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Abstract

This paper addresses the reconstruction of high resolatiomidirectional images from multiple low resolution imagsith
inexact registration. When omnidirectional images from I@solution vision sensors can be uniquely mapped on thgh@rs,
such a reconstruction can be described as a transform daupér-resolution problem in the spherical imaging franréwiVe
describe how several spherical images with arbitrary imtatin the SO(3) rotation group contribute to the recortsion of a high
resolution image with help of the Spherical Fourier Transf¢SFT). As low resolution images might not be perfectlyisegyed
in practice, the impact of inaccurate alignment on the fans coefficients is further analyzed. We then cast the jogistration
and super-resolution problem as a total least squares nanimination problem in the SFT domain. A- regularized total least
squares problem is also considered. The regularized prokdesolved efficiently by interior point methods. Experirtemith
synthetic and natural images show that the proposed scheade to effective reconstruction of high resolution imagen when
large registration errors exist in the low resolution immagehe quality of the reconstructed images also increagadlyawith the
number of low resolution images, which demonstrates thefiterof the proposed solution in super-resolution scheifiesilly,

we highlight the benefit of the additional regularizatiomstraint that clearly leads to reduced noise and improvednsruction
quality.

Index Terms

super-resolution, 11 regularization, image registratiomnidirectional imaging, spherical images, camera ngtsvo

I. INTRODUCTION

UPER-RESOLUTION typically describes the problem of theorestruction of high quality images from multiple images

of lower resolutions that are typically taken at differenstant in times or from slightly different viewpoints. It npeits
to exploit images that are captured with low resolution sendy exploiting efficiently their diversity in order to poce a
high resolution image. Super-resolution has been quitectivesfield of research in different frameworks such as ruitiv,
video or multispectral imaging [1]-[3]. Efficient solutisrio the super-resolution problem have been proposed widiyes
from perspective cameras that are perfectly registeredsuler-resolution is typically an ill-posed problem, somereri
information is usually exploited in the reconstruction bé thigh quality image through regularization methods. Reation
has been proved to be useful to increase the stability gfodled systems. Tikhonov and total variation (TV) algorishane
two common regularization methods usifigand ¢; norms respectively in order to improve the reconstructierfgrmance.

While perfect registration has been a common assumptionast isuper-resolution works, it is quite rare in practicet tha
the registration parameters can be obtained exactly, edlyewith low cost vision sensors. Small registration esraould be
exploited to improve the reconstruction in some superii®m algorithms in low complexity solutions that avoidetluse
of regularization techniques [4]. However, it is usuallyefarable to solve the registration problem for better pentmnce.
Recent methods have therefore investigated the joint prolaf the registration of low resolution images and supsoltgion
reconstruction. For example, subspace methods and a fioojebeorem are used in [5] for estimating the registration
parameters, followed by reconstruction of the high qualipage. Other approaches have been proposed using reshectiv
alternating minimization or structured nonlinear totaddesquares norm with Gauss-Newton method in the pixel dof6
[7]. Joint registration and super-resolution with regularization has been more recently proposed in [8].

None of the above methods can be easily adapted to omnidinattmages due to their specific geometry. Super-resmiuti
is however particularly interesting in the omnidirectibframework due to the particular design of most imaging eyt that
results in low sampling, and in particular low angular resoh. Omnidirectional images have the advantages to ptese
wider field of view than perspective camera images, but tftisnocomes at a price of a lower resolution with most of the
common sensors. However, the problem of super-resolufiomaidirectional images has not been widely studied. Athans
used in super-resolution of perspective images have bgaiedpo omnidirectional images [9], [10], but without egfilng the
true geometry of the omnidirectional framework. The spe@fometry of the problem has considered in super-resalditio
spherical microphone arrays [11]. More recently, the decharacteristics of omnidirectional images have beersiciened
in [12], where improved quality is obtained by an iterativ@jpction solution with multiple images captured by préhued
rotation of the camera around its main axis.



In this paper, we address the problem of joint registratioth super-resolution of omnidirectional images that ardwapl
with arbitrary rotation. As most omnidirectional imagesian particular the images of catadioptric systems can bgqueaty
mapped onto the unit sphere [13], we propose to address tidepn in a spherical framework. We build on our previous
work [14], [15] and we propose a method that jointly estinsatee registration errors and reconstructs high resolutages
from low resolution spherical images with arbitrary ravas in the SO(3) rotation group. We propose to solve the super
resolution problem with help of the Spherical Fourier Tfan® (SFT) computed from non-uniformly sampled data on the
sphere. We analyze the impact of the registration errorstolueaccurate rotation parameters on the coefficients ofSiH€.
This permits to cast the joint registration and super-tggmh problem as a total least square minimization probletiné SFT
domain. Al; regularization constraint is added to the minimizationbgpemn for further improvement again in the transform
domain. The solution of the minimization problem by interpoints methods permit to achieve efficient reconstrucéeen
in the presence of large registration errors. Experimeiits synthetic and natural images demonstrate the perfacmahthe
proposed solution, whose reconstruction quality gratefaiproves with the number of low resolution images. In dida,
the experimental results confirm the benefits of the reqdtidn constraint the further improve the stability of tlystem and
the quality of the reconstructed images.

The rest of the paper is organized as follows. Section Il dless the spherical framework that is used in our transform
domain super-resolution algorithm. The super-resolupiamblem with rotated images is described in Section Ill. TBection
IV presents the formulation of the joint registration angeuresolution problem and outlines the regularizatiomst@ints that
are proposed for solving this ill-posed system. Finallyct®& V presents experimental results that demonstratesdhidity
of the proposed algorithm for both synthetic and naturalgenaets.

Il. SPHERICAL IMAGING FRAMEWORK

In this section, we introduce the spherical imaging franmméwand the notation that will be used in the paper. We deriee th
system that describe the problem of SFT-based super-tesokn the sphere, and we study the influence of the registrat
error on the SFT coefficients.

First, we choose to work on the 2-sphe§é, which is a natural spatial domain to perform processingmfigirectional
images as shown in [16] and references therein. For exartipeimages from catadioptric camera systems with a single
effective viewpoint can be uniquely mapped onto a spheranvierse stereographic projection [13], [17]. The centrehait
sphere is co-located with the focal point of the parabolioroniand each direction represents a light ray incident & pioint.
Therefore, we assume in this paper that the omnidirectiomadies are given as spherical images or that a pre-progestsip
transforms them into spherical images, as illustrated ¢n Ei Note that this kind of transformation usually canncargutee
an ideal sampling of the light information in practice duahe discretization imposed by the image sensor. But thistisadly
one of the motivations for super-resolution, as efficiembrestruction from multiple images could compensate thectdf of
performing the capture and discretization steps in diffegeometries.

Fig. 1. Left: natural catadioptric image. Right: projectiof the catadioptric image on the sphere.

The spherical image is formally denoted b{f, ¢), which belongs to the Hilbert space of square-integrahietions on the
2-sphereS?. We assume that (6, ¢) is bandlimited toB. The parametergé and ¢ correspond to the longitude and colatitude
angles, which are in the rande, =] and [—=, 7), respectively. These parameters forn28 x 2B equiangular grid on the
sphere. We can obtain a transform representation of theemé&y ¢) with help of the Spherical Fourier Transform (SFT)
[18] or its fast versions [19], [20]. The functian(é, ¢) can be decomposed into a series of spherical harmaffitss
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The Fourier coefficientg(l,m) are calculated as

t.m) = [ 20,0770, 0)a @

wheredw = d cosfdg is the rotation invariant Lebesque measure on the spheré&dndepresent the spherical harmonics
of order(l,m). They are given by

214+ 1)1 —m)!
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where P/"(cos §) are the associated Legendre functions (see Appendix).riteeested readers are referred to [18] for more
details on the construction of these functions.

As the signal is bandlimited, we havél, m) = 0 for [ > B. Furthermore, the signal(6, ¢) can be perfectly reconstructed
from uniformly sampled data on 2B x 2B equiangular grid.

When the sampling is irregular, one can still use a similamiework for the reconstruction of the bandlimited function
x(0, ¢) [21]. Let first denote byP,, the space of polynomials on the sphere. These polynomialgiaen by :

Z > af (6, ). 4)

1=0 |m|<l

The non-uniform samples on the unit sphergf;, ¢,) provide equations the represent the discretization of pobmomials

on the sphere, which read
i(05,05) = Z > all,m)Yy" (05, 65)- 5)

1=0 |m|<l

The set of equations represents a linear system that candoefas computing the coefficients(l, m), which generally
provide an approximation of the SFT coefficiedtd, m). They can finally be substituted in Eq. (1) for the reconstoanc
of the functionz(6, ¢) on the unit sphere. The SFT framework is used for solving tiEesresolution problem in the next
section.

Ill. SUPER-RESOLUTION WITH ROTATED IMAGES ON THE SPHERE

The super-resolution problem is typically an inverse peabwhere a high resolution imageis reconstructed from several
imagesz; with lower resolution. The low resolution images can in gahbe modeled as

Zk(’l?v (,0) = DTx(@, d’) =+ Ek(ﬁv (,0) (6)

whereD and7 are respectively downsampling and transformation opesatnde;, represents the approximation noise. We
consider that we hav&/ low resolution signals that represehtx L spherical images, and we assume that the transformation
operatorZ represents rotations in the rotation group SO(3). Whemalges live on a 2-sphere, this operator permits to register
the images in a common referential. L@t = gzv z(ax, Bk, 7x) denote a non-commutative rotation operator in the rotation
group.SO(3). It describes the registration of th&" low resolution image, which corresponds to the successiptication of
three rotations of anglesy, 5x, andv; on the 2-sphere. The registration of the images produceataridced non-uniform
sampling scheme as illustrated in Figure 2. After the mappihe super-resolution problem becomes similar to thelprob
of reconstruction with non-uniformly sampled data on theesp [21]. We describe in this section how the high resatutio
image can be approximated from low resolution rotated irnagigh help of the Spherical Fourier Transform (SFT).

We first provide a registration model that permits to descthe effect of rotation on the SFT representation of the @sag
When an image is transformed by a rotation operator in SQI§8) spherical harmonics after rotation can be expressed as a
function of the spherical harmonics before rotation [28] plrticular, if the rotation operatgr defines a rotation with angles
(o, B,7) that maps the pointd, ¢) to the point(¢’, ¢’) on the 2-sphere, we can write:

Z " (6, 9) 7)

m=—1

whereU! . (g) is an operator given by ' '
Upin(9) = € Py, (cos B)et™. (8)

The function P!, (cos 3) is the generalization of the associated Legendre polyrismihe main properties of these
polynomials are given in Appendix A, along with fast caldida methods. We can note that’ . (g) is independent of
the angular position of the sampling point.
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Fig. 2: Non-uniform sampling grid formed by low resolutianages with different orientations.

The interesting property in Eq. (7) permits to representiplelimages with different rotations in SO(3) in the sansmsform
domain. We can therefore compute the SFT coefficients of b fégolution image from samples of multiple low resolution
images that are properly registered. The super-resolmioblem becomes equivalent to the problem of reconstnudtiom

samples arbitrarily distributed on the sphere [21], whadat®n is similar to the method described in the previougtisa.
In particular, it is possible to rewrite Eq. (7) in matrix for First we can write, for each spherical harmonics of degree
€)

Y'(¢',¢") = U'(g)Y' (0, 0)
whereU'(g) is a (20 + 1) x (21 + 1) matrix whose elements are given fof,,,, (), ¥m, n such that-1 < m,n < I. Then, if
we gather all the spherical harmonics of degtée the same representation (with=0...(B — 1)), we have

(10)

Y(¢',¢") =U(g)Y (0, 9).

The matrixU(g) is here aB? x B? block diagonal matrix of the form

U%(g)
U'(g)
(11)

U(g) = .
UB2(g)
Us~1(g)

We can now gather th& low resolution images in the same system. We first charaeténie sensor or the sampling scheme
in the sensing device by the gri@y, which represents the set of positions on the 2-sphere wigdreintensity is recorded.

The set of spherical harmonics corresponding to this grigiien by Y, whereY, = {Y (0, ¢) : (0, ¢) € Go}.
The set of spherical harmonids;, of the k" low resolution image can be seen as the result of a samplittgavirid G,

that is a rotated version of the gr{@, by the action of the rotation operatgg. From the above properties, we can write:
(12)

Yi = U(g) Y.

Finally, we can gather the sets of spherical harmonics ghetthe different sensor orientations in the same matrix. By

writing Uy, = U(gx), we have
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The matrixS depends on the sampling done by the sensor. The mRtrig a function of the rotations and models the
registration of the low resolution images on the sphere. Iiiear system of Eq. (13) can be used to reconstruct the full
resolution image, as explained in the previous section. #eeastimate the Fourier coefficients of the high resolutrnage
from the samples of the low resolution images after propgistetion. These samples form a non-uniformly sampled gn
the sphere, and the Fourier coefficients can be estimatdukeasotution an inverse problem [21]. We have the followimgér
system

SR a=z, (14)

wherea is the vector of Fourier coefficients amds the set of samples from the low resolution images. One stimate the
Fourier coefficients(l, m) ~ a(l,m) by solving the above system with least-square minimizati@ihods for example. The
high resolution image: (¢, ¢) can then be reconstructed by inverse spherical Fouriesfoen.

We have assumed in this section that the images can be perfegistered, which is unfortunately not the case in poacti
We note however that we can separate the effect of sampliadheninfluence of the registration of the images in the system
of Eq. (14). This interesting property is exploited in thexinsection for the joint registration and super-resolufgwablem.

IV. JOINT REGISTRATION AND SUPERRESOLUTION
A. Sructured total least square minimization problem

We have seen in the previous section that the high resolutiage can be reconstructed from samples of multiple low
resolution images after registration. However, when thages are not perfectly registered, some noise is introdincéue
system of Eq. (14). Total least squares methods could betasgalve this kind of noisy systems, but such methods usufally
not consider any particular structure in the system maéks.have seen however that our system mériR has an interesting
structure that permits to separate the effect of regismatiue to the properties of spherical harmonics. We can fitrereise
structured total least squares minimization methods imeast the Fourier coefficients from imperfectly registemedges and
later reconstruct the high resolution image.

Our data matrixS R is the product of a sensor-specific sampling matrix and astregion matrix. The registration matrix
R is a function of the rotations parameters for the multiple kesolution images. We denote lythe vector of the rotation
anglesgy, = {au, B, v+ that represent the rotation of tié" low-resolution input image. When the images are not pdgfect
registered, the rotation vectgris unknown or known approximately. The joint registratiordasuper-resolution problem can
thus be written as follows.

Problem 1: Estimate jointly the Fourier coefficients’ and the rotation vectog* such that:

{a",g"} = argl:inllz —S R(g) all, (15)

This is a structured total least square minimization pnoblg/e denote byAa a small change ira and by Ag a small
change ing. The above problem can be approximated by linearizationfikdehave

SR(g+ Ag) (a+Aa)~SR(g) a+ J(a,g)Ag+ S R(g)Aa (16)
The termJ(a, g) represents the Jacobian 8R(g) with respect tog. It is written as
IS R(g) a
oR(e) an
=5 g a

og



Furthermore, since the rotation of each image is indepetn@%ég—) has the form

Wile)
R g1
a(g) _ 5 : (18)
& 0 aUgV(gN)
Ce DEN

With this linearization, the Problem 1 can be solved itesdyi, where each iteration has to solve a minimization probl

of the following form
( J(éﬁg) SRO(g) )( ﬁi >+( —Z+SOR(g)a )

The extra ternL. L = \/cI is a regularization term that increases the stability ofsygtem in casd(a, b) is close to zero.
The parameter$a*, g*} can be determined iteratively by finding incremental chargethe coefficients and rotation vectors
that successively decrease the total least square normtdile structure of the matrix in Eq. (19) the minimizatiomntsi
into a Levenberg-Marquardt minimization algorithm witletharametee equal to Marquardt parameter. The overall algorithm
steps therefore similar to the Levenberg-Marquardt mef28d

While we have provided a general form of the structured tet@a$t squares minimization problem for joint registrataond
super-resolution, the registration is generally defineth wespect to one of the low resolution images, which is takera
reference. We typically chose the first image as a referearw the rotation of all the other images is then defined xeliti
to the reference image. The number of unknowns in the rotatiztor becomes therefore smaller in practice. The adaptat
of the above solution is straightforward.

Finally, we note that the joint registration and super-hetson problem has been addressed previously in [7]. A Leeeg-
Marquardt algorithm has been proposed to solve a least sguoimimization problem with additional Tikhonov regulation.
However, as the computation has to be done in the pixel dgnitancomputation of Jacobian matrices is quite complex. As
our method works in the Fourier domain, we can better sepabhat problems of coefficient approximation and registratio
estimation, which leads to a simpler solution.

argmin
Aa,Ag

(19)

2

B. /;-regularized problem

The joint registration and super-resolution problem isidglly an ill-posed problem. There are multiple solutionsthe
above problem, and the minimization of the total least sggi@orm does not guarantee to lead to the best solution irsterm
of image quality. In particular, the Problem 1 does not put aeanstraint on the SFT coefficients, so that the solution may
present a lot of small coefficients that actually resemblesento noise than to actual image information.

We propose here an extension of the previous method by addifigregularization term on the SFT coefficients. The
spherical harmonics typically have high peaks at diffepgditions of the spectrum. The minimization of thenorm of the
Fourier coefficient vector helps to preserve the high vainethe spectrum, and to smoothen out the low coefficients that
mostly describe noise. The minimization problem withregularization take the following form.

Problem 2: Estimate jointly the Fourier coefficients' and the rotation vectog* such that:

{a",g"} = argmin [|S R(g) a 23 + Alall] (20)
a,g

As the regularization term is not differentiable, the Pesbl2 cannot be solved with a Levenberg-Marquardt mininonati
algorithm or a Newton-based methods. As proposed in [24]ctist function in the minimization problem of Eqg. (20) can be

converted into )
IS R(g) a—Z||2+)\Zui, (1)

with —u; < a; < u; andu; > 0. The inequality constraint can actually be added into thgt éanction via a logarithmic
barrier function to form the following cost function

IS R(g) a—zl; + A ui +t(u.a) (22)
The barrier functions(., .) for complex variables is selected as
¢(u,a) = — > log(u — Re(a;)* — Im(a;)?), (23)

which leads to a cost function that is now differentiable.tAs other elements of the system have to be real-valued teo, w
transform the complex valued matrices and vectors intovalaled ones, similarly to [24]. In particular, a complextra A



and a complex vector are respectively converted into
A Re(A) —Im(A)
T | Im(4) Re(A)
~ | Re(2)
Z= Im(z)

We can again approximate the first part of the cost functiodifgarization as a function ofAa and Ag. Then we can
iteratively solve the Problem 2, where the search directibeach iteration is given by

Ag
H| Aa | =-V (25)
Au
whereH is the Hessian matrix of the system aWdis the gradient.

The computation of the Hessian matrix is however quite cemfidr the registration parameters. We propose to apprdrima
the components that correspond to the registration paeamby first-order derivatives iRL. We thus have

Fi+a ISRz o

(24)

H~ | R'gS§Jd D, D, |- (26)
0 Ds Dy
wherelJ is the Jacobian of the cost function with respecgtorhe term
D; D,
[ oo } (27)

represents the Hessian with respect to dhaenda.

Finally, at each iteration of the algorithm, the unknownteesb, a andu are updated by solving the system of Eq. (25).
The unknown vectors are updated with the values of the stegztdin given byAg, Aa, and Au. The algorithm proceeds
until a maximum number of iterations is reached, or untildieerease of the cost function at each iteration becomegyiidg|

V. EXPERIMENTAL RESULTS
A. Total least square minimization algorithm

We analyze in this section the performance of the joint tegfisn and super-resolution algorithms proposed in tle¥ipus
section. We perform experiments on both synthetic data atdral images. We analyze the performance of the proposed
algorithms with respect to the number of low resolution iemgWVe study also their robustness to noise in the low rasalut
images. We also look at the influence of the system desigmyeas, such as the sampling scheme of the sensor.

We first analyze the performance of the Levenberg-Marquagdirithm of Section IV-A with synthetic spherical images o
realistic looking room scene. We first reconstruct2® x 128 image from 80 low resolution images @6 x 16 pixels. The
rotation angles for the low-resolution images are randaselgcted with a uniform distribution. A random registratirror of
maximumb degrees with a uniform distribution is further introduced &€ach rotation angle. We compare the reconstruction
of a high resolution image without correction of the regitm error (given by solving Eq. (14)) and respectivelyhijibint
registration and super-resolution (as given in ProblemFigure 3 shows the reconstruction of the high resolutiongiena
while Figure 4 proposes a zoom on a highly textured regioténimage. We see that the registration errors highly affeet t
reconstructed image when the registration is not corredted structured total least squares minimization methoasjointly
performs registration and reconstruction is able to corteese registration errors and provides an effective appration of
the high resolution image.

We now observe the effect of number of low-resolution imagegshe convergence of the proposed algorithm for different
registration errors. We usi x 16 low-resolution images to reconstrucééx 64 high-resolution image. We randomly generate
registration errors of maximu, 10 and15 degrees with a uniform distribution with zero mean. The Fégb shows the PSNR
values for the reconstructed images with the Levenberggivindt algorithm for different number of images and regtibn
errors. We see that for small registration errors, an ateurgh-resolution image can be generated from a small nuwibe
low resolution images. The number of images required for agapproximation of the high resolution image augments with
the registration errors, as expected.

We then observe the influence of resolution of the low regmiuimages on the convergence of the Levenberg-Marquardt
algorithm and the quality of the reconstructed image. Wer@pmate images of siz60 x 60, 80 x 80 and 100 x 100 from
multiple low resolution images af5 x 15, 20 x 20 and25 x 25 respectively. We again consider a random registrationenois
at most 5 degrees with a uniform distribution. Figure 6 shtved the joint registration and super-resolution alganitis not
really affected by the resolution of the images. The alganitonverges to similar reconstruction qualities for aflalations.



Fig. 3: Groundtruth high-resolution image (top-left), dow-resolution image (top-right), reconstructed imagéhwegistration
errors, PSNR =24.30 dB (bottom-left), reconstructed imagh the Levenberg-Marquardt algorithm. PSNR = 44.28 dB.
(bottom-right).

Fig. 4: Zoom in the synthetic images. Groundtruth high-heson image (top-left), one low-resolution image (toght),
reconstructed image with registration errors (bottont}lefeconstructed image with the Levenberg-Marquardt rétlgm
(bottom-right).

Then, we look at the robustness of the joint registration sugger-resolution algorithm in the case where the low re®wiu
images are affected by noise. We u$ex 16 low-resolution images to reconstrucééx 64 high-resolution image. We randomly
generate registration errors of maximum10 and 15 degrees with a uniform distribution with zero mean. We farthdd
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Fig. 5: Reconstruction quality of a 64 x 64 pixels omnidirectl image as a function of the number of low resolution ie®g
(16 x 16 pixels), for the Levenberg-Marquardt algorithm.
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a white gaussian noise with zero mean to the low resolutiomges, which results into a SNR of 30dB. The Levenberg-
Marquardt algorithm is then used for the reconstructiorhefhigh resolution image. Figure 7 shows the reconstrucfiity

for different registration errors and noisy images. We $&¢ the reconstruction algorithm demonstrates similafoperance

as in the noiseless case especially when the number of imadegh enough. The algorithm appears to be quite robust to
additive noise even if the quality unsurprisingly stays éovihan the noiseless case.
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Fig. 8: Reconstruction quality vs number of low resolutiorages for an equiangular sampling (Full), a catadioptiid ¢DD)
and a random sampling (RS).

Finally, we test three different sampling schemes in theegation of the low resolution images. As shown in Section Ill
the Levenberg-Marquardt algorithm is independent of thepdimg structure of the sensor. We reconstruct a 64x64 sgaier
image from multiple low resolution images of 256 sampleshe&ut where the samples are given following three different
structures: (i) a 16x16 equiangular grid, (i) a 9x28 samgplgrid corresponding to a catadioptric system and (iii) redcam
grid of 256 samples with a uniform distribution on sphere.aldom registration error of at most 10 degrees with uniform
distribution is applied to each image. Figure 8 shows thdityuaf the reconstructed images as a function of the numifer o
low resolution images, for different sampling schemes.tAtee sampling schemes result into the same image qualityathn
nicely converge when the number of images increases. Fily@rétes the resulting reconstructed images generabed 50
images for each of the sampling grid.

Fig. 9: Reconstructed image with 50 images for an equiamguld, catadioptric grid and random sampling scheme (freft |
to right).

B. Performance of the regularized solution

We study now the performance of the regularized solutiohégaint registration and super-resolution problem. We parad
the results of the Levenberg-Marquardt algorithm with thsults of the/;-regularization proposed in Problem 2. For the sake
of completeness, we also show the performance of-aregularization method from [24], which we have adapted tio o
problem. In particular, thé;-regularized problem takes the following form

{a",g"} = argmin [|S R(g) a2 + Aal}3] (28)
a,g

This is a nonlinear system due to the registration vegtobut all terms can still be differentiated so that the prablean
be solved with Newton-based methods. We compare the diffesgularization strategies for the reconstruction of 684x
pixel images from 16 x 16 pixel images. We further consider thses where the low resolution images respectively have



12

no registration error, and random registration errors okimam 10 degrees with a uniform distribution. Figure 10 skow
the influence of¢; and /¢ regularization terms on the quality of the reconstructedgmas a function of the number of low
resolution images. Both regularization methods improeeghality compared to the Levenberg-Marquardt algorithimwelver,
the ¢;-regularization provides better performance since it gasao preserve the peaks in the Fourier spectrum.
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Fig. 10: Quality of the reconstruction of a 64 x 64 pixel imagahe number of 16 x 16 pixel images, for different regulkation
methods.

We finally analyze the performance of the regularizatioatsetyy in the presence of noise. We ugex 16 low-resolution
images to reconstruct & x 64 high-resolution image. We consider the cases with no megish error, and with random
registration errors of maximum 10 degrees with a uniforntritistion. We further add a white gaussian noise with zerame
to the low resolution images, which results into a SNR of 308RBjure 11 shows the reconstruction results for both the
Levenberg-Marquardt algorithm and thgregularized solution. Again with both image and registrahoise, the regularized
solution rapidly converges to a high reconstruction quaditd performs better than the Levenberg-Marquardt alyorit
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Fig. 11: Quality of the reconstruction of a 64 x 64 pixel imagethe number of 16 x 16 pixel images for theregularized
algorithm in the presence of noise (SNR=30dB).

C. Approximate solution

We finally study in this section an approximate solution te jiint registration and super-resolution algorithms jissd in
this paper. The estimation of the SFT coefficients using titlesét of spherical harmonics is often constraining in ficecdue
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to memory requirements. An approximate solution can beimdtsby successively computing subset of coefficients focksd
of spherical harmonics. The system mat8xR contains spherical harmonics with different degrees an@rsron columns.
We propose an algorithm where the approximation is perfdrine partitioning the system matrix into smaller matridel
that have the same number of rows, but where the number ofmcsicorresponds to different groups of spherical harmonics
degrees. Since the spherical harmonics with same degreecarelated, we do not cut the matrix at arbitrary positions.
Therefore, each submatri; has different number of columns, which is however alwayslemthan a predefined value that
corresponds to the size of the largest block in the algorithm

Let a; be the vector of coefficients corresponding to the spheheaamonics inM;. We successively solve linear systems
of equations of the form

Miai = Zj (29)

wherez; is the residual which is calculated by
z; = zi—1 — Mj_1aj_1 (30)

Note that initial residuatg is the image vectoz. Note that a similar decomposition scheme can be applidieteystem in Eq.
(25) in order to find the search direction. A small differemmevever resides in the order of the iterations as the corvery
of the minimization is targeted in each block.
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Fig. 12: Quality of the reconstruction of 120x120 imageshesriumber of 30x30 images for full and partial SFT implemtoia
of the Levenberg-Marquardt algorithm. The low resolutiorages have a registration error of up to 10 degrees.
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We now compare the performance of the approximate solutiahwe call 'Partial SFT’ to the performance of the original
Levenberg-Marquardt algorithms. Figure 13 shows the PSBIReg for different number of images in case of partial ad fu
SFTs implementations for the reconstruction of a 120x128genfrom multiple 30x30 spherical images that have a random
registration error of up to 10 degrees. We see that the appate solution also converges with the increasing nhumbéovef
resolution images, with a small penalty however comparethéooriginal method. In addition, regrouping of low freqagn
spherical harmonics lets a better minimization when the lmemof images is small. Figure 12 shows two images recortstiuc
with the full and partial SFT implementation of the Leverpdiarquardt algorithm. Although the quality is higher witte
full SFT method around the edges, the quality of the partlal snethod stays comparable while the memory footprint is
around 4 times smaller.

Lastly, we have tested our proposed algorithm with partil Spproximation on real images. We captured 24 omnidwaati
images with different rotations in 3D using a catadiopt@enera. We only know coarsely the registration parametégsir&

14 shows two low resolution omnidirectional images thateheeen mapped onto a sphere of 64 by 64 pixels . Such images
are used for the reconstruction of higher resolution imagfel28 x 128 pixels. Figure 15 shows the reconstructed images
the cases where the registration error has not been calrexid where the joint registration and super-resolutiablem is
solved with the Levenberg-Marquardt algorithm. It is clézat the second method provides higher reconstructiorityweith
sharper reconstruction thanks to the efficient correctibthe registration errors.

VI. CONCLUSIONS

We have addressed the joint registration and super-résolptroblem from low resolution omnidirectional images twit
arbitrary rotations in SO(3). We have proposed an recoctitrualgorithm based on a nonlinear least-squares norimization
problem in the SFT domain, which is solved by a Levenbergguardt method. Ar¢;-regularized solution has then been
proposed to further improve the reconstruction quality quiealently reduce the number of images that are necessary t
achieve the target quality in the high resolution image. Velgehshown that the reconstruction methods are quite nessilie
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Fig. 13: Reconstruction of 120x120 images from fifty 30 x 3@gas with up to 10 degrees of registration errors for fut)le
and partial (right) SFT methods.

Fig. 14: Two of the low resolution omnidirectional imagesppad onto sphere.

-_— | —

Fig. 15: Reconstructed full spherical images without odio: of the registration error (Left) and with the joint isigation
and super-resolution with Levenberg-Marquardt algoriifRight).

to additive noise in the low resolution images, and that thietons are independent of the sampling scheme used in the
sensing device. Finally, we have proposed an approximdtei@o for the computation of the Fourier coefficients based
on a partitioning of the problem. It provides close to examugons with much less memory requirements. The effective
reconstruction performance in experiments with synthatid natural omnidirectional images demonstrates the heméfthe
proposed solution for super-resolution problems in onsidwvi applications with imperfect settings.

APPENDIX
A. Properties of P!

The functionsP.,,, (cos 3) are the generalizations of the associated Legendre funatid can be calculated relative to Jacobi
polynomials [22] as

— | |
Pflnn(cos B8) = [%} sin™ " g cos™+n gpl(:n":n,m-o—n)(cos 8) (31)

They satisfy certain symmetry relations such as:

Py (@) = (=)™ " Pl () Pryyy(2)

(_1)m_npl—m,—n(w)

1)l+npl—m,n(_z) (32)
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(m—n,m+n)
—-m

Jacobi PolynomialP, (cos ) is given by

'l—n+1)

(—m)TU+m+1)
(I—m)

(R ()

q=0

P (cos ) =

33)

whereI'(z) is the gamma function. For positive integers, the gammatfomecan be calculated as

I'(z) =(z—1)! (34)
From |m| < I, |n| < [ and the symmetry properties in Eq. (32), we can assure thatsrto the Gamma functions in Eq. (33)
are positive integers. Thus, Eq. (33) turns into

(I —mn)!
T —=m)(l + m)!
(1-m)

> () e (5
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