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Abstract 

 

Iridium dioxide electrodes form part of the dimensionally stable anodes 

(DSA®) and this electrode material is widely used in many industrial 

processes namely water electrolysis, metal electro-winning, cathodic 

protection and electro-organic synthesis due to the high electrochemical 

activity and stability of this electrode material. 

IrO2-based electrodes can be prepared using different techniques but the 

most common is the thermal decomposition of H2IrCl6 precursor solution on 

an inert substrate like titanium. 

Within the water stability potential domain, the charging/discharging process 

is attributed to the slow diffusion of protons within the IrO2 coating together 

with the electrical double layer capacitance. In fact the valence state of the Ir 

surface atoms of the coating varies from +IV to +VI in the potential domain 

between the on-set potentials of H2 and O2 evolution. 

Concerning the oxygen evolution reaction, direct evidence was found that the 

IrO2 coating participates actively in the reaction using an electrolyte solution 

containing isotopically labeled H2
18

O. In fact, measurements of the relative 

amounts of electrogenerated 
16

O2 and 
18

O
16

O have demonstrated that the 

hydroxyl radicals coming from water discharge interact strongly with IrO2 

resulting in the formation of the higher oxide (IrO3) and the decomposition of 

that oxide produces oxygen. IrO3 is thus the intermediate involved in the OER 

on these electrodes. 

During the oxidation of organic compounds, direct evidence was found by 

marking the IrO2 electrode with 
18

O that the higher valence state oxide IrO3 

participates effectively also in this process. In fact, the oxidation of a solution 

of formic acid on a marked IrO2 coating containing 
18

O has shown that 

C
16

O
18

O is evolved proving that the oxidation of organic compounds occurs on 

IrO3 with competing side-reaction of oxygen evolution. The low overpotential 

of the OER allows performing selective electro-oxidation of a wide variety of 

organic compounds. In fact, the competing side reaction of oxygen evolution 
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‘buffers’ the potential around values where the oxidation products are not 

further oxidized showing that the IrO2 electrode is particularly suited for 

electro-organic synthesis. However, the current efficiency of the oxidation 

process remains low due to the competing side reaction of oxygen evolution. 

 

KEYWORDS: IrO2 electrode, DSA®, oxygen evolution, electro-organic 

synthesis, voltammetric charge, surface redox electrocatalysis, DEMS 

measurements 
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Résumé 

 

Les électrodes au dioxyde d’iridium font partie des anodes dimensionellement 

stables (DSA®) et ce matériau d’électrode est largement employé dans 

plusieurs procédés industriels tels que les électrolyses en milieu aqueux, la 

récupération de métaux, la protection cathodique et la synthèse electro-

organique, car ce matériau possède une grande activité électrochimique ainsi 

qu’une grande stabilité. 

Les électrodes au dioxyde d’iridium peuvent être préparées de différentes 

manières mais la plus répandue est la décomposition thermique d’une solution 

du précurseur H2IrCl6 sur un substrat inerte tel que le titane. 

Dans le domaine de potentiel de stabilité de l’eau, la charge/décharge de 

l’électrode est attribuée à la diffusion lente de protons à l’intérieur du film 

d’IrO2 ainsi qu’au chargement de la double couche électrique. En fait, l’état de 

valence des atomes d’iridium surfaciques du matériau d’électrode varie entre 

+IV et +VI dans le domaine de potentiel situé entre les potentiels de départ 

des dégagements d’hydrogène et d’oxygène. 

Concernant la réaction de dégagement d’oxygène, une preuve directe de la 

participation du film IrO2 à cette réaction a été trouvée en utilisant une 

solution d’électrolyte contenant H2
18

O. En fait, les mesures des concentrations 

relatives de 
16

O2 et 
18

O
16

O électro-générés ont démontré que les radicaux 

hydroxyles provenant de la décharge de l’eau interagissent fortement avec 

l’IrO2 impliquant la formation de l’oxyde d’état de valence supérieur (IrO3) et 

le décomposition de cet oxyde produit de l’oxygène. IrO3 donc est 

l’intermédiaire impliqué dans le dégagement d’oxygène sur ces électrodes.  

Pendant l’oxydation de composés organiques, une preuve directe a été 

trouvée en marquant une électrode Ti/IrO2 avec 
18

O que l’oxyde d’état de 

valence supérieur IrO3 participe activement aussi dans ce procédé. En effet, 

l’oxydation d’une solution d’acide formique sur une électrode Ti/IrO2 marquée 

avec 
18

O a engendré la formation de C
16

O
18

O prouvant que l’oxydation de 

composés organiques se produit sur IrO3 en compétition avec le dégagement 

d’oxygène. La faible surtension du dégagement d’oxygène permet l’électro-

oxydation sélective d’une grande variété de composés organiques. En fait, la 
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réaction secondaire de dégagement d’oxygène ‘tamponne’ le potentiel à des 

valeurs où les produits d’oxydation ne sont pas minéralisés ce qui montre que 

cette électrode est particulièrement appropriée pour la synthèse électro-

organique. Cependant, l’efficacité du courant de la réaction d’oxydation reste 

faible en raison de la forte compétition avec le dégagement d’oxygène. 

 

MOTS-CLÉS: électrode à l’IrO2, DSA®, dégagement d’oxygène, synthèse 

electro-organique, charge voltammetrique, électrocatalyse redox de surface, 

mesures DEMS. 
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Chapter 1  :  Introduction 

 

 

 

Dimensionally stable anodes (DSA®) are prepared by the 

deposition of a thin (1-5μm) active layer (usually a metal oxide) 

on an inert substrate (usually titanium). These electrodes were 

discovered 40 years ago and are still described as one of the 

most striking and greatest technological breakthrough of the 

history of electrochemistry of the last century [1]. DSA® have 

shown a very high catalytic activity for many reactions like O2 

evolution, Cl2 evolution or H2 evolution. Furthermore, these 

electrodes have shown to be among the most versatile of 

electrode materials [1]. In fact, the possibility to prepare 

electrodes with different compositions (RuO2, IrO2, Ta2O5, PbO2, 

SnO2, TiO2, ZrO2…) on different support materials in terms of 

nature (titanium, tantalum, niobium, zirconium, conductive 

silicon…) and geometry (plates, nets, meshes…) and using 

different methods of deposition (dipping, blading, spin coating, 

spray coating…) has lead to a wide variety of electrode 

materials, opening endless possibilities for numerous industrial 

applications. 
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Dimensionally stable anodes were first discovered and tested in the industry (Italy) 

and remained undisclosed for 7 years after their discovery [2] but when the first 

electrodes were successfully tested for chlor-alkali cells in 1968 [1], information about 

this new type of electrode material leaked outside the industry. Fortunately, scientists 

found themselves on the stream of such ‘leakage’ and the first paper describing their 

fundamental properties was published in 1971 by S.Trasatti [3]. Since then, the 

incredible versatility and properties of these electrodes have attracted the interest of 

scientists worldwide. 

Moreover, apart from chlor-alkali cells, DSA® have been used since then in the 

domains of metal-air batteries [4], molten salt electrolysis [5], cathodic protection in 

concrete of bridges and other structures [6], pH measuring electrodes [7], Zn 

electrodeposition [8] and in the metal industry in general [9]. DSA® have also shown 

to be good candidates for selective oxidation of organics and treatment of waste 

materials [10-13] but also for oxygen evolution in acidic media because these 

electrodes, and the IrO2-based anodes in particular (one of the most recent and 

promising DSA®), have demonstrated incredible stability under such severe conditions 

[14]. 

Despite all of the aforementioned applications, numerous mechanisms occurring on 

these electrodes are still a matter of active debate and it is therefore essential to 

acquire a better knowledge on these mechanisms through fundamental research in 

order to optimize the existing processes mentioned above or possibly extend the 

range of application possibilities. 

Towards this goal, the work proposed herein is aiming at better understanding of the 

electrochemical behavior in aqueous acidic media of dimensionally stable anodes with 

IrO2 as main active component. These IrO2-based electrodes were prepared by 

thermal decomposition of a H2IrCl6 precursor solution on either Ti or p-Si substrate. 

Several processes are studied on these IrO2-based electrodes: the 

charging/discharging process, the electrochemical reactions taking place in the water 

stability potential domain, the oxygen evolution reaction and the oxidation of organic 

compounds (model aliphatic and aromatic compounds). The surface redox couples of 

the electrode material are suspected to be involved in all these processes. 

In Chapter 3, the preparation of iridium dioxide DSA® is presented. The goal of this 

investigation is to control and optimize the preparation conditions (support material, 

deposition technique…) of these electrodes in order to produce stable coatings for 



CHAPITRE 1: Introduction 

 

    

    

- 15 - 

further studies. In fact, it is shown that the IrO2 loading can be controlled by using the 

spin coating deposition technique together with a simple relation expressing the 

loading as a function of the concentration of precursor and the rotation speed of the 

substrate. It is shown also, that the charge measured during a cyclic voltammetry 

measurement in the water stability potential domain can be used as a tool in order to 

estimate the relative amount of active sites (and the loading) of the IrO2-based 

DSA®. 

In Chapter 4, the charging/discharging process of these electrodes is studied using 

cyclic voltammetry measurements performed at different temperatures. From these 

results, the electrochemical and physical processes responsible of the 

charging/discharging of IrO2-based electrodes are revealed. Later in the same chapter, 

the electrochemical reactions occurring in the potential domain of water stability and 

involving the surface redox couples of the electrode material are studied using cyclic 

voltammetry and potential step experiments. 

The mechanism of the oxygen evolution reaction (OER) on IrO2 DSA® in acidic media 

is investigated in Chapter 5 using differential electrochemical mass spectrometry 

(DEMS) measurements. Later in the same chapter, IR drop corrected Tafel slopes 

related to O2 evolution have been determined in order to consolidate the DEMS 

results. On the basis of these results, a new mechanism for the OER on these 

electrodes is proposed and the fraction of electrode material effectively participating in 

the process could also be determined. 

In Chapter 6, the analysis performed in Chapter 5 is repeated but this time in order to 

study the mechanisms and active intermediates involved in the oxidation of organic 

compounds on these electrodes (using formic acid as model compound). Again, a 

mechanism is proposed and the fraction of the IrO2 coating participating in the process 

is revealed. 

In Chapter 7, the anodic oxidation of organic compounds is investigated on IrO2 DSA® 

through cyclic voltammetry measurements. In this chapter, a new theoretical model is 

proposed that estimates the kinetic parameters related to the oxidation of a given 

organic; it is shown that these parameters are strongly dependent on the IrO2 loading. 

Later in the same chapter, and using the same theoretical model together with the 

kinetic parameters estimated and Nernst equation, the shift of the I-V curves toward 

less positive potentials induced by the presence of an organic compound was 

evaluated. From these results, theoretical I-V curves could be plotted. 
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In Chapter 8, a new approach is proposed in order to perform selective organics 

oxidation under galvanostatic conditions with the potential ‘buffered’ by the oxygen 

evolution reaction. Based on that approach, three series of electrolysis experiments 

have been conducted on Ti/IrO2 electrodes: 

The oxidation of formic acid has been carried out in order to evaluate the performance 

of IrO2 electrodes toward a simple anodic oxidation process. Later, the oxidation of i-

propanol and 2-butanol were performed in order to achieve selective oxidation of 

these compounds using the pseudo-potentiostatic approach proposed earlier. 

The experimental results obtained for formic acid, i-propanol and 2-butanol oxidations 

regarding the temporal evolutions of concentration and instantaneous current 

efficiency are compared with the predictions of a theoretical model based on the 

maximum oxidation rate. The oxidation of phenol has also been carried out in order 

not only to achieve selective oxidation of this aromatic compound but also to compare 

the specificity of hydroxylation with other methods frequently used for this reaction. 

Finally, Chapter 9 and Chapter 10 summarize the main findings of this work and 

propose perspectives for future investigations/research. 

The results presented herein provide a better understanding of the electrochemical 

behavior of IrO2-based dimensionally stable anodes (DSA®) in aqueous acidic media 

in order to optimize existing and potential applications for these electrodes. 
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Chapter 2  :  Bibliography 

 

 

 

In the first part of this chapter, a literature review on 

dimensionally stable anodes (DSA®) is presented. This part 

focuses mainly on the composition and preparation of these 

electrodes as well as their practical applications in the industry. 

Regarding their preparation, the spin coating deposition 

technique, which is used for the first time for the preparation of 

electrodes with well-controlled thickness, is described. 

Furthermore, a comprehensive model for organics oxidation on 

‘active’ and ‘non-active’ type electrodes is presented. 

In the second part of this chapter, and for the purpose of 

analyzing the active intermediates involved in the oxygen 

evolution reaction and the oxidation of organic compounds on 

IrO2 electrodes, the principles of the differential electrochemical 

mass spectrometry (DEMS) are presented. 

Finally, a theoretical model that predicts the temporal 

evolutions of the instantaneous current efficiency and the 

concentration of an organic during its mineralization is 

presented. These topics were selected in order to establish a 

background for the experimental chapters that follow. 
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22.1  Dimensional ly  Stable Anodes (DSA®): 

Preparat ion, propert ies and applicat ions 

 

Dimensionally stable anodes (DSA®) come in various shapes and compositions and 

have been proven to be suited for a wide range of applications due to their versatility 

[1]. 

Initially, as described in the corresponding patents [2-4], DSA® were prepared by 

thermal decomposition of a metal salt solution (usually a chloride salt of the desired 

metal diluted in an organic volatile solvent such as i-propanol) on an inert substrate, 

which is a simple principle where the precursor solution is deposited on the substrate 

and then treated at high temperature so that the metal chloride salt decomposes on 

the substrate yielding to the corresponding metal oxide. Using different metal chloride 

salts in the composition of the precursor solution allows producing a wide variety of 

coatings; typical examples of DSA® are RuO2, IrO2, SnO2 and PbO2 based electrodes 

[2-10]. Typical substrates are valve metals (titanium or tantalum) because the natural 

oxide layer at their surface protects them against corrosion. 

Since metal oxide electrodes were discovered during the 1960s in the industry and 

after the first fundamental study on this topic was published by S.Trasatti [11], these 

electrodes have been used in numerous applications (e.g. O2 and Cl2 evolution). In 

fact, these electrodes were first used in Chlor-alkali cells when industrial research 

discovered that their stability and lifetime were high compared to the graphite 

electrodes that were used a decade earlier. 

Nowadays, metal oxide electrodes are commonly used as ‘O2 cathodes’ in metal-air 

batteries or in molten salt electrolysis due to the strong resistance of these electrodes 

against corrosion [12,13]. 

The possibility of producing anodes of various shapes has led to their use for cathodic 

protection in concrete of bridges and other structures [14] and the sensibility of oxides 

toward pH have allowed to use certain DSA® (IrO2 and PdOx) as pH measuring 

electrodes [15]. 

Their good resistance under O2 evolution has led to their utilization as anodes in cells 

for Zn electrodeposition [16] and in the metal industry in general [17]. Additionally, 

DSA® are used for selective oxidation of organics and the destruction of waste 
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materials [18-21] although further improvement is still needed for industrial 

applications under severe conditions, such as oxygen evolution in strongly acidic 

media. 

Concerning the latter possibility of application, the first studies published showed that 

RuO2, IrO2, SnO2 and PbO2 based electrodes were very promising electrode materials 

for the oxygen evolution reaction and organics oxidation in acidic media [22-24], 

especially IrO2, which has proved to be more resistant against corrosion compared to 

RuO2 and is also more environmental friendly compared to PbO2 [22,23]. 

Similarly, applications in other fields are always desired: an example of such 

application is the use of RuO2 in supercapacitors [25].  

 

22.2  The spin coat ing deposit ion technique 

 

Spin coating is a deposition technique, which allows creating thin and uniform films 

through centrifugal acceleration induced by the application of a rotational movement 

to the substrate. 

In this technique, a thick layer of solution containing the active component (solid) is 

applied to the support ((a) on Figure 2-1). During rotation, the solution flows outward 

((b) and (c) on Figure 2-1). As the precursor solution layer thins, evaporation of the 

solvent increases the solid concentration causing an increase in viscosity and causing 

the formation of the solid film ((d) on Figure 2-1). This technique allows for the 

creation of very uniform films of well-controlled thickness. 
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The schema on Figure 2-1 resumes the spin coating process: 
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This technique was initially used for the production of thin organic films such as 

photoresists or other uniform films of paint and varnish [26] but has never been used 

for the preparation of DSA® electrodes. In all cases, it is useful to study in detail the 

parameters having an influence on the final film thickness, such as the rotation speed 

applied to the substrate or the concentration of the active component. 

Spin coating involves the acceleration of a liquid puddle on a rotating substrate. The 

physics behind spin coating involve a balance between centrifugal forces controlled by 

spin speed and viscous forces, which are determined by the viscosity of the solvent.  

The formation of the film is primarily driven by two independent parameters: viscosity 

and spin speed. The range of film thickness easily achieved by spin coating is 1-

200μm. In order to produce thicker films, a high material viscosity, a low spin speed 

and a short spinning time are required. However, these parameters can affect the 

uniformity of the coating. Multi-layered coatings are preferred for a film thickness 

greater than 15μm. 

The first theoretical approaches describing the spin coating process were proposed by 

A.G.Emslie [27] and D.Meyerhofer [28] using several simplifications. 
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The equation of force balance within a finite volume element (see Figure 2-2) can be 

re-written in cylindrical coordinates as: 

 

 

 

��
�2�

�z
2

= �� 2
r  (2-1) 

 

where r is the radius pointing away from the center of rotation (m), � (kg s
-1

 m
-1

) is 

the viscosity, 	 (m s
-1

) is the velocity in radial direction, 
 (kg m
-3

) is the density of 

the solution and �  is the angular velocity (rad s
-1

) given by: 

 

 � = 2� f  (2-2) 

 

Where f (s
-1

) is the frequency. The force balance (Eq.(2-1)) can be integrated 

employing the following boundary conditions: 	  = 0 at the surface of the substrate (z 

= 0 on figure 2-2) and �	/�z = 0 at the free surface of the liquid (z = h on figure 2-2), 

where the shearing force is set to zero. 

 
0                                      r 
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Thus the velocity profile can be obtained (Eq.(2-3)): 
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As shown in Figure 2-2, z (m) is the axis of rotation, r (m) is the radius with 

axisymmetry assumed and h (m) is the thickness of the film. Considering that the 

velocity profile is uniform, the total radial flow q (m
2
 s

-1
) per unit of circumference is 

given by Eq.(2-4): 
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where � (m
2
 s

-1
) is the kinematic viscosity. 

To obtain a differential equation for h, the continuity equation is applied and can be 

written in cylindrical coordinates as follows: 
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1
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 (2-5) 

 

From the continuity equation of the flux (Eq. (2-4) and (2-5)) and using the boundary 

conditions at the surface of the substrate and at the free surface of the liquid cited 

earlier, the following first order ordinary differential equation is derived: 
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The integration of this differential equation (Eq.(2-6)) with h = h0 at t = 0s gives the 

film thickness h (m) as a function of time: 
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 (2-7) 

 

The main problem in this model is that Eq.(2-7) yields no residual film for infinite 

spinning time (i.e. h � 0 as t � �), which contradicts the experimental reality. This is 

a consequence of neglecting the solvent evaporation during the spinning process. 

Mayerhofer [28] takes into account evaporation using a constant evaporation rate of e 

(m s
-1

). 

 

 

 

�
dh

dt
=

2�� 2

3�
h

3 + e  (2-8) 

 

The main goal of this derivation was the estimation of the quasi steady-state film 

thickness i.e. the film thickness after infinite spinning time (h�). Using this two-step 

model (spinning and evaporation), Mayerhofer [28] obtained an expression for the 

film thickness after infinite spinning time h� (m) as a function of the initial 

concentration of active component c0 (mol m
-3

) in the applied solution. 

 

 
 
h
�
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1
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 (2-9) 

 

However, as the evaporation rate e itself depends on the spinning velocity, Sparrow 

[29] and Bornside [30] suggested a power law where the rate of evaporation is 

proportional to the square root of the angular velocity (Eq.(2-10)): 

 

  e ��
1

2  (2-10) 
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And therefore from Eq.(2-9) and Eq.(2-10), one obtains: 

 

 
 
h
�
��

�1

2�
1

3 c
0
 (2-11) 

 

This relation describes the dependence of the final film thickness h� on the angular 

velocity of the substrate �, the viscosity of the precursor solution � and the initial 

concentration c0 of active component in the applied solution. This relation can be 

further modified if one accounts for the variation of the viscosity of the solution during 

the spinning [31]. 

 

22.3  Genera l mechanism of organics oxidat ion on 

‘act ive’ and ‘non-act ive’ t ype elect rodes  with 

compet ing side react ion of oxygen evolut ion 

 

The nature of the electrode material strongly influences both the selectivity and the 

efficiency of the electrochemical oxidation of organic compounds [32-34]. In fact, 

experiments have shown that frequently oxidation of organics occurs on many 

electrodes without any loss in electrode activity and only at potentials in the vicinity of 

the on-set potential of the oxygen evolution reaction (OER) [35,36]. In order to 

explain these observations, a comprehensive general model for anodic oxidation of 

organic compounds in aqueous acidic media with competing OER has been proposed 

by Ch.Comninellis [32-34]. 

This general mechanism of heterogeneous electrochemical oxidation of organics in 

aqueous medium involves anodic oxygen transfer from H2O to organics via hydroxyl 

radicals formed during water discharge [32-34]. The model proposed for anodic 

oxidation of organics in acid media, including competition with oxygen evolution allows 

the distinction between two limiting cases related to the behavior of the electrode: 

‘active’ and ‘non-active’ anodes. IrO2 electrodes are typical examples of ‘active’ type 

anodes whereas boron doped diamond (BDD) electrodes are typical examples of ‘non-
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active’ type anodes. In Figure 2-3, the reaction scheme in acidic media is presented, 

where M represents an active site on the anode’s surface. 
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In both cases, the initial step of this model is the discharge of water molecules to form 

adsorbed hydroxyl radicals (Eq.(2-12)): 

 

 
   
M + H

2
O � M (iOH ) + H

+ + e
�

 (2-12) 

 

The electrochemical and chemical reactivity of the adsorbed hydroxyl radicals is highly 

dependent on the nature of the electrode material used. The latter can be divided into 

two categories, ‘active’ and ‘non-active’ electrodes, defined as followed. 
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22.3.1  ‘Active’  type electrodes 

 

For ‘active’ electrodes, the interaction between the active sites (M) and the hydroxyl 

radicals (•OH) is strong [32-34]. In this case, the adsorbed hydroxyl radicals may 

interact with the anode with possible transition of oxygen from the hydroxyl radical to 

the anode’s surface, forming the oxide MO (Eq.(2-13)): 

 

 
   
M (iOH ) � MO + H

+ + e
�

 (2-13) 

 

This may be the case when higher oxidation states of the electrode’s surface are 

available above the thermodynamic potential of oxygen evolution (1.23 V vs. SHE). 

The redox couple MO/M on the surface can act as mediator during the oxidation of 

organics (Eq.(2-14)) in competition with the side reaction of oxygen evolution due to 

the chemical decomposition of the higher oxide (Eq.(2-15)). 

 

  MO + R � M + RO  (2-14) 

 
  
MO � M + 1

2
O

2
 (2-15) 

 

The oxidation reaction via the surface redox couple MO/M (Eq.(2-14)) results in the 

partial (selective) oxidation of organics. As a general rule, the closer the reversible 

potential of the surface redox couple is to the potential of oxygen evolution, the higher 

the ‘active’ character of the anode is [32-34]. IrO2 based electrodes may serve as a 

typical example of ‘active’ type anodes because the standard redox potential of the 

IrO3/IrO2 couple (1.35 V vs. SHE) is close to the standard potential of O2 evolution 

(1.23 V vs. SHE). 

This model will be verified on IrO2 based electrodes in chapters 5 and 6 using 

differential electrochemical mass spectrometry (DEMS) measurements together with 

isotope labeling. 
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22.3.2  ‘Non-active’  type elect rodes 

 

Correspondingly, for ‘non-active’ type electrodes, the interaction between the active 

sites (M) and the hydroxyl radicals (•OH) is weak [32-34]. In this case, the oxidation 

of organics is mediated by quasi-free hydroxyl radicals (Eq.(2-16)), which may result 

in fully oxidized reaction products such as CO2. 

 

 
   
M (iOH ) + R � M + mCO

2
+ nH

2
O + H

+ + e
�

 (2-16) 

 

In this reaction (Eq.(2-16)), R is the fraction of an organic compound, which contains 

no heteroatom and needs one atom of oxygen to be transformed into fully oxidized 

elements. This reaction competes with the side reaction of hydroxyl radicals discharge 

(direct or indirect) through the formation of H2O2 as intermediate, which produces O2 

without any participation of the anode’s surface  (Eq.(2-17)). 

 

 
   
M (iOH ) � M + 1

2
O

2
+ H

+ + e
�
 (2-17) 

 

Boron-doped diamond deposited on p-Si substrate (p-Si/BDD) is a typical example of 

‘non-active’ anodes. This material is known to be inert and to have weak adsorption 

properties [37]. Hence, the latter is expected to be the ideal electrode material for 

electrochemical incineration of toxic and non-biocompatible pollutants. The presence 

of free hydroxyl radicals during organics oxidation on p-Si/BDD electrodes has been 

demonstrated using electron spin resonance (ESR) measurements [38]. 
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22.4  Different ia l E lectrochemical  Mass  Spect rometry  

(DEMS) 

 

Electrochemical mass spectrometry (EMS) is an online analytical method that allows 

detecting volatile products of a given electrochemical reaction shortly after they are 

formed on the electrode. This process is performed by coupling an electrochemical cell 

with a conventional mass spectrometer (MS) in which both are connected by a porous 

membrane where the products formed from the electrochemical reaction in the cell 

are transited toward the MS. 

In a typical EMS experiment, ionic currents related to the formation of given species 

are measured together with the faradaic current during a potential sweep (cyclic 

voltammetry). Both measurements (ionic and faradaic currents) are usually presented 

together to form the so-called mass spectrometric cyclic voltammogram (MSCV). 

This set-up allowing to detect on-line the products of an electrochemical reaction using 

a MS was first proposed by S.Bruckenstein et al.[39]. The authors connected the 

working electrode to a porous membrane with non-wetting properties, which served as 

an interface between the electrochemical cell and the inlet of the mass spectrometer. 

One of the main disadvantages of this new set-up is the high delay between the 

formation of the products and their detection in the MS (about 20 sec.). 

The set-up was, however, considerably improved a few years later by O.Wolter et 

al.[40]. To achieve this feat, they used a differential pumping system with 

turbomolecular pumps. This system allowed for a faster transfer of the products from 

the electrochemical cell to the ionization chamber and for a fast elimination of 

collected gases. Due to this improvement, the time delay between the formation of a 

product and its detection was reduced to 0.2 seconds. Because of that significant time 

delay reduction, the ionic and faradaic currents could be correlated without major 

distortions for scan rates up to 50 mV s
-1

. In order to distinguish this technique from 

product sampling, i.e., an integral approach, O.Wolter et al.[40] named the improved 

method differential electrochemical mass spectrometry (DEMS). 

Since the improvement of the technique, the latter has been widely used by scientists 

worldwide to study electrochemical kinetics. 
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22.4.1  DEMS setup 

 

Interface to vacuum 

 

In a typical DEMS experiment, it is essential to separate the volatile compounds from 

the electrolyte solution independently of the solvent used. This is achieved using a 

porous Teflon membrane introduced at the interface between the vacuum system 

leading to the MS and the electrochemical cell. By using this type of membrane, 

separation can be achieved in aqueous and also some organic electrolytes. The 

membrane is impermeable to liquid due to its hydrophobic properties while the 

dissolved gaseous and other volatile species can diffuse by evaporation through the 

membrane. The critical pore size depends on the solvent used for the electrolyte 

solution (0.8 μm for aqueous electrolyte solutions). Therefore, a typical Teflon 

membrane is 75 μm thick with a porosity of 50%. Because the membrane is very thin 

and can be damaged easily, it is supported by a glass or steel frit mounted at the 

interface between the vacuum and the electrochemical cell in the DEMS setup. 

 

The DEMS cell 

 

In the classical approach, the electrocatalyst layer, e.g., Pt, is sputtered directly onto 

the Teflon membrane. With this configuration, one side of the electrode is in contact 

with the electrolyte solution while the other side is in contact with the mass 

spectrometer vacuum system. The main advantage of this approach is the increase of 

the roughness factor of the electrocatalyst, which permits for an overall larger 

products formation as well as a fast transfer of the species to the MS. However, low 

mechanical stability and the higher thickness of the catalyst leading to depletion of the 

species within the electrocatalyst layer (diffusion behavior) remains a key issue. 

Therefore, when using this classical approach for the DEMS electrochemical cell, 

porous metal layer electrodes (such as IrO2 based electrodes) were not suitable for 

investigation of electrode reactions that generate strong gas evolutions, because the 

strong bubbling caused the destruction of the electrode material. 
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In order to perform DEMS measurements with porous metal layer electrodes, the 

conventional cell (made of Teflon or glass) presented on Figure 2-4 was developed. 

The volume of this cell is defined by a Teflon spacer placed between the electrode and 

the electrochemical cell and the time delay between the formation of a product and its 

detection in the MS is about 0.1 seconds. 
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However, the design of this cell only permitted using electrodes of a relatively small 

size. For the use of larger porous metal layer electrodes such as those prepared in the 

foregoing chapters, another type of electrochemical cell was developed: the thin layer 

DEMS cell. 

In this new DEMS cell (shown on Figure 5-1 in the experimental details of Chapter 5), 

the electrode has a diameter of 1 cm and is separated from the porous hydrophobic 

Teflon membrane by a 50 to 100 μm thick electrolyte layer. The Teflon membrane is 

mechanically supported by a steel frit and the distance between the electrode and the 

Teflon membrane is ascertained by one spacer, or even two to achieve a doubled 

distance, made from the same material as the membrane. Due to the compression of 

this soft spacer, the distance is less than the nominal thickness. The cell body is made 

of passivated titanium because of its mechanical stability and inertness. Two 

capillaries positioned opposite to each other serve as electrolyte inlet and outlet and 

as connections to the reference and counter electrodes. Due to the large IR drop in 

the thin layer of electrolyte, it is advantageous to use two counter electrodes; one in 

the outlet and the other in the inlet. Connecting both counter electrodes to the 

potentiostat via different resistors ensures that the current through the capillary to the 
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reference electrode is less than half of the total current. With this configuration, 

species produced on the electrode surface diffuse to the Teflon membrane within 2 

seconds. 

 

VVacuum system 

 

Figure 2-5 displays the experimental setup used for the DEMS measurements. The 

electrochemical cell is connected to the first vacuum chamber via a valve at Position 

(3). Another valve at Position (4) leads to the calibration volume. A shutter was placed 

between the ionization chamber and the analyzer section to create a pressure gradient 

allowing the species to flow toward the analyzer section. The evacuation is performed 

first mechanically by a linear drive (9) and then differentially by two molecular pumps 

(2); one before the ion source (5) working at a pressure of 10
-2

 bar and the other 

above the quadrupole rods chamber (6) working at a pressure of 10
-5

 mbar. The 

electrodes mounted in the electrochemical cell are connected to a potentiostat driven 

by a function generator. 

Volatile products are ionized in the ionization chamber by electron bombardment. 

These ions are then accelerated through quadrupole rods (6) and analyzed using a 

quadrupole mass filter (m/z ratio). 

The incoming signal is then amplified using a secondary electron amplifier (7) before 

detection. The different parameters of the entire system are controlled by an external 

computer, which allows data acquisition as well. 
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2.4.2  DEMS results  analysi s 

 

The ionic current recorded during the DEMS measurements can be related to the rate 

of formation of the corresponding product. In fact, the ionic intensity determined by 

mass spectrometry is directly proportional to its incoming flux (Eq.(2-18)): 

 

 Ii = K 0Ji  (2-18) 

 

where Ii (A) is the ionic intensity of the specie i, K0
 (C mol

-1
) is a constant, which takes 

into account all the mass spectrometric constants/settings and the ionization 

probability of the corresponding species. Last, Ji (mol s
-1

) is the molar flux of the 

species through the membrane into the ionization chamber.  
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When the species are produced electrochemically, Ji is given by the faradaic current 

corresponding to that process: 

 

 Ji = N
I f
zF

 (2-19) 

 

where N (-) is the collection efficiency, defined as the ratio of the amount of species 

detected by the MS to the total amount of species produced electrochemically. If (A) is 

the faradaic current, z is the number of electrons necessary to produce one molecule 

of product and F (C mol
-1

) is the Faraday constant. By combining equations (2-18) and 

(2-19), one obtains:  

 

 Ii = NK 0 I f
zF

 (2-20) 

 

It is important to note that N may be less than 1 if a fraction of the species formed 

diffuse away from the electrode into the electrolyte. This occurs when incomplete 

mixing of the electrolyte is achieved in the electrochemical cell (usually at flow rates > 

2 μl s
-1

). In this case, another more appropriate equation is used (Eq.(2-21)):  

 

 Ii = K * I f
z

 (2-21) 

with: 

 K * =
K 0N

F
 (2-22) 

 

K*
 (-) can be estimated using a known electrochemical reaction, such as hydrogen or 

oxygen evolution. The calibration of the instrument to find the value of K

 for the 

collection of H2 or O2 can be easily achieved using equation (2-22). Similarly, the 

oxidation of CO adsorbed on a Pt electrode is often used to calibrate the mass 

spectrometer for CO2. In this case, the integrated faradaic oxidation current, as well 
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as the ionic current for CO2, are used. Alternatively, calibration of the mass 

spectrometer can also be achieved via a calibration leak (valve in the position (4) in 

Figure 2-5) and K0
 can be estimated.  

In summary, differential electrochemical mass spectrometry (DEMS) is a powerful on-

line method used for both the detection of products formed through an 

electrochemical reaction and the study of adsorbates. Using DEMS, the amounts of 

reaction and desorption products can be determined semi-quantitatively. Because this 

technique is fast (response time max 2s) and highly sensitive, concentrations of 

volatile reaction products below one nmol can be easily detected. Furthermore, using 

isotopically labeled compounds, additional information about the mechanism of the 

studied reaction can be obtained. 

 

22.5  Theoret ical  model for the oxidat ion of organic  

compounds during electro lysis experiments based 

on the maximum oxidat ion rate 

 

For the electrolysis experiments, a model has been developed for the electrochemical 

oxidation of organic compounds in a batch recirculation system under galvanostatic 

conditions. This model was proposed by P.-A.Michaud [43] and was first intended to 

predict the temporal evolutions of the concentration of an organic compound and the 

instantaneous current efficiency (ICE) during its electrochemical mineralization on 

boron-doped diamond (BDD) electrodes. Nonetheless, this model could also be 

adapted to ‘active’ type anodes such as IrO2-based electrodes according to the 

chemical reactions (2-12), (2-13), (2-14) and (2-15) presented in section 2.3.1 of this 

chapter. 

The main assumption of this model is that the global rate of the electrochemical 

oxidation reaction is fast and that this oxidation reaction is controlled by current or 

mass transport of the organic toward the anode’s surface, which depends on the 

difference between the applied current density japplied (A m
-2

) and the limiting current 

density jlim (A m
-2

). Under these conditions, the limiting current density jlim,t (A m
-2

) for 

the electrochemical oxidation reaction under given hydrodynamic conditions can be  

written as: 
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j
lim,t

= 4Fk
m
�COD

t
 (2-23) 

 

with F (C mol
-1

) being the Faraday’s constant, km (m s
-1

) as the mass transport 

coefficient and CODt (molO2 m
-3

) the chemical oxygen demand at time t (s). At the 

beginning of the electrolysis (t=0s), the initial limiting current density jlim,0 is given by 

equation (2-24), with COD0 (molO2 m
-3

) as the initial chemical oxygen demand. 

 

 
  
j
lim,0

= 4Fk
m
�COD

0
 (2-24) 

 

22.5.1  Electrolysi s under current control  ( j applied <  j lim)  

 

In the case of japplied < jlim (current control), the instantaneous current efficiency ICE is 

100% and the oxidation rate of the organic compound expressed as a function of COD 

has a constant value. Hence, the latter can be written as follows (Eq.(2-25)), with � 

being the dimensionless current density (-), A the geometric anode surface area (m
2
) 

and VR the reaction volume (m
3
). 

 

 

  

r = �
j
lim,0

4F
with � =

j
applied

j
lim,0

and r = �
V

R

A

d(COD)

dt
nn(mo l.m

�2
.s

�1
)  (2-25) 

 

From Eq.(2-23), (2-24) and (2-25), the temporal evolution of COD can be evaluated 

(Eq.(2-26)). 

 

 

  

COD
t

= COD
0
� 1 � � �

Ak
m

V
R

� t
�

�
�

�

	

  (2-26) 
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The linear relation between COD and t is valid up to a critical time tcr after which the 

applied current density is equal to the limiting one japplied = jlim. At this critical time, 

CODcr is related to COD0 by the following equation: 

 

 
  
COD

cr
= � �COD

0
 (2-27) 

 

By combining equations (2-26) at t = tcr and (2-27), it is possible to calculate tcr: 

 

 

  

t
cr

=
1 � �

�
�

V
R

A � k
m

 (2-28) 

 

22.5.2  Electrolysi s under mass transport  control ( j appli ed > j lim)  

 

In case of mass transport control (the applied current exceeds the limiting one japplied 

> jlim), the side reaction of oxygen evolution induces a decrease of the instantaneous 

current efficiency for organics oxidation while the chemical oxygen demand decreases 

exponentially with time, as described by Eq.(2-29). 

 

  

COD
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  (2-29) 
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Figure 2-6 shows the theoretical temporal evolution of the chemical oxygen demand in 

the current and mass transfer controlled regimes. 
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The instantaneous current efficiency for the oxidation of organics is defined as: 

 

 ICE =
j
lim,t

j
applied

=
COD

t

� �COD
0

 (2-30) 

 

Combining equations (2-29) and (2-30) the ICE can be expressed as follows: 
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  (2-31) 
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The theoretical temporal evolution of the instantaneous current efficiency calculated in 

the current and mass transfer controlled regimes is shown in Figure 2-7. 

In order to verify the validity of this model, anodic oxidations of model organic 

compounds in acidic media have been performed on p-Si/BDD electrodes for different 

initial organic concentrations and current densities [43]. 
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EELECTROCATALYSIS INDUCED BY SURFACE REDOX ACTIVITIES 

ON CONDUCTIVE METAL OXIDE ELECTRODES 

    

    

 

 
 
 
 
 
 

Chapter 3  :  Preparation and morphological  

characterizat ion of Ti/IrO2 and p-Si/IrO2 

electrodes 

 

 

 

In this chapter, IrO2 electrodes are prepared through thermal 

decomposition of a H2IrCl6 precursor solution on an inert 

substrate (Ti or p-Si). In a first part, these electrodes were 

prepared using the most common method of deposition found in 

literature, which consists in applying the H2IrCl6 precursor 

solution on a Ti substrate followed by solvent evaporation and 

thermal decomposition of the precursor. These electrodes were 

then characterized using voltammetric charge measurements. 

In a second part, IrO2 electrodes were prepared for the first 

time using the spin coating deposition technique, where 

centrifugal forces spread the precursor solution with 

simultaneous evaporation of the solvent on the rotating 

substrate. It was found using this technique, that it is possible 

to obtain thin and uniform IrO2 coatings with controlled 

loadings. 
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The influence of the concentration of iridium salt in the precursor solution (c0) as well 

as the influence of the rotation speed at which the substrate spins (�) on the IrO2 

loading have been studied using voltammetric charge measurements. From these 

results, a simple relation has been proposed for the estimation of the IrO2 loading for 

a given c0 and �. 

Finally, p-Si has been used as substrate in order to avoid the problem inherent to the 

formation of TiO2 at the Ti-IrO2 interface, which occurs when titanium is used as 

substrate. These electrodes have been mainly used for electroanalytical 

measurements. 

This chapter is based on the publications: 

S. Fierro, L. Ouattara, E.H. Calderon, Ch. Comninellis. Influence of 

temperature on the charging/discharging process of IrO2 coating deposited on 

p-Si substrate, Electrochemistry Communications, Volume 10, Issue 6, April 

2008, Pages 955-959 

S. Fierro, Ch. Comninellis. Kinetic study of formic acid oxidation on p-Si/IrO2 

electrodes, Electrochim. Acta, under preparation, February 2010 

 

33.1  Introduction 

 

The first iridium dioxide based electrodes, as described in the corresponding patents 

[1-3], were produced by thermal decomposition of the appropriate precursor solution, 

which was previously applied on an inert substrate such as titanium or tantalum. 

These electrodes belong to the family of dimensionally stable anodes (DSA®). 

Because the versatility of DSA® is their main advantage [4], scientists have 

developed various techniques to produce these electrodes as it became obvious that 

every step of the preparation of these electrodes could have a direct impact on the 

electrochemical behaviour of the resulting coating. 

The type of substrate (titanium, tantalum, niobium, zirconium etc.) and its pre-

treatment (polishing, sandblasting etc.) can have a significant influence on the 

electrocatalytic activity and can occasionally be considered as a co-catalyst [5-9]. In 

fact, the chemical and electrochemical stability of the base metal used as substrate 
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was found to be directly related through the wear mechanism, to the service life of the 

electrode. One of the main problem often caused by the base metal is the formation of 

a non-adherent, non-conductive layer on the base metal’s surface during thermal 

decomposition that can alter the behaviour of the electrode. 

The next step is the application method where again, numerous techniques have been 

proposed for the application of the precursor solution on the base metal. 

During the early stages of DSA® manufacture, the precursor solution was usually 

applied on the substrate with a paintbrush [10] or by dipping [11], in order to soak the 

base metal directly into the metal salt solution. 

These methods were the most economical for industrial applications. However, in 

order to later study the intrinsic electrocatalytic properties of the electrode or purely 

structural effects, the scientists needed to manufacture well-defined coatings. 

Those were obtained by developing new techniques such as the spray coating [12], 

where the precursor solution is dispersed finely on the metal, or the blading method, 

which consists in applying the precursor solution using a sharp blade [13] so that the 

excess of solution is eliminated from the substrate surface leaving a thin film of 

precursor solution on the support material. 

However, for specific investigations, such as the study of the efficiency of DSA® as 

supercapacitors, the electrode is constructed such that its surface is maximized; in 

this respect, methods such as sol-gel have been borrowed from the field of catalyst 

preparation [14]. 

In this chapter, the manufacture and the morphological characterization of IrO2 

electrodes prepared by thermal decomposition are presented. XPS measurements 

have been performed on IrO2 deposited on Ti and on p-Si so as to investigate the 

interference of the substrate with the IrO2 coating. The spin coating deposition 

technique was used for the first time for the preparation of IrO2 electrodes. 

Additionally, the influences of the concentration of H2IrCl6 in the precursor solution 

(c0) and the rotation speed of the substrate (�) on the final thickness of the IrO2 

coating were studied using voltammetric charge measurements. 
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33.2  Experimental detai ls  

 

Each voltammetric experiments presented herein were performed in a classical three-

electrode cell (70 ml) using an Autolab PGSTAT 30. The counter electrode was a Pt 

wire; the reference electrode was Hg/Hg2SO4/K2SO4 (sat.) (MSE; 0.65 V vs. SHE) and 

the working electrode was an IrO2 electrode prepared by thermal decomposition of 

H2IrCl6: the precursor aqueous solution (H2IrCl6 (99.9%, ABCR) 250mM in dry i-

propanol (extra dry with molecular sieves, water < 50ppm, Acros Organics) was 

deposited using the spin coating technique on square-shaped pretreated p-Si or Ti 

(182.25 mm
2
). The oxide film was obtained by thermal decomposition in air at 500°C. 

Several series of IrO2 electrodes with different loadings were prepared. 

A schematic of the electrochemical cell used is shown in Figure 3-1: 
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Experiments were carried out at room temperature (25°C) inside a Faraday cage using 

1M HClO4 (70% Acros organics) as support electrolyte. All potentials given in this 

chapter are with respect to the standard hydrogen electrode (SHE).

Pt 

counter 

electrode 

Reference 

electrode 

IrO2 electrode 

5 cm 
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SEM pictures were taken using a Philips XL30 scanning electron microscope and the 

spincoater used for the spreading of the precursor solution for IrO2 electrodes 

preparation was a SPIN150 wafer spinner from semiconductor production systems 

(SPS). 

 

33.3  Results and discussion 

 

3.3.1  Morphological and voltammetric  charge studies of 

Ti/IrO2 electrodes 

 

Ti/IrO2 electrodes are obtained after thermal decomposition of H2IrCl6 0.25M in i-

propanol solution deposited on Ti substrate. Multi-layered electrodes have been 

prepared by depositing several times a given volume of precursor solution (30μl) with 

subsequent decomposition during 10 minutes at 500°C before performing the final 

treatment at 500°C for 1 hour. 

The titanium substrate was sandblasted, in order to increase the adherence between 

the substrate and the iridium oxide. The sandblasted substrate was then treated in 

boiling 1M oxalic acid aqueous solution for 1 hour before the IrO2 deposition in order 

to increase further the roughness of the substrate and to clean all impurities coming 

from the sandblasting process. A SEM picture of the pretreated substrate is presented 

on Figure 3-2. 
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Figure 3-3 (a) and (b) show SEM images of one layer (0.96mg cm
-2

) and eight layers 

(6.55mg cm
-2

) of IrO2 both deposited on a pretreated titanium substrate, respectively. 

The deposit exhibits a cracked dried-mud structure (Figures 3-3a and 3-3b), which is 

the typical structure of these DSA® prepared on a Ti substrate [15-17].  

Figure 3-3a shows that the titanium substrate is still visible; this is an indication that 

one layer (0.96mg cm
-2

) of IrO2 is not enough to cover entirely the substrate.  

Figure 3-3b shows that when the loading is increased (6.55 mg cm
-2

), the Ti substrate 

is not observed anymore.  

Figure 3-3c shows a profile view of the IrO2 coating (upper part of the picture) 

deposited on pretreated titanium (lower part of the picture). Furthermore, a closer 

enlargement in Figure 3-4 shows that the iridium dioxide coating is composed of fine 

nanorods-shaped crystals, which are probably formed through epitaxial growth in the 

defects of the pretreated titanium (resulting in the formation of nanopores). All the 

figures presented so far in this section clearly show that the IrO2 coating has a highly 

porous structure. 
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Several Ti/IrO2 electrodes with different loadings were prepared and cyclic 

voltammetry measurements at various scan rates were performed within the same 

potential window in 1M HClO4.  

Figure 3-5 shows the voltammograms for a one-layer Ti/IrO2 (0.96 mg cm
-2

) 

electrode. 

�
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The corresponding voltammetric charges (q*
) were plotted as a function of scan rate 

for several loadings of IrO2 (Figure 3-6). 
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This figure shows clearly that q*
 at a given scan rate increases with the IrO2 loading. 

This voltammetric charge q*
 has been used as a tool to provide an estimation of the 

IrO2 loading for the development of IrO2 electrodes prepared using the spin coating 

deposition technique (see below). 

 

3.3.2  Morphological and voltammetric charge study of  Ti/IrO2 

electrodes prepared using the spin coating deposit ion 

method 

 

Several Ti/IrO2 electrodes were prepared using the spin coating deposition technique 

with the rotation speed of the substrate fixed at 2000rpm while the concentration of 

H2IrCl6 was varied between 5mM and 250mM. Cyclic voltammetry measurements were 

performed on those electrodes in the water stability potential domain at different scan 

rates and the corresponding voltammetric charges were measured (Figure 3-7). 
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Figure 3-8 shows that for scan rates ranging between 5 and 500mVs
-1

, q*
 increases 

linearly with the concentration of H2IrCl6 in the precursor solution. 
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The other parameter of the spin coating deposition technique able to control the 

loading of the IrO2 coating is the rotation speed of the substrate. 

Thus several Ti/IrO2 electrodes were prepared using a precursor solution containing 

250mM of H2IrCl6 while the rotation speed of the substrate was varied between 500 

and 3000rpm.

Again, cyclic voltammetry measurements within the water stability potential domain 

were performed on those electrodes at different scan rates and the voltammetric 

charge was measured. Figure 3-9 shows the evolution of the voltammetric charge q*
 

as a function of scan rate for four Ti/IrO2 electrodes prepared using the same 

precursor solution except for different rotation speeds applied to the substrate. 
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Considering: (a) the relation expressing the coating’s thickness (h�) as a function of � 

(Eq.(2-11)), (b) a constant porosity within the film and (c) the direct proportionality 

between the IrO2 loading and the voltammetric charge q*
, the latter is plotted as a 

function of � -0.5
. Figure 3-9 shows that the q*

-� -0.5
 curves are linear for six different 

scan rates. 
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Figure 3-8 and Figure 3-10 also clearly show that it is possible to control the loading of 

the IrO2 coating (from Eq.(3-3)) using the spin coating deposition technique by 

optimizing two parameters, which are the concentration of iridium containing salt 

(H2IrCl6) in the precursor solution (c0) and the rotation speed of the substrate (�). 

From these results, the relation of the spin coating model (Eq.(2-11)) has been 

adapted to Ti/IrO2 electrodes as follows (Eq.(3-1)): 

 

 q* � K�
�1

2c0  (3-1) 

 

Where q*
 (C m

-2
) is the voltammetric charge directly related to the IrO2 loading and K 

(C m rad
0.5 

s
-0.5 

mol
-1

) is a constant, which depends on the system under investigation 

(precursor: H2IrCl6, solvent: i-propanol, substrate: p-Si). 
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This new relation (Eq.(3-1)) predicts that the straight lines presented in Figures 3-8 

and 3-10 should cross the origin and the results presented indicate that it is indeed 

the case for all the applied scan rates. 
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From the slope obtained for the average straight line passing through the origin ((3) in 

Figure 3-11), the constant K in Eq.(3-1) was calculated in SI units (C m rad
0.5

 s
-0.5

 

mol
-1

). Therefore, it has been demonstrated that this model (Eq.(3-2)) can be used for 

the estimation of the loading of the IrO2 coating (from Eq.(3-3)) for the system under 

investigation in this work (precursor: H2IrCl6, solvent: i-propanol, substrate: Ti):

 q* � 2.25 ±0.2( )�
�1

2c0  (3-2) 

 Domain of validity: 500rpm < � < 3000rpm 5mM < c0 < 250mM 

From voltammetric charge measurements performed on Ti/IrO2 electrodes with 

different loadings, a value for the specific voltammetric charge of the IrO2 coating 

(q
sp

*
) has been determined at about 30C per gramm of IrO2 (Chapter 4, Fig.4-10) in 

agreement with previous studies [18]. 
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Using this value, Eq.(3-2) can be rearranged to express the IrO2 loading 

  
L

IrO
2

 (g m
-2

) 

as a function of � and c0: 

 

 
  
L

IrO
2

� 0,075�
�1

2 c
0
 (3-3) 

 

This value allows the estimation of the IrO2 loading from the voltammetric charge q*
. 

In order to investigate the influence of the precursor salt concentration on the 

homogeneity of the coating, SEM pictures of Ti/IrO2 electrodes prepared with the 

rotation speed of the substrate fixed at 2000rpm but using four different H2IrCl6 

concentrations are presented in Figure 3-12. 
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These images show the presence of dark regions for small concentrations of H2IrCl6 

(pictures (a), (b) and (c)) indicating that a significant portion of the substrate is still 

not covered by IrO2. Consequently, a concentration of 250mM of iridium salt in the 

precursor solution has been chosen in order to ensure that the entirety of the surface 

is being covered. 

Regarding the rotation speed of the substrate, SEM pictures of several Ti/IrO2 

electrodes prepared with different rotation speeds imposed to the substrate were 

taken as well. These pictures are presented in Figure 3-13. 
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These images show that the rotation speed has little effect on the morphology of the 

IrO2 coating. However, a rotation speed of 500rpm seems to produce continuous IrO2 

films covering almost all the surface of the titanium substrate. 

Therefore, the following optimal spin coating conditions for all the foregoing IrO2-

based electrodes have been chosen: 500rpm for the rotation speed of the substrate 

and 250mM of H2IrCl6 for the concentration of precursor solution. 

 

33.3.3  p-Si as substrate 

 

XPS measurements performed on Ti/IrO2 electrodes have revealed the presence of Ti 

in the coating (Table 3-1). This is likely due to the formation of TiO2 at the Ti/IrO2 

interface, which diffuses into the IrO2 coating during the thermal treatment. 

 

#�!���)
 �� �DE
���������������������������# �> :�8	������������

Atomic  

Peaks 
Position 

BE / eV 
��� 

Raw 

area / 

CPS 
�	� 

RSF 
�)� 

Mass 

conc. 

/ % mass 
Conc. 

/ % 

Theoretical 

conc. / % 

O 1s 531.2 110996.8 0.78 24.73 15.999 78.94 66 

Ti 2p 458.2 4897 2.001 1.32 47.878 1.41 - 

Ir 4f 61.8 148528.1 5.021 73.95 192.193 19.65 33 

��� � E��2������ ���� �71 ��!���������������
�	� � C�"����������������2������������� ��������� �;E
��
�)� � C������������ �� �� ���� ��������C
���

 

In order to avoid this interference, conductive p-Si, which is electrochemically 

inactive, has been used. However, as p-Si is a very slick material, the first layers of 

IrO2 deposited on this new substrate were rapidly detached after the first tests as 

seen in Figure 3-14. 
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Therefore, the conductive silicon was delicately sandblasted in order to improve the 

adherence between the IrO2 coating and the support material; the difference between 

before and after sandblasting is clear (Figure 3-15a). A closer enlargement of the 

sandblasted p-Si is given in Figure 3-15b. 
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These last images show that the sandblasting of the p-Si substrate created enough 

surface defects. This will certainly enhance the adherence with the coating. Figure 3-

16 shows SEM images of IrO2 deposited on sandblasted p-Si. This figure shows that 

parts of the sandblasted p-Si support are still visible. Furthermore, the coating 

exhibits the same cracked dried-mud structure previously observed on Ti substrate 

(Figure 3-3). 
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XPS measurements were performed on these electrodes and the results are presented 

in Table 3-2. 

 

IrO2 

    p-Si 
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##�!���)-	� ��DE
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�> :�8	��
6F�

Atomic  

Peaks 
Position 

BE / eV 
��� 

Raw 

area / 

CPS 
�	� 

RSF 
�)� 

Mass 

conc. 

/ % mass 
Conc. 

/ % 

Theoretical 

conc. / % 

O 1s 530 93742.2 0.78 19.11 15.999 73.96 66 

Si 2p 103.7 31.5 0.339 0.03 28.086 0.07 - 

Ir 4f 61.8 177081.8 5.021 80.81 192.193 25.97 33 
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���
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These XPS measurements show that the coating is mainly composed of IrO2 and only 

0.03% w/w of Si is still present. From the results presented herein, it is now clear that 

sandblasted p-Si is the appropriate support material to adequately study the 

electrochemical behaviour of IrO2-based electrodes. 

 

3.4  Conclus ions 

 

In order to investigate the electrochemical behavior of iridium dioxide as electrode 

material, IrO2 electrodes were prepared by thermal decomposition of a H2IrCl6 

precursor solution on an inert substrate. It has been shown that the choice of 

sandblasted p-Si as substrate material reduces strongly undesired interactions of the 

substrate with the coating. 

It has been shown also that the charge measured using cyclic voltammetry in the 

potential range of water stability is a viable tool for the estimation of the loading of 

the IrO2 coating. For a better control of the loading and uniformity of the IrO2 film, the 

precursor solution has been applied on the substrate using the spin coating deposition 

technique. The experiment revealed that the loading can be controlled via two 

parameters: the concentration of H2IrCl6 in the precursor solution and the rotation 

speed of the substrate. Moreover, a novel and simple relation has been proposed 

(Eq.(3-3)) for the estimation of the IrO2 loading as a function of the concentration of 

H2IrCl6 in the precursor solution c0 and the rotation speed applied to the substrate �. 
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Chapter 4  : Surface redox activ i t ies and 

charging/discharging process on p-Si/IrO2 

electrodes  

 

 

 

In this chapter, the surface redox activities of the IrO2 coating 

are investigated using the electrodes prepared and described in 

the previous chapter. 

It was found by analyzing cyclic voltammetry measurements 

performed at different temperatures and scan rates, that the 

charging/discharging process, which occur within the water 

stability potential domain, is related to two processes: the first 

one is a slow process with low activation energy (about 2.4 kJ 

mol
-1

) corresponding to the diffusion of protons within the IrO2 

coating inducing surface redox activities. This charging process 

dominates at low scan rates and depends on the square root of 

the scan rate. The second contribution is a fast (instantaneous) 

process with near-zero activation energy, which is the charging 

of the electrical double layer (
  
q

dl

*

).  
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This charging process dominates at high scan rates and is scan rate independent. 

Moreover, from potential step experiments together with cyclic voltammetry 

measurements, it has been shown that the coating’s surface iridium atoms valence 

state varies between +IV and +VI within the potential domain between the on-set 

potentials of H2 and O2 evolution. 

This chapter is based on the publication: 

S. Fierro, L. Ouattara, E. H. Calderon, C. Comninellis. Influence of 

temperature on the charging/discharging process  of IrO2 coating deposited 

on p-Si substrate, Electrochemistry Communications, Volume 10, Issue 6, 

April 2008, Pages 955-959 

 

44.1  Introduction 

 

As mentioned in the previous chapters, IrO2 electrodes lead to significant 

improvements in many applications [1-7] and the electrochemical properties of the 

surface of these electrodes play an important role in their electrocatalytic behavior 

[8]. Transient techniques, like cyclic voltammetry, are usually used for the 

investigation of the surface reactions involved. The integration of the 

cyclovoltammogram provides the voltammetric charge q*
 [9,10]. 

The majority of the publications focusing on the voltammetric charge up to date 

consider RuO2 based DSA
®
 deposited by thermal decomposition on a Ti substrate 

(Ti/RuO2). Two main approaches have been elaborated in order to explain the 

dependence of q* on scan rate on these electrodes. 

The first approach proposed by Ardizzone [10] is based on the fact that the 

voltammetric charge q*
 is related to protons diffusion within the RuO2 coating, which is 

the rate determining step of the charging/discharging process. According to these 

authors, increasing the scan rate results in a decrease of the voltammetric charge due 

to the exclusion of a fraction of the available surface induced by the slow diffusion of 

protons within the coating.  

The second approach is based on the model proposed by Sugimoto et al [11]. Here, 

the voltammetric charge is the result of two main contributions on top of the charging 

due to adsorption. The first contribution is the charging of the double layer and the 
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second is the charging induced by redox surface activities on the surface of the 

coating. At high scan rates, the slow surface charging process is excluded and only the 

charging of the double layer persists. This process is scan rate independent contrarily 

to the charging of the surface, which decreases with increasing scan rate. The 

following figure (Figure 4-1) summarizes this second approach. 

 

�������� , 
� �� #��� ������!�� ���� ��� ���� �����G�� ������������ ���� # �>C�8 	�
����������� �� � �� ��������� �� � ����� ����� "����� ���� �� � ���� ���!��
� ��� � �
����������� �
� � �� � ����������������������������������>���������������� ��
���� �
��� �� � ���� ������������ ������� ��� ��� ���������!�� � �������� � ������� �
&��(�

 

However, up to date, no proof on the respective accuracy of these approaches has 

been provided in literature for Ti/RuO2 electrodes and even less is known for IrO2 

based electrodes. 

Therefore, in this chapter, the electrochemical surface properties involved on p-

Si/IrO2 electrodes have been investigated. This chapter focuses on estimating the 

apparent activation energy of the charging/discharging process of p-Si/IrO2 

electrodes as a function of scan rate. Through this method, a better understanding of 

the charging/discharging process of these electrodes is sought. 
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44.2  Experimental detai ls  

 

Each cyclic voltammetry and potential step experiments presented in this section were 

performed in a thermostated three-electrode cell (70 ml) using an Autolab PGSTAT 30. 

The counter electrode was a Pt wire; the reference electrode was Hg/Hg2SO4/K2SO4 

(sat.) (MSE; 0.65 V vs. SHE) and the working electrode was an IrO2 electrode 

prepared by thermal decomposition of a precursor: the precursor aqueous solution 

(H2IrCl6 (99.9%, ABCR)) 250mM in dry i-propanol (extra dry with molecular sieves, 

water < 50ppm, Acros Organics) was deposited using the spin coating technique on 

square-shaped sandblasted p-Si (182.25 mm
2
) and then the oxide film  (loading: 0.27 

mg cm
-2

) was obtained by thermal decomposition in air at 500°C (p-Si/IrO2). The 

presence of iridium dioxide on the substrate was verified using XPS measurements 

(Table 3-2). 

For the potential step experiments, the decrease of the current for these electrodes is 

usually slow [12]. Therefore a pre-treatment had to be performed before every 

potential step experiment during 30 minutes at 0.4 V vs. SHE in order to stabilize the 

current near 0 A before applying the desired potential. 

The cyclic voltammetry measurements obtained at different temperatures (from 10°C 

to 70°C) were conducted inside a Faraday cage and using 1M H2SO4 (95-97% Merck) 

as support electrolyte. All potentials reported in this chapter are with respect to the 

standard hydrogen electrode (SHE). 

The cell and materials used for the cyclic voltammetry and potential step experiments 

are similar to the set-up used in the previous chapter (Figure 3-1 in section 3.2). The 

main salient feature of the cell used in this present chapter is the thermostatization, 

which allows studying the influence of temperature. 
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44.3  Results and discussion 

 

4.3.1  The charging/discharging process 

 

Cyclic voltammetry in the potential window of water stability has already been used 

for the evaluation of the electrochemical activity of Ti/IrO2
 
electrodes. In fact, we 

showed in section 3.3.1 that the voltammetric charge q*
 obtained by integration of the 

voltammetric curves can be related to the IrO2 loading. 

In this section, the influences of potential window, potential scan rate and 

temperature on q*
 are investigated in order to gain a better understanding of the 

charging/discharging process of p-Si/IrO2 electrodes. 

The cyclic voltammograms (CV) obtained in 1M HClO4 on p-Si/IrO2 for different 

potential windows, various scan rates and two different temperatures are shown in 

Figure 4-2. The current was reported relative to the IrO2 loading (gravimetric current). 

This figure shows that for both temperatures and for all the potential windows and 

scan rates investigated, the obtained cyclic voltammetry do not show any horizontal 

symmetry. Furthermore, for all the cyclovoltammograms, the ratio of the involved 

anodic and cathodic charge is close to 1. 

Figure 4-2 shows also that for both investigated temperatures, the anodic gravimetric 

current (A/gIrO2) recorded between 0.3V and 1.4V is not dependent on the fixed 

upper limit (1.1V or 1.4V) when the lower cut-off potential was fixed at 0.3V, while it 

is clearly higher when this cut-off was set at 0V. Furthermore, the cathodic 

gravimetric current increases strongly in absolute value in the potential window 

between 0.3V to 0V.  

The fact that the ratio of the anodic and cathodic charges nears 1 indicates that the 

large cathodic gravimetric current observed between 0.3V and 0V is completely 

regained over the whole anodic range during the anodic sweep. This is an indication 

that the surface redox process involved in this potential region (0.3V to 0V ) is a slow 

redox process. 
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Figure 4-3 shows the differential gravimetric capacitance (calculated by dividing the 

gravimetric current by the scan rate) at (A) 22°C and (B) 70°C as a function of 

electrode potential obtained at different scan rates and Figure 4-4 shows the same 

gravimetric capacitance as a function of electrode potential obtained at different scan 

rates and at 22°C but for two different potential windows. Both figures (Figure 4-3 and 
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Figure 4-4) give once more an indication that the surface redox process involved in 

this potential domain is slow.  
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The total gravimetric voltammetric charges Q (C/gIrO2) were obtained for several 

operating temperatures (ranging from 8°C to 70°C) by integrating the 

voltammograms of Figure 4-3 in the potential window between 0 and 1.4V. The same 

charges were obtained for two different potential windows (at 22°C) by integrating the 

voltammograms of Figure 4-4.  
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These gravimetric charges were plotted versus scan rate. The results are presented in 

Figure 4-5 and Figure 4-6 respectively. 
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Both figures show a fast initial decrease of the gravimetric voltammetric charge at low 

scan rates followed by a stabilization at high scan rates for all temperatures and 

potential windows investigated. Furthermore Figure 4-5 shows that the gravimetric 

voltammetric charge becomes temperature independent with increasing scan rates. 

The decrease of the charge with scan rate was explained via two main approaches 

already proposed in the literature. 

The first approach proposed by Ardizzone et al.[10] is based on the accessibility to the 

active sites of the electrode. The decrease of the gravimetric voltammetric charge with 

scan rate has been explained by the exclusion of the inner parts of the electrode due 

to the slow diffusion of protons through the porous structure of the coating. The 

voltammetric charge has been attributed to the redox surface couples according to the 

Faradaic reaction (4-1). 

 

 

 

IrO
x
(OH)

y
 + �H

+
+ �e

-
 

cathodic

anodic

� ������ �����  IrO
x-�

(OH)
y+�

 (4-1) 

 

The second approach was proposed by Sugimoto et al.[11]. This approach is based on 

the existence of two types of capacitances: The double layer capacitance (non-

Faradaic fast process), which predominates at high scan rates and a redox surface 

capacitance (Faradaic slow surface process), which contributes only at low scan rates. 

The decrease of the voltammetric charge with scan rate is due to the slowness of the 

redox surface process, which is excluded at high scan rates. 

In order to investigate the influence of temperature on the gravimetric voltammetric 

charge, the activation energy Ea (J mol
-1

) of the charging process has been calculated 

for different scan rates using Arrhenius Equation (Eq. (4-2)).  

 

 
 
Q = Ae

�
E

a

RT  (4-2) 

 

where A (C g
-1

) is the pre-exponential factor, R is the ideal gas constant (J mol
-1

 K
-1

) 

and T is the temperature (K). 
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The resulting plot is presented on Figure 4-7. 
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This figure shows that Ea progressively decreases with increasing scan rate and 

ultimately tends toward zero at high scan rates (500mV s
-1

). 

From these results, we can hypothesize that two main contributions are involved in 

the voltammetric charge: 

a) A contribution related with a fast (instantaneous) process having an activation 

energy close to zero. This process dominates at high scan rates.

b) A contribution related with a slow process with an activation energy of about 2.4 kJ 

mol
-1

, which dominates at low scan rates. 

In fact, the fast (instantaneous) contribution with zero activation energy corresponds 

probably to an electrostatic phenomenon, which is the charging of the electrical double 

layer (
  
q

dl

*

) at the electrode-electrolyte interface. The slow process with activation 
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energy of about 2.4kJ mol
-1

 should correspond to a physical phenomenon, which is the 

diffusion of protons toward the active sites of the coating. 

It is worthwhile to notice that q
dl

*

 can be used as a tool to estimate the relative 

surface area of the p-Si/IrO2 electrodes. 

In fact and as demonstrated in the previous chapter (section 3.3.1), not only the 

voltammetric charge decreases with the scan rate but it also increases with the 

loading (Figure 4-8). 
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Based on the above findings on the charging process, very high scan rates should be 

used for the cyclic voltammetry measurements to estimate q
dl

*

, which is unpractical.  
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However, as proposed by S. Ardizzone [10], 
  
q

dl

*

 can also be obtained using the 

following analytical relationship Eq.(4-3). 

 

 

  

q
*

=  q
dl

*
+  const  

1

�1/2

�

��
�

��
  (4-3) 

 

The above equation implies that plotting q*
 as a function of 	

-1/2 
should give straight 

lines; the intercepts of these straight lines with the 	
 -1/2 

 axis gives the value of 
  
q

dl

*

 for 

the different IrO2 loadings investigated herein (Figure 4-9).  
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The variation of the values obtained for 
  
q

dl

*

 with the IrO2 loading is given in Figure 

4
10. 
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The direct proportionality between 
  
q

dl

*

 and the IrO2 loading demonstrates the utility of 

using q
dl

*

 as a mean for the estimation of the relative surface area of an IrO2 coating 

and for the estimation of the loading from the voltammetric charge (�30mC/mgIrO2) 

in agreement with previous studies [13]. 

 

4.3.2  Surface redox activi t ies  of p-Si/IrO 2 electrodes 

Open circuit potentia l 

 

The open circuit potential (OCP) of p-Si/IrO2 electrodes in de-aerated solution was 

measured as a function of pH (Figure 4-11).  
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The values obtained in this experiment are in good agreement with the ones predicted 

by the corresponding Pourbaix diagram, which makes use of the following equilibrium 

reaction (Eq.(4-4)) [14]. 

  

 
  
2IrO

2
 + 2H

+
 + 2e

-
� Ir

2
O

3
 + H

2
O          E

o
= 0.93 - 0.059 pH   (4-4) 

 

This is an indication that, at the open circuit potential, p-Si/IrO2 electrodes in de-

aerated solution are essentially in the Ir(IV)/Ir(III) state, in agreement with 

estimations from many previous studies [15]. 

 

Cyclic voltammetry measurements on p-Si/IrO2 

 

Figure 4-12 shows cyclic voltammetry (CV) measurements performed at different scan 

rates on a p-Si/IrO2 electrode. 
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From these CV measurements, the current density (j) at a given potential has been 

plotted as a function of scan rate (	) (Figure 4-13). 
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From the slopes of the straight lines given in Figure 4-13 the ‘apparent capacitance’ 

(Capp) can be determined as a function of applied potential using equation (4-5). The 

values obtained are reported in Figure 4-17: 

 

 j = C
app

��  (4-5) 

 

Figure 4-14 shows the chronoamperometric experiments realized on p-Si/IrO2 for 

different potential steps included in the water stability potential domain. 

Figure 4-15 shows j-t-1/2
 plots obtained on p-Si/IrO2 for t > 1.5s (in order to avoid 

issues related with the charging of the double layer). 
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The linearity of these plots indicates that semi-infinite linear diffusion is involved in the 

discharging process. It is worthwhile to notice that the straight lines corresponding to 

potentials situated in the vicinity of the hydrogen (0 V) and the oxygen (1,4 V) 

evolution reactions do not cross the origin due to the background current related to 

those reactions. 

In order to explain this behaviour, a model has been proposed according to which the 

current decay observed during the potential step experiments is due to redox activities 

of the coating in which protons diffusion is the rate determining step (Eq.(4-1)) 

[12,16].  

Under these conditions, Cottrell’s equation can be applied (Eq.(4-6)): 

 

 

  

i =
z �F � A ��C �D

1/ 2

� 1/ 2
� t

1/ 2
 (4-6) 

 

Where i is the current (A), z is the number of exchanged electrons, F is the Faraday 

constant (96485 C mol
-1

), A is the electrode’s geometric surface area (m
2
), D is the 

diffusion coefficient of protons within the coating (m
2
 s

-1
), t is the time (s) and �C is 



CHAPITRE 4: Surface redox activities and charging/discharging process 

on p-Si/IrO2 electrodes 

    

    

- 81 - 

the concentration change of protons (mol m
-3

) generated by the applied potential 

step. 

The integral form of Cottrell’s equation from t=0s to a given time t gives the total 

(cumulative) charge (qt) that passed during a given potential step experiment as a 

function of time (Eq.(4-7)): 

 

 

  

q
t

= idt =
0

t

�
2 � z �F � A � �C �D

1/ 2

� 1/ 2
t

1/ 2
 (4-7) 

 

This new equation (Eq.(4-7)) predicts a proportionality between qt and t1/2
.  
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The results presented on Figure 4-16 show that this is indeed the case, however the 

straight lines obtained with this relationship do not cross the origin. The extrapolation 

of these lines to t=0s for each applied potential yields to the corresponding surface 

charge qs as demonstrated by K.Doblhofer and al.[12]. This charge is certainly related 

to the surface iridium atoms, which are the most accessible to the electrolyte, �o (mol 

cm
-2

). 
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The amount of these surface atoms can be estimated from the following relation 

(Eq.(4-8)). 

 �
o

=
q

s

zFA
 (4-8) 

 

This surface charge qs can be included in the integral form of Cottrell’s equation 

(Eq.(4-9)): 

 

  

q
t

=
2 � z �F � A ��C �D

1/ 2

� 1/ 2
t

1/ 2
+  q

s
 (4-9) 

 

Figure 4-17 shows the total surface charge obtained by extrapolation of the qt-t
1/2

 

plots given in Figure 4-16 to t=0s together with the apparent capacitance Capp 

obtained from the slopes of the straight lines given in Figure 4-13 as a function of 

potential for p-Si/IrO2 electrode. It is worthwhile to notice that the values of qs for 

potentials involving oxygen or hydrogen evolution have been estimated by subtracting 

the charge related to these reactions from the total charge. 
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PProposed surface reactions for p-Si/IrO2 electrodes 

 

As there is no capacitance maximum, the charge passed between the open circuit 

potential OCP (0.93 V), at which the Ir is in the Ir(IV)/Ir(III) state, and the onset 

potential of the oxygen evolution reaction OER (1.4 V), at which the Ir is in the 

Ir(VI)/Ir(V) state [17], has been taken as a reference. In fact approximately 1200 mC 

cm
-2

 are passed between the OCP (Ir(IV)/Ir(III) state) at 0.9 V and the onset potential 

of OER (Ir(VI)/Ir(V) state) at 1.4 V (interval (b) in Figure 4-17). In other words, the 

charge needed for a one-electron exchange of the surface Ir atoms is 1200/2 = 600 

mC cm
-2

 (geometric surface area). 

Using the value of 600 mC cm
-2 

for 1e
-
 change of the surface Ir atoms, it is possible to 

derive the surface oxidation state of the p-Si/IrO2 electrode at the onset potential of 

the hydrogen evolution reaction HER. In fact the charge qs passed between the OCP 

and the onset potentials of HER (0 V) is about 480 mC cm
-2

 (interval (a) in Figure 

4-17). This is not enough charge for another 1e
-
 change of all the surface Ir atoms, 

therefore these results are a proof that the surface remains mainly in the Ir(IV)/Ir(III) 

state (even at potentials close to the HER). 

 

4.4  Conclus ions 

 

In this chapter, the electrochemical activity of p-Si/IrO2 electrodes within the water 

stability potential domain has been studied. The main findings are: 

The apparent activation energy (Ea) measured for the charging/discharging process 

depends strongly on the scan rate used for the cyclic voltammetry measurements. In 

fact, at low scan rates (5 mV s
-1

), Ea for the charging/discharging process has a value 

of about 2.4 kJ mol
-1

 and at high scan rates (500 mV s
-1

), Ea reaches values close to 

zero. This has allowed to consider two contributions in the charging/discharging 

process of the p-Si/IrO2 electrode. The first contribution corresponds to a fast 

(instantaneous) process with zero activation energy, which is the charging of the 

electrical double layer at the electrode-electrolyte interface. The second contribution is 

related with the slow diffusion of protons within the IrO2 coating with an activation 

energy of about 2.4kJ mol
-1

. 
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Furthermore, the measured surface charges corresponding to the surface redox 

activities of p-Si/IrO2 electrodes show clearly that the oxidation state of the surface 

iridium atoms varies from +IV to +VI in the potential domain between the on-set 

potentials of H2 and O2 evolution (from 0 V to 1.5 V).  
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Chapter 5   : Active intermediates involved in 

the oxygen evolution reaction (OER) on IrO2 

electrodes: Voltammetric and DEMS study  

 

 

 

In this chapter, the surface redox activities involved in the 

oxygen evolution (OER) reaction in acidic aqueous media are 

investigated for IrO2 electrodes. 

This was performed using 
18

O labeling together with differential 

electrochemical mass spectrometry (DEMS) measurements. 

DEMS is a powerful technique, where ionic currents 

corresponding to the formation of given volatile species are 

recorded in parallel to the faradaic current during a cyclic 

voltammetry measurement. 

The DEMS measurements have shown, that during successive 

cyclic voltammetric measurements in H2
18

O containing 

electrolyte the amount of 
16

O2 (m/z=32) decreases, with a 

concomitant increase of 
18

O
16

O (m/z=34) with each successive 

cycle before reaching a steady state after four cycles. The 
16

O2 

concentration in the evolved oxygen obtained is higher during 

the first scans because 
16

O from the IrO2 coating contributes in 

the oxygen evolution reaction.  
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Analysis of the experimental data has shown that the amount of lattice oxygen, which 

is involved in the oxygen exchange reaction, is in the order of 1% of the total IrO2 

loading. This is an indication that only the outer surface of the oxide electrode 

participates in the OER. Similar results have been obtained for higher IrO2 loadings. 

In a second series of experiments, it has been demonstrated that oxygen evolution on 

IrO2 marked with 
18

O in regular water results in an isotope exchange reaction, which 

forms Ir
16

O2 and marked oxygen (
18

O
16

O) thus proving again that the IrO2 coating 

participates actively in the OER. 

Consequently, we can conclude that the IrO2 layers of the electrode participate in the 

OER in acidic media to an extent of several monolayers at least. This mechanism was 

confirmed from Tafel slope measurements for the OER on IrO2 electrodes. 

This chapter is based on the publications: 

S. Fierro, T. Nagel, H. Baltruschat, Ch. Comninellis. Investigation of the 

oxygen evolution reaction on Ti/IrO2 electrodes using isotope labelling and 

online mass spectrometry, Electrochemistry Communications, Volume 9, 

Issue 8, May 2007, pages 1969-1974 

L.Ouattara, S. Fierro, O. Frey, M. Koudelka, Ch. Comninellis. Electrochemical 

comparison between IrO2 prepared by anodic oxidation of pure iridium and 

IrO2 prepared by thermal decomposition of H2IrCl6 precursor solution, Journal 

of Applied Electrochemistry, Volume 39, February 2009, pages 1361-1367 

 

55.1  Introduction 

 

Oxygen evolution is one of the most important technological reactions in 

electrochemistry taking place at many industrial processes namely water electrolysis, 

metal electro-winning and cathodic protection. IrO2 electrodes are among the most 

frequently used for the oxygen evolution reaction (OER) in acidic media [1]. 

Despite the large number of existing publications for these electrodes, the mechanism 

of oxygen evolution on these anodes is still an area of active debate. 



CHAPITRE 5: Active intermediates involved in the oxygen evolution 

reaction (OER) on IrO2 electrodes: Voltammetric and DEMS study 

     

    

- 89 - 

During the last decade, a generalized phenomenological model has been proposed for 

the oxygen evolution reaction in acidic media [2-4]. This model is shown in Figure 2-3 

of the bibliography (Chapter 2, section 2.3) and can be adapted to IrO2-based 

electrodes, where IrO2 becomes the active site M from Figure 2-3. The mechanism is 

composed of two steps. 

The first step is the discharge of water molecules at the electrode’s surface to form 

hydroxyl radicals (Eq.(5-1)). 

 

 
   
IrO

2
+ H

2
O � IrO

2
( iOH ) + H

+ + e
�

 (5-1) 

 

In the second step, the chemisorbed hydroxyl radicals interact with the electrode 

surface forming the higher oxide (Eq.(5-2)).  

 

 
   
IrO

2
( iOH )� IrO

3
+ H

+ + e
�

 (5-2) 

 

The final step is the decomposition of the higher oxide to yield the lower oxidation 

state oxide and oxygen (Eq.(5-3)). 

 

 

  

IrO
3
� IrO

2
+

1

2
O

2
 (5-3) 

 

Oxides for which a higher oxidation state is available close to the thermodynamic 

potential of oxygen evolution (1.23 V vs. SHE in acid media) are excellent candidates 

for the electrocatalytic evolution of O2.  

This mechanism in which the oxide participates in the oxygen evolution reaction has 

been also reported by others [5,6]. However there are only a few direct experimental 

evidences, which support this mechanism. In fact, only the work of Wohlfahrt-Mehrens 

[7] has demonstrated, using DEMS measurements that the RuO2 layers participate in 

the oxygen evolution process. To the author’s knowledge, there are no such 

measurements for IrO2 electrodes in the literature up to date. 
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In order to prove the participation of the IrO2 coating in the oxygen evolution reaction, 

differential electrochemical mass spectrometry (DEMS) measurements in a thin layer 

flow cell have been carried out using marked water (H2
18

O). During the 

measurements, cyclovoltammograms (CV) were recorded together with the ionic 

currents from the mass spectrometer responses for ions for which m/z=32, 34 and 36 

(corresponding to 
16

O
16

O, 
16

O
18

O and 
18

O
18

O molecules). Finally, in order to confirm 

the mechanism of the OER on IrO2 electrodes, polarization curves have been 

performed in order to estimate the corresponding Tafel slope. 

 

55.2  Experimental detai ls  

 

5.2.1  Differential  electrochemical mass spectrometry (DEMS) 

 

The DEMS measurements are conducted in two separate compartments: the 

electrochemical compartment with the electrolyte inlet, where the faradaic reactions 

take place, and the mass spectrometric compartment with the electrolyte outlet, 

where the ion detection takes place. In a typical DEMS experiment, the ion current 

corresponding to the formation of a given volatile specie is recorded in parallel to the 

faradaic current during the voltammetric sweep. 

Because the Ti/IrO2 electrode is prepared by thermal decomposition, deposition on the 

Teflon membrane as in [8] was not possible. Instead a thin layer flow through cell [9], 

which is schematized in Figure 5-1, was used: 
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The cell is connected to a quadrupole mass spectrometer (Pfeiffer Vacuum QMG 422). 

The electrolyte volume and the geometric surface area (0.28 cm
2
) of the working 

electrode are defined by a thin (50-100 μm) porous Teflon ring placed on the disc-

shaped electrode. 

The Ti/IrO2 working electrodes (two different loadings: 0.64mg cm
-2

 (2840 nMol cm
-2

) 

and 5.25mg cm
-2

 (23280 nMol cm
-2

)) were prepared by thermal decomposition at 

500°C of a precursor aqueous solution of H2IrCl6 (99.9%, ABCR) deposited on disc-

shaped titanium supports (0.64 cm
2
), which were previously sandblasted and then 

treated in boiling 1 M oxalic acid (�97%, Fluka) solution for 1 hour. All solutions were 

deaerated with argon during measurements.  

The reference electrode used for the DEMS experiments was a standard hydrogen 

electrode (SHE) so the potentials in this chapter are given with respect to this 

electrode. Two Au wires were used as counter electrodes.  

1 cm 
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The electrolyte used was 1M HClO4 prepared from HClO4 (ultrapure from Merck), 

millipore water and marked water (H2O
18

, 66-70%, Cambridge Isotope Laboratories). 

The solutions were ventilated with argon (5.0 from Praxair). All measurements were 

conducted at room temperature and with flowing electrolyte (5 �l s
-1

). 

Selected values of m/z ions signals (m/z = 32, 34 and 36) are measured as ionic 

currents allowing the simultaneous recording of the faradaic current versus electrode 

potential (CV) and the selected ionic currents versus electrode potential (MSCV). 

 

55.2.2  Voltammetric experiments 

 

All the voltammetric experiments presented in this chapter were performed in a 

classical three-electrode cell (70 ml) using an Autolab PGSTAT 30. The counter 

electrode was a Pt wire; the reference electrode was Hg/Hg2SO4/K2SO4 (sat.) (MSE; 

0,65 V vs. SHE) and the working electrodes was an IrO2 electrode prepared by 

thermal decomposition of a precursor: the IrO2 film (0,27 mg cm
-2

) was deposited on 

square-shaped sandblasted p-Si (100 mm
2
) by the thermal decomposition of a H2IrCl6 

(99,9%, ABCR) precursor aqueous solution in air at 500°C. 

The cell and materials used for the cyclic voltammetry experiments on IrO2 electrodes 

are identical to the set-up used for the measurements presented in the previous 

chapter (Figure 3-1 in section 3.2). 

All potentials given in this chapter are with respect to the standard hydrogen electrode 

(SHE). 

 

5.2.3  Ohmic drop correction 

 

The ohmic drop correction of polarization curves has been performed according to the 

method given in the literature [10-12]. The overpotential � (V) observed during an 

experiment is given by equation (5-4): 

 

 
 
� = a + bln j + jR  (5-4) 
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where a (V) is the Tafel constant, b (V dec
-1

) is the Tafel slope, j (A cm
-2

) is the 

current density and R (� cm
-2

) is the total area-specific uncompensated resistance of 

the system, which is assumed to be constant. The derivative of Eq. (5-4) with respect 

to current density gives Eq. (5-5) from which b and R can be easily obtained by 

plotting d�/dj as a function of 1/j. 

 

 

 

d�

dj
=

b

j
+ R  (5-5) 

 

The estimation of R allows correcting the experimental overpotential by subtracting 

the ohmic drop jR according to equation (5-6): 

 

 
 
�

corr
= � � jR  (5-6) 

 

During the calculations, the derivative d�/dj was replaced by their finite elements 

��/�j estimated from each pair of consecutive experimental points. 

 

55.3  Results and discussion 

 

5.3.1  DEMS measurements 

 

In order to determine to what extent the iridium dioxide coating participates in the 

oxygen evolution reaction, two series of experiments (series A and B) have been 

carried out. 

Series A: In the first series of experiments, the DEMS cell containing the Ti/IrO2 (2840 

nMol
 
IrO2/cm

2
) electrode was filled with a 1 M HClO4 solution containing 10% (w/w) of 

marked water (H2
18

O); then, several successive cyclic scans (10 mV s
-1

) were applied 

between 0 and 1.6 V. The faradaic current obtained from the cyclovoltammetric 
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measurements (CV) together with the ionic currents obtained from the mass 

spectrometer responses for ions with m/z = 32, 34 and 36 (corresponding to 
16

O
16

O, 

16
O

18
O and 

18
O

18
O molecules) were recorded during several successive potential scans. 

Figure 5-2 shows a typical example of ionic and faradaic currents obtained during the 

first cyclic scan. From the ionic currents, we note that mainly 
16

O2, 
16

O
18

O are formed 

together with a small amount of 
18

O2. 

The CV shows (A on Figure 5-2) that the onset potential of oxygen evolution reaction 

is about 1.5 V, which is identical to the onset potential obtained from the ionic 

currents. The hysteresis observed in the cathodic sweep is due to the slow diffusion 

through the thin layer of electrolyte.  

Concerning the cyclovoltammogram, the current observed at low potentials (<1.4 V) 

is not related to oxygen evolution (no ionic current is measured in this potential 

region) but to the reversible oxidation (forward scan)-reduction (reverse scan) of the 

surface through a mechanism involving protons exchanges with the solution according 

to the reaction proposed in section 4.3.1 (Eq.(4-1)). 

Figure 5-3 shows the gas phase concentrations of 
16

O2 and 
16

O
18

O measured during 

the five successive scans as well as those predicted from the concentration of marked 

water (H2
18

O) in the electrolyte. 
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This figure shows clearly that the concentration of 
16

O2 decreases, with a concomitant 

increase of 
16

O
18

O with each successive cycle before reaching a steady state (which 

corresponds to the predicted value) after four cycles. The flowing electrolyte 

conditions assure the constant value of the concentration of marked water in the cell; 

therefore, the increase of 
16

O
18

O (m/z=34) or/and the concomitant decrease of 
16

O2 

(m/z=32) with each successive scan proves directly that the oxide layer takes part in 

the O2 evolution reaction.  
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In fact, considering that the composition at the ionic current steady state (i.e. the 

composition obtained at the 5
th
 scan) corresponds to the composition of the bulk 

electrolyte [81% 
16

O2 (m/z=32) and 18% 
16

O
18

O (m/z=34)], the concentration of 
16

O2 

(m/z=32) obtained during the first scans is higher because 
16

O from the IrO2 coating 

contributes in the oxygen evolution reaction (Eq.(5-7)). 

 

 

  

Ir
16

O
2

+ H
2

18
O � Ir

16
O

16
O

18
O + 2H

+ + 2e
�

2Ir
16

O
16

O
18

O � 2Ir
16

O
18

O + 16
O

2

 (5-7) 

 

Using Faraday’s law, the amount of Mol (m) and the corresponding number (n) of 
16

O 

lattice oxygen atoms, which are transformed to 
18

O per unit of electrode geometric 

surface area for each scan until no further exchange is occurring (in our case the first 

three scans) can be calculated using the following relations (Eq. (5-8) and (5-9)). 

  

 

 

m = 
1

2
�10 �  

�Q
34

Q
i�
�
Q

f

zF
=

1

2
�10 �  � �

Q
f

zF
 (5-8) 

 

 
 
n = N

A
�m  (5-9) 

 

Where m is the number of Mol of 
16

O lattice oxygen atoms, which are exchanged to 

18
O per unit of electrode geometric surface area (Mol cm

-2
), n is the number of 

16
O 

lattice oxygen atoms, which are exchanged to 
18

O per unit of electrode geometric 

surface area (atoms cm
-2

), NA is Avogadro’s constant (6.022�10
23

 atoms�mol
-1

), �Q34 is 

the excess of ionic charge for each scan (with respect to the steady state value of the 

5th scan) related to the formation of 
16

O
18

O and to the incorporation of 
18

O into the 

oxide lattice (pC cm
-2

).  

�Qi= Q32 + Q34 + Q36 is the total ionic charge related with the formation of oxygen 

(
16

O2 + 
16

O
18

O + 
18

O2) (pC cm
-2

) and 

 

�=
�Q

34

Q
i�
 is the excess ratio (with respect to the 
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steady state value of the 5th scan) related with the incorporation of 
18

O into the oxide 

lattice (-). 

Finally, Qf is the Faradaic charge related with the formation of oxygen (C cm
-2

), F is 

Faraday’s constant (96485 C mol
-1

) and z is the number of electrons involved in the 

oxygen evolution reaction (z=2). 

In this formula, the factor of � originates from the fact that the concentration of 

18
O

16
O in dioxygen is two times higher than the atomic concentration of 

18
O referred to 

the total number of oxygen atoms. Concerning the factor 10, it originates from the 

fact that in our experiments, a concentration of 10% of H2
18

O has been used and 

consequently, the effective number of exchanged atoms (which would have been 

obtained if we had used a concentration of 100% of H2
18

O) is higher by a factor of 10. 

For the experiment presented in Figure 5-3, the excess ratio (�) of 
16

O
18

O for each 

scan has been calculated. 

Furthermore, from the cyclovoltammetric measurements (Figure 5-2A), the faradaic 

charge density related to the oxygen evolution reaction can be estimated (Qf = 

2.6�10
7
 nC cm

-2
). From these values and using Eq. (5-9), the amount of 

18
O atoms 

formed at each scan can be calculated. The values obtained together with the total 

amount of 
18

O atoms formed during the three successive scans are given in Table 5-1. 

 

##�!��� ---��� 1�� �������� ��� ���� ������� ��� �.8� ���� ���� �$����� ������ ���  �
"����� ���� ��������������� �58����� ���� ���� ���������� ����������� � ������� �
����� ������� ��
	� � ���� �� #� >:�8	� ���������� ��������� � 	5,=� �0��� �� 
	�� ��� �
��� ������ ������������������ �����13 ��- 
'���

�

IrO2 loading: 2840 nMol cm
-2

 

scan � (-) Qf (nC cm
-2

) m (nMol cm
-2

) 

1 8.8�10
-3

 2.6�10
7
 5.9 

2 5.0�10
-3

 2.6�10
7
 3.4 

3 2.4�10
-3

 2.6�10
7
 1.7 

�     11 
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This table shows that the value obtained for the total amount of exchanged oxygen is 

11 nMol cm
-2

 for 1 cm
2
 of electrode geometric surface area, which corresponds to 

6.5�10
15

 of oxygen atoms per cm
2
 exchanged i.e. about 5 monolayers.  

Comparison of these values with the IrO2 loading (2840 nMol cm
-2

) indicates that the 

amount of lattice oxygen, which is involved in the oxygen exchange reaction 

represents 1% of the total IrO2 loading. This is an indication that only the outer 

surface of the oxide electrode participates in the oxygen evolution reaction. 

Deeper layers are certainly excluded by the oxygen gas evolved, which blocks the 

inert parts of the oxide coating. 

Similar results have been obtained with higher IrO2 loadings (23280 nMol cm
-2

) as 

shown in Figure 5-4 and Table 5-2. The experiment revealed that even if the total 

amount of oxygen exchanged is higher (277 nMol cm
-2 

or 75�10
15

 oxygen atoms cm
-

2
), the fraction of the IrO2 coating participating in the oxygen evolution remains close 

to 1%. 

��������- 
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�������������������$������������������#�> :�8	�� :� �.8	� �
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Series B: In this series of experiments, the Ti/IrO2 electrode (2840 nMol
 
IrO2 cm

-2
) 

was treated firsthand by continuous potential cycling between 0 and 1.6 V (five cycles 

at 10 mV s
-1

) in 1 M HClO4 solution containing approximately 10% H2
18

O. During these 

scans (as expected from the experiments of Series A), 
18

O containing oxide is formed 

while oxygen constituted mainly of 
16

O2 and 
16

O
18

O is evolved. 

After this treatment, the 
18

O containing electrolyte was withdrawn from the cell, which 

was washed several times with H2
16

O and later filled with 1 M HClO4/H2
16

O while 

keeping the anode potential constant at 0.34 V (vs. SHE). In this new electrolyte, 

several successive CV cycles (10 mV s
-1

) were performed from 0 up to 1,6 V. The 

faradaic current obtained from the cyclovoltammograms (CV) together with the ionic 

currents obtained from the mass spectrometer responses for ions with m/z=32, 34 

and 36 were recorded for several successive scans. 

Figure 5-5 shows the concentrations of 
16

O2 and 
16

O
18

O obtained during five successive 

scans. 

This figure highlights that the concentration of 
16

O
18

O in the gas phase decreases with 

a concomitant increase of 
16

O2 after each cycle before reaching a steady state after 

four cycles. The concentration of 
18

O
16

O in the last sweep (0.47%) corresponds to an 

atomic concentration of 
18

O of 0.23 %, which is close to the natural abundance of 

0.2%. 

In these measurements, the decrease of 
16

O
18

O or/and the simultaneous increase of 

16
O2 with each successive scan indicates that the 

18
O containing oxide layer was 

IrO2 loading: 23280 nMol cm
-2

 

scan � (-) Qf (nC cm
-2

) m (nMol cm
-2

) 

1 3.00�10
-2

 1.6�10
8
  124.6 

2 2.83�10
-2

 1.6�10
8
 116.8 

3 0.86�10
-2

 1.6�10
8
 35.5 

�     276.9 
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replaced by its 
16

O analogue via an isotope exchange reaction, which occurred when 

the electrolyte was substituted by H2
16

O. This demonstrates again that the oxide layer 

plays an important role in the O2 evolution reaction. Using Faraday’s law, the amount 

of 
18

O in the oxide layer, which was replaced by 
16

O during treatment in 1 M 

HClO4/H2
16

O solution was estimated to be about 4 nMol cm
-2

 or 2.4 �10
15

 molecules of 

18
O for 1 cm

2
 of the electrode’s geometric surface area. This is only about one third of 

the exchange obtained in the first series of experiments (series A); the difference 

might be attributed to a slow exchange during the rinsing procedure (loss of 
18

O) or by 

interdiffusion of the IrO2 lattice into the bulk. 
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55.3.2  Tafel slope measurement for the oxygen evolution 

reaction on p-Si/IrO2 electrodes 

 

Figure 5-6 shows a typical steady state polarization curve of the OER on p-Si/IrO2 

electrodes in 1 M HClO4. In the same figure, the corresponding Tafel plot obtained 

before (a) and after (b) ohmic drop correction (inset of Figure 5-6) is also shown. The 

graphical determination of the uncompensated resistance used for the IR drop 

correction is given on Figure 5-7: 
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The above figures strongly suggest that even at high overpotentials, the IR drop 

corrected Tafel plot exhibits a linear relation with a slope of about 40 mV decade
-1

, 

while the uncorrected Tafel plot displays a quasi-linear allure with a slope of about 60 

mV decade
-1

. The area-specific uncompensated resistance, equal to 18 � cm
2
, was 

determined from the y-intercept of the plot given in Figure 5-7 for current densities 

exceeding 1mA cm
-2

 (>1.46 V). 

These figures show the importance of the ohmic drop correction procedure because 

the resistance estimated was non negligible. This correction resulted in a Tafel slope 

deviation of about 50%. 

It is worthwhile to notice that these polarization measurements are reproducible even 

after treatment of the electrode for a long period of time (several hours) at high 

anodic potentials (>1.5 V). This is an indication of the high anodic stability of IrO2 

electrodes prepared by thermal decomposition. 

�
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In acidic media, the following reaction path (Eq. (5-10), (5-11) and (5-12)) was 

proposed for the oxygen evolution (OER) on active oxide electrodes [12]: 

 

 
  
S + H

2
O � S � OH

ads
+ H

+ + e
�

 (5-10) 

 
 
S � OH � S � O

ads
+ H

+ + e
�

 (5-11) 

 

  

S � O � S +
1

2
O

2
 (5-12) 

 

where S stands for active sites and OHads, Oads are adsorption intermediates. 

This mechanism predicts the following Tafel slopes: 120mV decade
-1

 if Eq. (5-10) is 

the rate determining step (rds), 40mV decade
-1

 for Eq. (5-11) and 30mV decade
-1

 for 

Eq.(5-12). 

In this chapter, a mechanism was proposed for the OER on IrO2 electrodes (from Eq. 

(5-1) to Eq.(5-3)). The adsorption of hydroxyl radicals produced from water discharge 

on the IrO2 surface (Eq.(5-1)) corresponds to Eq.(5-10) of the general mechanism 

given above. The formation of IrO3 (Eq.(5-2)) corresponds to Eq.(5-11) whereas the 

formation of oxygen via decomposition of IrO3 (Eq.(5-3)) corresponds to Eq.(5-12). 

The Tafel slopes measured on p-Si/IrO2 electrodes indicate that formation of a higher 

oxide (Eq.(5-11)) is the rds. Therefore, the formation of IrO3 (Eq.(5-2)) seems to be 

the rds of the OER on these electrodes. 

Nonetheless, it should be mentioned that the slopes of the Tafel plots constructed for 

the OER using p-Si/IrO2 in this work (40 mV decade
-1

) differ from those reported by 

others, which were near 60mV decade
-1

 for the OER in acidic media. A very intriguing 

reaction path involving M-OHads intermediates with different energy states has been 

proposed by these authors to explain this abnormally high Tafel slope [12,13]. 

Problems related with uncompensated IR drop correction and partial blockage of the 

electrode’s surface by the evolved oxygen are certainly the main culprit of this 

discrepancy. In the present study, the experiments have been carefully conducted in 

order to avoid these problems. 

 



CHAPITRE 5: Active intermediates involved in the oxygen evolution 

reaction (OER) on IrO2 electrodes: Voltammetric and DEMS study 

     

    

- 105 - 

55.4  Conclus ions 

 

In this chapter, the surface redox activities involved in the oxygen evolution reaction 

on Ti/IrO2 have been studied using differential electrochemical mass spectrometry 

(DEMS) measurements together with 
18

O labeling. 

The DEMS measurements have shown that during successive cyclic voltammetric 

measurements in H2
18

O containing electrolyte, the amount of 
16

O2 (m/z=32) decreases 

with a concomitant increase of 
18

O
16

O (m/z=34) with each successive cycle before 

reaching a steady state. The amount of lattice oxygen, which is involved in the oxygen 

exchange reaction, has been found to be in the order of 1% of the total IrO2 loading. 

This fraction was found to be loading independent. In a second experiment, it was 

demonstrated that oxygen evolution on an IrO2 coating marked with 
18

O in H2
16

O 

containing electrolyte resulted in the formation of Ir
16

O2 and marked oxygen (
18

O
16

O). 

Consequently, the DEMS measurements have shown that only the outer surface of the 

IrO2 layer of Ti/IrO2 participates in the oxygen evolution reaction.  

The Tafel slope obtained on p-Si/IrO2 during oxygen evolution was estimated at 40mV 

decade
-1

 from IR drop corrected polarization curves. This result gives a strong 

evidence that the formation of IrO3 (Eq.(5-2)) is the rate-determining step of the OER. 
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Chapter 6  :  Active intermediates involved in 

the oxidation of organic compounds on 

Ti/IrO2 electrodes: DEMS study 

 

 

 

In this chapter, the active intermediates involved in the 

oxidation of organic compounds on IrO2 electrodes in acidic 

aqueous media are investigated. 

DEMS measurements were used together with 
18

O labeling 

because the experiments in the precedent chapter showed that 

this method was effective in identifying accurately the active 

intermediates involved in the oxygen evolution reaction (section 

5.3.1). 

In a first series of experiments, a Ti/IrO2 electrode was labeled 

with 
18

O (formation of Ir
16

O
18

O) by treatment in H2
18

O as similar 

to the experiments presented in the previous chapter. Later, in 

a second series of experiments, this labeled electrode was used 

for the electrochemical oxidation of formic acid using cyclic 

voltammetry. The amounts of C
16

O2 and C
16

O
18

O formed during 

several successive potential scans were followed by on-line 

mass spectrometry.  
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The presence of C
18

O
16

O (m/z=46) shown by the DEMS results during the anodic scan 

demonstrated that the IrO2 coating participated in the oxidation of formic acid. This is 

because formic acid was the only source of carbon in the electrolyte, which reacted 

with the marked oxygen atom present in the labeled IrO2 lattice.  

Analysis of the experimental data has shown that no more than 3.7% of the surface 

IrO2 participated in the exchange of oxygen between electro-generated labeled IrO3 

(Ir
16

O
16

O
18

O) and adsorbed formic acid (HC
16

O
16

OH) producing marked carbon dioxide 

(C
16

O
18

O) and Ir
16

O2.  

From these results, we can conclude that the IrO2 layers of Ti/IrO2 participate in the 

oxidation of organic compounds in acidic media across at least several monolayers. 

This chapter is based on the publication: 

S. Fierro, T. Nagel, H. Baltruschat, Ch. Comninellis. Investigation of formic 

acid oxidation on Ti/IrO2 electrodes using isotope labelling and online mass 

spectrometry, Electrochemical and Solid-State Letters, Volume 11, Issue 7, 

April 2008, pages E20-E23 

 

66.1  Introduction 

 

IrO2-based dimensionally stable anodes (DSA®) are principally used for water 

electrolysis, metal electro-winning and cathodic protection due to their high stability 

and high activity during the oxygen evolution reaction [1-4]. 

These anodes have also been used for the oxidation of organic compounds for 

applications in both electro-organic synthesis and incineration of organic pollutants 

present in wastewater [2,3,5]. 

Until present, many studies have been conducted on the active intermediates involved 

in the oxidation of organics on IrO2 based electrodes [6-8]; however, the exact 

mechanism implicated in this reaction is still a topic of active debate. 

In the precedent chapter, it was shown that the IrO2 coating participates (via 

formation/decomposition of IrO3) in the oxygen evolution reaction on Ti/IrO2 

electrodes. The participation of the higher valent state oxide IrO3 during the OER was 
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first hypothesized when the phenomenological model for the oxidation of organics with 

competing OER (presented in the bibliography on Figure 2-3) on ‘active’ and ‘non-

active’ type anodes in acidic media was proposed. 

This model was also discussed (from Eq.(5-1) to Eq.(5-3)) in the previous chapter. 

The first step is the discharge of water, which yields to the formation of hydroxyl 

radicals (Eq.(5-1)); later, these radicals are chemisorbed to the electrode material to 

form the higher valent state oxide (IrO3) (Eq.(5-2)). Finally, this model suggested that 

IrO3 was directly involved in the oxygen evolution reaction on Ti/IrO2 electrodes, 

which was verified in the precedent chapter using DEMS measurements (see previous 

chapter, section 5.3.1). 

Moreover, the same model suggests (Figure 2-3) that the oxidation of organic 

compounds (R) (Eq.(6-1)) compete with the OER involving also IrO3 as intermediate: 

 

 
  
IrO

3
+ R � IrO

2
+ RO  (6-1) 

 

However, there exists no direct experimental evidence showing that the IrO2 coating 

participates in the oxidation of organic compounds. 

In this chapter and in order to determine whether the IrO2 coating is involved or not in 

the oxidation of organics, formic acid (FA) has been used as model compound and 

differential electrochemical mass spectrometry (DEMS) measurements were 

performed using pre-labeled IrO2 electrodes (Ir
16

O
18

O). 

 

66.2  Experimental detai ls  

 

Differential  electrochemical mass spectrometry (DEMS) 

 

For the DEMS experiments conducted in this chapter, we make use of a set-up that is 

identical to the one presented in the previous chapter during the study of the OER 

(Figure 5-1). 
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Also, the same Ti/IrO2 working electrode was used (loading: 0.67 mg cm
-2

 or 2840 

nMol cm
-2

) and the DEMS experiments were carried out under the same conditions 

(see section 5.2.1). 

The only difference here is that the selected values of m/z ions signals measured as 

ionic currents (m/z = 32, 34, 36, 44, 46) allowed not only to verify that the Ti/IrO2 

electrode has been successfully marked with 
18

O (m/z = 32, 34, 36) but also to target 

the mass signals in the MSCV corresponding to the marked or unmarked carbon 

dioxide (m/z = 44, 46) that will be formed from the oxidation of FA. 

Consequently, the electrolyte used for the second series of experiment contained no 

marked water but was 2mM HCOOH (98% from Sigma-Aldrich) in 1M HClO4. 

All potentials given in this chapter are with respect to the standard hydrogen electrode 

(SHE). 

 

66.3  Results and discussion 

 

DEMS measurements using Ti/IrO2 

 

In order to answer the question as to what extent the IrO2 coating participates in the 

oxidation of formic acid, two series of experiments (series A and B) have been 

conducted. The goal of the first series of experiments (series A) was to label the IrO2 

coating with 
18

O (formation of Ir
16

O
18

O), by treatment in H2
18

O as already shown in 

the previous chapter (section 5.3.1). Later, in a second series of experiments (series 

B), this labeled electrode was used for the electrochemical oxidation of formic acid. 

The m/z ions signals 44 and 46 corresponding to C
16

O2 and C
16

O
18

O respectively were 

rigorously monitored in order to ensure that 
18

O was transferred from the IrO2 coating 

to the formic acid oxidation product. 

Series A: In this first series of experiments, the DEMS cell containing the Ti/IrO2 

electrode (2840 nMol
 
IrO2/cm

2
) was firstly filled with a 1 M HClO4 solution containing 

10% (w/w) of marked water (H2
18

O). Later, several successive cyclic scans (10 mV s
-

1
) were applied between 0 and 1.6 V. The faradaic current obtained from the 

cyclovoltammetric measurements (CV) together with the ionic currents obtained from 
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the mass spectrometer responses for ions with m/z = 32, 34 and 36 (corresponding to 

16
O

16
O, 

16
O

18
O and 

18
O

18
O molecules) were recorded for several successive potential 

scans. 

Figure 5-2 (presented in the previous chapter) shows a typical example of the ionic 

and faradaic currents obtained during the first cyclic scan. From the ionic currents, we 

can notice that mainly 
16

O2, 
16

O
18

O are formed in conjunction with a small amount of 

18
O2. The hysteresis is due to the time lag between O2 formation and detection in the 

two compartments.  

Figure 6-1 shows the gas phase concentrations of 
16

O2 and 
16

O
18

O measured during 

five successive scans as well as those predicted from the concentration of marked 

water (H2
18

O) in the electrolyte. 
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This figure clearly shows that during each successive cycle the concentration of 
16

O2 

decreases while the concentration of 
16

O
18

O increase before reaching a steady state 

after four cycles (which corresponds to the values predicted by the concentration of 

marked water in the electrolyte). The flowing electrolyte conditions guarantee the 

constant value of the concentration of marked water in the cell; therefore, the 

increase of 
16

O
18

O (m/z=34) and/or the concomitant decrease of 
16

O2 (m/z=32) with 

each consecutive scan proves that the marking of the IrO2 coating with 
18

O was 

successful (see previous chapter, section 5.3.1). In fact, considering that the gas 

phase composition at the ionic current steady state (i.e. the composition obtained at 

the 5
th
 scan) corresponds to the bulk electrolyte composition (81% 

16
O2 (m/z=32) and 

18% 
16

O
18

O (m/z=34)), the concentration of 
16

O2 (m/z=32) measured during the first 

few scans was higher because 
16

O from the IrO2 coating contributed in the oxygen 

evolution reaction and therefore, during this treatment, a small fraction of the marked 

oxygen was inserted into the oxide lattice according to Eq.(5-7). 

Later, using the same relation based on the Faraday law that was developed in the 

precedent chapter (Eq.(5-8) and (5-9)), the amount of moles (m) and the 

corresponding number (n) of 
16

O lattice oxygen, which are exchanged to 
18

O per unit 

of electrode geometrical surface area for each consecutive scan until no further 

exchange is occurring, can be calculated. 

The values obtained together with the total amount of 
18

O atoms formed during the 

three successive scans are given in Table 6.1. 
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IrO2 loading: 2840 nMol cm
-2

 

scan � (-) Qf (nC cm
-2

) m (nMol cm
-2

) 

1 9.1�10
-3

 2.6�10
7
 6.1 

2 5.2�10
-3

 2.6�10
7
 3.5 

3 0.2�10
-3

 2.6�10
7
 1.3 

�     10.9 
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This table shows that the value obtained for the total amount of exchanged oxygen is 

about 11 nMol cm
-2

 for 1 cm
2
 of the electrode’s geometric surface area, which 

corresponds to 6.5�10
15

 of oxygen atoms exchanged per cm
2
. 

It is worthwhile to notice that the amount of oxygen exchanged is practically identical 

to the result obtained for the same experiment presented in the previous chapter 

(Table 5-1). This proves that the DEMS experiments have the desired attributes of 

being accurate and reproducible. 

Knowing this value (11 nMol cm
-2

) and the IrO2 loading (2840 nMol cm
-2

), it was 

estimated that the amount of lattice oxygen, which is involved in the oxygen exchange 

reaction, represents 11/2840=0.38% of the total IrO2 loading. 

This value should be compared to the amount of IrO2, which composes the electrode’s 

surface, i.e. which is in contact with the solution. From the integration of the 

voltamogramm (A) given in Figure 5-2 between 0 V and 1.5V, a charge density of 

0.056 C cm
-2

 was obtained. Assuming that this charge is entirely related to the 

oxidation of the surface IrO2 to IrO3 we get a number of 290 nMol cm
-2

 of iridium 

dioxide in contact with the solution. 

This represents 10.2% of all the IrO2 contained in the electrode; if only a fraction of 

the IrO2 from the electrode’s surface is oxidized or if the charge is partly related to the 

charging of the double layer (which seems likely in the present experiment), the 

number of iridium atoms present at the surface is even larger, which means that less 

than 3,7% of the surface iridium atoms participate in the oxygen exchange. 

Series B: In this series of experiments, the labeled IrO2 electrode (2840 nMol
 
IrO2 cm

-

2
), prepared in series A, was first carefully rinsed with H2

16
O before being introduced 

into a clean DEMS cell in order to eliminate any presence of marked water within the 

system. Finally, the cell was filled with 1 M HClO4/H2
16

O containing 2mM of HCOOH. 

In this new electrolyte, several successive CV sweeps (10 mV s
-1

) were performed 

from 0 up to 1.6 V (vs. SHE). The faradaic current obtained from the 

cyclovoltammograms (CV) together with the ionic currents computed from the mass 

spectrometer responses for ions with m/z=44 and 46 (corresponding to C
16

O
16

O and 

C
16

O
18

O molecules respectively) were recorded for several successive potential scans. 

Figure 6-2 shows a typical example of the ionic currents corresponding to C
16

O2 and 

C
16

O
18

O as well as the faradaic current obtained during the first cyclic scan. 
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This figure shows that C
16

O
18

O was formed during the experiment. This result is a 

clear proof that the IrO2 coating participated in the oxidation of formic acid (Eq.(6-2)) 

because the latter was the only source of carbon in the bulk allowing it to react with 

the marked oxygen atoms inserted in the lattice during the experimental procedure of 

series A (Eq.(5-7)).  

 

   Ir
16

O
18

O + HC
16

O
16

OH � Ir
16

O
16

O + C
16

O
18

O + 2H
+ + 2e

�
 (6-2) 

 

Figure 6-3 shows the relative amounts of C
16

O2 and C
16

O
18

O obtained during six 

successive scans. 

 

�������� . 
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�� ����� ���$���� ���������� � :��.8�58�� �	5,=� �0��� �� 
	� � � 1������������ 	�0�
������� ����� ��� �3������ �?	

�.8�� �0� ?;�8,�� E�������� � ����� ���� �� �=� �B� � 
� �
� � � 	-A;�� 1��������� ��� ; �.8	� ���� ;�58�.8� ��������������� "���� �����
������������������ ��� ������

 

The figure shows that during each successive cycle the concentration of C
16

O
18

O in the 

gas phase decreases while the concentration C
16

O2 increases before reaching a steady 

state after five cycles. 

In these measurements, the decrease of C
16

O
18

O and/or the simultaneous increase of 

C
16

O2 after each scan indicates that the 
18

O inserted in the IrO2 coating in the 
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experiments of series A (Eq.(5-7)) was present in the CO2 formed from the oxidation 

of formic acid (Eq.(6-2)) in the experiments of series B. This, again, demonstrates 

that the iridium oxide layer plays a role in the oxidation of formic acid. Using 

Faraday’s law, the amount of 
18

O in the oxide layer, which was consumed during the 

oxidation of formic acid and replaced by 
16

O was estimated to be about 10.6 nMol cm
-2

 

or 6.4 �10
15

 molecules of 
18

O for 1 cm
2
 of the electrode’s geometric surface area (see 

Table 6-2). 

 

##�!��� .-	�� 1�� �������� ��� ���� ������� ��� �58� � ��� ���� �$����� ������ ��� �
"����� ���� ��������������� �.8����� ���� ���� ���������� ����������� � ������� �
����� ������ ���
	����������������������$�������� �� �������� �"������?	

�.8�  �
��� ����� ������������������ �� ���� ����7��$�������������� �13��-
5���

IrO2 loading: 2840 nMol/cm
2
 

scan � (-) Qf (nC/cm
2
) m (nMol/cm

2
) 

1 8.4�10
-3

 1.8�10
7
 3.9 

2 6.7�10
-3

 1.8�10
7
 3.1 

3 5.0�10
-3

 1.8�10
7
 2.3 

4 2.9�10
-3

 1.8�10
7
 1.3 

�     10.6 

 

This quantity represents almost the totality of the amount of 
18

O exchanged during the 

first series of experiments (series A); however, the steady state was reached after 6 

scans instead of 5. This small difference between the two amounts of 
18

O exchanged 

during series A and B of the experimental procedure might be attributed to the co-

evolution of oxygen during formic acid oxidation. 

The exact mechanism of formic acid oxidation via the IrO3/IrO2 redox couple is 

certainly complex; however, because 
18

O from the IrO2 lattice was exchanged with the 

16
O of formic acid to produce C

16
O

18
O (Eq.(6-2)), we can speculate that the formed 

higher oxide IrO3 acts as mediator during the oxidation of adsorbed formic acid. This 

can lead to oxygen exchange between Ir
16

O2
18

O and adsorbed formic acid producing 

C
16

O
18

O and Ir
16

O2 (Eq.(6-3)). 
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�

aaaaaaaaaaaaaaaaaaaaa..� Ir
16

O
16
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16

O
18

O + H
2

16
O

 (6-3) 

This reaction occurs via the same intermediate (IrO3) participating in the oxygen 

evolution reaction on Ti/IrO2 electrodes. Therefore, the OER and the oxidation of 

organic compounds compete on the same active intermediate (IrO3). 

 

66.4  Conclus ions 

 

In this chapter, the surface redox activities involved in the oxidation of organics (using 

formic acid as model compound) have been studied for Ti/IrO2 using DEMS 

experiments together with 
18

O labeling. 

Successive cyclic voltammetric measurements on Ir
16

O2 electrodes in H2
18

O containing 

electrolyte have successfully shown that after each successive cycle, the amount of 

16
O2 (m/z=32) decreases, while the concentration of 

18
O

16
O (m/z=34) increase before 

reaching a steady state. This proved that marked oxygen was inserted inside the 

coating. In a second series of experiment, formic acid in H2
16

O was oxidized on this 

labeled electrode and the results revealed the presence of C
16

O
18

O (m/z=46). In fact, 

the concentration of C
16

O
18

O decreased, while the concentration of C
16

O2 increased, 

which proves that the IrO2 coating did actively participate in the oxidation of organics. 

The analysis of the experimental data has shown that almost the totality of the 
18

O 

inserted in the coating was exchanged with the adsorbed formic acid (0.38% of the 

total IrO2 loading). Since the oxygen exchange proved to be highly reproducible 

(different loadings (Chapter 5, section 5.3.1), same value for oxygen evolution and 

formic acid oxidation), we assume that these sites (at maximum 3.7% of the surface 

atoms) represent the catalytically active sites for oxygen evolution and formic acid 

oxidation. 
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Chapter 7  : Voltammetric study of the 

oxidation of model organic compounds on p-

Si/IrO2 electrodes  

 

In this chapter, the electrochemical oxidation of model aliphatic 

(formic acid, i-propanol and 2-butanol) and aromatic (phenol) 

compounds is investigated on p-Si/IrO2 electrodes in aqueous 

acidic media using linear potential sweep voltammetry 

measurements. 

From measurements performed using different IrO2 loadings and 

organic concentrations, the kinetic parameters of the oxidation of 

organic compounds (formic acid, i-propanol, 2-butanol and phenol) 

have been quantitatively determined using a model that involves 

the redox couple IrO3/IrO2 as mediator of these reactions. These 

experiments revealed that these kinetic parameters are strongly 

dependent on the IrO2 loading. 
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Furthermore, using the kinetic parameters obtained together with the Nernst equation 

and the I-V curves of the supporting electrolyte (1M HClO4), theoretical I-V curves could 

be constructed for different concentrations of formic acid (model organic compound) and 

different IrO2 loadings. 

This chapter is based on the publications: 

S. Fierro, L. Ouattara, E. H. Calderon, E. Passas-Lagos, H. Baltruschat, Ch. 

Comninellis. Investigation of formic acid oxidation on Ti/IrO2 electrodes, 

Electrochimica Acta, Volume 54, Issue 7, July 2008, Pages 2053-2061  

S. Fierro, Ch. Comninellis. Kinetic study of formic acid oxidation on p-Si/IrO2 

electrodes, Electrochim. Acta, submitted manuscript, February 2010 

 

 

77.1  Introduction 

 

In the previous chapters (Chapter 5 and Chapter 6), it has been demonstrated using 

differential electrochemical mass spectrometry (DEMS) measurements together with 

isotope labeling that the oxidation of organic compounds on IrO2 electrodes is mediated 

by the surface IrO3/IrO2 redox couple (redox catalysis) and proceeds in parallel with the 

side reaction of oxygen evolution (OER) due to IrO3 decomposition [1,2]. 

The goal of the experiments presented in this chapter is to develop a phenomenological 

kinetic model for the oxidation of organic compounds on IrO2 electrodes for applications 

in electrosynthesis processes (electrolysis). 

Our model is mainly based on the work of F.Beck [3], where the electrode potential can 

be expressed by Nernst equation, which is dicted by the surface redox couple responsible 

of the electron transfer. This model was validated using the oxidation of different 

aliphatic alcohols and ethers on Ti/Cr2O3+TiO2 electrodes as example [3]. Unfortunately, 

these electrodes were anodically corroded resulting in the contamination of the 

electrolyte solution with chromium. An alternative solution to this problem is proposed in 

this chapter: we used IrO2 electrodes, because they are stable under organic oxidation 

conditions even in highly acidic media. In the first part of this chapter, the kinetic 

parameters of the oxidation of model organic compounds have been estimated from 
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voltammetric measurements recorded using different IrO2 loadings and organic 

concentrations. In the second part of this chapter, the shift of the I-V curve toward less 

positive potentials in the presence of an organic compound is investigated. 

 

77.2  Experimental detai ls  

 

Voltammetric experiments  using p-Si /IrO2 

 

The voltammetric experiments presented in this chapter were performed in a three-

electrode cell (70 ml) using an Autolab PGSTAT 30. The counter electrode was a Pt wire; 

the reference electrode was Hg/Hg2SO4/K2SO4 (sat.) (MSE; 0.65 V vs. SHE) and the 

working electrodes were several IrO2 based electrodes (with different IrO2 loadings) 

prepared by thermal decomposition of a precursor: the precursor aqueous solution 

(H2IrCl6 (99.9%, ABCR) 250mM in dry i-propanol (extra dry with molecular sieves, water 

< 50ppm, Acros Organics) was deposited using the spin coating technique (described in 

Chapter 3) on square-shaped sandblasted p-Si (100 mm
2
) substrate and then the oxide 

film was obtained through thermal decomposition in air at 500°C. 

The deposition and thermal decomposition processes were repeated in order to produce 

multi-layered p-Si/IrO2 electrodes having different loadings (Table 7-1). 

The presence of iridium dioxide on the substrate was confirmed using XPS measurements 

(Table 3-1). 

 

#�!���4-��� :�8	� ������������ �����

�> :�8	��������������������������������� �� �
��������������� ����������3����
�

Number of 

layers 
1 2 3 5 6 10 13 20 

IrO2 loading 

[mg cm
-2

] 
0.23 0.35 0.69 0.87 1.63 1.75 2.99 3.5 

 

All the above experiments were carried out at room temperature inside a Faraday cage 

and using 1M HClO4 (95-97% Merck) as support electrolyte. All potentials in this chapter 

are with respect to the standard hydrogen electrode (SHE). 
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The cell and materials used for the voltammetric experiments on p-Si/IrO2 are similar to 

the set-up used in the precedent chapters (Figure 3-1 in section 3.2). 

77.3  Results and discussion 

 

During organics oxidation on IrO2 electrodes, the oxidation competes with the oxygen 

evolution reaction (OER). The I-V curves show that there is a shift toward less positive 

potentials in the presence of an organic compound. 

In this chapter, a conceptual model is proposed. The first part of the model is used to 

determine the kinetic parameters of the main reaction (oxidation of the organic 

compound) whereas the second part of the model is put forth to evaluate the potential 

shift toward less positive values of the OER current response in the presence of an 

organic compound. Finally, the results obtained together with the I-V curves recorded 

using only the support electrolyte were used to construct theoretical I-V curves for the 

reaction under investigation under a given organic concentration and IrO2 loading. 

Therefore, several p-Si/IrO2 electrodes with different loadings (0.23; 0.35; 0.87; 1.63; 

1.75 and 3.50 mg�cm
-2

) were used to investigate the oxidation of organic compounds. 

Linear voltammetry measurements were performed at 10mV s
-1

 and at room 

temperature on these electrodes using various organics (formic acid, i-propanol, 2-

butanol and phenol) having different concentrations in 1M HClO4. 

 

Model for organics oxidation on p-Si/IrO2 electrodes 

 

Three main reactions are involved in the following phenomenological model: 

a) Electrochemical oxidation of IrO2 active species (Eq.(7-1)): 

 

 

  

(IrO
2
)

S
+ H

2
O

k
1

e

k
�1

e

� ��� �� (IrO
3
)

S
+ 2H

+ + 2e
�

 (7-1) 

 

b) Chemical oxidation of the adsorbed organic matter R by the electrogenerated IrO3 

(Eq.(7-2)):  
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(IrO

3
)

S
+ R
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k
c� �� (IrO

2
)

S
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ad
 (7-2) 

c) Oxygen evolution reaction via decomposition of IrO3 (Eq.(7-3)): 

 

 
  
(IrO

3
)

S

k
d� �� (IrO

2
)

S
+ 1

2
O

2
 (7-3) 

 

In this simplified model, the oxidation of organics (main reaction) and the evolution of O2 

(side reaction) compete on electrogenerated IrO3. 

The main assumptions behind this model are: 

- The formation of IrO3 (Eq.(7-1)) is a fast reaction compared to the oxidation of 

organics (Eq.(7-2)). 

- Transport and adsorption of the organics in solution are fast processes. 

- The surface redox couple IrO3/IrO2 follows Nernst law. 

The rate of electrogeneration of IrO3 (Eq.(7-1)) can be given by the following equation 

(Eq.(7-4)). 

 

 

  

r
IrO

3

=
j

zF
= �

3D
k

1

e�
0
(1 � �) � �

3D
k

�1

e �
0
�  with 

  

�
3D

=
A

real

A
g

 (7-4) 

 

with �3D being the three dimensional roughness factor (-) defined as the ratio between 

the real and geometrical surface areas of the electrode surface, �0 the density of IrO2 

surface sites available for IrO3 formation (mol m
-2

), � (-) the fractional electrode surface 

transformed from IrO2 to IrO3, k1
e
 and k-1

e
 (s

-1
) the electrochemical rate constants for the 

forward and reverse reaction (Eq.(7-1)) and finally z the number of electrons involved in 

the process (z = 2 in this case). 

Thus the current density j (A m
-2

) for the electrogeneration of IrO3 can be evaluated 

using the following relation (Eq.(7-5)). 

 

 
  
j = �

3D
zF�

0
k

1

e
(1 � �) � k

�1

e ��
�

�
	  (7-5) 



CHAPITRE 7: Voltammetric study of the oxidation of model organic 

compounds on p-Si/IrO2 electrodes 

    

 

    

- 124 - 

The rate of chemical oxidation of the organic by IrO3 (Eq. (7-2)) is given by Eq.(7-6): 

 

 
  
r

oxid .
= �

3D
k

c
�

0
� �C

R

ad
 (7-6) 

 

with kc being the chemical rate constant (m
3
mol

-1
s

-1
) and CR

ad
 the concentration of 

adsorbed organic compounds at the electrode’s surface (mol m
-3

). The decomposition 

rate of IrO3 on the electrode’s surface is given by the following equation (Eq.(7-7)), with 

kd standing for the decomposition rate constant (s
-1

). 

 

 
  
r

dec.
= �

3D
k

d
�

0
�  (7-7) 

 

Assuming steady-state conditions, the rate of IrO3 electrogeneration is given by the sum 

of the organic oxidation rate and the IrO3 decomposition rate (Eq.(7-8)):  

 

 
  
r

IrO
3

= r
oxid .

+ r
dec.

 (7-8) 

 

Insertion of equations (7-5), (7-6) and (7-7) into equation (7-8) gives Eq.(7-9): 

 

 
  
k

1

e
(1 � �) � k

�1

e � = k
c
� �C

R

ad + k
d
�  (7-9) 

 

Finally by substitution, the fractional surface coverage of the active species � can be 

estimated using Eq.(7-10): 

 

 

  

� =
k

1

e

k
1

e + k
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e + k
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 (7-10) 
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Assuming that CR
ad

 = CR
bulk

 = CR, the insertion of Eq.(7-10) into Eq.(7-5), yields to: 
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 (7-11) 

 

Because of the inherent difficulty in determining the kinetic parameters from Eq. (7-11), 

we considered the inverse of equation (7-11) instead: 
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 (7-12) 

 

According to this equation (Eq.(7-12)), the inverse of the current density 1/j plotted 

versus the inverse of the organic bulk concentration 1/CR should give a straight line with 

a y-intercept of 1/(z�3DFk1
e
�0). Furthermore and in order to calculate the charge transfer 

coefficient � and the apparent standard rate constant (k1
e,0

)ap (Eq. (7-13)) of the 

electrochemical reaction (mol m
-2

 s
-1

), it is necessary to plot the logarithm of the y-

intercepts obtained versus the corresponding overpotential, considering that E0 = 1.3 V 

for reaction (7-3). 

 

 
  
(k

1

e,0
)

ap
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3D
k

1

e,0�
0
 (7-13) 

 

Using the slopes of the resulting straight lines, it is possible to calculate � using the 

following relations (Eq.(7-14)). 
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��
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�	
��  (7-14) 

 

where z, F, R and T have their usual meaning and � is the overpotential (V). 
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Finally the apparent standard rate constants (k1
e,0

)ap obtained have been plotted as a 

function of the IrO2 loading and as a function of the values found for the electrical double 

layer capacitance qdl
*
. This capacitance has been determined in the same manner than in 

Chapter 4, section 4.3.1. 

By working at high overpotentials (> 1.45 V) and subtracting the background current 

from the obtained current-potential curves, Eq. (7-12) can be transformed to (assuming 

kd = 0 and 
  
k

�1

e
 = 0): 
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1
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C
R

with         
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c
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ap
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3D
�

0
k

c
 (7-15) 

 

with (kc)ap being the apparent rate constant (m s
-1

) for reaction (7-2), which can be 

estimated from the slope of the resulting (1/j) vs. (1/CR) plot. 

The second part of this model is based mainly on the work of Beck [3], who studied the 

oxidation of organics on Ti/Cr2O3 based anodes. However, for this part of the model, the 

side reaction of O2 evolution (Eq.(7-3)) has been neglected. 

Furthermore, because the IrO2 coating is stable under the investigated conditions, the 

sum of the higher and the lower oxide (IrO3 and IrO2) concentrations remains constant in 

the coating: 

 

 
  
[IrO

2
] + [IrO

3
] = �

3D
�

0
(1 � �) + �

0
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3D
�
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 (7-16) 

 

Considering these assumptions, the anode potential can be given by Nernst equation. 
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with UB,0 (V) standing for the standard potential of the surface redox couple. 
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Assuming that the transport and adsorption of dissolved R is fast and in equilibrium with 

the previously adsorbed R: 

 

 
 
C

R

ad = K �C
R

 (7-18) 

 

And knowing that the rate of chemical oxidation of FA by IrO3 is given by Eq.(7-6); 

combining expressions (7-15), (7-17) and (7-18) gives: 
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 (7-19) 

 

Considering again that CR
ad

 = CR
bulk

 = CR (i.e. K = 1), one obtains: 
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 (7-20) 

 

This relation (Eq.(7-20)) predicts that the current density increases linearly with the 

organic concentration and also induces a negative potential shift of the I-V curves. 

 

EEstimation of the kinetic parameters of organic oxidation on p--Si/IrO2 

electrodes using formic acid, i -propanol, 2-butanol and phenol as model 

compounds 

 

Figure 7-1 displays the linear voltammetry measurements for different concentrations of 

formic acid in 1M HClO4 and for four p-Si/IrO2 electrodes with different loadings. A 

negative potential shift of the oxidation current is observed in the domain of water 

discharge with increasing FA concentrations as predicted by Eq.(7-19) of the model. 
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The I-V curves in the presence of formic acid presented in Figure 7-1 have been 

corrected by subtraction of the I-V curves obtained in 1M HClO4 (background I-V curves 

related to the side reaction of O2 evolution). Figure 7-2 shows an example of the 

resulting background subtracted curves. Using these curves and at the following fixed 

anodic potentials: 1.348, 1.392, 1.402, 1.451 and 1.5 V, the current density was plotted 

against the concentration of formic acid for several IrO2 loadings (Figure 7-3). The 

linearity observed between the current density and the concentration of FA for all IrO2 

loadings is in agreement with the current-overpotential relation derived earlier (Eq. (7-

19)).
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As a next step, the inverse of the current densities (1/j) were plotted against the inverse 

of the concentration of formic acid (1/CFA) at fixed potentials for several IrO2 loadings 

(Figure 7-4). This figure validates the linearity predicted by Eq. (7-15) of the model. The 

apparent rate constant of the oxidation reaction (kc)ap can, again, be estimated 

accurately using the slopes of these straight lines. 
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By plotting the logarithm of the y-intercepts obtained from Figure 7-4 versus the 

corresponding overpotentials (considering that E0 = 1.3 V [3]), it is possible to estimate 

the charge transfer coefficient � and the apparent standard rate constant (k1
e,0

)ap for all 

IrO2 loadings using the slopes and y-intercepts of the resulting straight lines (Figure 7-5) 

together with Eq.(7-14). 

The kinetic parameters calculated for all IrO2 loadings are summarized in Table 7-2. 

Furthermore, as shown in Figure 7-6, the apparent standard rate constant of the 

electrochemical reaction of IrO3 formation (k1
e,0

)ap and the apparent rate constant of the 

chemical reaction of formic acid oxidation (kc)ap both increase with the IrO2 loading. 
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For a more accurate comparison, two more aliphatic model compounds (i-propanol and 

2-butanol) and one model aromatic compound (phenol) were investigated and analyzed 

consistently using the aforementioned model. These compounds follow similar trends 

(Table 7-2). 

 

##�!��� 4-	 �� N���� �� � ����������� ��� ���� �$�������� ��� ����� � ������� �
���������� ��������������:�8	������������ �	-� A;��

 

IrO2 loading (k1
e,0

)ap (kc)ap 
Compound 

[mg cm
-2

] [μmol m
-2

 s
-1

] [μm s
-1

] 

� 

[-] 

0.35 6.129 0.092 0.245 

0.87 6.539 0.071 0.221 

1.75 16.761 0.207 0.227 

Formic acid 

3.5 21.7 0.32 0.222 

i-propanol 0.23 4.39 0.063 0.482 

2-butanol 1.63 8.55 0.104 0.374 

phenol 2.99 17.488 0.244 0.416 

 

As seen in Table 7-2, the charge transfer coefficient for formic acid oxidation is almost 

independent of the IrO2 loading, in contrast to (k1
e,0

)ap, which increases with increasing 

IrO2 loadings (further measurements performed using i-propanol, 2-butanol and phenol 

on different IrO2 loadings have shown the same trend). 

This is due to the fact that � is an intensive parameter related with the intrinsic 

electrocatalytic properties of IrO2 whereas (k1
e,0

)ap is an extensive parameter depending 

on geometric factors. This feature is characteristic of ‘active-type’ anodes. 

 

Theoretical I-V curves of formic acid oxidation on p-Si/IrO2 electrodes 

 

In this section, the values obtained for (kc)ap of FA oxidation for different IrO2 loadings 

(Table 7-2) have been used together with Eq.(7-20) of the model proposed in this 

chapter to provide an estimation of the shift of electrode potential for a given 

concentration of FA and a given IrO2 loading. From these calculations and knowing only 

the I-V curves of the supporting electrolyte, theoretical I-V curves of FA oxidation for 

different FA concentrations and IrO2 loadings have been constructed. 
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Figure 7-7A shows these curves for different concentrations of formic acid using a p-

Si/IrO2 electrode (3,5 mg cm
-2

). For the sake of comparison, Figure 7-7B shows the 

experimental I-V curves. 
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These figures provide a proof that the theoretical curves follow the same trend as the 

experimental results. However, the current density measured experimentally for a given 

potential is higher than the values predicted by the model. The same case was observed 

for all the other IrO2 electrodes with different loadings. This is probably due to the fact 

that in Eq.(7-20) of the model proposed in this chapter, it is assumed that the adsorption 

constant (K) is equal to 1, which is likely inaccurate. It is possible, however, using the 

results presented in Figure 7-7, to estimate the expected values of K with a good degree 

of accuracy. Considering now an average value of K = 2,5(±0,5), we found a very good 

agreement between the experiments and the theoretical I-V curves for all FA 

concentrations and IrO2 loadings. 

 

77.4  Conclus ions 

 

The electrochemical oxidation of model aliphatic and aromatic organic compounds on p-

Si/IrO2 electrodes has been investigated using linear potential sweep voltammetry 

measurements. 

From the I-V curves recorded using different IrO2 loadings and organic concentrations 

and using a new theoretical model developed in this chapter, the kinetic parameters of 

the oxidation of various model organic compounds have been estimated. It was found 

that these kinetic parameters are strongly dependent on the IrO2 loading. 

Furthermore, using the same model together with the above newly estimated kinetic 

parameters and Nernst equation, it became feasible to evaluate the shift of the I-V 

curves toward less positive potentials in the presence of an organic compound. Using 

these results, theoretical I-V curves could be plotted. Small deviations were observed 

between the experimental and theoretical I-V curves due to the difference between the 

value of the adsorption constant K assumed for the model (K =1) and the experimental 

reality. Considering a value of K = 2,5(±0,5), a good agreement between the 

experimental and theoretical results was observed. 
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Chapter 8  :  Selective oxidat ion of organic 

compounds on IrO 2 electrodes 

 

 

 

In this chapter, the selective anodic oxidation of model aliphatic (i-

propanol and 2-butanol) and aromatic (phenol) compounds is 

investigated on Ti/IrO2 electrodes in aqueous acidic media using 

electrolysis experiments. 

In the first part of this chapter, a new approach is proposed in 

order to perform electrochemical oxidation of organic compounds 

on anode materials by working under galvanostatic conditions with 

the potential ‘buffered’ by the competing side reaction of oxygen 

evolution. According to this procedure, the working potential is 

fixed by the nature of the electrode material and is ‘buffered’ 

during organics oxidation by the side reaction of OER. Using this 

approach, selective oxidation of i-propanol, 2-butanol and phenol 

has been achieved on IrO2 electrodes. This behavior was attributed 

to the low oxidation power of this electrode material (Table 8-1). 

However, the current efficiency of the oxidation remains low due 

to the side reaction of O2 evolution. 
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The comparison between the chemical and electrochemical hydroxylation of phenol has 

shown that in the electrochemical process, the formation of p-benzoquinone and 

hydroquinone predominates, in contrast to chemical oxidation, where pyrocatechol is the 

dominant product. It was found that this high selectivity of the electrochemical 

hydroxylation towards para-substituted products (benzoquinone and hydroquinone) 

formation was caused by specific adsorption of phenol molecules on the anode’s surface. 

This chapter is based on the publications: 

S. Fierro, L. Ouattara, E. H. Calderon, E. Passas-Lagos, H. Baltruschat, Ch. 

Comninellis. Investigation of formic acid oxidation on Ti/IrO2 electrodes, 

Electrochimica Acta, Volume 54, Issue 7, July 2008, Pages 2053-2061 

S. Fierro, E. Passas-Lagos, E. Chatzisymeon, D. Mantzavinos, Ch. Comninellis. 

Pseudo-potentiostatic electrolysis by potential buffering induced by the oxygen 

evolution reaction, Electrochemistry Communications, Volume 11, Issue 7, May 

2009, Pages 1358-1361 

E. Chatzisymeon, S. Fierro, I. Karafyllis, D. Mantzavinos, A. Katsaounis. Anodic 

oxidation of phenol on Ti/IrO2 electrode: Experimental studies, Catalysis Today, 

accepted manuscript, January 2010 

S. Fierro, G. Fòti, Ch. Comninellis in: Electrolysis: Theory, Types and 

Applications, Nova Publishers, New York, 2010 

 

88.1  Introduction 

 

Evidence is mounting for growing interest in oxidative electrochemical processes because 

of their promising versatility, environmental compatibility and cost effectiveness in 

selective organic synthesis and electrochemical incineration of organic pollutants (ECI) in 

aqueous medium. In the case of organic electrosynthesis, the goal is to enhance the 

reaction selectivity and, in case of the ECI process, to achieve the mineralization of toxic 

and non-biocompatible pollutants with high current efficiencies [1]. A typical example is 

the oxidation of organic compounds on platinum-based anodes, for both electrosynthesis 

and fuel cell applications. The main problem using these electrocatalytic anodes is the 

reduction of catalytic activity during organics oxidation. The reason behind this reduction 
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can be explained by the adsorption of reaction intermediates (carbon monoxide) or/and 

the formation of polymeric material at the anode surface, leading to poisoning or/and 

fouling. 

The anodic oxidation of organics arises from several mechanisms including direct and 

indirect oxidation. In the direct process, an electron exchange occurs between the 

organic compound and the electrocatalytic surface of the electrode. In the indirect 

electrochemical process, the oxidation of organics is mediated by an active redox couple. 

This process can be homogenous or heterogeneous in nature (see Figure 8-1). In the 

first case, the mediators (e.g. Ag
2+

/Ag
+
, Mn

3+
/Mn

2+
) dissolved in the electrolyte are 

reacting with the organic compounds through a homogenous reaction and then are 

regenerated at the electrode’s surface. The main disadvantage of this process is the 

necessity to separate these mediators from the reaction products after reaction. 

Heterogeneous mediators are fixed at the surface of the electrode, where the reaction 

with the organic compounds and their regeneration take place, without contamination of 

the reaction mixture. 
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As far as the IrO2-based electrodes (prepared by thermal decomposition) are concerned, 

they were suspected to be good candidates for partial electrochemical oxidation of 

organics. Furthermore, it was found that when using these electrodes, electrochemical 

oxidation of organics in aqueous media was occurring with competing side reaction of 

oxygen evolution without any loss of electrode activity [2,3]. 

Based on these observations, a general mechanism for anodic oxidation of organics in 

acidic media (Figure 2-3), including the competition with oxygen evolution, has been 

(b) 

 

(a) 
 (a) (b) 

(b) 
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proposed by Comninellis [1,4,5]. This mechanism was validated in the previous chapters 

(sections 5.3.1 and 0) using differential electrochemical mass spectrometry (DEMS) 

measurements [6,7]. 

In the first part of this chapter, a new electrolysis operation mode for organics oxidation 

under pseudo-potentiostatic conditions induced by the side reaction of oxygen evolution 

is presented. It is hypothesized that selective oxidation of organic compounds can be 

achieved on IrO2 anodes using the latter approach. 

Therefore, three series of electrolysis on Ti/IrO2 electrodes have been carried out. In the 

first series, the oxidation of formic acid has been investigated to evaluate the 

performance of these electrodes toward a simple anodic oxidation process. In the second 

series of experiments, the oxidations of i-propanol and 2-butanol were investigated so as 

to achieve selective oxidation of these compounds using the approach of pseudo-

potentiostatic conditions proposed in the first part of the chapter. In the last series, the 

oxidation of phenol was investigated in order not only to achieve selective oxidation of 

this aromatic compound using the aforementioned approach but also to compare the 

specificity of hydroxylation with the classical methods. 

 

88.2  Experimental detai ls  

 

Preparative  electrolysis  experiments  

 

For the investigation of the anodic oxidation of aliphatic compounds (formic acid, 

i-propanol and 2-butanol), a single compartment electrochemical cell was used. 

Due to the complexity of the phenol oxidation process, (the oxidation product of phenol 

formed at the anode can be reduced at the cathode), a two-compartments cell was used 

as it is necessary to separate the anodic compartment from the cathodic one using a 

cationic Nafion® membrane. 
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EElectrolysis using a single compartment electrochemical cell 

 

The cell build-up contains two plastic caps, both 165 mm in diameter. The cathodic cap 

has a thickness of 10 mm with an aluminum plate integrated as electrical supporter. The 

anodic cap has a thickness of 50 mm and a depth of 40 mm (including the aluminum 

plate) including in- and outlet ports for the circulation of the electrolyte. 

The Ti/IrO2-anode (1-4 mg IrO2 per cm
2
) and Zr-cathode have a diameter of 100 mm 

and are 1 mm thick with an effective surface area of 63.62 cm
2
. The inter-electrode gap 

is 10 mm. Both the Ti/IrO2 anode and Zr cathode are glued with silverpaste on the 

aluminum supporting plate, which are equipped with current feeders, as shown in Figure 

8-2. The electrodes are separated by two o-rings made of rubber. 
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The experimental set-up used is given in Figure 8-3. The electrolyte is recirculated using 

a pump through the cell and the tank, (volume of 250 mL).  

5 cm 
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Electrolysis was carried out under galvanostatic conditions and at controlled 

temperatures (25°C and 50°C) using 250mL of 1M HClO4 containing the organic 

compound under investigation. 

During electrolysis, several samples were collected at constant intervals for analysis 

while monitoring the cell potential.  

 

Electrolysis using a two-compartments electrochemical cell separated by a 

Nafion® membrane 

 

The build-up of this cell is similar to the single compartment cell, the only difference 

being that this cell contains two symmetrical compartments: one for the anolyte and one 

for the catolyte as shown in Figure 8-4. 

The characteristics of this cell are: 

Anode-cathode distance: 10mm 

Anode effective surface (Ti/IrO2): 63.6 cm
2
 (IrO2 loading: 2.6 mg cm

-2
) 

Cathode surface (Zr): 63.6 cm
2
 

Separator (anode/cathode): Nafion® 117 

 

The Nafion® N117 / H
+
 (Du Pont Polymers, Fayetteville, North Carolina) has been 

treated during 2h in a 2M HNO3 solution at 80 °C and was subsequently washed with 
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Millipore water, treated again in nitric acid for 2h at 80 °C and finally washed several 

times with Millipore water. The membrane was kept under water before use. 

The experimental set up used is shown in Figure 8-5. The anodic and cathodic 

compartments of the electrolytic cell, which are separated by a Nafion® membrane, are 

both thermostated electrolyte tanks, each with a volume of 500 mL. Using two pumps, 

the catolyte/anolyte solutions are circulating inside the cell through the electrode 

chambers. The flow rates of the hydrogen and oxygen gases generated by the 

electrolysis were measured with gas analyzers. 
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To check our electrolysis system, bulk electrolysis under galvanostatic conditions was 

carried out in the two-compartments cell using a 1M HClO4 solution. The volumetric flow 

rates of hydrogen and oxygen formed at the cathode and at the anode respectively were 

also measured. 

The molar flow rates measured experimentally for both H2 and O2 were then plotted 

against the applied current. If the plots of the experimental data are in agreement with 

the theoretical plots predicted by Faraday’s law (as is shown in Figure 8-6), we can 

confidently ascertain that the cell is working properly and that it is possible to start the 

electrolysis experiments. 

 

This check should be done on a regular basis in order to guarantee the functionality of 

the electrolysis system. 
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For the preparative electrolysis experiment, the anodic tank is filled up with 500 mL of 

phenol solution in 1M HClO4 and to avoid an overpressure on the Nafion® membrane, 

the cathodic tank is filled simultaneously with 500 mL of the supporting electrolyte (1M 

HClO4). Once the pumps are turned on, all necessary measures were taken to eliminate 

the presence of air bubbles that could disturb the circulation of the electrolyte while the 

thermostat keeps the solutions at a constant temperature (25°C and 50°C).  

During electrolysis, samples have been taken from the anolyte compartment at constant 

time intervals for analysis. The cell potential was also monitored during electrolysis. 

 

Determination of the average mass transfer coefficient for both reactors 

 

The average mass transfer coefficient (km) for the oxidation of [Fe(CN)6]
3-

 (Eq.(8-1)) in 

the electrochemical reactor was determined by measuring the anodic limiting current 

density (jlim) using a solution of 10mM [Fe(CN)6]
3-

 in 0.5M Na2SO4. Using the previously 

estimated values for the limiting current jlim, the mass transfer coefficient km was 

determined according to Eq.(8-2): 
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k
m

=
j
lim

F �C
 (8-2) 

 

where F is the Faraday’s constant and C is the concentration of [Fe(CN)6]
3-

 in the solution 

(10mM). The limiting current was estimated to be about 3.86 mA�cm
-2

 and so the mass 

transfer coefficient km could be evaluated to be in the order of 2�10
-5

m s
-1

 for a flow rate 

of 200 L h
-1

. 

It is worthwhile to mention that the mass transfer coefficient measured above, which 

corresponds to reaction (8-1), is most likely different from the mass transfer coefficient 

associated with the oxidation of a given organic compound (km,Org). 

Despite this difference, the mass transfer coefficient for organics oxidation (km,Org) under 

the same hydrodynamic conditions can be estimated using the following relation (Eq.(8-

3)). 

 

  

k
m,Org

=
D

Org

D
Fe( CN )

6
�� ��

3�

k
m, Fe( CN )

6
�� ��

3�

 (8-3) 

where D (m
2
 s

-1
) is the diffusion coefficient. 

 

AAnalytical methods used 

 

The methods used are the analysis of the Chemical Oxygen Demand (COD) and the Total 

Organic Carbon (TOC), High Performance Liquid Chromatography (HPLC) and Gas 

Chromatography (GC). 

 

Chemical oxygen demand (COD) 

 

The chemical oxygen demand is measured by the Hach COD method. It is a commercial 

adaptation of the work of Jirka and Carter [8], where an oxidation takes place in a tube 
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containing a reagent made up of potassium dichromate, sulfuric acid, a silver salt and 

mercuric sulfate. The silver salt acts as a catalyst for the oxidation of the organic 

compounds and the mercuric(II)-sulfate reduces the interferences caused by the 

presence of chlorides. 

Two milliliters of the solution to be analyzed are introduced into the reaction tube, which 

is heated 2h at 150 °C. After the tube has been cooled down to room temperature, the 

value of the chemical oxygen demand (in mgL
-1

) can be read directly on the 

spectrophotometer’s screen (DR 2010, Hach Company, Loveland, Colorado). This is done 

after calibration of the device using the pure electrolyte (1M HClO4). The error depended 

on the sample and was generally lower than 10%. 

 

Total organic carbon (TOC) 
 

The principle of total organic carbon analysis is based on the complete combustion of 

organics in a pure oxygen flow. It takes place in a furnace at 680 °C, containing 

platinum/aluminum-based catalysts. The carbon dioxide formed is quantified by infrared 

spectrometry and the TOC of the acidified sample (in order to eliminate the inorganic 

carbon) is directly estimated (in mg carbon per litre) using a Shimadzu TOC-5050 device 

(Shimadzu Corporation, Tokyo, Japan). 

Each measurement was repeated three times, in order to guarantee a high degree of 

accuracy in the computed values (� 98 %). The accuracy of the measurements 

depended on the calibration and the nature of the compounds to be analyzed; the error 

was generally lower than 10%. 

 

High performance liquid chromatography (HPLC) 
 

The global parameters COD and TOC mentioned previously do not allow for a direct 

quantitative determination of the products formed during electrolysis. The technique 

used to analyze these products is named high performance liquid chromatography 

(HPLC). The separation of the products formed is based on the principle of ionic 

exclusion. The analyses are carried out using a solvent mixture. The mobile phase 

contains 55% of acetonitrile and 45% of 10% glacial acetic acid in our case flowing at 

0,8 cm
3
�min

-1
. For our HPLC analysis, a Shimadzu LC-2010 device (Shimadzu 

Corporation, Tokyo, Japan) with a Nucleosil 100-5 C18 column was used. 
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Gas chromatography (GC) 
 

Aliphatic compounds such as i-propanol or 2-butanol, as well as their oxidation products, 

are not appropriate to be analyzed with HPLC. In GC analysis used here, the mobile 

phase is composed of the vaporized sample (at 250 °C) and an inert carrier gas (N2), 

which flows through a narrow column filled with a polar layer of polyethylenglycol 

(stationary phase, J&W DB-WAX) at 0,7 mL min
-1

. At the column’s exit, the separated 

compounds are detected electronically based on their specific retention time by a flame 

ionization detector (FID). For our GC analysis, an Agilent 6850-Series GC device (Agilent 

Technologies, Santa Clara, USA) was used. 

 

88.3  Results and discussion 

 

8.3.1  A new approach for electrolysi s experiments :  Pseudo-

potentiostat ic operation by anode potential  buffering induced 

by the oxygen evolution reaction 

 

Oxidative electrochemical processes have been recently the subject of active research. In 

these studies it is common practice to perform these oxidations under potentiostatic 

conditions so as to guarantee a high selectivity for a given product (in electrosynthesis). 

However, operating under potentiostatic conditions requires a reference electrode as well 

as a powerful potentiostat, which are unavoidable limiting factors. 

In this chapter, a new approach is proposed to perform electrochemical oxidation of 

organics by working under galvanostatic conditions with the anode potential ‘buffered’ by 

the competing side reaction of oxygen evolution (OER). In fact, the anode potential is 

governed by the overpotential of oxygen evolution on the selected anode material. Table 

8-1 shows different anode materials with their oxidation potential, which is fixed by the 

overpotential of oxygen evolution. Furthermore this table shows that the higher the 

oxygen evolution overpotential is, the higher the oxidation power of the anode becomes. 
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As a general rule, the oxidation power of the anode increases with the overpotential of 

oxygen evolution of a given material (Table 8-1). In fact, ‘active’ type anodes such as 

IrO2 electrodes have a low oxidation power while ‘non-active’ type anodes such as BDD 

have a high oxidation power. 

The principle of the anode potential buffering induced by the oxygen evolution reaction 

can be investigated by observing the polarization curves obtained using i-propanol as 

organic compound on iridium dioxide and BDD electrodes (Figure 8-7). 

This figure shows that a large increase in current results into a small change of the anode 

potential due to potential ‘buffering’ induced by the side reaction of oxygen evolution. As 

a matter of fact, a change of one decade in current (�j on Figure 8-7) will induce a shift 

of 40mV of the IrO2 electrode’s potential and a shift of 120mV for the boron doped 

diamond electrode. These potential shifts are related to the respective Tafel slopes for 

the oxygen evolution reaction of IrO2 and BDD electrodes [9,10]. 

Therefore, and because the oxidation power of IrO2 electrodes is low (low overpotential 

of oxygen evolution), selective electro-organic synthesis is expected to proceed 

efficiently on IrO2 electrodes using this approach. This will be verified in this chapter 

through electrolysis experiments of model organic compounds using Ti/IrO2 anodes. 

##�!���5 
� ��8$����������"����������������������materials 

 

 

 

 

 

 

 

 

 

 

Electrode 

Oxidation 

potential  

/ V 

Overpotential 

of O2 

evolution / V 

Oxidation 

power of 

the anode 

RuO2 1.4-1.7 0.18   

IrO2 1.5-1.8 0.25   

Ti/PtOx 1.7-1.9 0.3   

Ti/PbO2 1.8-2.0 0.5   

Ti/SnO2-Sb2O5 1.9-2.2 0.7   

p-Si/BDD 2.2-2.6 1.3   
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8.3.2  Electrolysi s o f model  organic compounds on Ti/IrO2

 

Formic acid (FA) oxidation using Ti/IrO2 

 

The oxidation of FA on Ti/IrO2 anodes is investigated in order to evaluate the 

performance of these electrodes during a simple anodic oxidation process. In fact, FA is 

oxidized to CO2 without formation of intermediates (Eq.(8-4)). 

 

 HCOOH
IrO

3
/ IrO

2� ���� CO
2

+ 2H
+ + 2e

�
 (8-4) 

 

Electrolysis has been carried out using a 0.75 M formic acid solution in 1M HClO4 under 

galvanostatic conditions (85 mA cm
-2

). During electrolysis, the concentration of FA in the 

supporting electrolyte has been analyzed and displayed as a function of time. The 

temporal evolution of FA concentration obtained experimentally was then compared with 
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the predictions of the theoretical model proposed by P.-A. Michaud [11], which is based 

on the maximum rate of oxidation and is given in the bibliography (Chapter 2 section 

2.5). This comparison is presented in Figure 8-8. In this model, the COD has been 

replaced by the concentration of formic acid because it is directly oxidized to CO2 without 

formation of any intermediates in solution (Eq.(8-4)). 

The limiting current for the oxidation of formic acid at a given time was estimated via the 

following relation (Eq.(8-5)): 

 

 j
lim,t

= 2Fk
m,FA

� FA�� ��t
 (8-5) 

 

with [FA]t being the concentration of formic acid (mol L
-1

) at a given time and km,FA the 

mass transfer coefficient (m s
-1

) of FA oxidation calculated using Eq.(8-3) with DHCOOH = 

1.8�10
-7

 cm
2

s
-1

. 

Figure 8-8 suggests a very good agreement between the experimental results and the 

theoretical predictions. 
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In fact, in agreement with the model, the concentration of formic acid measured 

experimentally decreases linearly until a critical time tcr of 4357 s after which it decreases 

exponentially with time. Furthermore, the instantaneous current efficiencies (ICE) 

determined experimentally are in good agreement with the values predicted by the 

model (Figure 8-9). In fact, for both the experimental and theoretical evolutions, the ICE 

has a value of 100% up to the aforementioned critical time, after which the latter 

decreases exponentially to zero. 
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The good agreement observed between the experimental results and the predictions of 

the model provides a strong evidence that the key assumptions behind this model remain 

valid (see section 2.5) i.e. that the reaction of formic acid with electrogenerated IrO3 (Eq. 

(7-5)) is a fast reaction and that the process is controlled by mass transport. 
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ii -propanol and 2-butanol oxidation using Ti/IrO2 

 

The principle of pseudo potentiostatic oxidation (described in the previous paragraph) 

has been applied for the selective oxidation of i-propanol and 2-butanol on Ti/IrO2 

anodes. In fact, i-propanol is oxidized to acetone according to Eq.(8-6) and 2-butanol is 

oxidized to butan-2-one or methly ethyl ketone (MEK) according to Eq.(8-7): 

 

       (8-6) 

 

 

 

 

   (8-7) 

 

 

 

The selectivity for the targeted oxidation product (acetone and MEK respectively in this 

case) Sp (-) has been calculated using the following relation (Eq.(8-8)): 

 

 Sp =
Cp(q)

CR
0 � CR(q)

 (8-8) 

 

Where Cp(q) is the concentration of the targeted product after the passage of a specific 

electrical charge q (Ah L
-1

) while 
 
C

R

0
 and 

 
C

R
 (mol L

-1
) are the concentrations of starting 

material at the beginning of the electrolysis and after the passage of a specific electrical 

charge q respectively. 

Electrolysis have been carried out using a 0,77 M i-Pr in 1M HClO4 solution for i-propanol 

oxidation and a 0,73 M 2-butanol solution in 1M HClO4 for 2-butanol oxidation under 

galvanostatic conditions (85 mA cm
-2

). During electrolysis, the concentration of starting 

material (i-propanol and acetone respectively) and the concentration of the oxidation 

products (2-butanol and MEK respectively) in the supporting electrolyte have been 

OH O

2H+ 2e-

i-propanol acetone

OH
O

2-butanol butan-2-one (MEK)

2H+ 2e-
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analyzed and displayed as a function of the specific charge passed. Using these 

measurements and Eq.(8-8), the selectivity for the formation of the corresponding 

ketone was determined and plotted as a function of the specific charge passed together 

with the total mass balance, which is the sum of the concentrations of i-propanol and 

acetone (respectively the sum of the concentrations of 2-butanol and MEK). The results 

are shown in Figure 8-10 for the oxidation of i-Pr and in Figure 8-11 for the oxidation of 

2-butanol. 
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These figures show similar results i.e., a high selectivity (70-80%) for the formation of 

the corresponding ketone even for high conversions of the starting material (80-90%) 

and under non-optimized conditions. 

A decrease in the total mass balance, which is the sum of the concentrations of the 

starting materials and the oxidation products, was observed for both oxidations 

suggesting in turn that a fraction of the starting material was mineralized. During the 

electrolysis, the cell potential remained constant (4.3±0.1 V) and the anode potential was 
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estimated at 1.7±0.05 V using I-V curves recorded in 1M HClO4 + i-propanol (j = 85 mA 

cm
-2

). 
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Moreover, the current efficiency of ketone formation does not exceed 2% during 

electrolysis (not shown), which is due to the side reaction of O2 evolution. In fact, this 

side reaction allows working under pseudo-potentiostatic conditions by inducing potential 

buffering. 

Furthermore, the temporal evolutions of instantaneous current efficiency (ICE) and COD 

determined experimentally (not shown) deviate strongly from the values predicted by the 

model based on the maximum rate presented in the bibliography (section 2.5). On the 

opposite, a good agreement was found between the experimental and predicted values 

for the case of FA oxidation. This is likely related to the slow oxidation rate of both i-

propanol and 2-butanol oxidations and to the anodic stability (toward further oxidation) 

of the ketones formed due to the buffering of the anode potential at 1.7±0.05 V, which is 

induced by the side reaction of O2 evolution. 
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PPhenol oxidation on Ti/IrO2 electrodes 

 

The first step of phenol oxidation involves the formation of hydroxylated products both 

ortho (pyrocatechol, reaction (2) in Figure 8-12) and para (hydroquinone, reaction (1) in 

Figure 8-12) substituted, which are further oxidized into the corresponding quinones 

(reactions (3) and (5) in Figure 8-12). The goal of this study is not only to investigate the 

possibility of selective oxidation under pseudo potentiostatic conditions but also to 

compare the specificity of the hydroxylation of phenol (reactions (1), (2), (3) and (5) in 

Figure 8-12) with the classical methods. 

OH

phenol

2H+

2e-

2H+

2e-

OH

OH

OH

O

O

hydroquinone

2H+

2e-

benzoquinone

pyrocatechol

HO

2H+

2e-

O

cyclohexa-3,5-diene-1,2-dione

O

(1)

(2)

(3)

(4)

(5)

(6)

 

 

�������5
�	 �0������������������ ��$��������

 

In order to prevent the cathodic reduction of the quinones formed (reactions (4) and (6) 

on Figure 8-12), it is necessary to separate the anodic from the cathodic chamber with a 

cationic membrane (Nafion®). 

The electrolysis of a 10mM phenol solution on Ti/IrO2 anode in 1M HClO4 has been 

carried out under galvanostatic conditions (55 mA cm
-2

) at 25 and 50 °C in both the 

single and the two-compartments cell described in paragraph 0 of this chapter. During 

electrolysis, the concentrations of phenol and its oxidation products (hydroquinone, p-

benzoquinone and pyrocatechol) have been analyzed and reported as a function of the 
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specific charge passed. Furthermore, the selectivities of hydroquinone (Shydro), p-

benzoquinone (Sbenzo), pyrocatechol (Spyro) together with the total aromatic selectivity 

(Sarom = Shydro + Sbenzo + Spyro) were determined using Eq.(8-8) and plotted as a function 

of the specific passed charge as well. 

 

Electrolysis in a two-compartments cell (Figure 8-4) 
 

In Figure 8-13 presents the results obtained for the electrolysis experiment conducted in 

the two-compartment cell at 50°C. This figure shows that about 90% of the phenol in 

solution was converted into intermediates (hydroquinone, benzoquinone and 

pyrocatechol through reactions (1), (3) and (2) of Figure 8-12 respectively) after the 

passage of 50 Ah L
-1

 of specific charge. The total mass balance remained stable during 

the entire experiment, which suggests that no starting material or oxidation products 

were mineralized during the process. Benzoquinone is the favored oxidation product 

(reaction (3) in Figure 8-12), reaching a selectivity of more than 70% (� 6.5 mmol L
-1

). 

The cell potential remained constant during electrolysis (4.5±0.2 V). 

The values obtained for �Total during the electrolysis carried out at 50°C (Figure 8-14) 

show that most of the current is used for the side reaction of oxygen evolution. In fact, 

this side reaction allows working under pseudo-potentiostatic conditions. 

At 25°C the same trend was observed but with slightly lower phenol conversion and 

slightly lower selectivities for the formation of intermediates. 
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Electrolysis in a single-compartment cell (Figure 8-2) 
 

Electrolysis of phenol was performed at 50°C under the same galvanostatic conditions 

described in the precedent paragraph but this time using a single-compartment cell.  The 

results (Figure 8-15) indicate that the main product formed was hydroquinone with 

similar regioselectivity after the same time of electrolysis. 
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Hence, it is now clear that under those conditions, the p-benzoquinone formed at the 

anode was mostly reduced at the cathode yielding to the formation of hydroquinone 

(reaction (4) in Figure 8-12). 

Specificity of the electrochemical oxidation of phenol on IrO2 electrodes 

 

Regarding the specificity of hydroxylation, the para-selectivity Spara (defined as the ratio 

of the concentrations of p-oriented products obtained for hydroquinone and p-

benzoquinone ([HQ] and [p-BQ] respectively (mol L
-1

) over the sum of the 

concentrations of all reaction products) has been used in order to perform a comparative 

study between the anodic oxidation of phenol on IrO2 electrodes and other 

electrochemical/chemical methods (Eq.(8-9)): 

 

 

  

S
para

 =  
[HQ] + [p - BQ]

[HQ] + [p - BQ] + [CAT]
 (8-9) 

 

where [CAT] stands for pyrocatechol concentration (mol L
-1

). 

Using the results presented in Figure 8-13, it was found that the value of Spara Eq.(8-9) 

calculated for the anodic oxidation of phenol on Ti/IrO2 anodes in a two-compartments-

cell is close to 0.8 independently of phenol conversion. This p-selectivity is compared with 

the values reported in the literature using other techniques in Table 8-2. 
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Method Chemical Electrochemical 

Reaction 

type 

Hydroxylation 

(with H2O2) 

Homogeneous 

catalysis 

Heterogeneous 

catalysis 

Direct 

oxidation 

Catalyst - 

Fenton's 

reagent Zeolith TS1 Ti/IrO2 

Spara [-] 0.33 0.25 0.73 0.8 

Phenol 

Conversion 

[%] 

100 24.7 37 90 

Reference [12] [13] [14] - 
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This table shows that without using any catalyst and for the catalytic hydroxylation of 

phenol using Fenton’s reagent as catalyst the para-selectivity (Spara) obtained is low 

(<0.33) for the chemical oxidation of phenol with hydrogen peroxide. This is likely 

attributed to the fact that both processes take place in solution (homogeneous media); 

where the hydroxyl radicals involved in the reaction have a high accessibility to ortho- 

positions forming pyrocatechol; resulting into a small p-selectivity (Spara = 0.33). 

As far as the heterogeneous processes are concerned, it has been reported that steric 

effects within the zeolith pores are related to the high para-selectivity [14,15]. In fact, in 

a recent work published by Yokoi [14], porous zeolithes (TS-1) were used for the 

selective oxidation of phenol and the values obtained for Spara were similar to ones 

reported here (see Table 8-2). 

According to the authors, it is speculated that phenol molecules get trapped inside the 

zeolith’s pores through adsorption, which disables sterically the ortho position of the 

phenol molecule (Figure 8-16). 
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The fact that a decrease of the p-selectivity occurred after blockage of the zeolith´s 

pores proved that steric effects are an important factor, which influence the specificity of 

this reaction [14]. 

The electrochemical methods seem to be good alternatives to enhance the para-

selectivity of the reaction as well. 

In fact, a high p-selectivity has been obtained for the anodic oxidation of phenol on 

various electrode materials [3,16-18]; however, what really sets apart IrO2 compared to 

other electrode materials is the absence of combustion of the starting material or the 

Zeolith catalyst

TS-1

OH_

OH_

Zeolith catalyst

TS-1

OH_

OH_
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intermediates formed as well as the high para-selectivity obtained even for a high 

conversion of phenol. 

Furthermore, the higher selectivity of para-hydroxylation products obtained after the 

electrochemical oxidation on Ti/IrO2 and other electrodes compared to other methods is 

likely related to steric effects similar to those observed on zeolith. In fact, SEM 

micrographs of Ti/IrO2 electrodes (see Chapter 3) showed that this material is also 

porous, possibly resulting in a similar adsorption mechanism than observed with 

zeolithes. 

Due to steric effects of the phenol molecules, the phenoxy radicals formed are adsorbed 

in the pores of the IrO2 coating mostly with the para-position facing towards the active 

species IrO3, leading to a higher p-selectivity. 

Furthermore, the high p-selectivities observed during both heterogeneous processes 

could be attributed to similar mechanism involving phenol adsorption through the pores 

of the zeolith and the Ti/IrO2, respectively. However, iridium dioxide is slightly favored as 

there exists no blockage mechanism that could lower the p-selectivity contrary to the 

zeolith; furthermore, chemicals such as H2O2 are not used during the electrochemical 

process and thus it is more environmental friendly. 

 

88.4  Conclus ions 

 

The electrochemical oxidation of model aliphatic and aromatic organic compounds on IrO2 

electrodes has been investigated through electrolysis experiments. 

In the first part of this chapter, a new approach was proposed for electrolysis 

experiments, which consists in working under galvanostatic conditions with the potential 

‘buffered’ by the competing side reaction of oxygen evolution. This approach allows 

working under pseudo-potentiostatic conditions. Therefore, when using this method the 

working potential is fixed by the oxidation power (O2 overpotential) of the electrode 

material. Using this approach, three series of electrolysis have been carried out in this 

chapter. 

In the first series, the oxidation of formic acid on Ti/IrO2 electrodes was investigated to 

evaluate the performance of these electrodes toward a simple anodic oxidation process. 

The results revealed an instantaneous current efficiency of 100% for FA oxidation in the 

domain of current control, because it is transformed directly into CO2. Consequently, a 
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good agreement was found between the experimental results and the results obtained 

using the model based on the maximum oxidation rate presented in the bibliography 

(section 2.5), which predicts the temporal evolutions of concentration and instantaneous 

current efficiency. This shows that the reaction between formic acid and electrogenerated 

IrO3 is indeed a fast reaction and is controlled by mass transfer. In the second series of 

experiments, electrolysis of i-propanol and 2-butanol on Ti/IrO2 were carried out in order 

to achieve selective oxidation of these compounds using the principle of pseudo-

potentiostatic oxidation described in the first part of the chapter. The results of these 

experiments have shown a high selectivity towards acetone and MEK respectively 

because these oxidation products are stabilized due to the buffering of the anode 

potential around 1.7 V, which is induced by the competing side reaction of O2 evolution. 

Consequently, the experimental results obtained in the case of i-propanol and 2-butanol 

electrolysis deviated strongly from the predictions of the model as a contrary to the case 

of formic acid oxidation. 

In the last series of experiments, phenol electrolysis was carried out on Ti/IrO2 not only 

to achieve selective oxidation but also in order to compare the specificity of hydroxylation 

with the classical methods. It is shown that the intermediates benzoquinone, 

pyrocatechol and hydroquinone are formed with a high selectivity (even at low 

temperature) for benzoquinone when using the two-compartment cell and for 

hydroquinone when using the single-compartment cell. The fact that the total aromatic 

selectivity (Sarom) was close to 1 indicates that the oxidation products of phenol are 

stable toward further oxidation similar to what others have already reported [19,20]. 

This is due to the buffering of the anode potential induced by the side reaction of O2 

evolution. 

The comparison between the electrochemical oxidation of phenol on IrO2 electrodes with 

other chemical and electrochemical techniques has shown that the values of the 

selectivity for the para substituted products and the conversion of starting material 

obtained on IrO2 electrodes are similar to those reported for other electrochemical 

methods but higher than those reported for chemical methods used for the same 

oxidation. The high para selectivity obtained on IrO2 electrodes could be due to steric 

effects similar to those observed during the oxidation of phenol on TS1 zeolithes. 

However, one unique feature of direct anodic oxidation on IrO2 electrodes compared to 

other electrochemical techniques is the absence of combustion of phenol or its oxidation 

products and the high para-selectivity obtained even after quasi-complete conversion of 

phenol. 
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Chapter 9   :  General Discussion 
 

 

 

This chapter summarizes the most important findings obtained in 

this thesis regarding the electrochemical behaviour in aqueous 

acidic media of IrO2-based electrodes prepared by thermal 

decomposition of H2IrCl6 precursor solution. This brief summary 

focuses on the preparation of these electrodes and the 

mechanisms taking place during; (i) the charging/discharging 

process within the water stability potential domain, (ii) the oxygen 

evolution reaction, and (iii) the oxidation of organic compounds. 

Those reactions emphasize the key role of the active surface redox 

couple IrO3/IrO2 of this particular electrode material. 

This work focused on the IrO2-based electrode prepared by 

thermal decomposition of H2IrCl6 precursor solution on an inert 

substrate (Ti or p-Si). 
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As a first step we concentrated our efforts on the preparation and morphological 

characterization of IrO2 electrodes. It was found that the charge measured during a cyclic 

volatmmetry measurement recorded in the water stability potential domain could be used 

as a tool in order to estimate the loading of the IrO2 coating. Furthermore, it was shown 

that it is possible to control the loading of the coating using the spin coating deposition 

technique together with voltammetric charge measurements. In fact, a new and simple 

relation has been proposed (Eq.(3-2)) for the estimation of the IrO2 coating’s loading as 

a function of the concentration of H2IrCl6 in the precursor solution and the rotation speed 

of the substrate (Chapter 3). 

Cyclic voltammetry measurements performed at different temperatures and scan rates 

have shown that the charging/discharging process on IrO2 electrodes is due to two key 

mechanisms. The first one is a slow process due to diffusion of protons within the IrO2 

coating (reaction (4-1)); this process has an apparent activation energy of about 2.4 kJ 

mol
-1

 and dominates at low scan rates (5mV s
-1

). The second contribution is an 

instantaneous electrostatic process related to the double layer capacitance, which was 

found to dominate at high scan rates (500mV s
-1

). 

Moreover, using potential step experiments, the surface redox activities occurring on p-

Si/IrO2 electrodes in the water stability potential domain were further investigated by 

measuring the surface charge (the charge related to the surface and/or the most 

accessible iridium atoms of the IrO2 coating) as a function of the potential applied. The 

surface charge was estimated by extrapolating the obtained total charges to t = 0s 

assuming that within the time range selected (long time decay i.e. t > 1.5s), the current 

decay is caused solely by a semi-infinite linear diffusion process, which is the diffusion of 

protons within the IrO2 coating (reaction (4-1)). This method had already been used by 

Gerischer et al.[1] for the same study but on RuO2-based electrodes. 

The results obtained using p-Si/IrO2 electrodes have shown that the valence state of the 

iridium surface atoms of these electrodes varies from +IV (IrO2) to +VI (IrO3) between 

the on-set potentials of H2 and O2 evolution through two consecutive slow processes 

occurring between 0.9 V and 1.5 V vs. SHE. 

As far as the study of the oxygen evolution reaction (OER) on IrO2 based electrodes is 

concerned, the mechanisms involved in this process were a subject of active debate 

[2,3]. The OER on IrO2 electrodes was studied using differential electrochemical mass 

spectrometry (DEMS) measurements together with isotope labeling and Tafel slopes 

estimations (Chapter 5). 
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DEMS measurements were carried out using Ti/IrO2 electrodes in 1M HClO4 containing 

10% of marked water (H
18

O2) as electrolyte. The monitoring of the ionic currents related 

to the formation of different electro-generated oxygen species (
16

O2, 
18

O
16

O and 
18

O2) 

have shown that the relative amount of marked oxygen (
18

O
16

O) formed on the IrO2 

electrode increased with a concomitant decrease of the relative amount of ‘regular’ 

oxygen (
16

O2) with each successive voltammetric scan until reaching constant values, 

which could be predicted by the bulk concentrations of ‘regular’ (H2
16

O) and marked 

(H2
18

O) water in the electrolyte. This is a direct evidence that the higher valent-state 

oxide of iridium (IrO3) is directly involved in the oxygen evolution reaction. Moreover, 

using Faraday law (Eq.(5-8)), it was shown that about 1% of the IrO2 loading is 

effectively participating during the process. Similar results were obtained for higher IrO2 

loadings. Furthermore, a Tafel slope of 40mV decade
-1

 (IR drop corrected) was estimated 

for the OER on IrO2 electrodes. This value for the Tafel slope suggests that the rate-

determining step (rds) of the OER on IrO2 electrodes is the formation of a higher valence 

state oxide (IrO3), which is in good agreement with the DEMS results. 

As for the electrochemical oxidation of organic compounds, the investigation of the 

mechanisms involved was carried out on Ti/IrO2 electrodes using again DEMS 

measurements (Chapter 6). In the first part of the experiment, the IrO2 coating was 

‘labeled’ with marked oxygen similar than for the investigation of the OER presented in 

Chapter 5. During the second part of the experiment, the cell containing the marked 

electrode was rinsed carefully and subsequent DEMS measurements using a ‘regular’ 

electrolyte solution of 1M HClO4 containing 2mM of formic acid were performed. During 

the course of these experiments, the ionic currents corresponding to the formation of 

different species of electro-generated carbon dioxide (C
16

O2 and C
16

O
18

O) were 

monitored. The presence of C
16

O
18

O observed during these DEMS measurements is a 

direct evidence that the higher valent state oxide of iridium (IrO3) is directly involved in 

the oxidation of organic compounds because formic acid was the only source of carbon in 

the bulk and the latter reacted with the marked IrO2 coating (Ir
16

O
18

O) to form marked 

carbon dioxide (C
16

O
18

O). Therefore, both the oxygen evolution reaction and the 

oxidation of organics compete on the same intermediate (IrO3) on IrO2 electrodes. 

As a next step, we focused on the oxidation of organic compounds on Ti/IrO2 electrodes. 

Using voltammetric measurements recorded on different IrO2 loadings for different 

organic concentrations and using a new theoretical model, it was shown in Chapter 7 that 

the apparent kinetic parameters of organics oxidation via the surface redox couple 

IrO3/IrO2 are strongly dependent on the IrO2 loading. Furthermore, and using still the 

same model, the potential shift toward less positive values induced by the presence of an 
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organic compound was investigated and quantified. The I-V curves in the presence of 

different concentrations of formic acid (model compound) were constructed for different 

IrO2 loadings using the I-V curves of the supporting electrolyte (1M HClO4) and the 

kinetic parameters calculated earlier. Small differences were observed between the 

predicted and experimental I-V curves due to limitations associated with the appropriate 

estimation of the adsorption constant K in the model. 

In Chapter 8, a new approach was proposed in order to perform electrochemical 

oxidation of organics by working under galvanostatic conditions with the anode potential 

‘buffered’ by the competing side reaction of oxygen evolution. According to this mode of 

operation, the working potential is fixed by the nature of the electrode material and is 

buffered during organics oxidation by the side reaction of OER. This approach has been 

used for electrolysis experiments on Ti/IrO2 electrodes using aliphatic and aromatic 

model compounds (formic acid, i-propanol, 2-butanol and phenol). 

The oxidation of formic acid on Ti/IrO2 electrodes was carried out in order to evaluate the 

performance of these electrodes toward a simple anodic oxidation process. The results 

have shown that formic acid is rapidly mineralized with an instantaneous current 

efficiency (ICE) of 100% in the domain of current control through a simple oxidation 

mechanism involving no intermediates. In fact, a good agreement was found between 

the experimental results and the results predicted by the model based on the maximum 

oxidation rate, which predicts the temporal evolutions of concentration and ICE 

(bibliography, section 2.5). 

Next, the oxidation of i-propanol and 2-butanol were carried out in order to achieve 

selective oxidation of these compounds using the approach of pseudo-potentiostatic 

oxidation proposed earlier. It was found that the relatively high selectivity towards 

acetone and MEK respectively, is related to the buffering of the working potential. 

Consequently, the experimental results obtained in the case of i-propanol and 2-butanol 

electrolysis deviated significantly from the predictions of the model based on the 

maximum oxidation rate (bibliography, section 2.5) in contrast to the case of formic acid 

oxidation. Finally, electrolysis of phenol on Ti/IrO2 electrodes was carried out in order to 

achieve selective oxidation of this compound and then compare the specificity of the 

hydroxylation reaction with classical methods. 

This comparison has shown that on Ti/IrO2 electrodes, a high selectivity for the para-

substituted products can be obtained after quasi-complete conversion of phenol. The high 

para selectivity obtained on IrO2 electrodes has been related to steric effects similar to 

those observed during the oxidation of phenol on TS1 zeolithes [4]. 
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Chapter 10  :  Perspectives 
 

 

 

The research perspectives of this work were focused on two 

distinct topics. 

The first perspective of research concerning IrO2-based electrodes 

was focused on their method of preparation. The main goal was to 

study the electrochemical behaviour of an IrO2 electrode prepared 

by thermal treatment of iridium metal (TOIROF) and of an IrO2 

electrode prepared by anodic oxidation of pure Ir (AIROF) and 

then compare them with the behaviour  of IrO2 electrodes 

prepared by thermal decomposition (TDIROF) studied in this work. 

Later, the method of preparation of TOIROF was used in order to 

produce and characterize a stable IrO2 ultra micro-electrode array 

(MEA) for analytical applications. 
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Preliminary studies have shown that the surface redox activities involved are similar for 

TDIROF and TOIROF [1]. This similarity is inherent to the preparation conditions of both 

oxide films (thermal treatment in air at 500°C). However, the surface activities involved 

on AIROF seem to be much faster than those involved on the other IrO2-based films. The 

investigation of the oxygen evolution reaction in acidic media has shown that all IrO2-

based films exhibited similar mechanism (same Tafel slope of 40mV decade
-1

) involving 

the same intermediate (IrO3) and similar specific electrocatalytic activity [2]. 

The surface redox couple involved in the anodic oxidation of formic acid (FA) highly 

depends on the preparation technique of the IrO2 anodes. In fact, on TDIROF and 

TOIROF, the oxidation of FA and the OER compete via the same surface redox couple 

Ir(VI)/Ir(IV). However, this is not the case on AIROF, where the oxidation of FA involves 

the Ir(V)/Ir(IV) surface redox couple and is not competing with the OER [1,2]. 

Electrode stability measurements have shown that no corrosion was observed on TDIROF 

and TOIROF under strong OER and organic oxidation conditions. In contrast, the AIROF 

are rapidly corroded under anodic treatment and this corrosion is further enhanced by 

the presence of formic acid [1,2].  

Finally, the mode of preparation of TOIROF was used to produce an IrO2-based ultra 

micro-electrode array (MEA) [3]. The limit between the planar and spherical diffusion 

profile domains has been established as a function of scan rate and using that criteria, a 

diffusion coefficient of 1,03�10
-5

 cm
2
 s

-1
 was estimated for [Fe(CN)6]

3-
, which is in 

agreement with values reported in the literature. One advantage of the miniaturization of 

the IrO2-based electrode lies in the ability to detect very low concentrations of a given 

specie for analytical applications. In fact, in our case, steady-state currents could still be 

recorded on the TOIROF MEA for concentrations of Fe(CN)6
4-/3-

 of 0,5mM L
-1

. 

The second core research topic of this thesis focused on the electrochemical behavior of 

ammonia (NH4
+
/NH3) on IrO2-based electrodes (TDIROF and AIROF) for applications in 

ammonia removal (alkaline media) from wastewaters [4,5]. 

The preliminary investigation of ammonia oxidation on IrO2 based electrodes has shown 

that the electrochemical oxidation of ammonia on IrO2 electrodes occurs in the potential 

region related to surface activities involving the redox couple Ir(V)/Ir(IV), which results 

in the formation of two anodic peaks: one during the forward scan and the second during 

the backward scan. The anodic peak in the backward scan results from the oxidation of 

ammonia on freshly reduced Ir(VI) to Ir(V). 
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During ammonia oxidation, TDIROF is deactivated by adsorbed products of ammonia 

oxidation. In contrast, AIROF seems not to be blocked during ammonia oxidation. 

The difference between both electrodes may be attributed to the difference between the 

activities of the iridium oxide’s surface redox couples. In fact, on AIROF, the surface 

redox couple Ir(IV)/Ir(III) exhibits a large separation (750mV) of the oxidation/reduction 

peaks, which is due to local pH changes within the film induced by the 

release/consumption of protons during the activity of this surface redox couple. This, in 

turn, indicates that the surface as well as the inner parts of the AIROF are 

electrochemically active under these conditions. This result allowed to determine that this 

separation between both peaks can be reduced to 100mV in the presence of ammonia, 

which acts as a buffer. In contrast, on TDIROF, it seems that, under similar conditions, 

only the surface of the electrode material is active, because the voltammetric response of 

these electrodes is not influenced by local pH changes. Consequently, the separation 

between the oxidation and reduction peaks of the surface redox couple Ir(IV)/Ir(III) is 

more reasonable (100mV). 

These results summarized above were published in the following articles (given in 

appendix): 

 

S. Fierro, A. Kapa�ka, Ch. Comninellis. Ultra Micro electrode array of IrO2 

prepared by thermal treatment of pure Ir, Electrochemistry Communications, 

accepted manuscript, January 2010, doi:10.1016/j.elecom.2010.02.006 

 

S. Fierro, A. Kapa�ka, Ch. Comninellis. Electrochemical comparison between IrO2 

prepared by thermal treatment of iridium metal and IrO2 prepared by thermal 

decomposition of H2IrCl6, Electrochemistry Communications, 12 (2010) 172-174 

 

A. Kapa�ka, S. Fierro, Z. Frontistis, A. Katsaounis, O. Frey, M. Koudelka, Ch. 

Comninellis, K.M. Udert. Electrochemical oxidation of ammonia (NH4
+
/NH3) on 

thermally and electrochemically prepared IrO2 electrodes. Submitted manuscript, 

Journal of Applied Electrochemistry, August 2009 

 



CHAPITRE 10: Perspectives 

 

    

 

    

- 176 - 

A. Kapa�ka, S. Fierro, Z. Frontistis, A. Katsaounis, O. Frey, M. Koudelka, Ch. 

Comninellis, K.M. Udert. Electrochemical behaviour of ammonia (NH4
+
/NH3) on 

electrochemically grown anodic iridium oxide film (AIROF) electrode. 

Electrochemical Communications, 11 (2009) 1590-1592 

 

L.Ouattara, S. Fierro, O. Frey, M. Koudelka, Ch. Comninellis. Electrochemical 

comparison between IrO2 prepared by anodic oxidation of pure iridium and IrO2 

prepared by thermal decomposition of H2IrCl6 precursor solution, Journal of 

Applied Electrochemistry, Volume 39, February 2009, pages 1361-1367 
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List of symbols 
 

Roman symbols 

 

Symbol Meaning Units 

A (a) area m
2
 

 (b) pre-exponential factor in Eq.(4-2) C g
-1

 

Ag geometrical surface area m
2
 

Areal real surface area m
2
 

a Tafel constant V 

b Tafel slope V dec
-1

 

C (a) concentration mol m
-3

 

 (b) gravimetric capacitance F g
-1

 

Cad capacitance related to cations/anions adsorption F g
-1

 

Capp apparent capacitance F m
-2

 

Cdl double-layer capacitance F g
-1

 

Cirr capacitance related to an irreversible faradaic process F g
-1

 

Cp bulk concentration of reaction product p mol m
-3

 

 
C

R

ad
 concentration of adsorbed R mol m

-3
 

 
C

R

bulk
= C

R
( )  bulk concentration of R mol m

-3
 

  
C

R

0

 initial bulk concentration of R mol m
-3
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Symbol Meaning Units 

�C concentration change mol m
-3

 

c0 initial concentration of active component mol m
-3

 

COD chemical oxygen demand molO2 m
-3

 

CODcr chemical oxygen demand at the critical time molO2 m
-3

 

CODt chemical oxygen demand at time t molO2 m
-3

 

COD0 initial chemical oxygen demand molO2 m
-3

 

D diffusion coefficient m
2
 s

-1
 

E potential V 

Ea activation energy J mol
-1

 

Eop open circuit potential V 

E0 standard thermodynamic potential V 

e evaporation rate m s
-1

 

F Faraday constant C mol
-1

 

f frequency s
-1

 

h thickness m 

h� thickness after infinite spinning time m 

h0 initial thickness m 

I gravimetric current A g
-1

 

If faradaic current A 

Ii ionic intensity A 

i current A 

ICE instantaneous current efficiency 

Jf faradaic current density A m
-2 

Ji (a) molar flux of i mol s
-1

 

 (b) ionic current density A m
-2

 

j current density A m
-2
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Symbol Meaning Units 

japplied applied current density A m
-2

 

jlim limiting current density A m
-2

 

jlim,0 initial limiting current density A m
-2

 

�j current density difference A m
-2

 

  
j

cr

0

 limiting current density at the critical time A m
-2

 

K (a) constant in Eq.(3-1) C m rad
0,5 

s
-0,5 

mol
-1

 

 (b) adsorption constant in Eq.(7-18) 

K*
 calibration constant in Eq.(2-21) 

K0
 calibration constant in Eq.(2-18) C mol

-1
 

kc chemical rate constant of reaction (7-2) m
3
 mol

-1
 s

-1
 

kd decomposition rate constant of reaction (7-3) s
-1

 

km mass transport coefficient m s
-1

 

(kc)ap apparent rate constant of chemical reaction (7-3) m s
-1

 

  
k

1

e
 electrochemical rate constant of reaction (7-1) s

-1
 

  
k

�1

e
 electrochemical rate constant of the reverse reaction (7-1) s

-1
 

  
k

1

e ,0
 standard rate constant for electrochemical reaction (7-1) s

-1
 

  
k

1

e ,0( )
ap

 apparent standard rate constant of reaction (7-1) mol m
-2

 s
-1

 

  
L

IrO
2

 IrO2 loading mg cm
-2 

m amount of 
16

O exchanged to 
18

O mol m
-2

 

N collection efficiency 

NA Avogadro’s constant atoms mol
-1

 

n number of 
16

O atoms exchanged to 
18

O atoms m
-2

 

Q gravimetric voltammetric charge C g
-1
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Symbol Meaning Units 

Qcr specific charge passed at the critical time C 

Qf faradaic charge C m
-2

 

Qi ionic charge C m
-2

 

�Q excess of ionic charge C m
-2

 

q (a) total radial flow per unit of circumference m
2
 s

-1
 

 (b) specific electrical charge passed A s m
-3

 

qs surface charge density C m
-2

 

qt total (cumulative) charge density C m
-2

 

q*
 voltammetric charge density C m

-2
 

 
q

dl

*
 fraction of q*

 corresponding to double-layer charging C m
-2

 

 
q

sp

*
 specific voltammetric charge C g

-1
 

R (a) ideal gas constant J mol
-1

 K
-1

 

 (b) resistance � m
-2

 

r (a) radius m 

 (b) reaction rate mol m
-2

 s
-1

 

Sp selectivity for product p 

Spara para slectivity 

T temperature K 

t time s 

tcr critical time s 

UB anode potential V 

UB,0 standard surface redox potential V 

VR reaction volume m
3
 

z (a) distance on the rotation axis m 

 (b) number of electrons 
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GGreek symbols 

Symbol Meaning Units 

 

� charge transfer coefficient 

�0 density of surface atoms mol m
-2

 

� excess ratio 

�3D three dimensional roughness factor 

� (a) viscosity kg s
-1

 m
-1

 

 (b) overpotential V 

 (c) average current efficiency 

�corr IR drop corrected overpotential V 

� fractional surface coverage 

	 dimensionless current density 


 (a) kinematic viscosity m
2
 s

-1
 

 (b) scan rate V s
-1

 


 density kg m
-3

 

	 velocity in radial direction m s
-1

 

� angular velocity rad s
-1
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Abstract Surface redox activities, oxygen evolution

reaction (OER), oxidation of formic acid (FA), and

anodic stability were investigated and compared for IrO2

electrodes prepared by two techniques: the thermal

decomposition of H2IrCl6 precursor (TDIROF) and the

anodic oxidation of metallic iridium (AIROF). Surface

redox activities involved on the AIROF were found to be

much faster than those involved on the TDIROF. Con-

cerning the oxygen evolution reaction, both films show a

similar mechanism and specific electrocatalytic activities.

The situation seems to be different for FA oxidation. In

fact, on TDIROF, the oxidation of FA and the OER com-

pete involving the same surface redox couple Ir(VI)/Ir(IV)

contrary to FA oxidation on AIROF, where the Ir(V)/Ir(IV)

surface redox couple is involved. Finally, electrode sta-

bility measurements have shown that contrary to TDIROF,

which are very stable under anodic polarization, the

AIROF are rapidly corroded under anodic treatment. This

corrosion is enhanced even further in the presence of

formic acid.

Keywords TDIROF � AIROF � Surface redox activity �
Oxygen evolution � Formic acid oxidation �
Anodic stability

1 Introduction

Iridium dioxide electrodes form part of the dimensionally

stable anodes (DSA�), which are widely used in industry

for metal electro-winning, cathodic protection, and electro-

organic synthesis [1–4].

The first iridium dioxide electrodes, as described in the

corresponding patents [5, 6], were thermally decomposed

iridium oxide films (TDIROF) produced by thermal

decomposition of the appropriate precursor solution on an

inert substrate such as titanium or tantalum.

Later, other techniques of conductive IrO2 film for-

mation such as the anodic oxidation of metallic iridium

were considered. In fact, it has been shown that pure

iridium and mostly the corresponding anodic iridium oxide

film (AIROF) formed through potential cycling exhibit

some interesting electrochemical properties and especially

toward the oxygen evolution reaction (OER) [7–9].

Although the activity and stability of AIROF and

TDIROF toward OER have been widely studied [1–4,

10–12], the mechanisms involved in the process are still a

matter of discussion.

More recently, the electro-catalytic activity of TDIROF

toward the oxidation of organics has been described.

However, little is known about the surface redox activ-

ity and stability during the oxidation of organics on

AIROF.

However, as the participation of the TDIROF coating

via the IrO3/IrO2 redox couple during OER and the oxi-

dation of formic acid in acidic media has been proved
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recently using DEMS [13, 14], the aim of the present study

is to compare an IrO2 electrode prepared by anodic oxi-

dation of pure Ir (AIROF) with an IrO2 electrode prepared

by thermal decomposition of a precursor solution

(TDIROF) by investigating the surface redox activities in

the water stability potential region as well as during the

OER and the oxidation of formic acid as model organic

compound.

2 Experimental

All electrochemical experiments were performed in a

classical three-electrode cell (70 mL) using an Autolab

PGSTAT 30. The counter electrode was a Pt wire; the

reference electrode was Hg/Hg2SO4/K2SO4 (sat.) (MSE;

0.65 V vs. SHE) and two different working electrodes were

used:

(a) Anodic iridium oxide film electrode (AIROF): An

iridium film (0.1 lm) was deposited by sputtering

on p-Si (0.0054 mm2) using a thin (0.02 lm)

tantalum interlayer (p-Si/Ir). The anodic iridium

oxide film (AIROF) was formed through potential

cycling of this electrode between -0.05 and

1.45 V.

(b) An IrO2 electrode prepared by thermal decomposition

of a precursor (TDIROF): the IrO2 film (0.35 mg

cm-2) was deposited on disc-shaped sandblasted p-Si

(182.25 mm2) by the thermal decomposition of a

H2IrCl6 (99.9%, ABCR) precursor solution in air at

500� (TDIROF). The presence of iridium dioxide on

the substrate was verified using XPS measurements

(not presented).

All potentials in this work are with respect to the stan-

dard hydrogen electrode (SHE).

3 Results and discussion

3.1 Surface redox activities

The cyclic voltammetry measurements of IrO2 films pre-

pared by the thermal decomposition technique (TDIROF),

recorded for three potential windows in the potential range

between 0.0 and 1.4 V and presented in Fig. 1, show two

main features:

– The charge involved in the anodic scan is completely

recovered during the cathodic scan (q? = q-) for all the

scan rates investigated (10–500 mV s-1). However, the

CV shows an axial symmetry (around the potential axis)

only if the lower potential limit is higher than 0.4 V. In

fact, at lower potential limits, a strong distortion of the

CV around the potential axis is observed. This is an

indication that the surface processes involved at low

potentials (\0.4 V) are slow.

– The TDIROF are completely inactive toward the

electrochemical reduction of dissolved oxygen (aerated

and de-aerated solutions give the same CV).

– Furthermore, from measurements of the apparent activa-

tion energy (Ea) for the charging/discharging process

using TDIROF reported in a previous paper [15], we have

to consider two contributions. The first contribution is

due to a fast (instantaneous) process with zero activation

energy related to the charging of the electrical double-

layer at the electrode–electrolyte interface and the second

is related with the slow diffusion of protons within the

IrO2 coating inducing surface redox activities (Eq. 1)

with an activation energy around 2.4 kJ mol-1 [15].

IrOxðOHÞy þ dHþ þ de� �
cathodic

anodic
IrOx�dðOHÞyþd ð1Þ

The cyclic voltammetry measurements of IrO2 films

prepared by the anodic oxidation of metallic iridium

Fig. 1 Cyclic voltammograms

using TDIROF (IrO2 loading:

0.273 mg cm-2) at 100 mV s-1

for different potential windows

a between 0.3 and 1.1 V,

b between 0.3 and 1.4 V,

c between 0 and 1.4 V.

Supporting electrolyte: 1 M

HClO4. T = 25 �C
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(AIROF) are very different form those obtained using

TDIROF. These anodic films are obtained by cycling the

potential in the range between -0.05 and 1.45 V.

Figure 2 shows three series of consecutive CV scans

(from scan 1 to scan 40, from scan 90 to scan 130 and

from scan 150 to scan 350) recorded at 50 mV s-1 in

1 M H2SO4 using a metallic iridium electrode. The results

are in very good accordance with similar CV curves

found in literature [11, 12]. The first voltammograms

show almost no surface activity between hydrogen

evolution at -0.05 V (Region (a) in Fig. 2) and oxygen

evolution at 1.45 V (Region (f) in Fig. 2), which are the

first signals to appear together with dissolved O2

reduction at 0.2 V (Region (b) in Fig. 2) in aerated

solution. This last reaction has been clearly identified as

no activity was observed in that potential region when

using de-aerated solutions.

After approximately 50 scans, three anodic peaks appear

at 0.65 V (peak (c) in Fig. 2), 0.9 V (peak (d) in Fig. 2)

and 1.2 V (peak (e) in Fig. 2). The irreversible peak (c)

(reported as pre-peak) is the first to appear followed by the

reversible peaks (d) and (e) before oxygen evolution.

The pre-peak is progressively shifted toward more

positive potentials with increasing scan number (from

0.65 V for scan number 50 to 0.7 V for scan number 350);

however, the position of peaks (d) and (e) are only slightly

shifted with increasing scan number. These shifts are cer-

tainly related to the reversibility of the surface processes

involved.

Figure 3 shows CV measurements of AIROF obtained

in the potential range between -0.05 and 1.25 V then

moving toward the upper potential limit with increments of

20 mV up to 1.49 V. This figure shows clearly that the

reduction of dissolved oxygen at 0.2 V is strongly related

with the oxygen evolution reaction, which has an onset

potential of about 1.36 V.

The surface reactions related to redox couples (d) and

(e) have been discussed in literature [11, 12] and are

believed to be the following:

At 0.9 V, peak (d) on fig. 2:

Ir(OH)3 � IrO(OH)2 þ Hþ þ e� ð2Þ
At 1.35 V, peak (e) on fig. 2:

IrO(OH)2 � IrO2ðOH)þ Hþ þ e� ð3Þ
These cyclic voltammetry measurements show that

TDIROF and AIROF have different kinetics for the

involved surface redox activity. In fact, on iridium dioxide

prepared through thermal decomposition (TDIROF), the

surface process is slow while on the oxide film prepared

anodically (AIROF), numerous fast surface redox reactions

are involved. Furthermore, AIROF are active toward the

reduction of dissolved oxygen contrary to TDIROF, which

is inactive toward the same process.

These differences are mainly due do the preparation

technique of the electrode. In fact, AIROF are produced

under mild conditions involving the anodic oxidation at

room temperature through potential cycling of pure iridium

metal. It has been shown that this method yields much

more hydrated IrO2 with higher bulk defect densities

compared to TDIROF [16]. Furthermore, it has been shown

that treating the AIROF at high temperature, which implies

the loss of water molecules, yields to an electrode whose

behavior tend to approach the one of TDIROF [8]. It is

therefore clear that the observed differences in the surface

processes between TDIROF and AIROF are related to the

hydratation of the obtained oxide.

3.2 The oxygen evolution reaction

Figure 4 shows a typical steady polarization curve for the

OER on TDIROF electrodes in 1 M HClO4. In the same

Fig. 2 Successive cyclic

voltammograms (three scan

number intervals: from scan 1 to

scan 40; from scan 90 to scan

130 and from scan 150 to scan

350) using a p-Si/Ir electrode at

50 mV s-1 between -0.05 and

1.45 V. Supporting electrolyte:

1 M H2SO4. T = 25 �C.
a hydrogen evolution domain,

b reduction of dissolved O2

domain, c pre-peak, d redox

couple Ir(IV)/Ir(III), e redox

couple Ir(V)/Ir(IV) and f oxygen
evolution reaction domain

J Appl Electrochem (2009) 39:1361–1367 1363
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figure, the corresponding Tafel plot obtained after IR drop

correction (inset of Fig. 4) is also given. It can be seen that

even at high overpotentials, the IR drop-corrected Tafel

plot gives a linear relation with a slope of about 40 mV/

decade.

It is worthwhile to notice that these polarization mea-

surements are reproducible even after treatment of the

electrode for a long period of time (several hours) at high

anodic potentials ([1.5 V). This is an indication of the high

anodic stability of the TDIROF.

Figure 5 shows IR drop corrected Tafel plots obtained

for a fresh iridium electrode (p-Si/Ir) ((a) on Fig. 5) and for

AIROF ((b) on Fig. 5) formed by potential cycling (50

cycles at 50 mV s-1 between -0.05 and 1.45 V).

This figure shows clearly that the Tafel slope for the

OER changes from 120 mV/decade for the Ir metal to

40 mV/decade for the AIROF indicating that the rate

determining step of the OER on pure iridium differs from

the one occurring on AIROF.

In acid medium, the following reaction path (Eqs. 4, 5

and 6) was proposed for the oxygen evolution reaction

(OER) on active oxide electrodes [17].

Sþ H2O ! S� OHads þ Hþ þ e� ð4Þ
S� OH ! S� Oads þ Hþ þ e� ð5Þ

S� O ! Sþ 1

2
O2 ð6Þ

where S stands for active sites and OHads, Oads are

adsorption intermediates.

This mechanism predicts the following Tafel slopes:

120 mV/decade if step 4 is the rate-determining step (rds),

40 mV/decade for step 5 and 30 mV/decade for step 6.

The measured Tafel slopes indicate that water discharge

(step 4) is the rds for the OER on metallic iridium (Tafel

slope 120 mV/decade) and formation of a higher oxide

(step 5) is the rds in case of IrO2 formed either by the

anodic oxidation of metallic Ir (AIROF) or by the thermal

Fig. 3 Cyclic voltammograms

recorded at 50 mV s-1 using

AIROF for different potential

windows: the lower cut-off was

fixed at -0.05 V while the

higher cut-off varies from 1.25

to 1.49 V with increments of

20 mV. Supporting electrolyte:

1 M H2SO4. T = 25 �C

Fig. 4 Steady-state polarization

curves recorded between 1.4

and 1.52 V using TDIROF (IrO2

loading: 0.35 mg cm-2). Inset
Corresponding IR drop-

corrected Tafel plot. Supporting

electrolyte: 1 M HClO4.

T = 25 �C
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decomposition of a precursor solution (TDIROF). This is

an indication that the same mechanism of OER is involved

on both AIROF and TDIROF. The participation of the

higher oxide in the OER on TDIROF via the IrO3/IrO2

redox couple has been recently demonstrated using 18O

labelling together with differential electrochemical mass

spectrometry (DEMS) measurements [13].

It is worthwhile to notice that the treatment of the

AIROF at high potentials ([1.6 V) for a few minutes

results in an increase of Tafel slope from 40 to 120 mV/

decade. This is an indication that at these potentials, the

anodically formed film is corroded as already reported by

others [10, 18].

Figure 6 shows that the normalized polarization curves

(the current is reported relative to the voltammetric charge

measured from the CV curves between -0.05 and 1.45 V

at 50 mV s-1) for the OER are almost the same for both

TDIROF and AIROF electrodes. This is an indication that

both electrodes have almost the same specific electrocata-

lytic activity.

However, it is worthwhile to mention that the obtained

Tafel plots for the OER using TDIROF in this work

(40 mV/decade) are different from those reported by oth-

ers. In fact, a Tafel slope of 60 mV/decade for the OER in

acidic media has been usually reported [17, 19]. A very

intriguing reaction path involving S–OHads intermediates

with different energy states has been proposed by these

authors in order to explain this abnormal Tafel slope

[17, 19]. Problems related with uncompensated IR drop

correction and partial blockage of the electrode surface by

the evolved oxygen are certainly related with the reported

abnormal Tafel slopes. In the present study, the experi-

ments have been carefully conducted in order to avoid

these problems.

3.3 Oxidation of organics using formic acid as a model

compound

Figure 7 shows steady-state polarization curves obtained

on TDIROF in 1 M HClO4 containing different concen-

tration of Formic Acid (FA). The shift of these I–V curves

toward less positive potentials in presence of FA is related

with the involvement of the same redox couple IrO3/IrO2 in

both the oxygen evolution reaction (Eq. 9) and FA oxida-

tion (Eq. 10) competing during the process according to the

reaction path given in Eq. 7–10.

IrO2 þ H2O ! IrO2ðOH)ads þ Hþ þ e� ð7Þ

Fig. 5 IR drop-corrected Tafel slopes recorded between 1.44 and

1.52 V corresponding to: a fresh p-Si/Ir electrode, b AIROF.

Supporting electrolyte: 1 M H2SO4. T = 25 �C

Fig. 6 Normalized steady-state polarization curves using: a the

AIROF, b the TDIROF (IrO2 loading: 0.35 mg cm-2). The current

has been normalized relative to the voltammetric charge measured

between -0.05 and 1.45 V at 50 mV s-1. T = 25 �C

Fig. 7 Steady-state polarization curves between 1.3 and 1.5 V using

TDIROF (IrO2 loading: 0.35 mg cm-2) for different concentration of

formic acid: a 0 mM, b 195.33 mM, c 387.78 mM, d 577.4 mM, e
764.25 mM and f 948.41 mM. Supporting electrolyte: 1 M HClO4.

T = 25 �C

J Appl Electrochem (2009) 39:1361–1367 1365
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IrO2ðOH)ads ! IrO3 þ Hþ þ e� ð8Þ

IrO3 ! IrO2 þ 1

2
O2 ð9Þ

IrO3 þ HCOOH ! IrO2 þ CO2 þ H2O ð10Þ
This mechanism has been proved recently on TDIROF

electrodes using 18O labelling combined with DEMS

measurements [14, 20].

Figure 8 shows CV obtained on AIROF in 1 M H2SO4

containing different concentration of formic acid. This

figure clearly shows that the reduction peak related with the

redox couple Ir(V)/Ir(IV) decreases strongly with increas-

ing FA concentration. This is an indication that this redox

couple is involved during FA oxidation on AIROF.

It is worthwhile to notice that the anodic oxide film was

completely corroded at the end of these experiments.

4 Conclusions

The main conclusions can be summarized below:

– The surface redox activities involved on the AIROF are

much faster than those involved on the TDIROF.

Formation of a highly hydrated AIROF is certainly the

main reason of the high surface activity of IrO2 film

electrodes obtained by the anodic polarization of Ir

metal (AIROF).

– The investigation of the oxygen evolution reaction in

acid media has shown that both films show similar

mechanisms (same Tafel slope of 40 mV/decade) and

specific electrocatalytic activity (similar normalized

I–V curves).

– The involved surface redox couple during the anodic

oxidation of formic acid (FA) depends strongly on the

preparation mode of the IrO2 anodes. In fact, on

TDIROF the oxidation of FA and the OER compete

involving the same surface redox couple Ir(VI)/Ir(IV).

However, this is not the case on the AIROF, where the

oxidation of FA involves the Ir(V)/Ir(IV) surface redox

couple and is not competing with the OER.

– Electrode stability measurements have shown that

contrary to TDIROF, which are very stable under

anodic polarization, the AIROF are rapidly corroded

under anodic treatment. This corrosion is further

enhanced in the presence of formic acid.

Acknowledgments The authors gratefully thank the Fonds National

Suisse de la Recherche Scientifique for financial support as well as the

Sensors, Actuators and Microsystems Laboratory, Institute of Mic-

rotechnology, University of Neuchâtel (SAMLAB-UNINE) for

providing the iridium electrodes.

References

1. Trasatti S, O’Grady WE (1981) In: Gerisher H, Tobias CW (eds)

Advances in electrochemistry and electrochemical engineering.

Wiley, New York, p 177

2. Comninellis Ch, Nerini A (1995) J Appl Electrochem 25:23

3. Beck F, Schultz H (1984) Electrochim Acta 29:1569

4. Trasatti S (2000) Electrochim Acta 45:2377

5. Beer H, Hinden JM (1985) EU Patent EP 0,046,449 B1

6. Hinden JM et al (1984) US Patent 4,444,642
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a b s t r a c t

The surface redox activities, the oxygen evolution reaction (OER), the oxidation of formic acid (FA) and
the anodic stability have been investigated and compared on IrO2 electrodes prepared by two techniques:
the thermal decomposition of H2IrCl6 precursor (TDIROF) and the thermal treatment of metallic iridium
(TOIROF). It was found, that the surface redox activities involved on both IrO2-based electrodes are sim-
ilar. Concerning the oxygen evolution reaction and the oxidation of formic acid, both films show similar
mechanism.
The electrode stability measurements have shown that both films are not corroded under strong OER or

organics oxidation conditions and therefore, to summarize, both IrO2-based films exhibit similar electro-
chemical behaviours.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Iridium dioxide is known to be a good electrocatalyst for oxy-
gen/chlorine evolution as well as electrochemical oxidation of or-
ganic compounds [1–3]. IrO2 electrodes are usually prepared by
thermal decomposition of the appropriate precursor solution (usu-
ally H2IrCl6) on an inert substrate such as titanium or tantalum
[4,5]. The thermally prepared iridium dioxide electrodes (TDIROF)
form part of the dimensionally stable anodes (DSA�) [1]. The big
advantage of these electrodes is their long lifetime under oxygen
evolution (OER) or organics electro-oxidation [6]. An alternative
method of preparation of iridium dioxide electrodes is the anodic
oxidation of metallic iridium (AIROF). In this method, the iridium
dioxide film is grown at the metallic iridium electrode through po-
tential cycling. It has been shown that on the contrary to TDIROF,
AIROF rapidly corrodes under anodic polarization [6]. The corro-
sion is even more enhanced in the presence of organic compounds
what makes AIROF unsuitable for large scale applications, e.g., in
wastewater treatment.

In this paper, we compare TDIROF with IrO2 film prepared by
thermal treatment of metallic iridium (TOIROF). The electro-cata-
lytic activity and stability of both electrodes is investigated. It is
shown that the electrochemical behaviour of TOIROF is similar to
TDIROF. Both electrodes are very stable under strong OER and or-

ganic oxidation conditions. Moreover, the surface redox activities
involved during the OER and oxidation of formic acid are similar
for both IrO2-based films.

2. Experimental

All electrochemical experiments were performed in a classical
three-electrode cell (70 ml) using an Autolab PGSTAT 30. The coun-
ter electrode was a Pt wire; the reference electrode was Hg/
Hg2SO4/K2SO4 (sat.) (MSE; 0.65 V vs. SHE) and two different work-
ing electrodes were used:

(a) An IrO2 electrode prepared by thermal treatment of iridium
metal (TOIROF): an iridium film (0.1 lm) was deposited by
sputtering on p-Si (0.0054 mm2) above a thin (0.02 lm) tan-
talum interlayer (p-Si/Ir). The thermally oxidized iridium
oxide film (TOIROF) was formed by thermal treatment of
the resulting iridium metal in air at 500 �C for 90 min.

(b) An IrO2 electrode prepared by thermal decomposition of a
precursor (TDIROF): the IrO2 film (0.27 mg cm�2) was depos-
ited on disc-shaped sandblasted p-Si (182.25 mm2) by the
thermal decomposition of a H2IrCl6 (99.9%, ABCR) precursor
aqueous solution in air at 500� (TDIROF).

The presence of iridium dioxide on the substrate was verified
using XPS measurements (not presented).

All potentials in this work are with respect to the standard
hydrogen electrode (SHE).

1388-2481/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
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3. Results and discussion

3.1. Surface redox activities

Fig. 1A and B show the cyclic voltammetry recorded for three
potential windows, in the potential range between 0.0 V and
1.4 V, on TDIROF and TOIROF, respectively. The charge involved
in the anodic scan is completely recovered during the cathodic
scan (q+ = q�) for all the scan rates investigated (10–500 mV s�1)
and for both IrO2-based electrodes. Both CV show an axial symme-
try (around the potential axis) only if the lower potential limit is
higher than 0.4 V. In fact, at lower potential limits, a strong distor-
tion of the CV around the potential axis is observed. This is an indi-
cation that the surface processes involved at low potentials
(<0.4 V) are slow for both electrodes.

In a previous work [7], from apparent activation energy (Ea)
measurements for the charging/discharging process using TDIROF,
two contributions were considered for this process. The first con-
tribution is a fast (instantaneous) process with zero activation en-
ergy related to the charging of the electrical double-layer at the
electrode–electrolyte interface and the second corresponds to the
slow diffusion of protons within the iridium oxide coating inducing
surface redox activities (Eq. 1) with an activation energy around
2.4 kJ mol�1 [7].

IrOxðOHÞy þ dHþ þ de� ¢
cathodic

anodic
IrOx�dðOHÞyþd ð1Þ

These cyclic voltammetry measurements show that TDIROF and
TOIROF have similar kinetics for the involved surface redox activ-
ity. In fact, on both iridium oxide based electrodes, the surface pro-
cess is slow and can be related to reaction 1.

These similarities are inherent to the preparation technique. In
fact, both electrodes are produced under conditions involving ther-
mal treatment in air at 500 �C. It has been shown that this method
yields anhydrous and highly porous IrO2 [7–9].

However, Fig. 1A and B show that the current response obtained
on TDIROF is almost one order of magnitude higher than the re-
sponse obtained on TOIROF. This is certainly due to the higher
3D roughness factor (related to the IrO2 loading) of TDIROF com-
pared to TOIROF because all the coating participates actively in
the charging/discharging process (Eq. 1) [7].

3.2. Intermediates involved in the oxygen evolution reaction
(OER) and the oxidation of formic acid

Fig. 2 shows normalized polarization curves (the current is re-
ported relative to the voltammetric charge measured from the
CV curves between 0 V and 1.4 V at 50 mV s�1) for the OER on (a)
TOIROF electrodes and (b) TDIROF electrodes in 1 M HClO4. In
the same figure, the Tafel plots obtained for the OER after IR drop
correction for both type of IrO2 electrodes (inset of Fig. 3) are also
given. It can be seen that even at high overpotentials, the IR drop
corrected Tafel plot gives a linear relation with a slope of about
40 mV decade�1 for both IrO2-based electrodes.

It is worthwhile to notice that both electrode materials were
not corroded by all these polarization measurements even after
reaching high anodic potentials (>1.5 V). This is an indication of
the high anodic stability of TOIROF and TDIROF.

The fact that both normalized curves are almost the same
proves that TOIROF and TDIROF have also almost the same specific
electro-catalytic activity for the OER.

In acid medium, the following reaction path Eqs. (2)–(4) was
proposed for the oxygen evolution reaction (OER) on active oxide
electrodes [10].

SþH2O ! S� OHads þHþ þ e� ð2Þ
S� OH ! S� Oads þHþ þ e� ð3Þ

S� O ! Sþ 1
2
O2 ð4Þ

where S stands for active sites and OHads, Oads are adsorption
intermediates.

This mechanism predicts the following Tafel slopes:
120 mV decade�1 if step 2 is the rate determining step (rds),
40 mV decade�1 for step 3 and 30 mV decade�1 for step 4.

The measured Tafel slope indicates that formation of a higher
oxide (step 3) is the rate determining step (rds) for both IrO2 elec-
trodes. This is an indication that TOIROF and TDIROF have the same
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Fig. 2. Normalized steady state polarization curves using (a) TOIROF and (b)
TDIROF (IrO2 loading: 0.273 mg cm�2). The current has been normalized relative to
the voltammetric charge measured between 0 and 1.4 V at 50 mV s�1. Inset: IR drop
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mechanism of oxygen evolution. In fact, the participation of the
higher oxide in the OER on TDIROF via the IrO3/IrO2 redox couple
has been demonstrated in another study using 18O labelling to-
gether with differential electrochemical mass spectrometry
(DEMS) measurements [11].

Figs. 3 and 4 shows steady state polarization curves obtained on
TDIROF and TOIROF respectively in 1 M HClO4 containing different
concentration of formic acid (FA). The shift of these I–V curves to-
ward less positive potentials in presence of FA is related with the
involvement of the same redox couple IrO3/IrO2 in both the oxygen
evolution reaction (Eq. 7) and FA oxidation (Eq. 8) competing dur-
ing the process according to the reaction path given in Eqs. (5)–(8).

IrO2 þH2O ! IrO2ðOHÞads þHþ þ e� ð5Þ
IrO2ðOHÞads ! IrO3 þHþ þ e� ð6Þ
IrO3 ! IrO2 þ 1=2O2 ð7Þ
IrO3 þHCOOH ! IrO2 þ CO2 þH2O ð8Þ

This mechanism has been proved recently on TDIROF electrodes
using 18O labelling combined with DEMS measurements [11,12].

The inset of Fig. 4 shows the Tafel plot corresponding to formic
acid (100 mM) oxidation on TOIROF obtained after IR drop correc-
tion and substraction of the current related to the oxygen evolution

reaction. This figure shows clearly that on TOIROF, the same Tafel
slope was reported for the oxidation of FA and the oxygen evolu-
tion reaction i.e. 40 mV decade�1. This is an indication that the re-
dox couple IrO3/IrO2 is involved in both processes on TOIROF,
which is exactly the case of TDIROF as proved by DEMS measure-
ments [11,12,14].

It is worthwhile to notice that the IrO2 electrode prepared by
thermal treatment of pure iridium (TOIROF) remained intact at
the end of these experiments. This high stability toward organics
oxidation has been also observed on TDIROF in previous studies
[6,13,14].

4. Conclusions

This work concerns a comparative study of the electrochemical
activity of iridium dioxide film electrodes prepared by two tech-
niques: (a) thermal treatment of iridium metal in air (TOIROF)
and (b) thermal decomposition of H2IrCl6 precursor solution on
p-Si substrate (TDIROF).

The main conclusions are summarized below:

– The surface redox activities involved are similar for both IrO2-
based films. These resemblances are inherent to the preparation
conditions of both oxide films (thermal treatment in air at
500 �C).

– The investigation of oxygen evolution reaction and formic acid
oxidation in acid media has shown that both films show similar
mechanism (same Tafel slope of 40 mV decade�1) involving the
same intermediate (the IrO3/IrO2 surface redox couple).

– Electrode stability measurements have shown that no corrosion
was observed on both IrO2-based electrodes under strong OER
and organic oxidation conditions.

Finally, it can be considered that the iridium oxide films pre-
pared by thermal treatment of pure iridium (TOIROF) and by ther-
mal decomposition of a precursor solution (TDIROF) exhibit similar
electrochemical behaviours.
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2 0
a b s t r a c t

In this paper, the IrO2 electrode preparation technique consisting in thermal treatment of air with pure Ir
was used in order to produce an IrO2-based microelectrode-array (TOIROF-MEA) with low capacitive
background current. The TOIROF-MEA was characterized using FeðCNÞ4�=3�

6 as model redox couple. It
was found that very low concentrations can be detected; this feature makes TOIROF-MEA suitable for
analytical applications.

� 2010 Published by Elsevier B.V.

28

29 1. Introduction

30 IrO2-based electrodes, produced by thermal decomposition of
31 H2IrCl6 (TDIROF), are widely used for oxygen and chlorine evolu-
32 tion as well as electrochemical oxidation of organic compounds
33 [1–4]. The main advantages of these electrodes are the high cata-
34 lytic activity and long lifetime. These electrodes have been also
35 proposed for analytical applications; however, a high capacitive
36 background current inherent to these electrodes [5,6] gives strong
37 limitations for traces analysis. The use of IrO2 microelectrode
38 might overcome this problem. Besides low capacitive current,
39 microelectrodes have many other advantages, like small ohmic
40 drop, superior mass transport (spherical diffusion) and possibility
41 to work at very high scan rates [7].
42 Up to date, IrO2 microelectrodes, used mainly as pH sensors, are
43 prepared by anodic oxidation of metallic iridium (AIROF). How-
44 ever, AIROF electrodes suffer heavy corrosion under anodic polari-
45 zation [8].
46 In this work, we characterize a IrO2-based microelectrode-array
47 (MEA), prepared by thermal treatment of pure iridium in air (TOIR-
48 OF). Recently, it has been shown that TOIROF exhibits similar elec-
49 trochemical behaviour to TDIROF [9]. Moreover, anodic treatment
50 for long periods of time (several hours) and steady-state polariza-
51 tion curves recorded on TOIROF in acidic media and in the presence
52 of formic acid have shown that the stability of TOIROF is also very
53 similar to the one of TDIROF [9]. The TOIROF-MEA is investigated
54 using FeðCNÞ4�=3�

6 as model redox couple. It is shown that the high

capacitive current, usually recorded on IrO2 macroelectrodes, can
be considerably reduced when using TOIROF-MEA and very low
concentration of the investigated redox couple can be detected.

2. Experimental

All electrochemical experiments were performed in a classical
three-electrode cell (70 ml) using an Autolab PGSTAT 30. The coun-
ter electrode was a Pt wire; the reference electrode was Hg/
Hg2SO4/K2SO4 (sat.) (MSE; 0.65 V vs. SHE) and the working elec-
trode was a TOIROF microelectrode-array (MEA) prepared by ther-
mal treatment of pure iridium in air. The interconnected iridium
MEA chips were produced using thin film microsystems technol-
ogy. The fabrication is based on a photolithographic process and
is schematically illustrated in Fig. 1.

The substrate used is a (1 0 0)-oriented, 4-in. silicon wafer ((a)
in Fig. 1) passivated by 200 nm thermally grown silicon dioxide,
followed by 200 nm silicon nitride using low-pressure chemical
vapour deposition (LPCVD). This results in a dense, pinhole-free
insulation layer on the silicon surface ((b) in Fig. 1).

The metal layer is patterned by a lift-off process. Therefore a
homogeneous photo-sensitive resist is spin-coated on the substrate
and structured using a chromemask to cover those areas, where the
metal is not required ((c) in Fig. 1). Tantalum (20 nm) serving as
adhesion layer and 100 nm iridium are evaporated in the same
deposition process on the whole surface of the wafer ((d) in
Fig. 1). The removal of the photoresist takes off the Ta/Ir above it
and leaves a metal layer only where previously defined ((e) in
Fig. 1). The structured iridium is covered by a silicon nitride (LPCVD,
200 nm) top passivation. The microelectrodes and contact pads are
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created by removal of this insulation layer at specific sites. There-
fore a second photopatterned resist is used as a mask. First, the sil-
icon nitride is etched by reactive ion etching (RIE). Second, after
resist stripping ((f) in Fig. 1), the wafer is immersed into concen-
trated H3PO4 (160 �C) for 10 min to completely expose the iridium
sites and clean the metal surface ((g) in Fig. 1). Finally, the wafer is
diced into single chips of the size of 2.4 � 6.0 mm2. Two indepen-
dent Ir structures are integrated on the chip: A square-shaped elec-
trode with a geometric surface area of 0.54 mm2 and an
interconnected microelectrode-array consisting of 5 � 20 microd-
isks of 5 lm diameter (150 lm pitch). Each electrode structure is
connected via wire bonds on the contact pads ((h) in Fig. 1).

95The obtained pure Ir electrodes were treated in air at 500 �C for
9690 min before the packaging process. The formation of IrO2 film on
97metallic Ir by heat treatment in oxygen atmosphere in the temper-
98ature range between 500 and 800 �C has been previously reported
99[10–12]. The SEM photo of the obtained TOIROF-MEA is given as
10inset of Fig. 2.

103. Results and discussion

10Voltammetric measurements performed on the TOIROF-MEA in
10the potential region of water stability showed that the capacitive
10current on this electrode is in the range of 10�2 lA cm�2 (Fig. 2)

Fig. 1. Schema of the fabrication process of the iridium microchips (6 mm � 2.4 mm). (a) Silicon substrate, (b) pinhole-free insulation bi-layer deposited on the substrate, (c)
deposition of photo-sensitive resist by spin coating and structuration of this resist using a chrome mask, (d) deposition of 20 nm tantalum adhesion layer followed by 100 nm
of iridium, (e) removal of photoresist, (f) deposition of another insulation layer and photo-sensitive resist having the pattern of the electrode and the microelectrode-array, (g)
the exposed insulation is removed by reactive ion etching and the remaining resist is stripped, (h) top view of the final interconnected iridium MEA chip.

Fig. 2. Cyclic voltammogram recorded on TOIROF-MEA in 1 M H2SO4 at 10 mV s�1. T = 25 �C. Inset shows a SEM photo of the TOIROF-MEA; the diameter of the single
microelectrode in the array is 5 lm and the smallest spacing between microelectrodes is 150 lm.
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05 and that the voltammetric charge is about 0.67 mC cm�2. This cor-
06 responds to 20 lg IrO2 cm�2. Therefore and considering a value of
07 31.1 ± 2.9 mC per mg of IrO2 for the specific voltammetric charge
08 [6,13], these results show that this technique of preparation (ther-
09 mal treatment of Ir metal in air at 500 �C) allow producing very
10 thin coatings in contrast with the electrodes prepared by thermal
11 decomposition of H2IrCl6 precursor [5]. In fact, even when using
12 the spincoating deposition technique for the deposition of the pre-
13 cursor, typical uniform coatings have a loading rarely inferior to
14 0.3 mg IrO2 cm�2 [5]. Therefore, the low capacitive current and vol-
15 tammetric charge measured on the TOIROF-MEA are related to the
16 small size of the electrode and to its low loading. In fact, the small
17 capacitive current is one of the main advantages of the IrO2-based
18 electrode miniaturization [7].
19 Fig. 3A shows cyclic voltammetric measurements of the 50 mM
20 FeðCNÞ4�=3�

6 redox couple performed on the TOIROF-MEA at differ-
21 ent scan rates (5–300 mV s�1). Fig. 3B shows the corresponding
22 anodic steady-state current densities plotted as a function of the
23 square root of the scan rate. It can be seen that above 50 mV s�1,

the current plateau does not depend on the scan rate indicating
that the spherical diffusion dominates over the microelectrodes
[7]. These conditions are referred to as diffusional independence
[14], i.e. there is no overlap of adjacent diffusion zones. At the scan
rates below 50 mV s�1, anodic and cathodic steady-state current
are dependent on the scan rate showing that there is an overlap

Fig. 3. (A) Cyclic voltammograms of the FeðCNÞ4�=3�
6 redox couple recorded at the TOIROF-MEA in 1 M H2SO4; scan rates between 5 and 300 mV s�1 (5, 10, 20, 50, 100, 200 and

300 mV s�1); concentration of FeðCNÞ4�=3�
6 50 mM, (B) anodic steady-state current densities (jss) plotted as a function of the square root of the scan rate. T = 25 �C.

Table 1
Characterization of TOIROF-MEA; m is the scan rate (mV s�1), d is the thickness of
diffusion layer (lm), R (=2.5 lm) is the radius of the single microelectrode in the
array, d (=150 lm) is the smallest distance between the microelectrodes in the array.

m (mV s�1) d (lm) R/d (–) d/d (–)

5 231.43 0.011 0.648
10 163.65 0.015 0.917
20 115.72 0.022 1.296
50 73.18 0.034 2.050
100 51.75 0.048 2.899
200 36.59 0.068 4.099
300 29.88 0.084 5.020
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of adjacent diffusion layers of individual microelectrodes [10,11].
Under these conditions, a non-linear diffusion with partial overlap
dominates over the microelectrode-array, which can be associated
with category 3 of diffusion profile, as detailed extensively by Da-
vies et al. [15,16]. Similar conclusion can be made by comparing
the thickness of the diffusion layer at a given scan rate (calculated
with Eq. (1)) with a radius of the single microelectrode R in the ar-
ray with a cubic packing geometry and the distance between the
microelectrodes d [14–16]

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2D

DE
m

r
; ð1Þ

where D (m2 s�1) is the diffusion coefficient, DE (V) is the potential
difference between the onset oxidation potential at the potential of
limiting current (Fig. 3), and m (V s�1) is the scan rate.

Table 1 gives the diffusion thickness d (m) and the ratios R/d and
d/d (–) as a function of potential scan rate. From this table it is clear
that from 50 mV s�1, the diffusion layer thickness exceeds clearly
the size of the microelectrodes but it is smaller then the distance
between two microelectrodes in the array, indicating domination
of spherical diffusion at the scan rates above 50 mV s�1.

15Fig. 4A presents cyclic voltammetric measurements recorded on
15TOIROF-MEA for different concentrations of the FeðCNÞ4�=3�

6 redox
15couple. The curves were recorded at 100 mV s�1 at which domina-
15tion of spherical diffusion is expected. It can be seen that even at
15low FeðCNÞ4�=3�

6 concentration (0.5 mM), the steady-state current
15is clearly observed. The detection of such low concentration can
15be considered as an advantage of the miniaturization of the IrO2

15macroelectrodes. In fact, on IrO2 macroelectrodes, the detection
15of such low concentration is difficult due to the important capaci-
16tive background current.
16Fig. 4B shows that the corresponding anodic steady-state cur-
16rent is proportional to the concentration of FeðCNÞ4�=3�

6 . Based on
16the theory of microelectrodes given in [7], the diffusion coefficient
16D of the FeðCNÞ3�6 can be calculated using the following relation
16(Eq. (2)):
16

Iss ¼ 4 � N � n � F � r � D � c; ð2Þ 1616

16where Iss is the steady-state current (A), N is the number of micro-
17electrodes in the array (100), n is the number of exchanged elec-
17trons (n = 1), F is the Faraday constant (96,485 C), c is the bulk
17concentration of the redox couple and r is the radius of the single

Fig. 4. (A) Cyclic voltammograms of the FeðCNÞ4�=3�
6 redox couple (0–20 mM) recorded at the TOIROF-MEA in 1 M H2SO4 at 100 mV s�1, (B) anodic steady-state current

densities (jss) plotted as a function of the concentration of FeðCNÞ4�=3�
6 . T = 25 �C. Inset of (A) shows results obtained for 0 mM and 0.5 mM of FeðCNÞ4�=3�

6 .
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73 microelectrode in the array. Using Eq. (1), the diffusion coefficient of
74 FeðCNÞ3�6 was calculated to be 1.03 � 10�5 cm2 s�1, which is in good
75 agreement with literature (0.896 � 10�5 cm2 s�1 in 1 M KCl at 25 �C)
76 [7].

77 4. Conclusions

78 In this work, the characterization of an IrO2-based microelec-
79 trode-array prepared by thermal treatment of pure Ir (TOIROF-
80 MEA) is presented. The main conclusions are:

81 – This technique allows producing IrO2 electrodes with very low
82 loadings (�20 lg IrO2 cm�2). As a consequence, the capacitive
83 current measured on the TOIROF-MEA is greatly reduced in con-
84 trast with the IrO2 electrodes prepared by thermal decomposi-
85 tion of H2IrCl6 precursor.
86 – The characterization of the TOIROF-MEA using FeðCNÞ4�=3�

6 has
87 revealed that even very small concentrations of the investigated
88 redox couple can be detected on this electrode. The diffusion
89 coefficient of FeðCNÞ3�6 obtained experimentally was found to
90 be in good agreement with the values reported in the literature.
91
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a b s t r a c t

The electrochemical behaviour of ammonia (NHþ
4 =NH3) in sodium perchlorate at pH 9 has been investi-

gated on electrochemically grown anodic iridium oxide film (AIROF) electrode. In base electrolyte at pH 9,
the Ir(IV)/Ir(III) surface redox couple exhibits unusually large separation of the oxidation/reduction peaks
(DEp � 750 mV) due to the local pH changes within the oxide film. These local pH changes are induced by
protons released/consumed during the Ir(IV)/Ir(III) redox activity. As a consequence, the local pH within
AIROF changed up to 10 units during potential cycling. The presence of ammonia at pH 9 prevents these
local pH changes because NHþ

4 =NH3 buffer the solution inside the electrode. As a consequence, DEp of
Ir(IV)/Ir(III) was reduced to 100 mV. It has been shown further that ammonia oxidation is mediated by
Ir(V), resulting in the appearance of anodic peaks in forward and backward scans.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

IrO2 films are prepared either by thermal decomposition of the
appropriate precursor solution on an inert substrate or they are
grown electrochemically at metallic iridium electrodes through
potential cycling. The thermally prepared iridium dioxide elec-
trodes form part of the dimensionally stable anodes (DSA�) and
have been widely investigated for applications such as metal elec-
tro-winning, oxygen evolution or electrochemical oxidation of
organics [1–5]. The electrochemically grown anodic iridium oxide
film (AIROF) exhibits a reversible Ir(IV)/Ir(III) oxidation state
change in acidic media, which transforms the film from a colour-
less insulating material (Ir(III)) to a black metallic conductor
(Ir(IV)). This particular feature has been widely investigated for
applications in electrochromic devices [6–8]. Moreover, electro-
chemically grown IrO2 have proved to be of potential interest in
the area of electrocatalysis, for reactions such as chlorine evolution
and oxygen evolution [9,10].

Most of the time the growth and activity of the electrochemi-
cally formed oxide films were studied in acidic media (H2SO4 or
HClO4 aqueous solution). However, it has been shown that the
films grown in neutral or basic solutions were more stable against
corrosion compared to the films grown in acidic media [11,12].

In this communication, we investigate the behaviour of AIROF
in the absence and presence of ammonia in sodium perchlorate
at pH 9. Recently, the electrochemical oxidation of ammonia has
attracted much interest for ammonia removal from wastewater
[13–15] as well as for ammonia sensing [16].

2. Experimental

The electrochemical measurements were carried out in a single-
compartment three-electrode cell (70 mL) using an Autolab
PGSTAT 30. The counter electrode was a Pt wire, the reference
electrode was Hg/Hg2SO4/K2SO4 (MSE), and the working electrode
was electrochemically grown anodic iridium oxide film electrode
(AIROF, 0.54 mm2). AIROF was formed during potential cycling of
a p-Si/Ir electrode at 100 mV s�1 in 1 M NaClO4 at pH 9 and
25 �C. The pH of the solution was adjusted with NaOH. More details
about the preparation of AIROF are given in [17].

3. Results and discussion

3.1. Formation of an anodic iridium oxide film close to pH neutrality
(pH 9)

Fig. 1 shows cyclic voltammograms (selected scans between 2
and 100) recorded on a p-Si/Ir electrode at 100 mV s�1 in 1 M Na-
ClO4 + NaOH at pH 9. During successive scans, two anodic peaks

1388-2481/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.elecom.2009.06.003
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(A1 and A2) and three cathodic peaks (C1, C2 and C3) are formed.
The cathodic peaks are strongly dependent on the upper sweep po-
tential limit (E1

p), as shown in Fig. 2. The cathodic peak at �0.6 V
(C1) is observed when E1

p is higher than �0.25 V. This is an indica-
tion that the anodic peak A1 is related to C1. The C2 peak appears
clearly when E1

p is set above 0.5 V indicating the existence of the re-
dox surface processes on AIROF also in the oxygen evolution re-
gion. C3 peak appears when the E1

p is set above 0.25 V, thus, is
related to A2.

The main redox process (A1/C1), centered at � �0.4 V, can be
attributed to Ir(IV)/(III) surface redox couple, according to Eq. (1)
[18,19].

IrðOHÞ3 ¢ IrOðOHÞ2 þHþ þ e� ð1Þ

As separation of peaks A1/C1 (DEp) is about 750 mV, it could seem
that the behaviour of Ir(IV)/Ir(III) on AIROF in NaClO4 is strongly
irreversible. However, this contradicts the results obtained in basic
and acidic media [20], in whichDEp indicates reversible character of
Ir(IV)/Ir(III) couple.

This apparent irreversibility of Ir(IV)/Ir(III) in NaClO4 might be
related to a change of the electrode environment during the poten-
tial sweep. Juodkazyte et al. [20] showed that the Ir(IV)/Ir(III) peaks
are shifted negatively in alkaline solution by approximately
500 mV as compared to acidic ones. Moreover, it has been reported
[20,21] that iridium oxide electrodes exhibit the pH-sensitivity
ranging from 57 to 80 mV/pH. Therefore, DEp of 750 mV in NaClO4

might result from the pH change within the oxide film electrode
[12] during the potential sweep. In fact, as iridium hydroxide is
oxidized, protons are released (Eq. (1)) and the interior of the oxide
film might become acidic. On the contrary, as iridium hydroxide is
reduced, protons are consumed causing an increase of the pH in-
side the hydroxide. As a consequence, during potential cycling,
the oxidation peak A1 appears in the potential range characteristic
for iridium oxide oxidation in acidic media [17] whereas the reduc-
tion peak C1 appears at a potential characteristic for iridium oxide
reduction in basic media [12] resulting in a high value ofDEp. Thus,
considering 57–80 mV/pH [21], the local pH changes within AIROF
up to 10 units during the potential sweep in NaClO4 at pH 9. It is
important to note that the pH change inside the oxide is a gradual
process going smoothly with increasing potential. This is the rea-
son why the current density of C1 (Fig. 2) increases progressively
with the upper sweep potential limit in the vicinity of A1.

The couple A2/C3 can be attributed to Ir(V)/Ir(IV) surface redox
couple, according to Eq. (2) [18,19].

IrOðOHÞ2 ¢ IrO2ðOHÞ þHþ þ e� ð2Þ
As the potential further increases, Ir(V) is oxidized to Ir(VI) (Eq.

(3)). Soon after, the oxygen is released (Eq. (4)) simultaneously to
the corrosion of the electrode (Eq. (5)) [18].

IrO2ðOHÞ¢ IrO3 þHþ þ e� ð3Þ
IrO3 þH2O ! IrOðOHÞ2 þ O2 ð4Þ
IrO3 þH2O ! IrO2�

4 þ 2Hþ ð5Þ
Therefore, the cathodic peak C2 might be related either to the reduc-
tion of the corrosion products that are present in the solution or to
the reduction of adsorbed oxygen.

3.2. The buffering effect of ammonia

Fig. 3 shows cyclic voltammograms recorded on AIROF in the
absence (curve 1) and presence (curve 2) of 100 mM NH4ClO4 in
1 M NaClO4 at pH 9. It is interesting to see that in the presence
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Fig. 1. Cyclic voltammograms (scans: 2, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100) on p-
Si/Ir electrode; scan rate 100 mV s�1, electrolyte 1 M NaClO4 + NaOH at pH 9 and
25 �C.
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Fig. 2. Cyclic voltammograms with various upper sweep potential limit recorded
on p-Si/Ir electrode; experimental conditions as in Fig. 1.

-1.0 -0.5 0.0 0.5
-4

-2

0

2

4

C1

A1 b

1

j /
 m

A 
cm

-2

E / V vs. MSE

2

a

Fig. 3. Comparison of the voltammograms recorded in (1) 1 M NaClO4 + NaOH at
pH 9 and (2) 100 mM NH4ClO4 + 1 M NaClO4 + NaOH at pH 9 on an anodic iridium
oxide film electrode (750 cycles) at 50 mV s�1.

A. Kapałka et al. / Electrochemistry Communications 11 (2009) 1590–1592 1591



of NH4ClO4, DEp of the A1/C1 redox couple becomes smaller
(DEp � 100 mV). To understand this apparent change, one has to
consider the buffering effect of ammonia within the porous AIROF.
As the pKa of ammonia is 9.25 at 25 �C [22], both, ammonium ion
and molecular ammonia, coexist in the solution at pH 9. Therefore,
NHþ

4 =NH3 acts as a buffer, maintaining a constant pH value inside
the oxide film during its oxidation or reduction. Thus, in the pres-
ence of ammonia, the A1/C1 redox couple exhibits DEp characteris-
tic for alkaline solutions [12]. Therefore, in order to use AIROF in
electrochromic devices in neutral solutions, it is essential to buffer
the solution to prevent the electrode from the local pH changes
during its oxidation/reduction.

3.3. Anodic oxidation of ammonia

The oxidation of ammonia on AIROF proceeds from 0.25 V vs.
MSE resulting in the appearance of two well-defined anodic peaks:
(a) in the forward scan and (b) in the backward scan (Fig. 3).
Considering that the oxidation of ammonia involves Ir(V) [17],
peak (b) might result from the oxidation of ammonia on freshly
reduced Ir(VI) to Ir(V).

As shown in Fig. 3, the oxidation of ammonia results in well-de-
fined voltammetric response on AIROF that could be useful for the
detection of ammonia. Recently, Compton et al. [16] reported the
use of boron-doped diamond electrodes for ammonia sensing.
Oxidation of ammonia on BDD proceeds in the same potential
range as on AIROF giving an oxidation peak that increases linearly
with the ammonia concentration. Fig. 4 shows a similar behaviour
for the AIROF electrode; both anodic peaks (a and b) increase line-
arly with the concentration of NH4ClO4. However, the lines do not

pass through the origin, probably due to the important changes of
the background current caused by ammonia. These changes in the
background current are certainly induced by the local pH changes
in the hydrous iridium oxide film during its oxidation/reduction as
well as during oxidation of ammonia. Indeed, at high potential the
oxidation of ammonia itself induces considerable release of
protons.

4. Conclusions

The presence of NH4ClO4 in NaClO4 at pH 9 influences strongly
the electrochemical response of IrO2 film grown at p-Si/Ir. At po-
tential < 0.25 V vs. MSE, ammonia is not electrochemically active,
however, NHþ

4 /NH3 buffers the solution preventing from pH
changes inside the porous electrode during a potential sweep. As
a consequence, DEp of the Ir(IV)/Ir(III) redox couple remains in
the range of 100 mV (typical value for alkaline solutions). At poten-
tial > 0.25 V vs. MSE, ammonia oxidation seems to be mediated by
Ir(V).
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Abstract 

The electrochemical oxidation of ammonia (NH4

+
/NH3) in sodium 

perchlorate was investigated on IrO2 electrodes prepared by two techniques: the 

thermal decomposition of H2IrCl6 precursor and the anodic oxidation of metallic 

iridium. The electrochemical behaviour of Ir(IV)/Ir(III) surface redox couple differs 

between the electrodes indicating that on the anodic iridium oxide film (AIROF) 

both, the surface and the interior of the electrode are electrochemically active 

whereas on the thermally decomposed iridium oxide films (TDIROF), mainly the 

electrode surface participates in the electrochemical processes. 

On both electrodes, ammonia is oxidized in the potential region of 

Ir(V)/Ir(IV) surface redox couple activity, thus, may involve Ir(V). During ammonia 

oxidation, TDIROF is deactivated, probably by adsorbed products of ammonia 

oxidation. To regenerate TDIROF, it is necessary to polarize the electrode in the 

hydrogen evolution region. On the contrary, AIROF seems not to be blocked during 

ammonia oxidation indicating its fast regeneration during the potential scan. The 

difference between both electrodes may result from the difference in the activity of 

the iridium oxide surface redox couples. 

 

Keywords: oxidation of ammonia; IrO2 electrode; pH 9; deactivation; surface redox 

couple 
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Introduction 

Discharges of ammonia to the aquatic environment cause eutrophication and 

fish toxicity. Today, large treatment plants with biological nitrification and 

denitrification are used to remove ammonia from municipal wastewater.  Recently, 

the concept of urine separation has been proposed as a new technology to improve 

and simplify nitrogen removal from wastewater [1].  Several processes have been 

proposed and tested for nitrogen removal from urine, but none of them has been 

implemented on a large scale so far [2]. Recently, electrochemical removal of 

ammonia has been shown to be a promising method for degradation of ammonia 

along with organic compounds present in wastewater [3]. The process might also be 

well suited to remove ammonia and organic substances from urine. The main 

advantage of this technique is that no chemicals or bacteria are required. In fact, only 

electrical energy is consumed for elimination of pollutants. 

The mechanism of ammonia electro-oxidation has been studied mainly on Pt 

electrodes and Pt-Me (Me = Ni, Ir, Ru, Cu) binary alloys for their applications in 

ammonia fuel cell [4]. The mechanism of ammonia electro-oxidation on Pt-based 

electrodes involves dehydrogenation of adsorbed ammonia and formation of N2 as a 

final product (Eqs. (1)-(4)) [5].  

3,ads 2,ads
NH NH H e

+ �� + +         (1) 

2,ads ads
NH NH H e

+ �� + +         (2) 

ads ads
NH N H e

+ �� + +         (3) 

ads 2
2N N�           (4) 

Besides N2, the oxygenated nitrogen species (such as NO and N2O) might also be 

formed when the electrode surface becomes oxidized [4]. 
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The mechanism of electro-oxidation of ammonia on metal oxide type 

electrodes, such as RuO2 or IrO2 is much less understood. It is known, however, that 

on these anodes ammonia is oxidized through several steps to various nitrogen 

compounds (Eq. (5)) [6, 7]. 

3 2 ads x

2

NH NH OH NO NO

N

� � �

�        (5) 

With this study, we aimed to gain a better understanding of the 

electrochemical oxidation of ammonia on IrO2 electrodes. IrO2 films were prepared 

either by thermal decomposition of the appropriate precursor solution on an inert 

substrate (TDIROF) or they were grown electrochemically on metallic iridium 

electrodes through potential cycling (AIROF). As reported in [8], the stability and 

the electro-catalytic activity of these electrodes differ due to the difference in the 

activity of the iridium oxide surface redox couples. In fact, iridium surface redox 

activities involved on the AIROF are much faster than those involved on the 

TDIROF [8]. Electro-oxidation of ammonia was studied in sodium perchlorate at pH 

9 using cyclic voltammetry. As the pKa of ammonia is 9.25 [9], both, ammonium ion 

and molecular ammonia, coexist in similar amounts at pH 9.  

 

Experimental 

The electrochemical measurements were carried out in a single-compartment 

three-electrode cell (50 mL) using an Autolab PGSTAT 30. The counter electrode 

was a Pt wire and the reference electrode was Hg/Hg2SO4/K2SO4 (MSE). All 

potentials in this work are given with respect to the MSE. The working electrode was 

either a Ti/IrO2 electrode prepared by thermal decomposition of H2IrCl6 (TDIROF) 

or electrochemically formed anodic iridium oxide film (AIROF) electrode. 
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TDIROF electrodes were prepared by thermal decomposition, at 500°C, of a 

precursor solution of H2IrCl6 (250mM in i-propanol) on a titanium substrate, which 

was previously sandblasted and treated in boiling 1M oxalic acid for 1hour. The 

precursor solution was deposited on the inert substrate by spincoating using a 

SPIN150 wafer spinner (Semiconductor production systems, SPS, Germany). The 

spincoating technique allows creating thin films using the centripetal acceleration of 

the substrate induced by the application of a rotational movement. Due to the 

spinning, the solvent evaporates and after a certain time of spinning, a residual solid 

polymer film covers the substrate. This technique can lead to very uniform films of 

well-controlled thickness. In this work, the loading of the Ti/IrO2 electrode was 1.1 

mg cm
-2

. 

AIROF was formed during potential cycling (200 scans) of a p-Si/Ir electrode 

at 100mV s
-1

 in 1M NaClO4 at pH 9 and 25 °C. A p-Si/Ir electrode was prepared by 

sputtering on p-Si substrate (0.54 mm
2
) an iridium film (0.1 �m) using a thin (0.02 

�m) tantalum interlayer. 

All solutions were prepared using ultrapure distilled water without further 

purification. The pH of the solution was adjusted with NaOH. 

The theoretical mole fractions of the ammonia and ammonium ion, coexisting 

in the solution at a given pH, were calculated using Eq. (6) [6]. 

3

b w

1
[NH ]

1 K [H ]/ K
+

=
+

        (6) 

where 

54

b

3 2

[NH ][OH ]
K 1.8 10

[NH ][H O]

+ �
�= = �        (7) 

14

w
K [H ][OH ] 1.0 10

+ � �= = �        (8) 
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Results and Discussion 

 

1. Surface redox activities on AIROF and TDIROF 

Figure 1 shows cyclic voltammograms recorded on AIROF (Fig. 1a) and TDIROF 

(Fig. 1b) in 1M NaClO4 + NaOH at pH 9. On both electrodes, two redox couples, 

A1/C1 and A2/C2, are present. As discussed in literature [10, 11], the A1/C1 can be 

attributed to Ir(IV)/Ir(III) (Eq. (9)) whereas A2/C2  can be attributed to Ir(V)/Ir(IV) 

surface redox couple (Eq. (10)). 

 
  
Ir(OH)

3
� IrO(OH)

2
+ H

+ + e
�

       (9) 

  
IrO(OH)

2
� IrO

2
(OH) + H

+ + e
�

       (10) 

The main difference between both electrodes studied is the separation of the 

Ir(IV)/Ir(III) peaks (�Ep). On AIROF, �Ep of Ir(IV)/Ir(III) is about 750 mV. As 

reported previously [12, 13], such a high value of �Ep results from the pH changes 

within the oxide film. In fact, as iridium hydroxide is oxidized, protons are released 

and the interior of the oxide film become acidic. As iridium hydroxide is reduced, 

protons are consumed resulting in an increase of the pH inside the hydroxide. As a 

consequence, the oxidation peak A1 appears in the potential range characteristic for 

iridium oxide oxidation in acidic media [8] whereas the reduction peak C1 appears at 

the potential characteristic for iridium oxide reduction in basic media [13], resulting 

in large �Ep. 

 On TDIROF, �Ep of Ir(IV)/Ir(III) is about 150 mV, which is a typical value 

for alkaline solutions [13]. Hence, on the contrary to AIROF, Ir(IV)/Ir(III) response 

on TDIROF seems not to be influenced by the local pH changes within the oxide 

film. The possible explanation of such a difference between TDIROF and AIROF 
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would be that the interior of TDIROF is less accessible, hence, less electrochemically 

active. In fact, it has been reported that TDIROF is less hydrous and less porous 

compared to AIROF [8]. Thus, the observed differences in the electrochemical 

behaviour between TDIROF and AIROF might be related to the differences in the 

porosity of the iridium oxide film.  

 

2. Electrochemical oxidation of ammonia on AIROF and TDIROF 

Figure 2 shows cyclic voltammograms recorded on AIROF (Fig. 2a) and TDIROF 

(Fig. 2b) in the presence and absence of 250 mM NH4ClO4 in 1M NaClO4 at pH 9. 

The electrochemical behaviour of ammonia on iridium hydroxide films depends 

strongly on potential, as discussed below. 

 

2.1 Below 0.25 V 

Below 0.25 V, ammonia considerably influences the response of AIROF, whereas 

TDIROF seems to be less stronlgy affected. On AIROF, the �Ep of A1/C1 redox 

couple becomes smaller (�Ep ~ 100 mV) compared to the situation without 

ammonia. This decrease of �Ep is caused by the simultaneous presence of NH4

+
 and 

NH3 at pH 9 which buffers local pH changes within the AIROF electrode during 

oxidation and reduction [12]. These results confirm that on AIROF, both, the surface 

and the interior of the electrode, are electrochemically active, whereas on TDIROF, 

mainly the electrode surface participates in the electrochemical processes. 

  

2.2 Above 0.25 V 

 On both electrodes, oxidation of ammonia proceeds from 0.25 V vs. MSE and 

results in the appearance of two anodic peaks: one in the forward scan (A3a) and the 
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second in the backward scan (A3b). These peaks are formed in the potential region of 

Ir(V)/Ir(IV) surface redox couple activity (Eq. (10)) indicating that the ammonia 

oxidation may involve this surface redox couple. In fact, ammonia having two free 

electrons can be oxidized on Ir(V) to its corresponding cation radical and be further 

dehydrogenated resulting in formation of Ir(IV), as shown in Eq. (11) [14]. 

e H e

3 3,ads Ir(V) 2,ads Ir(IV)
NH Ir(V) NH NH

� + �+• •+

• � �+ ��� ����      (11) 

In this potential range, however, Ir(IV) is not stable and it is fast re-oxidized to Ir(V) 

(Eq. (10)). As the potential further increases, Ir(V) is oxidized to Ir(VI) and oxygen 

is evolved during the reduction of Ir(VI) to Ir(IV) (Eqs. (12) and (13), respectively). 

  
IrO

2
(OH) � IrO

3
+ H

+ + e
�

                   (12) 

3 2 2 2
IrO H O IrO O 2H 2e

+ �+ � + + +       (13) 

In the backward scan, Ir(VI) is reduced to Ir(V) allowing re-oxidation of 

ammonia. As a consequence, in the backward scan, the A3b peak is formed. The A3b 

peak intensity depends strongly on the upper potential sweep limit (Ep

a
), as shown in 

Fig. 3: the higher is the Ep

a
, the smaller is the A3b peak. This can be explained by the 

fact that during oxygen evolution (Eq. (13)), the local pH at the electrode surface 

becomes more acidic inhibiting oxidation of ammonia. In fact, oxidation of ammonia 

is strongly pH dependent and does not proceed at pH< 7 (Fig. 4) at which mainly 

NH4

+
 is present.  

 

3. Deactivation of TDIROF during ammonia oxidation. 

Figure 5 shows the cyclic voltammograms with various lower sweep potential 

limits (Ep

c
) recorded on AIROF and TDIROF in the presence of 250 mM NH4ClO4 

in 1M NaClO4 at pH 9. On AIROF, the A3a and A3b peaks intensities remain constant 

when Ep

c
 changes (Fig. 5a). On the contrary, both anodic peaks (A3a and A3b) 
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decrease on TDIROF as the lower potential sweep limit decreases. This is an 

indication that the TDIROF is deactivated during ammonia oxidation, if Ep

c
 is not 

sufficiently low.  In fact, it has been reported that the intermediates generated during 

oxidation of ammonia may remain on the electrode surface decreasing the electro-

activity of the electrode [4]. Thus, TDIROF seems not to be regenerated as fast as 

AIROF during the potential scan. The difference between both electrodes may result 

from the difference in the activity of the iridium oxide surface redox couples, as 

discussed in the introduction. 

To regenerate the TDIROF surface it is necessary to polarize the electrode in the 

hydrogen evolution region (HER). Otherwise, the successive scanning would cause 

deactivation of the electrode, followed by a decrease of the ammonia oxidation rate, 

as shown in Fig. 6. The regeneration of the electrode surface during HER may result 

from the reduction of remaining intermediates on the electrode surface [4]. 

 

4. Effect of the concentration on the ammonia oxidation. 

Figure 7 shows cyclic voltammograms recorded on AIROF (Fig. 7a) and 

TDIROF (Fig. 7b) in the absence and presence of 50-250 mM NH4ClO4 in 1M 

NaClO4 at pH 9. On both electrodes, AIROF and TDIROF, A3a and A3b peaks 

increase with the ammonia concentration.  

On AIROF, oxidation peaks increase linearly with the concentration of ammonia 

(inset of Fig. 7a). However, the line does not pass through the origin, probably 

because the local pH changes during ammonia oxidation affect the background 

current. In fact, the oxidation of ammonia itself induces considerable release of 

protons, as shown in Eqs. (1)-(4).  
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On TDIROF, oxidation peaks increase linearly with ammonia concentrations up 

to 150 mM NH4ClO4 (inset of Fig. 7b) and the line passes through the origin. 

However, at the higher ammonia concentrations (> 150 mM), the increase of the 

oxidation peaks is slowed down indicating the saturation of the active sites for 

ammonia oxidation. These results are consistent with Fig. 5b and 6 showing 

deactivation of TDIROF during ammonia oxidation. 

 

Conclusions 

The electrochemical oxidation of ammonia on IrO2 electrodes proceeds in the 

potential region of Ir(V)/Ir(IV) surface redox activity resulting in formation of two 

anodic peaks: one in the forward scan and the second in the backward scan. The 

anodic peak in the backward scan results from oxidation of ammonia on freshly 

reduced Ir(VI) to Ir(V).  

During ammonia oxidation, TDIROF is deactivated, probably, by adsorbed 

products of ammonia oxidation. On the contrary, AIROF seems not to be blocked 

during ammonia oxidation indicating its fast regeneration during the potential scan. 

The difference between both electrodes may result from the difference in the activity 

of the iridium oxide surface redox couples. 

To regenerate the TDIROF surface it is necessary to polarize the electrode in 

the hydrogen evolution region, where intermediates on the electrode surface are 

reduced. The polarization of the electrode in the oxygen evolution region causes a 

decrease of the local pH at the electrode surface, reducing the ammonia oxidation 

rate. In fact, oxidation of ammonia is strongly pH dependent and seems not to 

proceed below pH 7 at which mainly NH4

+
 is present. 
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Figure captions: 

 

Figure 1 

Cyclic voltammograms recorded on (a) AIROF at 100 mV s
-1

 and (b) TDIROF at 

(�)100 mV s
-1

 and (…..) 300 mV s
-1

; solution 1M NaClO4 + NaOH at pH 9 and 

25°C. 

 

Figure 2 

Cyclic voltammograms  in the absence (…..) and presence (—) of ammonia recorded 

on (a) AIROF and (b) TDIROF; scan rate 100 mV s
-1

; solution 250 mM NH4ClO4 + 

1M NaClO4 + NaOH at pH 9 and 25°C. 

 

Figure 3 

Cyclic voltammograms with various upper sweep potential limits recorded on 

TDIROF in the presence of ammonia. Experimental conditions as in Fig. 2. 

 

Figure 4 

Cyclic voltammograms recorded on TDIROF in the presence of ammonia at various 

pH; scan rate 100 mV s
-1

; solution 100 mM NH4ClO4 + 1M NaClO4 + NaOH at pH 

(1) 8, (2) 9, (3) 9.5, (4) 10, (5) 10.5, (6) 11.5 and 25°C;. The inset shows: (�) the 

current peak density as a function of pH including additional experiments and ( �) 

the mole fraction of the ammonia-ammonium ion, calculated from Eq. (6), as a 

function of pH. 
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Figure 5 

Cyclic voltammograms with various lower sweep potential limits recorded on (a) 

AIROF and (b) TDIROF in the presence of ammonia. Experimental conditions as in 

Fig. 2. 

 

Figure 6 

Successive cyclic voltammograms (20 scans) recorded on TDIROF (a) from -0.7 V 

to 0.8V vs. MSE and (b) from -1.4V to 0.8V vs. MSE. Experimental conditions as in 

Fig. 2. 

 

Figure 7 

Cyclic voltammograms of (1) 0 mM, (2) 50 mM, (3) 100mM, (4) 150 mM, (5) 200 

mM, (6) 250 mM NH4ClO4 in 1M NaClO4 + NaOH at pH 9 and 25 °C recorded on 

(a) AIROF and (b) TDIROF at 50 mV s
-1

. The insets show the current peak density 

as a function of the ammonia concentration.  
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