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Summary. The required learning time and curse of dimensionality restrict the ap-
plicability of Reinforcement Learning(RL) on real robots. Difficulty in inclusion of
initial knowledge and understanding the learned rules must be added to the men-
tioned problems. In this paper we address automatic state abstraction and creation
of hierarchies in RL agent’s mind, as two major approaches for reducing the number
of learning trials, simplifying inclusion of prior knowledge, and making the learned
rules more abstract and understandable. We formalize automatic state abstraction
and hierarchy creation as an optimization problem and derive a new algorithm that
adapts decision tree learning techniques to state abstraction. The proof of perfor-
mance is supported by strong evidences from simulation results in nondeterministic
environments. Simulation results show encouraging enhancements in the required
number of learning trials, agent’s performance, size of the learned trees, and com-
putation time of the algorithm.
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1 Introduction

It is well accepted that utilization of proper learning methods reduces robots’
after-design problems caused naturally due to use of inaccurate and incom-
plete models and inadequate performance measures at the design time in ad-
dition to confronting unseen situations and environment and robot changes.
Existing learning methods that are capable of handling dynamics and compli-
cated situations are slow and produce rules – mostly numerical – that are not
abstract, modular, and comprehensible by human. Therefore, the designer’s
intuition cannot be simply incorporated in the learning method and in the
learned rules. In addition, the existing learning methods suffer from the curse
of dimensionality, requiring a large number of learning trials and lack of ab-
straction capability. RL [1] despite its strength in handling dynamic and non-
deterministic environments is an example of such learning methods. In this
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Fig. 1. state abstraction concept

research we try to solve some of the mentioned problems in RL domain because
of its simplicity and variety of its applications in robotics field, in addition to
its mentioned advantages.

It is believed that some of the discussed drawbacks can be lessen to a
great extend by implementation of state abstraction methods and hierarchical
architectures. Having abstract states and hierarchies in the agent’s mind, the
learned rules are partitioned, definition of performance measures for future
learning is simplified, and the number of learning trials can be reduced by a
careful design of learning method. In addition, incremental improvement of
agent’s performance becomes much simpler.

Different approaches have been proposed so far for state abstraction and
creation of hierarchies and implementation of RL methods in those architec-
tures. One group of these methods assumes a known structure and use RL
methods to learn both rules in each layer and the hierarchy. Another group of
researches proposes hand-design of subtasks and learning them in a defined
hierarchy. These two approaches require much design effort for explicit for-
mulation of hierarchy and state abstraction.Moreover, the designer should to
some extent know how to solve the problem before s/he designs the hierar-
chy and subtasks. The third approach uses decision-tree learning methods to
automatically abstract states, detect subtasks and speed up learning (Fig. 1).
The devised approaches however do not take the exploratory nature of RL
into account which results in non-optimal solution. In this paper, we take
a mathematical approach to develop new criteria for utilization of decision
trees in state abstraction. Our method outperforms the existing solutions in
performance, number of learning trials, and size of trees.

Related works are reviewed in the next section. U-Tree algorithm and its
drawbacks are briefly described in the third section. In the fourth section we
formalize state abstraction as an optimization problem and derive new split
criteria. The fifth section describes the simulation results. Conclusions and
future works are discussed finally.
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2 Related Works

The simplest idea to gain abstract knowledge is detection of subtasks, specially
repeating ones [2], and discovering the hierarchy among them. Once the agent
learned a subtask, which is faster and more efficient due to confronting with
smaller state space, it would be able to use it afterwards. Subtasks in Hierar-
chical RL(HRL) are closed-loop policies that are generally defined for a subset
of the state set [3]. These partial policies are sometimes called temporally-
extended-actions, options [4], skills [5], behaviors [6], etc. They must have
well-defined termination conditions.

Although these methods give more understanding about the underlying
aspects of Hierarchical RL however; since particular features are designed
manually based on the task domain, it is hard to apply them to complex
tasks. The general problem that should be solved first, either when designing
manually or extracting the structures automatically is the state abstraction. 3

In many situations significant portions of a large state space may be irrelevant
to a specific goal and can be aggregated into a few, relevant, states. As a
consequence, the learning agent can learn the subtask reasonably fast. Our
work addresses this problem.

Techniques for non-uniform state-discretization are already known e.g.
Parti-game [8], G algorithm [9], and U-Tree [10]. They start with the world as
a single state and recursively split it when necessary. Continuous U-Tree [11]
extends U-Tree to work with continuous state variables. TTree [12] applies
Continuous U-Tree to SMDPs. Jansson and Barto [13] applied U-Tree to op-
tions but they use one tree per option and build the hierarchy of options
manually. We adopt U-Tree as our basic method because the reported results
illustrate it as a promising approach to automatic state abstraction.

In this paper we show that the employed U-Tree methods ignore RL’s
explorative nature. This imposes a bias in the distribution of samples that are
saved for introducing new splits in U-Tree. As a result, finding a good split
becomes more and more difficult and the introduced splits can be far from
optimal. Moreover, U-Tree-based techniques have been excerpted in essence
from decision tree learning methods. Therefore the used split criteria are very
general and can work with any sort of data. Here we devise some specialized
split criteria for state abstraction in RL and show that they are more efficient
than the general ones both in learning performance and computation time.

Dean and Robert [14] have developed a minimization model, known as ε-
reduction, to construct a partition space that has fewer number of states than
the original MDP, while ensuring that the utility of the policy learned in the
reduced state space is within a fixed bound of the optimal policy. Our work
is different because ε-reduction does not extract any hierarchy among state
3 The inverse of state abstraction, State Aggregation [15] clusters “similar” states

and assigns them same values. It effectively reduces the state space size, but
requires large number of trials and huge initial memory.
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partitions, while building a hierarchy can reduce search time in partition lists
from O(n) to O(log n), n being the number of partitions. Also, their theory is
developed based on immediate return of actions instead of long-term return.
We can argue that ε-reduction is a special case of our method.

3 Formalism

We model the world as a MDP which is a 6-tuple (S, A, T, γ, D,R) , where S
is a set of states (here can be infinite), A = {a1, . . . , an} is a set of actions,
T = {P a

sś} is a transition model that maps S×A×S into probabilities in [0, 1],
γ ∈ [0, 1) is a discount factor , D is the initial-state distribution from which
the start state is drawn (shown by s0 ∼ D ), and R is a reward function that
maps S×A×S into real-valued rewards. A policy π maps from S to A, a real-
valued value function V on states, or a real-valued action-value function (also
called Q-function) on state-action pairs. The aim is to find an optimal policy
π∗ (or, equivalently, V ∗ or Q∗) that maximizes the expected discounted total
rewards of the agent. We assume that each state s is a sensory-input vector
(x1, . . . , xn), where xi is a state-variable (called also feature, or attribute).

3.1 U-Tree

A U-Tree [10] [11] abstracts the state space incrementally. Each leaf Lj of
the tree corresponds to an abstract state S̄j . Each leaf keeps action-values
Q(S̄j , a) for all available actions. The tree is initialized with a single leaf,
assuming the whole world as one abstract state. New abstract states are added
if necessary. Sub-trees of the tree represent subtasks of the whole task. Each
sub-tree can have other sub-sub-trees that correspond to its sub-sub-tasks.
The hierarchy breaks down to leaves that specify primitive sub-tasks.

Continuous U-Tree [11] loops through a two phase process: sampling and
processing phases. In sampling phase, a history of the transition steps Ti =
(si, ai, ri, śi) composed of the current state, the selected action, the received
immediate reward, and the next state is saved. The sample is assigned to a
unique leaf of the tree, based on the value of the current state-variables. During
the sampling phase the algorithm behaves as a standard RL algorithm, with
the added step of using the tree to translate sensory input to an abstract
state. After some number of learning episodes the processing phase starts. In
processing phase a value is assigned to each sample:

V (Tt) = rt + γV (s̄t+1), V (s̄t+1) = max
a

Q(s̄t+1, a) (1)

where s̄t+1 is the abstract state that st+1 belongs to. Then if a significant
difference among the distributions of sample-values within a leaf is found that
leaf is split in two leaves.
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To find the best split point for each leaf, the algorithm loops over state-
variables. The samples within a leaf are sorted according to a state-variable
and a trial split is virtually added between each consecutive pair of state-
variable values. This split divides the abstract state in two sets. A splitting
criterion, like Kolmogorov-Smirnov test (KS), compares the two sets and
returns a number indicating the different between the two distributions. If
the largest difference among all state-variables is bigger than a confidence
threshold, then a split is introduced. This procedure is repeated for all leaves.

Although the original algorithm for U-Tree [10] can function in partially
observable domains, for the sake of simplification, we make the standard as-
sumption that the agent has access to a complete description as well. Also,
since the structure of the tree is not revised once a split is introduced; we
assume the environment is stationary .

If we assume processing phase takes place after each learning episode,
number of leaves 4 at episode t is L(t), and sample size in each leaf is M ,
the best sort algorithms, i.e. Quicksort, would sort the samples based on a
feature in O(M log M). Maximum number of split points could be (M − 1).
KS and IGR tests need the samples in the either sides of the virtual splits to be
sorted based on their values. This needs at least O(2 M

2 log M
2 )). Then a pass

through all sorted samples needs O(M). Totally the order of the algorithm,
assuming n being dimension of the state vectors, is:

O
(
L(t) n M2 log M

)
(2)

3.2 Splitting Criteria

In literature two types of split criteria have been used for state abstraction.
Rank-based tests e.g. non-parametric KS-test [10] [11], and tests inspired from
Information Theory e.g. Information Gain Ratio(IGR) [17]. Non-parametric
KS-test looks for violation of Markov Property by computing statistical dif-
ference between the distributions of samples on either side of a split using the
difference in cumulative distributions of the two datasets. IGR-test measures
the amount of reduction in uncertainty of sample values and is computed as
follows; given a set of samples T = {Ti = (si, ai, ri, śi)}, i = 1, . . . ,M from ab-
stract state S̄, labeled with V (Ti) – computed according to (1) – the Entropy
of sample-values is:

EntropyS̄(V ) = −
∑

v

P (V (Ti) = v|S̄) log2 P (v(Ti) = v|S̄) (3)

where P (V (Ti) = v|S̄) is the probability that samples in T have value v.
Information Gain of splitting the abstract state S̄ to S̄1 and S̄2 is defined as
the amount of reduction in the entropy of sample-values i.e.:
4 Total number of nodes is 2 L(t)− 1.
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InfoGain(S̄, S̄1, S̄2) = EntropyS̄(V )−
2∑

i=1

Mi

M
EntropyS̄i

(V ) (4)

where Mi is the number of samples from T that fall in S̄1. IGR is defined as:

IGR(S̄, S̄1, S̄2) =
InfoGain(S̄, S̄1, S̄2)
−

∑2
i=1

Mi

M log2
Mi

M

(5)

3.3 Biased Sampling Problem

Each leaf of U-Tree in implementation can hold a limited number of samples.
If the number of samples exceeds an upper limit, an old sample is selected
randomly and is replaced by the new sample. However, selection probability
of an action in a state depends on its action-value function. This fact affects
the distribution of samples in a leaf. We call this a biased sampling .

The biased sampling problem has a negative effect; RL algorithms es-
cape from local optimums by making a trade off between exploration and
exploitation. If size of a sample list is not big enough, then number of samples
with explorative character would not be statistically significant to introduce
a split, until the confidence threshold for split criterion is reduced. Reducing
the threshold increases the occurrence of non-optimal splits. One expect that
size of the generated tree might be large with low performance. This problem
can be solved by having in each leaf, instead of one big list with capacity k, |A|
smaller lists with capacity k

|A| per action. Then the algorithm is modified so
that when new samples arrive and the sample list is full, an old sample from
the list that corresponds to the action of the new sample is deleted randomly.
Now sorting the new sample list would be faster:

|A| O(
k

|A|
log

k

|A|
) = O(k log

k

|A|
) < O(k log k) (6)

4 SANDS

In this section we formalize the state abstraction problem and provide math-
ematical description of a new algorithm that is specially derived for HRL.
We call it SANDS which stands for State Abstraction in Nondeterministic
Systems. Also we show how we can combine SANDS with other heuristics.

4.1 State Abstraction

An abstract state S̄ is a subset of state space S, so that all states within it
have “close” values (see bellow). Value of abstract state S̄ is defined as the
expected discounted reward return if an agent starts from a state in S̄ and
follows the policy π afterwards i.e.:
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V π(S̄) =
∑
s∈S̄

{
P (s|S̄)

∑
s∈A

[
π(s, a)

∑
ś

P a
sś(R

a
sś + γV π(ś))

]}
(7)

where π(s, a) is the selection probability of action a in state s under policy π,
P a

sś is the probability that environment goes to state ś after doing action a
in state s, and Ra

sś is the expected immediate reward after doing action a in
state s and going to state ś. Similarly, Qπ(S̄, a) is defined as:

Qπ(S̄, a) =
∑
s∈S̄

P (s|S̄)
∑

ś

P a
sś(R

a
sś + γV π(ś)) (8)

From the set theory, a set partition of a set S, is defined as a collection of
disjoint subsets of S whose union is S. So U = {S̄1, . . . , S̄u} is a set partition
of S if and only if:

S̄i ⊆ S,∀i ∈ {1, . . . , u}
S =

⋃u
i=1 S̄i

S̄i

⋂
S̄j = ∅,∀i, j ∈ {1, . . . , u}, i 6= j

(9)

State abstraction could be formalized as an optimization problem, which aims
at finding a set partition U and a policy π on the state space S, where u the
number of partitions is minimum, and the value of the learned policy π is
within a fixed bound ε of the optimal policy π∗ i.e.:

|V π
∗
(s)− V π(S̄i)| < ε, ∀s ∈ S̄i,∀S̄i ∈ U (10)

4.2 SANDS Splitting Criterion

It is easy to prove that leaves of U-Tree generate a set-partition of state
space. It is clear from definition of state abstraction in (10) that we are min-
imizing the difference between the optimal policy and the policy that U-Tree
represents. Here we, instead of walking toward the optimal policy which is un-
known, try to walk away from the current policy toward the optimal policy.
Now, assume that we have a U-Tree that defines a policy π. We would like
to enhance it to a policy π̃ by splitting the partition S̄ (one of the leaves in
the tree) to unknown partitions S̄1 and S̄2, so that the expected return of the
resulting tree is maximized i.e. we maximize:

G =
∑
s∼D

P (s)[V π̃(s)− V π(s)] (11)

where D is initial states distribution. Using Bellman equations we can write:

G =
∑
s∼D

P (s)
( ∑

a[π̃(s, a)
∑

ś P a
sś(R

a
sś + γV π̃(ś))]

−
∑

a[π(s, a)
∑

ś P a
sś(R

a
sś + γV π(ś))]

)
(12)
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G =
∑
s∼D

∑
a

∑
ś

P (s)P a
sś

(
Ra

sś(π̃(s, a)− π(s, a))
+γ(π̃(s, a)V π̃(ś)− π(s, a)V π(ś))

)
(13)

V π̃(s′) is unknown, we can use V π(s′) as an estimation. For the states that fall
outside of S̄ policy remains unchanged after split i.e ∀s 6∈ S̄, π̃(s, a) = π(s, a).
For the states within S̄ or within the new abstract states S̄1 and S̄2 we define
π(a) = π(s, a), s ∈ S̄ and π̃i(a) = π̃(s, a), s ∈ S̄i, i = 1, 2. Hence:

G =
∑

a

2∑
i=1

(π̃i(a)− π(a))
∑
s∈S̄i

∑
ś

P (s)P a
sś(R

a
sś + γV π(ś))

 (14)

From the properties of conditional probabilities P (s) = P (s|S̄i) × P (S̄i|S̄) ×
P (S̄),∀s ∈ S̄i, i = 1, 2. Considering the definition in (8), we can write:

G = P (S̄)
∑

a

2∑
i=1

[
(π̃i(a)− π(a))Qπ(S̄i, a)P (S̄i|S̄)

]
(15)

This way the learner finds the split that maximizes the performance of the tree
over the “whole action set”, provided that actions are selected according to
Softmax distribution. But an important point here is that the learner can not
revise the tree after initiating the split. This means that it is fixing somehow
a part of the policy in this level. Therefore, it is more valuable to judge the
splits based on the performance of the greedy action instead of Softmax. The
optimization term then should change from summation to maximum. More-
over, P (S̄) is same for all states in abstract state S̄. So, the final formulation
for SANDS criterion is simplified to:

SANDS(S̄, S̄1, S̄2) = max
a

2∑
i=1

[
(π̃i(a)− π(a))Qπ(S̄i, a)P (S̄i|S̄)

]
(16)

U-Tree generates a set-partition of state space. But, optimality of the number
of partitions is not guaranteed although the algorithm starts with minimum
partitions and adds more partitions if required. In fact the splits here are
Univariate [16] that shrink the state space parallel to one of its axes. The
necessary (but not sufficient) condition to have minimum size tree is to have
Multivariate [16] splits, which can split the space in any direction. Multivariate
splits are not covered in the current version of the algorithm however; we
discuss the size of the trees in result section.

If we assume the processing phase starts after one learning episode, number
of leaves in episode t is L(t), sample size of the |A| sample-lists in the leaves
is m = M

|A| , and space dimension is n, time order of the new algorithm would

be: O(L(t) n M2

|A| ) which is faster than (2) by |A| log M factor.

4.3 Using Mont Carlo Method to Estimate SANDS

We now show how to compute each term by Mont-Carlo method using the
samples recorded during learning episodes. Each logged sample is a 4-tuple
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(si, ai, ri, śi), corresponding to current state, selected action, next state, and
received reward. If among ma samples for action a in S̄ , ma

1 and ma
2 = ma−ma

1

samples correspond to S̄1 and S̄2 respectively, we can compute:

ρ̂a
i = ma

i

ma , i = 1, 2 ρ̂i =
∑

a
ma

i∑
a

ma
, i = 1, 2

µ̂
a
i = 1

ma
i

∑ma
i

j=1(rj + γ maxb Q(śj , b)), i = 1, 2 µ̂a = ρ̂a
1µ̂

a
1 + ρ̂a

2µ̂
a
2

π̂
a
i = exp(µ̂

a
i /τ)∑

b
exp(µ̂

b
i/τ)

, i = 1, 2 π̂(a) = exp(µ̂
a/τ)∑

b
exp(µ̂

b/τ)

SANDS(S̄, S̄1, S̄2) = maxa

∑2
i=1(π̂i(a)− π̂(a))µ̂a

i ρ̂a
i

(17)

4.4 SoftMax Gain Ratio (SMGR)

New criteria can be derived by combining SANDS with different heuristics.
One of them is what we call SoftMax Gain Ratio:

SMGR(S̄, S̄1, S̄2) = max
a

−π̂(a) log π̂(a) +
∑2

i=1 ρ̂a
i π̂i(a) log π̂i(a)

−
∑2

i=1 ρ̂a
i log ρ̂a

i

(18)

In this criterion, instead of defining entropy function on sample-values, we
define it on action-probabilities and try to find the splits that maximize the
reduction of this entropy i.e. the split that results in more certainty on se-
lection probability of actions. We can prove that SMGR scales and combines
SANDS with a penalty term as following:

SMGR(S̄, S̄1, S̄2) =
1
τ
SANDS(S̄, S̄1, S̄2) + log

∑
a

∏2
i=1 π

ρ̂i

i (a)

−
∑2

i=1 ρ̂i log ρ̂i

(19)

We can show the penalty term punishes the splits that result in: (1) giving high
probability to a specific action without support of enough evidence (samples),
and (2) contradicting estimations on selection probabilities of a specific action
in either side of the virtual split, in the sense that an action is the best action
in one split but the same action is the worst action in the other one.

5 Simulation results

We have tested our algorithms on a simplified football task. It is very similar
to the classic Taxi problem with the possibility of having moving players with
different patterns to create environments with different levels of nondetermin-
isticity. The playing field is an 8×6 grid (Fig. 2). The x axis is horizontal and
y axis is vertical. There are two goals located at (0, 3) and (8, 3). A learning
agent plays against two “passive” opponents and learns to deliver the ball
to the left goal. By passive opponents we mean they move in the field only
to restrict movements of the learner and do not perform any action on the
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Fig. 2. A screen-shot from the simulator

ball. The learner can choose among 6 actions: Left, Right, Up, Down, Pick,
Put. If any player selects an action that results in touching the boundaries or
going to a pre-occupied position by another player, that action is ignored. In
a special case when the learner has picked the ball, if it hits the other players
or a boundary then the ball would fall down.

We test the learning simulations on 3 types of opponents: Static, Offender,
and Midfielder. Static-players do not move at all. Offenders move randomly
in x direction (i.e. they select randomly between Left and Right actions).
Midfielders move randomly in all directions. States of the learner consists
of absolute x and y position of ball and players, and status of ball from
{Free, Picked} states, plus two state for left or right goal. This sums up to
3, 001, 252(= 2 × (7 × 5)4 + 2) states. Players act in parallel; so the next
state of the learner when playing against offenders or midfielders would be a
stochastically selected state among 4 or 16 different states, respectively. Each
experiment consists of 100,000 episodes. Each episode starts by positioning the
learner and ball in a random (and unoccupied) place. Each episode consists
of maximum 1000 steps. Each step includes one movement by each player. An
episode is finished if ball enters any goal or maximum number of steps passed.
Upon delivering ball to the left goal the learner receives +1 reward. In case
of wrong goal it receives -1 punishment. Otherwise it is punished with -0.01.

All methods use SARSA with decaying ε-greedy policy. Learning rate is
0.1 and discount factor γ is 0.95. Exploration rate ε is initialized with 0.2
and decays by multiplying to decay factor 0.99999 after each episode. Leaf
sample size is 360 (60 samples per action). For each state-abstraction method
a range of confidence thresholds are tested to find the best settings; the one
that minimizes the number of actions each learner executes from a random
initial position to the goal. The number of actions is averaged over the last
10,000 episodes. This average shows how effective has the agent learned to
make goal in fewer moves. The results are averaged over 30 runs.
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Fig. 3. Number of actions (left) and leaves of the tree (right) during learning
episodes in midfielder case, averaged per every 1000 episodes (non-accumulated)

Table 1. Number of moves in each episode averaged over the last 10,000 episodes

Player SARSA KS UKS IGR UIGR SMGR SANDS
Static 10.85±.01 11.23±.2 11.35±.22 11.21±.05 11.23±.04 11.12±.03 11.1±.04
Offender 19.63± .06∗ 14.97±.57 14.91±.14 14.55±.15 14.58±.5 14.28±.07 14.39±.09
Midfielder 668.36∗∗ 18.41±1.2 17.39±.21 18.65±1.73 17.39±.24 16.84±.06 16.95±.2
∗ 14.72 after 1 million episodes ∗∗ 18.92 after 15 million episodes

Table 2. Number of leaves in the learned trees

SARSA KS UKS GR UIGR SMGR SANDS
Static 2452 692±119 596±92 703±35 666±28 516±10 491±7
Offender 120052 1476±404 1331±78 1536±302 1242±23 1259±26 1282±22
Midfielder 3001252 1857±253 1651±141 2263±504 1533±48 1436±78 1313±77

Table 3. Computation time of the algorithms in minutes

SARSA KS IGR SMGR SANDS
Static 1 14 15 13 10
Offender 11∗ 25 27 18 12
Midfielder 50∗∗ 35 40 27 15
∗ 16 min for 1 million episodes ∗∗ 370 min for 15 million episodes

Table 1 shows number of actions in each episode averaged over the last
10,000 episodes. UKS and UIGR are new versions of KS and IGR with unbi-
ased sampling. Table 2 shows number of leaves in the learned trees(For SARSA
it is the number of states). Confidence intervals are computed with significance
level 0.05. Table 3 shows computation time in minutes 5. Fig. 3 shows number
of actions and leaves recorded during learning episodes in midfielder case.
5 Tests were done on a Dell R© InspironTM5150 laptop with CPU@3.06MHz.
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5.1 Hierarchical vs. Flat RL

From Table 1, it is clear that although SARSA shows better performance in
static-player case but it has quite poor performance in other cases. Even we
let the agent continue its learning episodes to 10 and 150 times more (1 and
15 million) for offender and midfielder cases, respectively. The performance is
still poor compared to hierarchical methods.

By looking at time order of the HRL algorithms and flat RL we observe
that SARSA takes only one minute to learn the static-player case, with higher
efficiency than all hierarchical algorithms. But when environment becomes
more nondeterministic the required computation time increases exponentially
and efficiency of the results is far from that of hierarchical approaches. An
interesting result for HRL algorithms is that the required time increases in
logarithmic order while the number of states increases exponentially. These
results show that HRL have a great potential in decreasing learning time and
number of trials in online robot learning tasks.

5.2 Unbiased Sampling

Table 1 shows as environment becomes more and more nondeterministic, pos-
itive effect of unbiased sampling becomes more clear. Although the average
in UKS and UIGR is a little bit bigger than KS and IGR for static players,
it is much smaller for midfielder case. Also number of leaves in the unbiased
versions is always fewer than the regular versions; e.g. difference between IGR
and UIGR in midfielder case is around 700 partitions. Confidence intervals
are always less for unbiased versions and this means that number of leaves in
their generated trees does not vary a lot.

5.3 Efficiency of SANDS and SMGR

Table 1 and Table 2 show in all cases SANDS and SMGR create trees with
better performance than all other methods (even unbiased versions). The dif-
ference becomes more clear as the environment becomes more nondeterminis-
tic. In midfielder player case the difference between the new criteria and the
old ones is about 2 actions per episode. The same is true for size of the gener-
ated trees. In almost all cases (except in UIGR, offender player with negligible
difference) SANDS and SMGR generate smaller trees.

Figure 3 shows that SANDS and SMGR converge slower than the others.
Although this can be problematic when state space is very big, in the sense
that their performance does not increase very much for a long time, but it
is expected that after a time, their performance anticipate the other criteria.
Table 1 and Fig. 3 (Left) confirm that splits in SANDS and SMGR are se-
lected more carefully because not only their tree is the smallest, but also their
performance is the best.
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SMGR shows a small enhancement in offender and midfielder case com-
pared to SANDS. It is due to a penalty term that SMGR adds to the splitting
criterion which rejects some inefficient splits. In static and offender case it is
not evident that which one generates fewer partitions. But in midfielder case
SANDS generates trees with around 100 leaves less.

5.4 Computation time

As explained in Sect. 4.2, time order of SANDS and SMGR is less than KS
and IGR. In static-player case the difference is not clear but in other cases
SANDS decreases computation time to half compared to KS and even more
compared to IGR. A part of the reduction in computation time is due to
reduction in the order of sort algorithm in sample lists. Another part is due
to creating smaller trees. This is important because it also affects the speed
of knowledge retrieval and the required memory of the trees. Another part is
due to reduction in the number of actions in episodes.

Conclusion

In this paper we formalized state abstraction as an optimization problem and
by mathematical formulation we derived two new criteria for split selection.
The new criteria adapt decision tree learning techniques to state abstraction.
We showed in simulation that the new criteria outperform the existing criteria
not only in efficiency and size of the learned trees but also in computation
time. We believe that criteria, like KS and IGR, judge splits based only on
their rank or probability of sample-values without taking their magnitude into
account while; they are very informative for state abstraction. SANDS and
SMGR mix probability and q-value of actions.

We have tested other criteria like Information-Gain [19], Gini-Index [18]
and Students T-test [10] but the results were with limited success, as reported
in [10]. Students T-test has poor performance when variance over the splits
gets close to zero because of a variance term in its divisor. Information-Gain
and Gini-Index have poor performance in nondeterministic environments.

Inability to revise the tree in non-stationary environments is a drawback
of Univariate methods. Linear Multivariate [16] splits are perhaps more suit-
able candidates as they use a weighted sum of state-variables in split point.
Adjusting these weights might be easier than reordering the nodes of the tree.
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