated porphyrin and the conjugate bases 

of two acid molecules, such as hydrogen bonding to the central nitrogens.[4, 6, 7] For example, 

the tetraphenylporphyrin diacid formed by reaction of H2TPP and CF3COOH is best 

represented as [H4TPP](CF3COO)2, which will be denoted H4TPP2+. The free-base porphyrin 

has a brownish-red color, which upon protonation gives way to the deep emerald green color 

of the porphyrin dication (Figure 7.1). Tautomerism in free-base porphyrins, as well as the 

nature of conjugate acids of porphyrin have been studied, and it was concluded that the most 

stable tautomer form has the structure of free-base porphyrin.[37] 

 

Figure 7.1: Titration of H2TPP with TFA (a) at the beginning and (b) after protonation. 
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We have investigated the protonation of the H2TPP to provide H4TPP2+ in 1,2-DCE. Titration 

of H2TPP in 1,2-DCE with TFA was performed and a typical spectral overlay is shown in 

Figure 7.2. With added TFA the H2TPP absorbance at 416 nm diminishes to yield a H4TPP2+ 

at 437 nm. The H4TPP2+ absorption spectrum is red shifted from its position in neutral H2TPP. 

By titrating H2TPP usually one isosbestic point due to H2TPP and H4TPP2+ is observed and 

the diprotonated species appears stable under the conditions, whereas the intermediate 

H3TPP+ could not be clearly detected.[25]  To the best of our knowledge, only the monoacid 

derivative of a H2TPP has been reported and characterized in 1,2-DCE solution by titration of 

H2TPP with HTB.[50] The existence of H3TPP+, as well as pKa1 and pKa2 values has been 

reported in a few cases, one of which is based on the ion-transfer voltammetry at a polarized 

water|NB interface. [23, 37, 40, 51] 

 

Figure 7.2: Repetitive spectral scan of 3µM H2TPP in the titration with TFA in 1,2-DCE. (a) the arrows indicate 

the band direction upon addition of TFA (b) change in absorbance with concentration of TFA for selected band 

at 416 nm is for H2TPP and that at 437 nm is for H4TPP2+.  

7.3 Proton transfer across the water|1,2-DCE interface 

7.3.1 Shake flask experiment 

Shake flask experiment of H2TPP were performed at a water|1,2-DCE interface and the 

polarization was chemically controlled by a common ion. Dissolving lithium tetrakis-
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(pentafluorophenyl)borate (LiTB, 5 mM) and HCl (10 mM) in water and BATB (5 mM) in 

1,2-DCE (water/DCE=2:2 in volume), the Galvani potential difference across the interface is 

fixed by the common ion TB– at a potential 0.54 V. At this potential, proton initially present 

in water will partition into 1,2-DCE, leading finally to a distribution of proton in two phases 

according to the Nernst equation. If only H2TPP is present in 1,2-DCE, a Soret band 

(λmax=437 nm) is observed after the shake flask experiment, which demonstrates a 

bathochromic shift relative to the fresh H2TPP solution at 416, as shown in Figure 7.3. This 

shift corresponds to proton facilitated of H2TPP to form an adduct H4TPP2+. 

 

Figure 7.3: Absorption spectra of 3µM H2TPP in 1,2-DCE freshly prepared (full line) and after shake flask 

experiments for 30 minutes (dotted line). 

7.3.2 Voltammetric behaviour  

The Voltammetric redox and diffusion coefficients is summerized in Table 7.1. Herein, using 

this simple methodology, we illustrate the existence of H3TPP+ in 1,2-DCE,  pKa1 and pKa2 

values are also estimated.  

Table7.1: Data refer to 50 µM of porphyrin with 5mM BATB supporting electrolyte in dry 1,2-DCE a 20mVs-1 

 
Concentration  

(50 µM) 

 
E1 vs SHE / V 

 
E2 vs SHE / V 

 
E3 vs SHE / V 

 
D / cm2s—1 

H2TPP 1.35 1.7 ─ 4.1×10—6 
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An ITIES is formed when a water solution containing hydrophilic ions is put in contact with 

an organic solution containing lipophilic ions. Electrochemical polarization supplied by an 

external voltage can give a polarisable potential window. The potential dependence for ion 

transfer across the interface follows a Nernst equation.  By using LiCl and HCl as the aqueous 

electrolytes and BATB as the lipophilic electrolyte in 1,2-DCE (Cell 1), a potential window 

ranging from –0.2 V to 0.4 V can be obtained, as shown by the dotted line in Figure 7.4(a).  

2

Cell 1

10 mM LiCl 5 mM BATB 10 mM LiCl
Ag AgCl 1 mM BACl M H TPP 100 mM HCl AgCl Agx μ

 

 

Figure 7.4: (a) Cyclic voltammograms (25mVs-1) using Cell 1: in the absence (x=0, dotted line) and presence 

(x=50 ,full line) of H2TPP in 1,2-DCE (b) pH dependence of the half-wave potentials of the two waves. 

This window is determined by the transfer of H+ and Cl– from water to 1,2-DCE at positive 

and negative potentials, respectively. With the help of an ionophore present in 1,2-DCE that 

can complex with H+, the transfer of H+ will be facilitated and a wave will appear in the 

middle of the potential window. Stated in another way, H+ will transfer at less positive 

potentials in this case, due to the presence of a proton acceptor in the organic phase. This 

phenomenon is usually called facilitated ion transfer reaction (or Transfer by Interfacial 

Complexation, TIC)[52] and the shift of the transfer potential provides information on the 

complexation constant between the ionophore and H+. 
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By dissolving 50 μM H2TPP in a 1,2-DCE solution containing a BATB in contact with an 

acidic aqueous solution, two waves can be observed in the cyclic voltammogram, as 

illustrated by the full line in Figure 7.4(a). The two waves, featuring the same current 

magnitude, lie at 0.046 V ( w
o 1

Δ φ ) and 0.262 V ( w
o 2

Δ φ ), respectively. First of all, the peak-to-

peak potential separations for the two waves are approximately 60 mV, which complies with 

the conditions for a reversible transfer of a singly charged ion.  The maximum peak currents 

are in good agreement with the Randles-Sevcik equation as shown by the linear dependence 

on the square root of scan rate as shown in Figure 7.5, indicating that both waves originate 

from diffusion-controlled reactions. 

 

Figure 7.5: (a) CVs at various scan rates (9, 16, 25, 49 and 64 mV/s from inner to outer) using Cell 1(x=50) of 

H2TPP in 1,2-DCE (b) The first anodic peak current as a function of the square root of the scan rate. 

The measured peak currents also linearly increase with the H2TPP concentration in the range 

50 μM to 200 μM (Figure 7.6). This confirms that the ion transfer reactions are limited [13]by 

the diffusion of H2TPP species in the organic phase. Indeed, the proton concentration in water 

is in excess compared with that of H2TPP in 1,2-DCE. Furthermore, the two waves shift with 

the acidity of aqueous phase by approximately 60 mV/pH, as illustrated in Figure 7.4(b), 

confirming that both waves correspond to a facilitated proton transfer reaction. 
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Figure 7.6: (a) CVs (25 mV/s) at various concentrations of H2TPP in 1,2-DCE using Cell 1(x:20, 50, 100 and 

200 μM, from inner to outer): of H2TPP  in 1,2-DCE (b) The first anodic peak current as a function of H2TPP 

concentration. 

7.4 Mechanism of H+ ion transfer facilitated by H2TPP 

As illustrated in Figure 7.4(a), the first wave represents the transfer of a proton from water to 

1,2-DCE facilitated by H2TPP that in fact is the first protonation of H2TPP to form the 

monoacid H3TPP+ in 1,2-DCE, and the second one represents the facilitated transfer of a 

second proton by H3TPP+. These two processes can be expressed as: 

2 DCE 3 DCEwH TPP H H TPP+ ++                                                                                           (7.1) 

2
3 DCE 4 DCEwH TPP H H TPP+ + ++                                                                                        (7.2) 

The facilitated transfer of H+ in the presence of H2TPP and H3TPP+ is occurring at lower 

potentials than that of H+ alone. In addition, considering the two processes represent a 1 : 1 

complexation reaction controlled by the diffusion of the porphyrin species in the organic 

phase, Ka1 and Ka2 can be estimated by exploring the pH dependence of the apparent transfer 

potential according to the following equation[53]: 

1/2w w DCE wL
o o aLH H

LH

0' ln p pHDRT 2.303RT 2.303RTK
2F D F F

φ φ+ +

+

⎛ ⎞
Δ = Δ + − +⎜ ⎟⎜ ⎟

⎝ ⎠
                                   (7.3) 
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Where 
1/2w

o LH+Δ φ is the half-wave transfer potential of the respective facilitated proton transfers. 

w
o H

0'φ +Δ  is the formal transfer potential for the transfer of H+. DL and DLH
+ (L= H2TPP, 

H3TPP+) represent the diffusion coefficients of the proton acceptor ligand and its protonated 

form, and for simplicity it can be assumed that DL≈ DLH
+. pHw is the aqueous pH. The 

relationship between w
oΔ φ  and the pHw is found to be linear, and the intercept allows the 

determination of the pKa in the organic phase. Ka
DCE is defined by: 

     

DCE DCE

LDCE H

DCE

LH

a

a a

a
K

+

+

=                                                                                                              (7.4)                         

Doing so, as shown in Figure 7.4(b), pKa1
DCE  and pKa2

DCE  (Equations 7.5 and 7.6) here are 

found to be equal to 9.8 and 6.0, which show that both H3TPP+ and H4TPP2+ are very weak 

acids in 1,2-DCE.  

+2

+
3

DCE DCE
H TPP DCE H

DCE
H TPP

1a
a a

K
a

=                                                                                                                 (7.5) 

+
3

2+
4

DCE

2

DCE DCE
H TPP  H

a DCE
H TPP

K
a a

a
+

=                                                                                                                (7.6) 

Meanwhile, it suggests that both H2TPP and H3TPP+ are weak bases, having a small affinity 

for proton. It is worthwhile to mention that the proton activity in 1,2-DCE is very small and 

the lack of hydrogen bonds in 1,2-DCE prevents the stabilization of the protonated species 

and favours the presence of neutral or low charges species.  

7.5 Ionic partition diagram 

Ionic partition diagrams have proved to be a rather useful representation of thermodynamic 

equilibria involving ionisable species in biphasic liquid systems. The method consists in 

representing the domains of predominance of the various species as a function of applied 

potential and aqueous pH. The construction of the partition diagram of an ionisable solute 
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follows the well-known potential versus pH diagrams developed by Pourbaix[54] in order to 

study the corrosion of metals in acidic and alkaline solutions under oxidative or reductive 

conditions.  

7.5.1 The case of a lipophilic monobasic compound 

For a lipophilic monobasic compound B partitioning between two immiscible phases, the first 

boundary line (line 1 Figure 7.7) corresponds to the equiconcentration of the two charged 

species BH+w and BH+o, as defined by the Nernst equation for ion transfer which reduces to 

(7.8): 

o
w w 0
o o wln i

i
i i

aRT
z F a

φ φ
⎛ ⎞

Δ = Δ + ⎜ ⎟
⎝ ⎠

                                                                                                   (7.7) 

w w 0
o o BH
φ φ +Δ = Δ                                                                                                                        (7.8) 

Where w 0
o BH
φ +Δ is the standard transfer potential of cation BH+. Two other boundaries have to 

be considered in the next step. The interfacial acidic/basic equilibrium between the charged 

species in the aqueous phase and the neutral species in the organic phase corresponds to the 

reaction: 

o w w
2B H O BH OH+ −+ +                                                                                               (7.9) 

The acidity constant in water can be expressed as a function of pH, the standard partition 

coefficient of B (PB
0 =aB

o /aB
w), and the ratio aB

o /aBH+
w  
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Figure 7.7: Theoretical ionic partition diagram for a lipophilic base (equiconcentration convention). The dotted 

line shows the value of the aqueous dissociation constant. 

+ +

+ +

w w wo
B H Hw B

a w w 0
BH BH B

a a aaK
a a P

•= =                                                                                                     (7.10) 

or 

+

o
w 0B
a Bw

BH

p log pH logaK P
a

⎛ ⎞
= − + +⎜ ⎟⎜ ⎟

⎝ ⎠
                                                                                       (7.11) 

At low concentrations where activity coefficients can be neglected, the boundary line 

corresponding to equal concentrations of aqueous BH+w and neutral base in the organic phase 

Bo (line 2 Figure 7.7) is then given by: 

w 0
a BpH p logK P= −                                                                                                               (7.12) 

This pH value can be considered as the extraction acidity constant pKa,ext ,since when using an 

aqueous acid to extract a neutral base from the organic phase, it is necessary to use a stronger 

acid than suggested by the aqueous bulk pKa
w value. Indeed, pKa,ext is lower than pKa

w by one 

unit of pKa per unit of o
Blog P . The boundary between BH+o and Bo (line 3 Figure 7.7) is 

similarly defined by developing the ratio aBH+
o/aB

o from the partition coefficients of the 

neutral and the Nernst equation (7.7) for BH+ which reads: 
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+

+ + +

+

o
w w 0 w 0BH
o o owBH BH BH

BH

2.3 2.3log log
aRT RT P

F a F
φ φ φ

⎛ ⎞
Δ = Δ + = Δ +⎜ ⎟⎜ ⎟

⎝ ⎠
                                         (7.13) 

The partition coefficient PBH+ is a function of the Galvani potential difference, itself 

established by the partition coefficient of all the other ionic species present in the biphasic 

system at equilibrium or imposed by the electrochemical setup when dealing with 

voltammetric experiments. Thus, by substitution of equations (7.10) and (7.13) can be 

rewritten as: 

+

+

+

o 0 w
w w 0 B aBH
o o oBH

B H

2.3 2.3log log w

a P KRT RT
F a F a

φ φ
⎛ ⎞

Δ = Δ + +⎜ ⎟⎜ ⎟
⎝ ⎠

                                                     (7.14) 

For dilute solutions, the boundary line between the neutral Bo and the charged species BH+o in 

the organic phase is given by: 

+
w w 0 0 w
o o aBH

2.3 2.3(log p ) pHB
RT RTP K

F F
φ φΔ = Δ + − +                                                           (7.15) 

Again, this boundary line is pH dependent. Finally, the corresponding ionic partition diagram 

can be established as presented in Figure 7.7. This Figure shows that the more lipophilic the 

neutral base B, the smaller the predominance area of BH+ in water and the larger the 

predominance area of B in the organic phase. 

7.5.2 Calculation of the boundary lines 

7.5.2.1 Partition equilibria between the two phases 

As the boundary lines represent the locus where the concentrations of two contiguous species 

are equal, the Nernst equations can be used directly to determine the evolution of the potential 

with pH for the partition of each ionic species between the two phases: 
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 Line H3TPP+o/ H3TPP+w: 

+ +
3 3H TPP (w) H TPP (o)⎯⎯→←⎯⎯                                                                                 (7.16) 

 +
3

w w 0
o o H TPP

+
3

+
3

o
H TPP
w
H TPP

ln
aRT

F a
φ φ

⎛ ⎞
⎜ ⎟Δ = Δ +
⎜ ⎟
⎝ ⎠

                                                                      (7.17) 

Starting from the Nernst equation for the proton, 

+ 1 23
+ +

+ 1 23

o o wo
a H TPPH TPPw w 0 w 0H

o o ow w w oH H
a H TPPH H TPP

ln ln
K a aaRT RT

F Fa K a a
φ φ φ

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟Δ = Δ + = Δ +
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

                             (7.18)

  

 

Such that 

+
3

1 2

o
w 0 w 0 a1
o o w 0H TPP H

a H TPP
ln KRT

F K P
φ φ+

⎛ ⎞
⎜ ⎟Δ = Δ +
⎜ ⎟
⎝ ⎠

                                                                       (7.19)  

2
2

2

o
H TPP0

H TPP w
H TPP

a
P

a
=                                                                                                                  (7.20) 

To determine this horizontal line, we need to determine both Ka1
w and 

2
0

H TPPP . 

Line H4TPP2+o/ H4TPP2+w: 

2+ 2+
4 4H TPP (w) H TPP (o)⎯⎯→←⎯⎯                                                                              (7.21) 

w w 0
o o

2+
4

2+
4 2+

4

o

w
H TPP

H TPP
H TPP

ln
aRT

F a
φ φ

⎛ ⎞
⎜ ⎟Δ = Δ +
⎜ ⎟
⎝ ⎠

                                                                              (7.22) 

We start from the Nernst equation 



Assisted proton transfer by free base porphyrin at polarized interface 

 

151

1 2
2 +

4
1 2 2

o o
a aw 0 w 0

o o w w 0H TPP H
a a H TPP

ln
2

K KRT
F K K P

φ φ+

⎛ ⎞
⎜ ⎟Δ = Δ +
⎜ ⎟
⎝ ⎠

                                                                (7.23) 

To determine this horizontal line, we need to determine Ka2
w. 

Line H2TPPo/H3TPP+w: We start from the acidity constant 

+ +2 2
1

23 3

w w o w
H TPP H TPPw H H

a w w 0
H TPPH TPP H TPP

a a a a
K

a a P+ +

= =                                                                                    (7.24) 

The vertical borderline is 

1 2
w 0
a H TPPpH p logK P= −                                                                                                        (7.25) 

Line H3TPP+o/ H4TPP+w: We start from the Nernst equation for the mono-acid 

+
3 3

3 3 223 4

o o w
H TPP H TPP Hw w 0 w 0

o o ow w wH TPP H TPP
aH TPP H TPP

ln ln
a a aRT RT

F Fa K a
φ φ φ

+ +

+ +

+ +

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟Δ = Δ + = Δ +
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

                    (7.26) 

The borderline is  

23

w w 0 w
o o aH TPP ln 0.06pHRT K

F
φ φ +Δ = Δ − −                                                                            (7.27) 

Line H2TPPo/ H2TPPw: 

2 2H TPP (w) H TPP (o)⎯⎯→←⎯⎯                                                                                  (7.28) 

2

2

2

w w 0
o o H TPP

o
H TPP
w
H TPP

ln
aRT

F a
φ φ

⎛ ⎞
⎜ ⎟Δ = Δ +
⎜ ⎟
⎝ ⎠

                                                                         (7.29) 
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Where it should be noted for memory that the logarithmic term on the right hand side of these 

three relationships represents the partition coefficient of each ionic species. When the aqueous 

and organic concentrations of a given species are equal, equations 7.17, 7.22 and 7.29 become 

independent of pH, and reduce to trivial relationships: 

w w 0
o o iφ φΔ = Δ                                                                                                                          (7.30) 

This results in three boundary lines parallel to the pH axis with an ordinate equal to the formal 

transfer potential of the respective ion. These segments are limited by the various (de) 

protonation equilbiria which delimit the boundaries between two ions differing in electrical 

charge. 

7.5.2.2 Equilibria in the aqueous phase 

Using the thermodynamic definition of the dissociation constants Ka
w and neglecting the 

logarithm of the ratios of the activity coefficients, the acid-base equilbria in the aqueous phase 

may be written as follows: 

2+ +
4 3H TPP (w) H TPP (w)+H (w)+⎯⎯→←⎯⎯                                                                               (7.31) 

3
2

2
4

w
H TPP w

aw
H TPP

log pH p
a

K
a

+

+

⎛ ⎞
⎜ ⎟ = −
⎜ ⎟
⎝ ⎠

                                                                                               (7.32) 

+
3 2H TPP (w) H TPP (w)+H (w)+⎯⎯→←⎯⎯                                                                                 (7.33) 

2
1

3

w
H TPP w

aw
H TPP

log pH p
a

K
a +

⎛ ⎞
⎜ ⎟ = −
⎜ ⎟
⎝ ⎠

                                                                                                 (7.34) 
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Line H3TPP+w/ H4TPP2+w: 

+
3

2
2

4

w w
H TPP Hw

a w
H TPP

a a
K

a

+

+

=                                                                                                               (7.35) 

The borderline is simply 

2
w
apH pK=                                                                                                                            (7.36) 

Line H2TPPw/ H3TPP+w: 

+
2

1

3

w w
H TPP Hw

a w
H TPP

a a
K

a +

=                                                                                                               (7.37) 

The borderline is simple 

1
w
apH pK=                                                                                                                            (7.38) 

When the left-hand side of equations (7.32) and (7.34) is zero, the concentrations of the 

various species in each equation are equal, and we simply get: 

w
apH p

j
K=                                                                                                                            (7.39) 

Where j= 1,2. Consequently, equation (7.32) define two additional boundary lines which are 

parallel to the ordinate axis and independent of w
oφΔ . 

7.5.2.3 Equilibria in the organic phase 

The acid-base equilibria in the organic phase depend: (a) on the same equlibria as in the 

aqeous phase, (b) on the partition coefficient of the neutral species, (c) on the partition 

coefficients of the ionic species, and (d) on the proton concentration in the organic phase. 
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Therefore, using the Nernst equation for the proton can be used to express any concentration 

ratio as a function of pH. With eight species as in present case, the art of drawing ionic 

partition diagrams then consists in foreseeing which boundaries have a physical meaning. 

Line H2TPPo/H3TPP+o: We start from the Nernst equation for the proton 

+
+

+

o
w w 0 H
o o wH

H

ln
aRT

F a
φ φ

⎛ ⎞
⎜ ⎟Δ = Δ +
⎜ ⎟
⎝ ⎠

                                                                                             (7.40) 

And we define the dissociation constant 

+2
1

3

o o
H TPPo H

a o
H TPP

a a
K

a +

=                                                                                                                 (7.41) 

By substitution, we obtain 

31
+

+ 2

oo
H TPPaw w 0

o o w oH
H TPPH

ln ln
aKRT RT

F Fa a
φ φ

+⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟Δ = Δ + +
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

                                                              (7.42) 

The last term is equal to zero at the half-wave potential, so that we can calculate Ka1
o, and a 

value of pKa1
o=9.8 has been determined. The borderline of the partition diagram is then 

+ +1 1
w w 0 o w 0 o
o o a o aH Hln 0.06pH 0.06p 0.06pHRT K K

F
φ φ φΔ = Δ + + = Δ − +                                  (7.43) 

Line H3TPP+o/H4TPP2+o: Again, we start from the Nernst equation for the proton transfer 

and we define the second acidity constant 

+
3

2
2

4

o o
H TPP Ho

a o
H TPP

a a
K

a

+

+

=                                                                                                               (7.44) 

By substitution, we obtain 
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2
2 4

+
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a H TPPw w 0

o o w oH
H H TPP

ln ln
aKRT RT

F Fa a
φ φ

+

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟Δ = Δ + +
⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠

                                                            (7.45) 

Again, the last term is equal to zero at the half-wave potential, so that we can calculate
2

o
aK , 

and a value of pKa2
o=6.0 has been determined. The borderline of the partition diagram is then 

+ +2 2
w w 0 o w 0 o
o o a o aH Hln 0.06pH 0.06p 0.06pHRT K K

F
φ φ φΔ = Δ + + = Δ − +                                 (7.46) 

7.5.3 Born solvation model 

The acidity constant in the two phases are related by  

3
1 1

2

0
H TPPw o

a a 0 0
H TPPH

P
K K

P P

+

+

=                                                                                                          (7.47) 

The standard partition coefficient is by defined 

0,w o0,o 0,w
tr,0 w 0

oln ii i i
i i

G z FP
RT RT RT

μ μ φ
→Δ−

= − = − = − Δ                                                              (7.48) 

According to the Born solvation model, the Gibbs energy of solvation, ISGΔ  is the sum of a 

term for the neutral species and one for the contribution of the charge given by:[55] 

2 2
A

IS
0 ion r

11
8
z e NG

rπε ε
⎛ ⎞

Δ = − −⎜ ⎟
⎝ ⎠

                                                                                            (7.49) 

Where e is the charge of the proton, NA is the Avogadro number, r is the molecular radius, εr 

is the dielectric constant, z is the charge number and ε0 is the vacuum permittivity. 

 For the H2TPP/H3TPP+, we have 
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3 2
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                                             (7.50) 

Or 

3

2

0 2
H TPP A

0 w o
0 ionH TPP r r

1 1ln 4.86
8

P e N
r RTP πε ε ε

+⎛ ⎞ ⎛ ⎞⎜ ⎟ = − = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                                                                (7.51) 

i.e. a shift of –12 kJmol–1 for a radius of 0.5nm. 
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                                             (7.52) 

Or  
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r RTP πε ε ε

+

+

⎛ ⎞ ⎛ ⎞⎜ ⎟ = − = + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                              (7.53) 

So we can calculate Ka1
w. With 0

HP + =5×10-10, we have pKa1
w=2.1-9.4+9.8=2.5. 

For the H2TPP/H4TPP2+, we have similarly  

2
4

2

0 2
H TPP A

0 w o
0 ionH TPP r r

4 1 1ln
8

P e N
r RTP πε ε ε

+⎛ ⎞ ⎛ ⎞⎜ ⎟ = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                                                                            (7.54) 

Which represents a shift of –48 kJmol–1 for a radius of 0.5nm. 

By subtraction, we have 
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                    (7.55) 

Using the Nernst equation for the mono- and the diacid 
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                                                                                  (7.56) 

Or  
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r RTπε ε ε
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⎝ ⎠
                                                              (7.57) 

So we can calculate Ka2
w. With 0

HP + =5×10-10, we have pKa2
w =6.3-9.4+6=2.9.  

Since pKa2
w > pKa1

w, we can conclude that the monoacid does not exist in water. The 

difference between the two horizontal lines is 

1 2 2
2

4 3
1 2

w o 0
a a H TPPw 0 w 0

o o o wH TPP H TPP
a a

ln
2

K K PRT
F K K

φ φ+ +
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⎜ ⎟Δ −Δ =
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⎝ ⎠

                                                          (7.58) 

H2TPPo/H3TPP+o w
o 0.55 0.06 9.8 0.06pH 0.04 0.06pHφΔ = − ⋅ + = − +  

H3TPP+o/H4TPP2+o w
o 0.55 0.06 6 0.06pH 0.19 0.06pHφΔ = − ⋅ + = +  

H3TPP+w /H4TPP2+w 
2

w
apH p 2.9K= =  
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H3TPP+o /H3TPP+w 
3

w 0
o H TPP 0.55 0.06 (2.5 6 9.8) 0.25Vφ +Δ = + ⋅ − − = −  

H4TPP2+o /H4TPP2+w 
2

4

w 0
o H TPP 0.55 0.03 (2.5 2.9 6 9.8 6) 0.06φ +Δ = + ⋅ + − − − =  

H2TPP+o/H3TPP+w pH 2.5 6 3.5= − = −  

H3TPP+o/H4TPP2+w w
o 0.25 0.06 2.9 0.06pH –0.76 – 0.06pHφΔ == − + ⋅ − =  

H2TPP+o/H4TPP2+w ( )1
2pH 2.5 2.9 6 0.3= + − = −  

For the last case H2TPP+o/H4TPP2+w considering that the second pKa is more positive than the 

first one, the aqueous mono-acid doesn’t have a zone of existence. We can therefore calculate 

the borderline between H2TPP and H4TPP2+. 

( ) ( )+ +2 2

1 2
2 2 24 4

2 2w w o w
H TPP H TPPH Hw w

a a w w 0
H TPPH TPP H TPP

a a a a
K K

a a P+ +

= =                                                                       (7.59) 

and the border line reads 

( )1 2 2
w w 01
a a H TPP2pH p p logK K P= + −                                                                                      (7.60) 

The same method is used to deduce the other boundary lines from the Nernst equations 

expressed for each ionic species and from the definition of acid-base dissociation constants, 

and these lines are the geometric locus delimiting the domain of predominance of each 

species involved.  It is straightforward to express these boundary lines numerically and to 
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calculate their and points.[20] The results obtained are displayed in Figure 7.8 which shows the 

ionic partition diagram of H2TPP at water|1,2-DCE. 

 

Figure 7.8: Ionic partition diagram of H2TPP at water/1,2-DCE 

7.6 H2TPP catalyzed oxygen reduction by DMFc 

As I have shown in Chapter 4 O2 reduction leads to generation of H2O2 in acidified biphasic 

water|1,2-DCE system in presence of DMFc. In the presence of 50 µM H2TPP in the 1,2-DCE 

phase, and in the absence of DMFc, cyclic voltammogram exhibits two current peaks in 

Figure 7.4(a) which correspond to the successive transfer of two protons from water to 1,2-

DCE facilitated by the association with H2TPP and H3TPP+.[56] In the presence of both DMFc 

and H2TPP in 1,2-DCE (Cell 2), cyclic voltammogram exhibits slowly increasing positive 

current in the range 0.04 V < w
oφΔ < 0.47 V as shown in Figure 7.9. 

2

Cell 2

10 mM LiCl 10 mM LiCl5 mM BATB
Ag AgCl 1 mM BACl M H TPP 10 mM HCl AgCl Ag

mM DMFc

x

y

μ
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The positive current can be ascribed to the proton-coupled reduction of O2 with DMFc 

yielding DMFc+.[57] Cyclic voltammogram shows a remarkable enhancement of both the 

positive current in the potential range of the first and second proton transfer step. However, 

after removing dissolved oxygen from both solutions by argon purging, cyclic voltammogram 

of H2TPP is recovered (Figure 7.9, full line) .As shown in Figure 7.10 with the increasing pH 

of the aqueous phase, both catalytic waves shift positively by ca. 60 mV/pH. The same shift 

was reported in Figure 7.4(b) for the voltammetric peaks of the facilitated proton transfer.[56] 

 

Figure 7.9: Cyclic voltammograms (50mVs-1) using Cell 2: in the absence (x=0, y=5, dotted line) and presence 

of H2TPP (x=50, y=5, dashed line) with the deaerated solutions (x=50, y=5, full line). 

 

Figure 7.10: CVs obtained at a water/1,2-DCE interface with cell 2  when (x=50, y=5) at different pH. 
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The catalytic current is associated with the protonated forms of H2TPP, the concentration of 

which at a constant potential decreases with the increasing pH. CV behavior thus points to the 

regeneration of H2TPP and H3TPP+ (or H2TPP) in two homogeneous electron transfer (ET) 

reactions in 1,2-DCE involving DMFc, O2 and H3TPP+ or H4TPP2+, which follow the first and 

second H+ ion transfer (IT), such as 

2 2 23H TPP O DMFc H TPP HO DMFc• ++ + + ⎯⎯→ + +                                                       (7.61) 

2
4 2 3 2H TPP O DMFc H TPP HO DMFc+ + • ++ + ⎯⎯→ + +                                                      (7.62) 

Using the classical electrochemical terminology, each of the two IT-ET sequences above is 

equivalent to the catalytic EC reaction scheme involving an electron transfer at electrode (E) 

followed by a chemical reaction (C) regenerating starting material.[58-60]  

The effects of the DMFc and H2TPP concentrations and absence of O2 in the system 

investigated by Samec et al. The results are consistent with the mechanism involving the 

reversible formation of an adduct between monoacid or diacid and the molecular oxygen that 

is followed by the irreversible electron transfer from DMFc [61], e.g. for the reaction (7.61), 

2 3 23H TPP O H TPP O++ ⎯⎯→+ −←⎯⎯                                                                                        (7.63) 

From DFT calculations [62] point to the formation of weak adducts H3TPP+-O2 and H4TPP2+-

O2, where the molecular oxygen is bound to the protonated nitrogen atoms of two opposite 

pyrrole rings with the stabilization energy of ca. 0.1 eV(Scheme 7.2). 



 Chapter 7 

 

162

 

Scheme 7.2: Illustration of interfacial formation of H3TPP+ and H4TPP2+. 

To further study this catalytic process, we have used two-phase reactions to investigate the 

role of H2TPP and to identify the reaction products. Here, we have used TB– to form by 

extraction the organic acid HTB. The 1,2-DCE phase contains only 5 mM DMFc and 50 µM 

H2TPP and 10 mM HCl was present in the top aqueous phase. After adding the water phase, 

the color of 1,2-DCE phase change from orange to green (Figure 7.11).  

 

Figure 7.11: (a) Two-phase reaction controlled by TB– partition before (a) and after (b) contact with aqueous 

phase containing 5 mM LiTB + 10 mM HCl; the bottom 1,2-DCE phase. 

Moreover, the experiment performed in absence of oxygen showed that the 1,2-DCE solution 

containing DMFc and H2TPP did not change its color. In the presence of both DMFc and 
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H2TPP in 1,2-DCE phase, the formation of DMFc+ clearly can be observed, as shown by the 

red curve in Figure 7.12, characteristic of an absorption band with a maximum at 779nm. The 

formation of DMFc+ in the presence of only DMFc in 1,2-DCE phase observed less than  

DMFc in presence of H2TPP (Figure 7.12(b)).  

 

Figure 7.12: UV-Visible spectra of the 1,2-DCE (a) freshly prepared 5 mM DMFc (black line) freshly prepared 

50 µM H2TPP (red line) after 5 minutes two-phase reaction 5 mM DMFc+50 µM H2TPP (blue line) (b) time 

profile of the formation of  DMFc+ in the absence (○) and presence (▲) of 50 µM H2TPP in 1,2-DCE during the 

shake flask experiments with TB as a common ion. 

After separation of the two phases, the UV-Visible spectra of 1,2-DCE phases were measured 

and the aqueous phases were titrated with NaI Addition of sodium iodide (NaI) to different 

aqueous phases was used to detect hydrogen peroxide by formation of I3
¯, displaying two 

absorption bands at 287 and 352 nm as shown in Figure 7.13. Rather slow reduction of 

molecular oxygen by DMFc at the polarized water|1,2-DCE interface proceeds remarkably 

faster in the presence of tetraphenylporphyrin monoacid (H3TPP+) and diacid (H4TPP2+), 

which are formed in 1,2-DCE by the successive transfer of two protons from the acidified 

aqueous phase. A mechanism is proposed, which includes the formation of adduct between 

H3TPP+ or H4TPP2+ and O2 that is followed by electron transfer from DMFc to the adduct 

leading to the observed production of DMFc+ and the regeneration of H2TPP or H3TPP+, 

respectively. 
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Figure 7.13: UV-Visible spectra of the aqueous phases separated after being treated with excess NaI. 

 

Scheme 7.3: Mechanism of O2 reduction with DMFc catalyzed by H2TPP. 

 

7.7 Conclusions 

In conclusion, the protonation of H2TPP in 1,2-DCE solution have been widely investigated 

by visible absorption spectroscopy. We present a simple methodology to illustrate the 

existence of H3TPP+ in 1,2-DCE, based on ion transfer voltammetry at the water|1,2-DCE 
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interface. H2TPP can assist the H+ ion transfer across the interface. The transfer process is 

reversible and diffusion-controlled. Ka1 and Ka2 values can be accurately determined.  The 

catalytic activation of the protonated forms of a H2TPP, on the molecular oxygen reduction by 

DMFc has been investigated at the polarized water|1,2-DCE interface. 
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Chapter 8 

Protonation and catalytic role of free-base octaethyl 

porphyrin for oxygen reduction across the water|1,2-DCE 

interface 

 
8.1 Introduction 

The porphyrins and related compounds have intensively been studied for several decades due 

to their significance in biological and technological areas.[1] It is well known that, under acidic 

conditions, the free-base porphyrins are capable of combining two additional hydrogens on 

the central nitrogen atoms to form N-protonated diacids.[2-6] As many metal-incorporation 

reactions require an acidic condition, the porphyrin diacids may play an important role in the 

syntheses of metalloporphyrins.[7] Porphyrin diacids have been found to exhibit perturbed 

photophysical properties compared to their neutral parent compounds.[8-11] Moreover, 

porphyrin diacids typically have nonplanar macrocycles due to the steric hindrance and 

electrostatic repulsion of the central hydrogen atoms.[8, 9] Therefore, the porphyrin diacids 

provide unique examples to study the influence of nonplanarity on the chemical and physical 

properties of porphyrin macrocycles.[12, 13] Nonplanar conformations of porphyrins and related 

compounds are known important for their possible functions in photosynthetic reaction center, 

bacteriochlorophyll a protein and hemeproteins.[14-16] Rosa et al. studied the effects of core 

saddling, meso-phenyl twisting, and counter ions on the optical properties of the meso-

tetraphenylporphyrin diacid (H4TPP2+).[17] Cheng et al. carried out a study on a series of 

porphyrin diacids; they evaluated the effect of peripherial substitutents on the molecule’s 

flexibility.[18] 

It has been shown that the strong interaction of the systems of the phenyl groups and the 

porphyrin ring leads to the red-shift of the Q and B bands and the hyperchromicity of the Q-

bands in the diacids. Avilov et al. investigated the photophysical properties of a series of 

porphyrin diacids with DFT.[19]  

Among the porphyrins, octaethylporphyrin (OEP) received more attention due to its 

symmetric structure and excellent solubility in organic solvents. Li et al. carried out DFT 
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calculations on the structure and spectroscopies of H4OEP2+.[20] Chirvony et al. examined the 

photophysical properties of octaethylporphyrin diacid.[8] They found that it exhibited a 

number of perturbed properties relative to its free base form.  

In this Chapter, we present electrochemical and spectroscopic measurements of the di-

protonated form of 2,3,7,8,12,13,17,18-octaethyl-21H,23Hporphine (H2OEP) on ion-transfer 

voltammetry and its catalytic effect for oxygen reduction at the polarized water|1,2-DCE 

interface. 

 

8.2 Ion-transfer voltammetry 
 
Electrochemical measurements at the water|1,2-DCE interface were carried out so as to 

characterize the protonation of the H2OEP.  

By dissolving H2OEP in a 1,2-DCE solution containing a lipophilic salt (BATB) in contact 

with an acidic aqueous solution LiCl and HCl (Cell 1), only one wave can be observed in the 

cyclic voltammogram, as illustrated by the full line in Figure 8.1.  

 

 
Figure 8.1: (a) Cyclic voltammograms (50mVs-1) using Cell 1: in the absence (x=0, dotted line) and presence 

(x=50, full line) of H2OEP in 1,2-DCE. 

 
While the tetrapyrrole ring of a free-base porphyrins contains two tertiary nitrogen atoms, 

which allows the gain of protons to form a monoacid and a diacid, as illustrated for the free-

base H2OEP in Scheme 8.1. 

2

Cell 1

10 mM LiCl 5 mM BATB 10 mM LiCl

Ag AgCl 1 mM BACl M H OEP 100 mM HCl AgCl Agx 
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NH +HN

HNNH+

NH +HN

HNN

NH N

HNN

H+ H+

Ka1 Ka2

H2OEP H3OEP+ H4OEP2+
 

Scheme 8.1: Protonation of H2OEP to form monoacid and diacid. 
 

 Proton transfer reactions can be presented as follows, 
 

+ +
2 3 1H OEP + H H OEP aK                                                                              (8.1) 

 
+ 2+

3 4 2H OEP + H H OEP aK                                                                             (8.2) 

 

The simplest case is that where both ion transfer reactions are rapid. We consider the cyclic 

voltammetric behavior for this situation. The appearance of the voltammogram depends [21], 

Ka1 and Ka2, and the spacing between them,  

0
2 1p pa aE K K                                                                                                                    (8.3) 

Whenever protonation reactions take place, one must consider the possibility of a 

disproportionation comproportionation equilibrium, which is not our case. 

 

2+
3 4 22H OEP H OEP H OEP                                                                                       (8.4) 

2+
2 4

2+
3

H OEP H OEP

H OEP
dispK

      
  

                                                                                             (8.5) 

The extent of the reaction, as measured by the equilibrium constant  Kdisp  is governed by ΔE0: 

 
0

2 1( / ) ln p pdisp a aRT F K E K K                                                                                       (8.6) 

 

Computations of cyclic voltammograms were carried out using DigiSim (version 3.03b, 

distributed by Bioanalytical Systems, Inc., 2701 Kent Ave., West Lafayette, IN 47906), the 

variation of the current as a function of potential are shown in Figure 8.2.  
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In general the nature of the i-E curve depends on ΔE0(=pKa2- pKa1). Calculated cyclic 

voltammograms for different values of ΔE0 in a system with two one-protonation steps are 

shown in Figure 8.2.  

 
Figure 8.2: DigiSim simulation of the proposed reaction mechanism for the case where x=5, T 298.2 K, area 1 

cm2 and D=1.0 × 10-5 cm2 s-1 for all species. 

 
When ΔE0 > 100 mV, the second protonation occurs much more easily than the first, and one 

observes a single wave with characteristics of two-proton transfer (H2OEP +2H+→H4OEP2+) 

(i.e.,ΔEp=29mV). However, simultaneous transfer of two protons are very unlikely. As ΔE0 

decreases, the individual waves are merged into a broad  single wave until ΔE0 reaches about -

100 mV. If pKa1 and pKa2 are well separated, with pKa1> pKa2 (i.e., H2OEP protonated before 

H3OEP+) then two separate waves are observed. 

 

 
Figure 8.3: ΔEp

 vs ΔE0 the discontinuity at negative values of ΔE0 occurs when two waves are resolved. 
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The two waves become resolvable at ΔE0= -200 mV, where each wave takes on the 

characteristics of a one-proton transfer (i.e.,ΔEp=58mV). In Figure 8.3 the variation of the 

peak current function and the peak splitting between the cathodic and anodic reversal waves 

(ΔEp) at 25°C are summarized.[22] 

In the case of H2OEP Ka1 and Ka2  are close to each other as shown C in Figure 8.2, ΔE0 < 0 

fist and second protonation occur at the same pH value. The separation between the forward 

and backward peaks in Figure 8.1 is 65 mV. This value is in agreement with the theoretical 

consideration (Figure 8.3) and simulation result. 

In The magnitude of this current wave does not change with the acidity of the aqueous phase 

showing that the current is limited by the diffusion of H2OEP in the organic phase, whereas 

the wave continuously moves to positive potentials with the half-wave potential shifting by 

approximately 60 mV/pH, as displayed in Figure 8.4. These data indicate that the 

voltammetric wave corresponds to the assisted transfer of proton from water to 1,2-DCE by 

H2OEP. 

 
Figure 8.4: (a) Cyclic voltammograms in the presence of H2OEP (Cell 1, x=50) in 1,2-DCE at different pH 

values, scan rate 50mV s–1 (b) pH dependence of the half-wave potentials. 

 

Indeed, the voltammetric current displays a linear dependence on the square root of the sweep 

rate (Figure 8.5). It indicates that the H+
 facilitated H2OEP transfer process at the big interface 

is a diffusion limited process.  
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Figure 8.5: (a) CVs at various scan using Cell 1(x=50) of H2OEP in 1,2-DCE (b) The anodic peak current as a 

function of the square root of the scan rate. 

Effects of the concentrations of H2OEP from voltammograms are shown in Figure 8.6. The 

height of the anodic peak is proportional to the H2OEP concentration. Proton transfer 

facilitated by H2OEP are observed with varying the concentration of H2OEP.  

 
Figure 8.6: (a) CVs at various concentration of H2OEP in 1,2-DCE using Cell 1 (b) relationship between the 

anodic peak current as a function of concentration.  

 
Moreover, ion-transfer voltammetry allows the estimation of dissociation constant of the di-

acid by exploring the dependence of 2+
4

w o
o H OEP
  on the acidity of aqueous phase according 

to the following equation:  

+

+H
+

H

H

o
w w 0'
o o w

ln
cRT

F c
 

 
    
 
 

                                                                                               (8.7) 

app a1 a2K K K                                                                                                                        (8.8) 
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2+ +H4

w w 0' w
o o appH OEP

2.303
ln pH

2

RT RT
K

F F
                                                                 (8.9) 

where +H

w 0'
o  is the formal transfer potential for the transfer of H+, pHw is the aqueous pH and 

Kapp is the apparent dissociation constant of H4OEP2+ in 1,2-DCE. As shown in Figure 8.4, the 

relationship between 2+
4

w
o H OEP
  and the pHw is found to be linear with a slope of 60 mV, 

and the pKapp value was determined to be equal to 11.2. 
 
 

8.3 Spectrophotometric titration 
 

Nonplanar distortions of the porphyrin core are realized by the addition of two protons to the 

tertiary nitrogens of the porphyrin core to form the diacid H4OEP2+. Such diprotonation can 

be achieved in organic solvents by the addition of acid, trifluoroacetic acid (TFA). In the 

diacid adducts, there appears to be close interactions between the diprotonated porphyrin and 

the conjugate bases of two acid molecules (Figure 8.7), such as hydrogen bonding to the 

central nitrogens.[2, 18, 23]  

The octaethylporphyrin diacid formed by reaction of H2OEP and CF3COOH is best 

represented as [H4OEP](CF3COO)2, which will be denoted H4OEP2+. Porphyrin diacids 

typically have nonplanar structures with mainly saddle type distortions, as revealed by X-ray 

crystallography, although other structures can be realized depending, for example, on the acid 

reagent used.[8, 24] The spectrophotometric titration of H2OEP with an organic soluble acid, 

TFA, was performed in 1,2-DCE. 

 

 

 

Figure 8.7: Structures of H4OEP2+ including the two CF3COO species from the acid reagents that are 

hydrogen-bonded to the central nitrogens and seen in the X-ray structures.[18] 
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The UV-Visible absorption spectra of H2OEP and its diacid H4OEP2+ in 1,2-DCE are shown 

in Figure 8.8. Neutral H2OEP displays a Soret band at 395 nm and four bands in the visible 

region at 498, 531, 564 and 619 nm, similar to the reported ones. In the diprotonated form, as 

is well-documented,[6] the visible spectral region is dominated by two major bands at 547 and 

590 nm with a weaker band at 568 nm, which appears as a shoulder to the main peak at 547 

nm. The spectral simplification from H2OEP to the diacid H4OEP2+ is a result of the approach 

towards square symmetry (i.e., D4h) in the diacid when protons are added to the pyrrole 

nitrogen atoms. 

 
Figure 8.8: Spectrophotometric titration of (a) 5 µM (b) 50 µM H2OEP in 1,2-DCE by TFA. 

 

Figure 8.8(a) illustrate adding TFA to a H2OEP solution led to a slight decrease and red-shift 

(from 395 nm to 401 nm) of the Soret band and the appearance of three new Q bands that 

increase with increasing TFA concentration.  

The color of 1,2-DCE phases is shown in the inset of Figure 8.9(a) before addition of the 

aqueous phase. After adding TFA, the color change of the 1,2-DCE from pink to violet is 

indicative of the protonation of H2OEP. These experimental results are indeed similar to those 

observed previously for a free base tetraphenylporphyrin. As reported previously, in the case 

of 5,10,15,20-tetraphenylporphyrin (H2TPP) it was possible to observe the two successive 

protonations of two tertiary nitrogen atoms with dissociation constants of 1.6  10–10 and 1.0 

 10–6 for H3TPP+ and H4TPP2+ by ion-transfer voltammetry.[25]  

Therefore, what is observed in the ion-transfer voltammetry corresponds to the successive 

protonation of the tertiary nitrogen atoms to form the diacid H4OEP2+.  It should be mentioned 

that H3OEP+ was not clearly detected in the course of the spectrophotometric titration by TFA.  
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Figure 8.9: Titration of H2OEP with TFA (a) at the beginning (b) after protonation. 

8.4 H4OEP2+ catalyzed oxygen reduction by DMFc  

The voltammetric responses of DMFc in the absence (dashed line) and the presence of H2OEP 

(full line) at the water|1,2-DCE interface are compared in Figure 8.10. 

2

Cell 2

10 mM LiCl 5 mM BATB 10 mM LiCl

Ag AgCl 1 mM BACl M H OEP 10 mM HCl AgCl Ag

mM DMFc

x

y


 

 
Figure 8.10: Cyclic voltammograms (50 mVs-1) using Cell 2: in the absence (x=0, y=5, dotted line) and 

presence (x=50, y=5, full line) of  H2OEP.  

 

In the presence of only DMFc in 1,2-DCE, a significant current can be observed at the 

positive potentials, as shown in Chapter 4. This current response arises from proton transfer 

followed by O2 reduction by DMFc, as previously reported.[26]  
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Figure 8.10 compares the cyclic voltammograms in the presence of only DMFc (dotted line) 

and in the presence of both DMFc and H2OEP (full line). When H2OEP and DMFc were both 

present, a large irreversible positive current wave was observed at positive potentials, i.e. a 

wave without a signal on the return scan. This positive current signal originating from a 

proton-coupled electron transfer (PCET) reaction, in which proton transfer and electron 

transfer are tightly coupled. PCET reaction that depends on the interfacial polarization, i.e. on 

the potential difference applied between the two phases.  

As we showed in Chapter 7 after removing dissolved oxygen from both solutions by argon 

purging, cyclic voltammogram of H2OEP is recovered. Although H2OEP is a free base 

porphyrin, it exhibits a catalytic behavior similar to that of cobalt tetraphenylporphyrin 

[Co(tpp)] toward oxygen reduction by DMFc.[27] 

This process is equivalent to a catalytic EC reaction scheme in the classical electrode|solution 

electrochemistry, involving an electron transfer reaction (E) at the electrode|solution interface 

followed by a chemical reaction (C) in the solution regenerating the starting reactant. Here, 

the assisted proton transfer (APT) step represents a Faradaic process with an ionic flux across 

the interface, thus being equivalent to the E step. The oxygen reduction reaction involving 

H4OEP2+, DMFc and O2 is the following C step to produce H2O2 and regenerate the catalyst 

H2OEP. 

 

8.5 Shake flask experiments 
 

To further study this catalytic process, we have used two-phase reactions to investigate the 

role of H4OEP2+ and to identify the reaction products. A chemical way to drive aqueous 

protons to the organic phase is to add a very lipophilic anion to the aqueous phase. Here, we 

have used TB¯ and TMA+ as a common ion.  

As illustrated in Figure 8.11, 10 mM HCl  and LiTB were present in the top aqueous phase 

flask and the 1,2-DCE phase contains 5 mM DMFc +50 µM H2OEP+5 mM BATB  in Figure 

8.11(a). After adding the water phase for 5 minutes, the color of the 1,2-DCE phase in flask 

(a) change from yellow to green. After separation of the two phases, the UV-Visible spectra 

of 1,2-DCE phases were measured and the aqueous phases were titrated with NaI. 
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Figure 8.11: Photographs of two phase reactions. The composition of top aqueous phase is 10mM HCl+5mM 

LiTB: (a)  fresh solution of 5 mM DMFc + 50 M H2OEP + 5 mM BATB (b) 5 mM DMFc + 50 M H2OEP+ 5 

mM BATB after contacting with the water solution . 

 

In the presence of both DMFc and H2OEP in 1,2-DCE phase, the formation of DMFc+ clearly 

can be observed, as shown by the dotted line in Figure 8.12(a), characteristic of an absorption 

band with a maximum at 779 nm. When only H2OEP is present in 1,2-DCE phase, the 

protonation of H2OEP to form H4OEP2+ can be observed clearly from the UV-Visible 

spectrum, shifting of Soret band and Q bands (Figure 8.8).  

 
Figure 8.12: (a) Absorption spectra of the 1,2-DCE phases shown in Figure 8.9: flask a (full line), flask b 

(dotted line) (b) UV-Visible spectra of the aqueous solutions flask b, TMA common ion after 30 minutes shake 

flask experiment  (full line) and TB common ion  after 5 minutes two-phase reaction (dotted line). 

 
Addition of sodium iodide (NaI) to different aqueous phases was used to detect hydrogen 

peroxide by formation of I3
¯, displaying two absorption bands at 287 and 352 nm as shown in 

Figure 8.12(b) for two common ions TMA and TB. The H2O2 amount detected in the case of 

TMA and TB were 0.025 and 0.08 mM, respectively. 
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Figure 8.12(b) illustrates the influence of the Galvani potential difference on this two-phase 

reaction when employing different common ions. The Galvani potential difference at the 

water|1,2-DCE interface is set at 0.54 V and 0.160 V by the ions TB–, TMA+ ,respectively. It 

is clear from the color change, as well as the UV-Visible spectra (Figure 8.12(b)), that the 

reaction rate follows the order TB– > TMA+. The reaction is very fast when TB– is used as the 

common ion. The colour change of the 1,2-DCE solution from yellow to green after 5 minutes 

at the interfacial region upon contact of the aqueous solution with the 1,2-DCE solution, 

thereby indicating that the O2 reduction by DMFc occurs at the interface. 

It has been shown that oxygen reduction at the polarized water|1,2-DCE interface produces 

DMFc+ and H2O2, on the basis of the two-phase reaction controlled by a common ion. 

 

 
Figure 8.13: Time profile of the formation of DMFc+ in the absence (○) and presence (▲) of 50 µM H2OEP in 

1,2-DCE during the shake flask experiments (a) TB and (b) TMA as a common ion. 

 

A time profile of the formation of DMFc+ in the absence and presence of H2OEP shows that 

the oxidation of DMFc is much faster in the presence of H2OEP and the reaction rate for TB 

(Figure 8.13(a)) is higher than TMA+ (Figure 8.13(b)). Upon an addition of H2OEP, the rise of 

the absorption bands at 779 nm, corresponding to DMFc+, could be observed, as displayed in 

Figure 8.13. These results indicated that the rate of formation of decamethylferrocenium was 

dependent on the Galvani potential difference tuned by using various common ions and 

H2OEP plays a catalytic role in the O2 reduction by DMFc. 

 

8.6 Mechanisms 
 
All the data presented there above demonstrate unambiguously that H4OEP2+ can promote 

oxygen reduction by DMFc. Samec et al. investigated the reversible formation of an adduct 
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between monoacid or diacid and the molecular oxygen by DFT calculation.[28] The 

mechanism is very similar to that proposed by Samec et al. for H2TPP catalyzed O2 reduction 

by DMFc.[28] The formation of weak adducts H3OEP+-O2 and H4OEP2+-O2, where the 

molecular oxygen is bound to the protonated nitrogen atoms of two opposite pyrrole rings, e.g. 

for the reaction (8.7), 

 

 H3OEP  O
2
 DMFc  H

2
OEP  HO

2
  DMFc                                                     (8.10) 

 

 H4
OEP2  O

2
 DMFc  H

3
OEP  HO

2
  DMFc                                                    (8.11) 

 

The mechanistic routes involving a proton-coupled electron transfer as shown below (8.9) are 

currently under investigation.  

2 2
4 2 4 2H OEP O H OEP O                        (8.12) 

2  • +
4 2 3 2H OEP O  + DMFc  H OEP  + HO DMFc                     (8.13) 

The generation of hydrogen peroxide from the formed hydroperoxyl radical, 2HO  , is 

expected to proceed rapidly.  

 

8.7 Conclusions 
 

Protonation of free base porphyin, 2,3,7,8,12,13,17,18-octaethyl-21H,23Hporphine (H2OEP) 

has been studied by cyclic voltammetry and spectrophotometric method. The acidity constants 

Ka1 and Ka2 are very close to each other, only one peak can be seen. Two protonation peaks 

occur at the same pH and combine to make one peak at 0.04 V. The cyclic voltammogram 

shape and peak separation of experimental results is in good agreement with computational 

results. The titration of H2OEP with an organic soluble acid, was studied in 1,2-DCE and 

formation of H2OEP diacid (H4OEP2+) confirmed by UV-Visible. H4OEP2+ can bind to 

oxygen, and the complex in the organic phase can easily be reduced by DMFc to produce 

hydrogen peroxide as studied by two-phase reactions with the Galvani potential difference 

between the two phases being controlled by the partition of a common ion. The catalytic 

activation of the protonated forms H2OEP on the molecular oxygen reduction by 

decamethylferrocene has been investigated at the polarized 1,2-DCE interface.  
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Chapter 9 

Summary  

 

In this work, a novel electrocatalytic approach has been studied for oxygen reduction based 

on molecular catalysts at soft interface such as a liquid│liquid interface. The objective of this 

project is the design of a novel class of molecular catalysis for the electroreduction of oxygen at 

water│1,2-DCE interface.  

First of all, the oxygen reduction by DMFc has been proved in the absence of any noble metal 

catalysts at a polarized water|1,2-DCE interface. Electrochemical results point to a mechanism 

similar to the EC type reaction at the conventional electrode/solution interface, the protonation 

of DMFc occurs heterogeneously to the formation of DMFc-H+ in the present biphasic system. 

We present an electrochemical method for producing H2O2 at a soft molecular interface rather 

than at a solid electrode. This approach relies on controlling the interfacial Galvani potential 

difference between two immiscible phases to allow the reduction of O2 to H2O2. The 

electrochemical method used for the study of ORR reaction and rate of reaction is controlled 

by the Galvani potential difference across the interface, which has been determined 

chemically using various salts with a common ion. 

[Co(tpp)] and CoOEP catalyzed O2 reduction by ferrocene derevitives at the polarized 

water|1,2-DCE interface. This study demonstrates the oxidation of Fc derevitives is much 

faster in the presence of cobalt porphyrins. 

Futhermore, the proton transfer facilitated by H2TPP has been demonstrated. The first 

protonation of H2TPP to form the monoacid H3TPP+ in 1,2-DCE represents the transfer of a 

proton from water to 1,2-DCE and the second protonation represents the facilitated transfer of 

a second proton by H3TPP+. These results show a simple methodology to illustrate the 

existence of H3TPP+ in 1,2-DCE, based on ion transfer voltammetry at the water|1,2-DCE 

interface. It has been conclusively demonstrated that cyclic voltammetry is a relevant 

technique to explore the partition of ionic species of H2TPP in the water│1,2-DCE solvent 

system. It allows the evaluation of thermodynamic quantities with determination of ionic 

partition of H2TPP. Rather slow reduction of molecular oxygen by DMFc at the polarized 

water│1,2-DCE interface proceeds remarkably faster in the presence of  monoacid (H3TPP+) 
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and diacid (H4TPP2+), which are formed in 1,2-DCE. A mechanism is proposed, which 

includes the formation of adduct between H3TPP+ or H4TPP2+ and O2 that is followed by 

electron transfer from DMFc to the adduct leading to the observed production of DMFc+ and 

the regeneration of H2TPP or H3TPP+, respectively. 

Finally, the protonation of H2OEP has been studied by cyclic voltammetry and 

spectrophotometric method. From ion-transfer voltammetry only one peak appears. This was 

related to the fact the two protonation peaks combine to make one peak, the cyclic 

voltammogram shape and peak separation of experimental results is in good agreement with 

computational results. The reaction mechanism clearly explained by theoretical model and 

confirmed by computational consideration which is in a good agreement with the 

experimental results. Protonated octaethylporphyrin can catalyze ORR reaction by DMFc to 

produce hydrogen peroxide. 
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