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Abstract

This paper addresses the reconstruction of high resolutionomnidirectional images from multiple low resolution images with
inexact registration. When omnidirectional images from low resolution vision sensors can be uniquely mapped on the 2-sphere,
such a reconstruction can be described as a transform domainsuper-resolution problem in the spherical imaging framework. We
describe how several spherical images with arbitrary rotations in the SO(3) rotation group contribute to the reconstruction of a high
resolution image with help of the Spherical Fourier Transform (SFT). As low resolution images might not be perfectly registered
in practice, the impact of inaccurate alignment on the transform coefficients is further analyzed. We then cast the jointregistration
and super-resolution problem as a total least squares norm minimization problem in the SFT domain. Al1- regularized total least
squares problem is also considered. The regularized problem is solved efficiently by interior point methods. Experiments with
synthetic and natural images show that the proposed scheme leads to effective reconstruction of high resolution imageseven when
large registration errors exist in the low resolution images. The quality of the reconstructed images also increases rapidly with the
number of low resolution images, which demonstrates the benefits of the proposed solution in super-resolution schemes.Finally,
we highlight the benefit of the additional regularization constraint that clearly leads to reduced noise and improved reconstruction
quality.

Index Terms

super-resolution, l1 regularization, image registration, omnidirectional imaging, spherical images, camera networks

I. I NTRODUCTION

SUPER-RESOLUTION typically describes the problem of the reconstruction of high quality images from multiple images
of lower resolutions that are typically taken at different instant in times or from slightly different viewpoints. It permits

to exploit images that are captured with low resolution sensors by exploiting efficiently their diversity in order to produce a
high resolution image. Super-resolution has been quite an active field of research in different frameworks such as multi-view,
video or multispectral imaging [1]–[3]. Efficient solutions to the super-resolution problem have been proposed with images
from perspective cameras that are perfectly registered. Assuper-resolution is typically an ill-posed problem, some apriori
information is usually exploited in the reconstruction of the high quality image through regularization methods. Regularization
has been proved to be useful to increase the stability of ill-posed systems. Tikhonov and total variation (TV) algorithms are
two common regularization methods usingℓ2 andℓ1 norms respectively in order to improve the reconstruction performance.

While perfect registration has been a common assumption in most super-resolution works, it is quite rare in practice that
the registration parameters can be obtained exactly, especially with low cost vision sensors. Small registration errors could be
exploited to improve the reconstruction in some super-resolution algorithms in low complexity solutions that avoid the use
of regularization techniques [4]. However, it is usually preferable to solve the registration problem for better performance.
Recent methods have therefore investigated the joint problem of the registration of low resolution images and super-resolution
reconstruction. For example, subspace methods and a projection theorem are used in [5] for estimating the registration
parameters, followed by reconstruction of the high qualityimage. Other approaches have been proposed using respectively
alternating minimization or structured nonlinear total least-squares norm with Gauss-Newton method in the pixel domain [6],
[7]. Joint registration and super-resolution withℓ1 regularization has been more recently proposed in [8].

None of the above methods can be easily adapted to omnidirectional images due to their specific geometry. Super-resolution
is however particularly interesting in the omnidirectional framework due to the particular design of most imaging systems that
results in low sampling, and in particular low angular resolution. Omnidirectional images have the advantages to present a
wider field of view than perspective camera images, but this often comes at a price of a lower resolution with most of the
common sensors. However, the problem of super-resolution of omnidirectional images has not been widely studied. Algorithms
used in super-resolution of perspective images have been applied to omnidirectional images [9], [10], but without exploiting the
true geometry of the omnidirectional framework. The specific geometry of the problem has considered in super-resolution for
spherical microphone arrays [11]. More recently, the specific characteristics of omnidirectional images have been considered
in [12], where improved quality is obtained by an iterative projection solution with multiple images captured by pre-defined
rotation of the camera around its main axis.
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In this paper, we address the problem of joint registration and super-resolution of omnidirectional images that are captured
with arbitrary rotation. As most omnidirectional images and in particular the images of catadioptric systems can be uniquely
mapped onto the unit sphere [13], we propose to address the problem in a spherical framework. We build on our previous
work [14], [15] and we propose a method that jointly estimates the registration errors and reconstructs high resolutionimages
from low resolution spherical images with arbitrary rotations in the SO(3) rotation group. We propose to solve the super-
resolution problem with help of the Spherical Fourier Transform (SFT) computed from non-uniformly sampled data on the
sphere. We analyze the impact of the registration errors dueto inaccurate rotation parameters on the coefficients of theSFT.
This permits to cast the joint registration and super-resolution problem as a total least square minimization problem in the SFT
domain. A l1 regularization constraint is added to the minimization problem for further improvement again in the transform
domain. The solution of the minimization problem by interior points methods permit to achieve efficient reconstructioneven
in the presence of large registration errors. Experiments with synthetic and natural images demonstrate the performance of the
proposed solution, whose reconstruction quality gracefully improves with the number of low resolution images. In addition,
the experimental results confirm the benefits of the regularization constraint the further improve the stability of the system and
the quality of the reconstructed images.

The rest of the paper is organized as follows. Section II describes the spherical framework that is used in our transform
domain super-resolution algorithm. The super-resolutionproblem with rotated images is described in Section III. Then Section
IV presents the formulation of the joint registration and super-resolution problem and outlines the regularization constraints that
are proposed for solving this ill-posed system. Finally, Section V presents experimental results that demonstrates the validity
of the proposed algorithm for both synthetic and natural image sets.

II. SPHERICAL IMAGING FRAMEWORK

In this section, we introduce the spherical imaging framework and the notation that will be used in the paper. We derive the
system that describe the problem of SFT-based super-resolution on the sphere, and we study the influence of the registration
error on the SFT coefficients.

First, we choose to work on the 2-sphereS2, which is a natural spatial domain to perform processing of omnidirectional
images as shown in [16] and references therein. For example,the images from catadioptric camera systems with a single
effective viewpoint can be uniquely mapped onto a sphere viainverse stereographic projection [13], [17]. The centre ofthat
sphere is co-located with the focal point of the parabolic mirror and each direction represents a light ray incident to that point.
Therefore, we assume in this paper that the omnidirectionalimages are given as spherical images or that a pre-processing step
transforms them into spherical images, as illustrated in Fig. 1. Note that this kind of transformation usually cannot guarantee
an ideal sampling of the light information in practice due tothe discretization imposed by the image sensor. But this is actually
one of the motivations for super-resolution, as efficient reconstruction from multiple images could compensate the effects of
performing the capture and discretization steps in different geometries.

Fig. 1: Left: natural catadioptric image. Right: projection of the catadioptric image on the sphere.

The spherical image is formally denoted byx(θ, φ), which belongs to the Hilbert space of square-integrable functions on the
2-sphereS2. We assume thatx(θ, φ) is bandlimited toB. The parametersθ andφ correspond to the longitude and colatitude
angles, which are in the range[0, π] and [−π, π), respectively. These parameters form a2B × 2B equiangular grid on the
sphere. We can obtain a transform representation of the image x(θ, φ) with help of the Spherical Fourier Transform (SFT)
[18] or its fast versions [19], [20]. The functionx(θ, φ) can be decomposed into a series of spherical harmonicsY m

l as

x(θ, φ) =
∑

l∈N

∑

|m|≤l

x̂(l, m)Y m
l (θ, φ) (1)
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The Fourier coefficientŝx(l, m) are calculated as

x̂(l, m) =

∫

S2

x(θ, φ)Ȳ m
l (θ, φ)dω, (2)

wheredω = d cos θdφ is the rotation invariant Lebesque measure on the sphere andȲ m
l represent the spherical harmonics

of order(l, m). They are given by

Y m
l (θ, φ) = (−1)m

√
(2l + 1)(l − m)!

4π(l + m)!
Pm

l (cos θ)eimφ, (3)

wherePm
l (cos θ) are the associated Legendre functions (see Appendix). The interested readers are referred to [18] for more

details on the construction of these functions.
As the signal is bandlimited, we havêx(l, m) = 0 for l ≥ B. Furthermore, the signalx(θ, φ) can be perfectly reconstructed

from uniformly sampled data on a2B × 2B equiangular grid.
When the sampling is irregular, one can still use a similar framework for the reconstruction of the bandlimited function

x(θ, φ) [21]. Let first denote byPM the space of polynomials on the sphere. These polynomials are given by :

p(θ, φ) =

N−1∑

l=0

∑

|m|≤l

a(l, m)Y m
l (θ, φ). (4)

The non-uniform samples on the unit sphere,pj(θj , φj) provide equations the represent the discretization of suchpolynomials
on the sphere, which read

pj(θj , φj) =
N−1∑

l=0

∑

|m|≤l

a(l, m)Y m
l (θj , φj). (5)

The set of equations represents a linear system that can be used for computing the coefficientsa(l, m), which generally
provide an approximation of the SFT coefficientsx̂(l, m). They can finally be substituted in Eq. (1) for the reconstruction
of the functionx(θ, φ) on the unit sphere. The SFT framework is used for solving the super-resolution problem in the next
section.

III. SUPER-RESOLUTION WITH ROTATED IMAGES ON THE SPHERE

The super-resolution problem is typically an inverse problem where a high resolution imagex is reconstructed from several
imageszk with lower resolution. The low resolution images can in general be modeled as

zk(ϑ, ϕ) = DT x(θ, φ) + ǫk(ϑ, ϕ) (6)

whereD andT are respectively downsampling and transformation operators andǫk represents the approximation noise. We
consider that we haveN low resolution signals that representL×L spherical images, and we assume that the transformation
operatorT represents rotations in the rotation group SO(3). When all images live on a 2-sphere, this operator permits to register
the images in a common referential. Letgk = gZY Z(αk, βk, γk) denote a non-commutative rotation operator in the rotation
groupSO(3). It describes the registration of thekth low resolution image, which corresponds to the successive application of
three rotations of anglesαk, βk, andγk on the 2-sphere. The registration of the images produces an interlaced non-uniform
sampling scheme as illustrated in Figure 2. After the mapping, the super-resolution problem becomes similar to the problem
of reconstruction with non-uniformly sampled data on the sphere [21]. We describe in this section how the high resolution
image can be approximated from low resolution rotated images with help of the Spherical Fourier Transform (SFT).

We first provide a registration model that permits to describe the effect of rotation on the SFT representation of the images.
When an image is transformed by a rotation operator in SO(3),the spherical harmonics after rotation can be expressed as a
function of the spherical harmonics before rotation [22]. In particular, if the rotation operatorg defines a rotation with angles
(α, β, γ) that maps the point(θ, φ) to the point(θ′, φ′) on the 2-sphere, we can write:

Y n
l (θ′, φ′) =

l∑

m=−l

U l
mn(g)Y n

l (θ, φ) (7)

whereU l
mn(g) is an operator given by

U l
mn(g) = eimαP l

mn(cos β)einγ . (8)

The function P l
mn(cosβ) is the generalization of the associated Legendre polynomials. The main properties of these

polynomials are given in Appendix A, along with fast calculation methods. We can note thatU l
mn(g) is independent of

the angular position of the sampling point.
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Fig. 2: Non-uniform sampling grid formed by low resolution images with different orientations.

The interesting property in Eq. (7) permits to represent multiple images with different rotations in SO(3) in the same transform
domain. We can therefore compute the SFT coefficients of a high resolution image from samples of multiple low resolution
images that are properly registered. The super-resolutionproblem becomes equivalent to the problem of reconstruction from
samples arbitrarily distributed on the sphere [21], whose solution is similar to the method described in the previous section.

In particular, it is possible to rewrite Eq. (7) in matrix form. First we can write, for each spherical harmonics of degreel,

Yl(θ′, φ′) = Ul(g)Yl(θ, φ) (9)

whereUl(g) is a (2l + 1) × (2l + 1) matrix whose elements are given forU l
mn(g), ∀m, n such that−l ≤ m, n ≤ l. Then, if

we gather all the spherical harmonics of degreel in the same representation (withl = 0 . . . (B − 1)), we have

Y(θ′, φ′) = U(g)Y(θ, φ). (10)

The matrixU(g) is here aB2 × B2 block diagonal matrix of the form

U(g) =




U0(g)
U1(g)

. . .
UB−2(g)

UB−1(g)




(11)

We can now gather theN low resolution images in the same system. We first characterize the sensor or the sampling scheme
in the sensing device by the gridG0, which represents the set of positions on the 2-sphere wherelight intensity is recorded.
The set of spherical harmonics corresponding to this grid isgiven byY0, whereY0 = {Y(θ, φ) : (θ, φ) ∈ G0}.

The set of spherical harmonicsYk of the kth low resolution image can be seen as the result of a sampling with a gridGk

that is a rotated version of the gridG0 by the action of the rotation operatorgk. From the above properties, we can write:

YT

k = U(gk)YT

0. (12)

Finally, we can gather the sets of spherical harmonics givenby the different sensor orientations in the same matrix. By
writing Uk = U(gk), we have
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Y1

Y2

...
YN


 =




Y0U
T

1

Y0U
T

2
...

Y0U
T

N−1

Y0U
T

N




=




Y0

Y0

. . .
Y0




︸ ︷︷ ︸
S




UT

1

UT

2
...

UT

N−1

UT

N




︸ ︷︷ ︸
R

(13)

The matrixS depends on the sampling done by the sensor. The matrixR is a function of the rotations and models the
registration of the low resolution images on the sphere. Thelinear system of Eq. (13) can be used to reconstruct the full
resolution image, as explained in the previous section. We can estimate the Fourier coefficients of the high resolution image
from the samples of the low resolution images after proper registration. These samples form a non-uniformly sampled grid on
the sphere, and the Fourier coefficients can be estimated as the solution an inverse problem [21]. We have the following linear
system

S R a = z, (14)

wherea is the vector of Fourier coefficients andz is the set of samples from the low resolution images. One can estimate the
Fourier coefficientŝx(l, m) ≈ a(l, m) by solving the above system with least-square minimizationmethods for example. The
high resolution imagex(θ, φ) can then be reconstructed by inverse spherical Fourier transform.

We have assumed in this section that the images can be perfectly registered, which is unfortunately not the case in practice.
We note however that we can separate the effect of sampling and the influence of the registration of the images in the system
of Eq. (14). This interesting property is exploited in the next section for the joint registration and super-resolutionproblem.

IV. JOINT REGISTRATION AND SUPER-RESOLUTION

A. Structured total least square minimization problem

We have seen in the previous section that the high resolutionimage can be reconstructed from samples of multiple low
resolution images after registration. However, when the images are not perfectly registered, some noise is introducedin the
system of Eq. (14). Total least squares methods could be usedto solve this kind of noisy systems, but such methods usuallydo
not consider any particular structure in the system matrix.We have seen however that our system matrixS R has an interesting
structure that permits to separate the effect of registration due to the properties of spherical harmonics. We can therefore use
structured total least squares minimization methods to estimate the Fourier coefficients from imperfectly registeredimages and
later reconstruct the high resolution image.

Our data matrixS R is the product of a sensor-specific sampling matrix and a registration matrix. The registration matrix
R is a function of the rotations parameters for the multiple low resolution images. We denote byg the vector of the rotation
anglesgk = {αk, βk, γk} that represent the rotation of thekth low-resolution input image. When the images are not perfectly
registered, the rotation vectorg is unknown or known approximately. The joint registration and super-resolution problem can
thus be written as follows.

Problem 1: Estimate jointly the Fourier coefficientsa∗ and the rotation vectorg∗ such that:

{a∗,g∗} = argmin
a,g

||z − S R(g) a||2 (15)

This is a structured total least square minimization problem. We denote by∆a a small change ina and by∆g a small
change ing. The above problem can be approximated by linearization. Wefirst have

S R(g + ∆g) (a + ∆a) ≈ S R(g) a + J(a,g)∆g + S R(g)∆a (16)

The termJ(a,g) represents the Jacobian ofSR(g) with respect tog. It is written as

J(a,g) =
∂(S R(g) a)

∂g

= S
∂R(g)

∂g
a

(17)
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Furthermore, since the rotation of each image is independent, ∂R(g)
∂g

has the form

∂R(g)

∂g
=




∂UT

1
(g1)

∂g1

. . . 0

...
. . .

...

0 . . .
∂UT

N
(gN)

∂gN


 (18)

With this linearization, the Problem 1 can be solved iteratively, where each iteration has to solve a minimization problem
of the following form

argmin
∆a,∆g

˛

˛

˛

˛

˛

˛

˛

˛

„

J(a,g) S R(g)
L 0

« „

∆g
∆a

«

+

„

−z + S R(g) a
0

«

˛

˛

˛

˛

˛

˛

˛

˛

2

(19)

The extra termL. L =
√

cI is a regularization term that increases the stability of thesystem in caseJ(a,b) is close to zero.
The parameters{a∗,g∗} can be determined iteratively by finding incremental changes to the coefficients and rotation vectors
that successively decrease the total least square norm. Dueto the structure of the matrix in Eq. (19) the minimization turns
into a Levenberg-Marquardt minimization algorithm with the parameterc equal to Marquardt parameter. The overall algorithm
steps therefore similar to the Levenberg-Marquardt method[23].

While we have provided a general form of the structured totalleast squares minimization problem for joint registrationand
super-resolution, the registration is generally defined with respect to one of the low resolution images, which is takenas a
reference. We typically chose the first image as a reference,and the rotation of all the other images is then defined relatively
to the reference image. The number of unknowns in the rotation vector becomes therefore smaller in practice. The adaptation
of the above solution is straightforward.

Finally, we note that the joint registration and super-resolution problem has been addressed previously in [7]. A Levenberg-
Marquardt algorithm has been proposed to solve a least square minimization problem with additional Tikhonov regularization.
However, as the computation has to be done in the pixel domain, the computation of Jacobian matrices is quite complex. As
our method works in the Fourier domain, we can better separate the problems of coefficient approximation and registration
estimation, which leads to a simpler solution.

B. ℓ1-regularized problem

The joint registration and super-resolution problem is typically an ill-posed problem. There are multiple solutions to the
above problem, and the minimization of the total least squares norm does not guarantee to lead to the best solution in terms
of image quality. In particular, the Problem 1 does not put any constraint on the SFT coefficients, so that the solution may
present a lot of small coefficients that actually resembles more to noise than to actual image information.

We propose here an extension of the previous method by addinga ℓ1 regularization term on the SFT coefficients. The
spherical harmonics typically have high peaks at differentpositions of the spectrum. The minimization of theℓ1 norm of the
Fourier coefficient vector helps to preserve the high valuesin the spectrum, and to smoothen out the low coefficients that
mostly describe noise. The minimization problem withℓ1 regularization take the following form.

Problem 2: Estimate jointly the Fourier coefficientsa∗ and the rotation vectorg∗ such that:

{a∗,g∗} = argmin
a,g

[
‖S R(g) a − z‖2

2 + λ‖a‖1

]
. (20)

As the regularization term is not differentiable, the Problem 2 cannot be solved with a Levenberg-Marquardt minimization
algorithm or a Newton-based methods. As proposed in [24], the cost function in the minimization problem of Eq. (20) can be
converted into

‖S R(g) a − z‖2
2 + λ

∑

i

ui, (21)

with −ui < ai < ui and ui > 0. The inequality constraint can actually be added into the cost function via a logarithmic
barrier function to form the following cost function

‖S R(g) a − z‖2
2 + λ

∑

i

ui + tφ(u,a) (22)

The barrier functionφ(., .) for complex variables is selected as

φ(u,a) = −
∑

i

log(u2
i − Re(ai)

2 − Im(ai)
2), (23)

which leads to a cost function that is now differentiable. Asthe other elements of the system have to be real-valued too, we
transform the complex valued matrices and vectors into real-valued ones, similarly to [24]. In particular, a complex matrix A
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and a complex vectorz are respectively converted into

Ã =

[
Re(A) −Im(A)
Im(A) Re(A)

]

z̃ =

[
Re(z)
Im(z)

] (24)

We can again approximate the first part of the cost function bylinearization as a function of∆a and ∆g. Then we can
iteratively solve the Problem 2, where the search directionat each iteration is given by

H




∆g

∆ã

∆u


 = −∇ (25)

whereH is the Hessian matrix of the system and∇ is the gradient.
The computation of the Hessian matrix is however quite complex for the registration parameters. We propose to approximate

the components that correspond to the registration parameters by first-order derivatives inH. We thus have

H ≈




J̃TJ̃ + cI J̃TS̃ R̃(g) 0

R̃T(g)S̃TJ̃ D1 D2

0 D3 D4



 . (26)

whereJ̃ is the Jacobian of the cost function with respect tog. The term
[

D1 D2

D3 D4

]
(27)

represents the Hessian with respect to theã and ũ.
Finally, at each iteration of the algorithm, the unknown vectorsb, a andu are updated by solving the system of Eq. (25).

The unknown vectors are updated with the values of the step direction given by∆g, ∆a, and∆u. The algorithm proceeds
until a maximum number of iterations is reached, or until thedecrease of the cost function at each iteration becomes negligible.

V. EXPERIMENTAL RESULTS

A. Total least square minimization algorithm

We analyze in this section the performance of the joint registration and super-resolution algorithms proposed in the previous
section. We perform experiments on both synthetic data and natural images. We analyze the performance of the proposed
algorithms with respect to the number of low resolution images. We study also their robustness to noise in the low resolution
images. We also look at the influence of the system design parameters, such as the sampling scheme of the sensor.

We first analyze the performance of the Levenberg-Marquardtalgorithm of Section IV-A with synthetic spherical images of
realistic looking room scene. We first reconstruct a128 × 128 image from 80 low resolution images of16 × 16 pixels. The
rotation angles for the low-resolution images are randomlyselected with a uniform distribution. A random registration error of
maximum5 degrees with a uniform distribution is further introduced for each rotation angle. We compare the reconstruction
of a high resolution image without correction of the registration error (given by solving Eq. (14)) and respectively with joint
registration and super-resolution (as given in Problem 1).Figure 3 shows the reconstruction of the high resolution image,
while Figure 4 proposes a zoom on a highly textured region in the image. We see that the registration errors highly affect the
reconstructed image when the registration is not corrected. The structured total least squares minimization methods that jointly
performs registration and reconstruction is able to correct these registration errors and provides an effective approximation of
the high resolution image.

We now observe the effect of number of low-resolution imageson the convergence of the proposed algorithm for different
registration errors. We use16×16 low-resolution images to reconstruct a64×64 high-resolution image. We randomly generate
registration errors of maximum5, 10 and15 degrees with a uniform distribution with zero mean. The Figure 5 shows the PSNR
values for the reconstructed images with the Levenberg-Marquardt algorithm for different number of images and registration
errors. We see that for small registration errors, an accurate high-resolution image can be generated from a small number of
low resolution images. The number of images required for a good approximation of the high resolution image augments with
the registration errors, as expected.

We then observe the influence of resolution of the low resolution images on the convergence of the Levenberg-Marquardt
algorithm and the quality of the reconstructed image. We approximate images of size60 × 60, 80 × 80 and100 × 100 from
multiple low resolution images of15× 15, 20× 20 and25× 25 respectively. We again consider a random registration noise of
at most 5 degrees with a uniform distribution. Figure 6 showsthat the joint registration and super-resolution algorithm is not
really affected by the resolution of the images. The algorithm converges to similar reconstruction qualities for all resolutions.
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Fig. 3: Groundtruth high-resolution image (top-left), onelow-resolution image (top-right), reconstructed image with registration
errors, PSNR =24.30 dB (bottom-left), reconstructed imagewith the Levenberg-Marquardt algorithm. PSNR = 44.28 dB.
(bottom-right).

Fig. 4: Zoom in the synthetic images. Groundtruth high-resolution image (top-left), one low-resolution image (top-right),
reconstructed image with registration errors (bottom-left), reconstructed image with the Levenberg-Marquardt algorithm
(bottom-right).

Then, we look at the robustness of the joint registration andsuper-resolution algorithm in the case where the low resolution
images are affected by noise. We use16×16 low-resolution images to reconstruct a64×64 high-resolution image. We randomly
generate registration errors of maximum5, 10 and 15 degrees with a uniform distribution with zero mean. We further add
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Fig. 5: Reconstruction quality of a 64 x 64 pixels omnidirectional image as a function of the number of low resolution images
(16 x 16 pixels), for the Levenberg-Marquardt algorithm.
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Fig. 6: Reconstruction quality for the Levenberg-Marquardt algorithm for images of different resolutions.
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Fig. 7: The reconstruction quality on existence of image noise of SNR=30dB
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a white gaussian noise with zero mean to the low resolution images, which results into a SNR of 30dB. The Levenberg-
Marquardt algorithm is then used for the reconstruction of the high resolution image. Figure 7 shows the reconstructionquality
for different registration errors and noisy images. We see that the reconstruction algorithm demonstrates similar performance
as in the noiseless case especially when the number of imagesis high enough. The algorithm appears to be quite robust to
additive noise even if the quality unsurprisingly stays lower than the noiseless case.
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Fig. 8: Reconstruction quality vs number of low resolution images for an equiangular sampling (Full), a catadioptric grid (OD)
and a random sampling (RS).

Finally, we test three different sampling schemes in the generation of the low resolution images. As shown in Section III,
the Levenberg-Marquardt algorithm is independent of the sampling structure of the sensor. We reconstruct a 64x64 spherical
image from multiple low resolution images of 256 samples each, but where the samples are given following three different
structures: (i) a 16x16 equiangular grid, (ii) a 9x28 sampling grid corresponding to a catadioptric system and (iii) a random
grid of 256 samples with a uniform distribution on sphere. A random registration error of at most 10 degrees with uniform
distribution is applied to each image. Figure 8 shows the quality of the reconstructed images as a function of the number of
low resolution images, for different sampling schemes. Allthree sampling schemes result into the same image quality and all
nicely converge when the number of images increases. Fig 9 illustrates the resulting reconstructed images generated from 50
images for each of the sampling grid.

Fig. 9: Reconstructed image with 50 images for an equiangular grid, catadioptric grid and random sampling scheme (from left
to right).

B. Performance of the regularized solution

We study now the performance of the regularized solution to the joint registration and super-resolution problem. We compared
the results of the Levenberg-Marquardt algorithm with the results of theℓ1-regularization proposed in Problem 2. For the sake
of completeness, we also show the performance of anℓ2-regularization method from [24], which we have adapted to our
problem. In particular, theℓ2-regularized problem takes the following form

{a∗,g∗} = argmin
a,g

[
‖S R(g) a − z‖2

2 + λ‖a‖2
2

]
. (28)

This is a nonlinear system due to the registration vectorg, but all terms can still be differentiated so that the problem can
be solved with Newton-based methods. We compare the different regularization strategies for the reconstruction of 64 x64
pixel images from 16 x 16 pixel images. We further consider the cases where the low resolution images respectively have
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no registration error, and random registration errors of maximum 10 degrees with a uniform distribution. Figure 10 shows
the influence ofℓ1 and ℓ2 regularization terms on the quality of the reconstructed image as a function of the number of low
resolution images. Both regularization methods improve the quality compared to the Levenberg-Marquardt algorithm. However,
the ℓ1-regularization provides better performance since it manages to preserve the peaks in the Fourier spectrum.
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Fig. 10: Quality of the reconstruction of a 64 x 64 pixel imagevs the number of 16 x 16 pixel images, for different regularization
methods.

We finally analyze the performance of the regularization strategy in the presence of noise. We use16 × 16 low-resolution
images to reconstruct a64 × 64 high-resolution image. We consider the cases with no registration error, and with random
registration errors of maximum 10 degrees with a uniform distribution. We further add a white gaussian noise with zero mean
to the low resolution images, which results into a SNR of 30dB. Figure 11 shows the reconstruction results for both the
Levenberg-Marquardt algorithm and theℓ1-regularized solution. Again with both image and registration noise, the regularized
solution rapidly converges to a high reconstruction quality and performs better than the Levenberg-Marquardt algorithm.
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Fig. 11: Quality of the reconstruction of a 64 x 64 pixel imagevs the number of 16 x 16 pixel images for theℓ1-regularized
algorithm in the presence of noise (SNR=30dB).

C. Approximate solution

We finally study in this section an approximate solution to the joint registration and super-resolution algorithms proposed in
this paper. The estimation of the SFT coefficients using the full set of spherical harmonics is often constraining in practice due
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to memory requirements. An approximate solution can be obtained by successively computing subset of coefficients for blocks
of spherical harmonics. The system matrixS R contains spherical harmonics with different degrees and orders on columns.
We propose an algorithm where the approximation is performed by partitioning the system matrix into smaller matricesMi

that have the same number of rows, but where the number of columns corresponds to different groups of spherical harmonics
degrees. Since the spherical harmonics with same degree arecorrelated, we do not cut the matrix at arbitrary positions.
Therefore, each submatrixMi has different number of columns, which is however always smaller than a predefined value that
corresponds to the size of the largest block in the algorithm.

Let ai be the vector of coefficients corresponding to the sphericalharmonics inMi. We successively solve linear systems
of equations of the form

Miai = zi (29)

wherezi is the residual which is calculated by

zi = zi−1 − Mi−1ai−1 (30)

Note that initial residualz0 is the image vectorz. Note that a similar decomposition scheme can be applied to the system in Eq.
(25) in order to find the search direction. A small differencehowever resides in the order of the iterations as the convergence
of the minimization is targeted in each block.
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Fig. 12: Quality of the reconstruction of 120x120 images vs the number of 30x30 images for full and partial SFT implementation
of the Levenberg-Marquardt algorithm. The low resolution images have a registration error of up to 10 degrees.

We now compare the performance of the approximate solution that we call ’Partial SFT’ to the performance of the original
Levenberg-Marquardt algorithms. Figure 13 shows the PSNR values for different number of images in case of partial and full
SFTs implementations for the reconstruction of a 120x120 image from multiple 30x30 spherical images that have a random
registration error of up to 10 degrees. We see that the approximate solution also converges with the increasing number oflow
resolution images, with a small penalty however compared tothe original method. In addition, regrouping of low frequency
spherical harmonics lets a better minimization when the number of images is small. Figure 12 shows two images reconstructed
with the full and partial SFT implementation of the Levenberg-Marquardt algorithm. Although the quality is higher withthe
full SFT method around the edges, the quality of the partial SFT method stays comparable while the memory footprint is
around 4 times smaller.

Lastly, we have tested our proposed algorithm with partial SFT approximation on real images. We captured 24 omnidirectional
images with different rotations in 3D using a catadioptric camera. We only know coarsely the registration parameters. Figure
14 shows two low resolution omnidirectional images that have been mapped onto a sphere of 64 by 64 pixels . Such images
are used for the reconstruction of higher resolution imagesof 128 x 128 pixels. Figure 15 shows the reconstructed imagesin
the cases where the registration error has not been corrected, and where the joint registration and super-resolution problem is
solved with the Levenberg-Marquardt algorithm. It is clearthat the second method provides higher reconstruction quality with
sharper reconstruction thanks to the efficient correction of the registration errors.

VI. CONCLUSIONS

We have addressed the joint registration and super-resolution problem from low resolution omnidirectional images with
arbitrary rotations in SO(3). We have proposed an reconstruction algorithm based on a nonlinear least-squares norm optimization
problem in the SFT domain, which is solved by a Levenberg-Marquardt method. Anℓ1-regularized solution has then been
proposed to further improve the reconstruction quality or equivalently reduce the number of images that are necessary to
achieve the target quality in the high resolution image. We have shown that the reconstruction methods are quite resilient
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Fig. 13: Reconstruction of 120x120 images from fifty 30 x 30 images with up to 10 degrees of registration errors for full(left)
and partial (right) SFT methods.

Fig. 14: Two of the low resolution omnidirectional images mapped onto sphere.

Fig. 15: Reconstructed full spherical images without correction of the registration error (Left) and with the joint registration
and super-resolution with Levenberg-Marquardt algorithm(Right).

to additive noise in the low resolution images, and that the solutions are independent of the sampling scheme used in the
sensing device. Finally, we have proposed an approximate solution for the computation of the Fourier coefficients based
on a partitioning of the problem. It provides close to exact solutions with much less memory requirements. The effective
reconstruction performance in experiments with syntheticand natural omnidirectional images demonstrates the benefits of the
proposed solution for super-resolution problems in omnivision applications with imperfect settings.

APPENDIX

A. Properties of P l
mn

The functionsP l
mn(cosβ) are the generalizations of the associated Legendre function and can be calculated relative to Jacobi

polynomials [22] as

P l
mn(cos β) =

s

»

(l − m)!(l + m)!

(l − n)!(l + n)!

–

sinm−n β

2
cosm+n β

2
P

(m−n,m+n)
l−m

(cos β) (31)

They satisfy certain symmetry relations such as:

P l
mn(x) = (−1)m+nP l

nm(x) P l
mn(x) = (−1)m−nP l

−m,−n(x)

P l
mn(x) = P l

−n,−m(x) P l
mn(x) = (−1)l+nP l

−m,n(−x)
(32)
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Jacobi PolynomialP (m−n,m+n)
l−m (cos β) is given by

P
(m−n,m+n)
l−m

(cos β) =
Γ(l − n + 1)

(l − m)!Γ(l + m + 1)

(l−m)
X

q=0

„

l − m

q

«

Γ(l + m + q + 1)

Γ(m − n + q + 1)

„

cos β − 1

2

«q (33)

whereΓ(z) is the gamma function. For positive integers, the gamma function can be calculated as

Γ(z) = (z − 1)! (34)

From |m| < l, |n| < l and the symmetry properties in Eq. (32), we can assure that inputs to the Gamma functions in Eq. (33)
are positive integers. Thus, Eq. (33) turns into

P
(m−n,m+n)
l−m

(cos β) =
(l − n)!

(l − m)!(l + m)!

(l−m)
X

q=0

„

l − m
q

«

(l + m + q)!

(m − n + q)!

„

cos β − 1

2

«q (35)
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