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Abstract Periodic behavior is key to life, and is ob-
served in multiple instances and at multiple time scales
in our metabolism, our natural environment, and our
engineered environment. A natural way of modelling or
generating periodic behavior is done by using oscillators,
i.e. dynamical systems that exhibit limit cycle behavior.
While there is extensive literature on methods to analyze
such dynamical systems, much less work has been done
on methods to synthesize an oscillator to exhibit some
specific desired characteristics. The goal of this article is
two-fold: (1) to provide a framework for characterizing
and designing oscillators, and (2) to review how classes
of well known oscillators can be understood and related
to this framework.

The basis of the framework is to characterize oscil-
lators in terms of their fundamental temporal and spa-
tial behavior, and in terms of properties that these two
behaviors can be designed to exhibit. This focus on fun-
damental properties is important because it allows us
to systematically compare a large variety of oscillators
which might at first sight appear very different from each
other. We identify several specifications that are useful
for design, such as frequency-locking behavior, phase-
locking behavior, and specific output signal shape. We
also identify two classes of design methods by which these
specifications can be met, namely off-line methods and
on-line methods. By relating these specifications to our
framework and by presenting several examples of how os-
cillators have been designed in the literature, this article
provides a useful methodology and toolbox for design-
ing oscillators for a wide range of purposes. In particular
the focus on synthesis of limit cycle dynamical systems
should be useful both for engineering and for computa-
tional modelling of physical or biological phenomena.
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1 Introduction

Periodic behavior is central to our lives. Our body func-
tions thanks to many types of periodic behaviors ranging
from heart beats, breathing, chewing, locomotion, vari-
ous rhythms in the brain, down to cycles in gene regula-
tory networks. Similarly our natural environments have
multiple periodic phenomena such as rotations of the
earth around the sun and around itself, seasons, tides,
cycles in ecological systems (e.g. prey-predator popula-
tions), in chemical reactions, etc. Finally, many systems
that we engineer are meant to exhibit periodic behav-
ior such as clocks (for watches or CPUs), lasers, music,
traffic lights, satellites, to name just a few examples. All
these phenomena share many common features, and can
be modelled (or controlled for engineered systems) by
systems of differential equations that exhibit limit cycle
behavior, that is by oscillators.

The importance and ubiquity of periodic behavior ex-
plains why oscillator models are published in such a large
variety of journals in different fields (nonlinear dynam-
ics, physics, biology, chemistry, engineering, etc.). This
makes oscillators a very exciting topic of study, but at
the same time makes it difficult to extract common prin-
ciples from all these models. Indeed each field has its own
terminology, variable/parameters names, systems of co-
ordinates, methods of analysis, methods of synthesis and
this makes it hard to see similarities and differences be-
tween models. Furthermore, the choice of a particular
oscillator in a given field is often not transparent, and
depends sometimes more on historical reasons than on
pure design or modelling considerations. The reason for
that is usually a lack of abstraction of the concept of
oscillators. Finally, another difficulty with oscillators is
that while there are many tools for analyzing the behav-
ior of an oscillator (see (Kuramoto, 1984; Winfree, 2001;
Glass & Mackey, 1988; Pikovsky, Rosenblum, & Kurths,
2001) for some outstanding textbooks), there is a lack of
methodologies for designing them to exhibit a particular
behavior.
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The goal of this article is therefore to provide a frame-
work for characterizing different oscillator models in a
systematic way, and to focus on methodologies that can
be used for designing them. In this process, we review a
large range of oscillator models that have been developed
as well as some of our own work in adaptive frequency
oscillators. We will try to focuss on the fundamental prin-
ciples of limit cycle systems, and separate those from un-
necessary details of a particular implementation. These
principles can then be applied to the design of systems,
and used to provide guidelines of how to endow a sys-
tem with a set of predefined properties. Our perspective
is therefore mainly an engineering one, i.e. we want to
address the problem of how an oscillator or a system
of coupled oscillators can be designed to do something
useful (e.g. for coordination, sequencing, and/or pattern
formation), but the approach should also be interesting
for computational modelling.

Oscillators are of interest for engineers for several rea-
sons. They can be exploited for timing and sequencing.
They can synchronize to external signals, and show co-
ordinated behavior with perturbations and other oscilla-
tors. Connecting them into networks or latices they can
form coordinate yet flexible spatio-temporal patterns.
These networks can act as pattern generators which can
reduce the dimensionality of a given control problem,
in the sense that a small number of simple (scalar) pa-
rameters can control multidimensional output patterns.
Of course they also exhibit all the common features of
structurally stable dynamical systems such as smooth
changes under parameter variation. The structurally sta-
bility makes it possible to fuse in input without destroy-
ing the autonomous dynamics of the system, i.e. the re-
sulting dynamics is a combination of internal and exter-
nal dynamics.

An interesting example of the use of oscillators in en-
gineering is in the field of locomotion control in robots.
Locomotion control is still a difficult and unsolved prob-
lem for robots with multiple degrees of freedom (e.g.
legged robots). Locomotion requires multi-dimensional
coordinated periodic patterns that need to to satisfy
multiple constraints in terms of efficient locomotion, en-
ergy and adaptation to complex terrain. One approach to
solve this problem relies on accurate models of the robot
and environment dynamics to develop control laws for
locomotion. These model-based methods have however
significant difficulties dealing with environments that are
hard to model properly (e.g. with complex terrains). An
alternative approach is to use systems of coupled oscil-
lators and to take inspiration from animal motor con-
trol. In vertebrate animals, an essential building block
of the locomotion controller is the central pattern gen-
erator (CPG) located in the spinal cord. A CPG is a
neural circuit capable of producing coordinated patterns
of rhythmic activity in open loop, i.e. without any rhyth-
mic inputs from sensory feedback or from higher control
centers (Delcomyn, 1980; Grillner, 1985). A CPG can be

modelled as a system of coupled oscillators (Kopell & Er-
mentrout, 1988; Kopell, 1988). The motivation for using
CPG models in robotics is to produce the periodic pat-
terns necessary for locomotion as limit cycles. If this is
the case, the oscillatory patterns are robust against tran-
sient perturbations (i.e. they asymptotically return to
the limit cycle), and this makes them well suited to deal
with unexpected perturbations from the environment.
Furthermore, the limit cycle can usually be modulated by
some parameters, which offers the possibility to smoothly
modulate the gait (e.g. increase frequency and/or ampli-
tude) or even to induce gait transitions (i.e. bifurcations
between different types of limit cycles, see for instance
(Collins & Richmond, 1994)). Finally, CPGs can read-
ily integrate sensory feedback signals in the differential
equations, and show interesting properties such as en-
trainment by the mechanical body (Taga, 1998). Because
of these interesting properties, CPGs are increasingly
used in robotics (see for instance (Kimura, Akiyama, &
Sakurama, 1999; Wilbur, Vorus, Cao, & Currie, 2002;
Endo, Nakanishi, Morimoto, & Cheng, 2005; Buchli, Iida,
& Ijspeert, 2006; Righetti & Ijspeert, 2006b)).

The paper is organized as follows. First, in Section
2, we introduce oscillators (i.e. limit cycle systems) by
definitions, and present a description of the very basic
features common to all limit cycle systems. We then dis-
cuss the typical stability properties of oscillators, and
this leads us to the formulation of two distinct coordi-
nate systems, the Phase-Radius coordinate system and
the Q coordinate system (the ”physical” coordinate sys-
tem), and their relationship. Examples of the abstract
concepts by help of well known oscillators will be given
along the way. This discussion helps us to get clear what
properties of an oscillator can be designed. Based on this
discussion we then address the issue how we can con-
struct an oscillatory system to exhibit specific proper-
ties. This part addresses the three core questions: What
can we do (Section 3)? How can we do it (Section 4)?
What are the resulting systems (Section 5)? Finally, we
conclude with a general discussion of design choices and
give an outlook on future research in this direction.

We assume some familiarity with basic concepts of
nonlinear dynamical systems, a good introduction can be
found in e.g. in (Strogatz, 1994), especially the concept
of stability will be used extensively. The mathematical
facts presented in this article are often not new (many
are on textbook level), however the way of presenting
oscillators is new due to the focus of generic properties
of all oscillators. This leads to a novel discussion of os-
cillators centered around the transformation between a
canonical system in the Phase-Radius coordinate system
in which it is particularly simple to discuss the influ-
ence of perturbation of oscillators, and the ”physical”
system, i.e. the traditional way of representing oscilla-
tors. To support the discussion the new concept of radius
isochrones is introduced. Finally, we would like to give
a note about mathematical detail and completeness. For
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the sake of clarity we do not discuss every subtlety and
every case since we think that would dilute the clarity of
the concepts. An excellent and very comprehensive intro-
duction to oscillators and synchronization phenomena is
(Pikovsky et al., 2001).

2 Limit cycle systems

In this section we will introduce the mathematical con-
cept of an oscillator. As will get clear there are some
subtle differences of what commonly is called an oscilla-
tor and the mathematical concept of an oscillator.

The presented concepts are key to all the design issues
discussed later, such as the choice of type of oscillator,
coupling etc. This means, an engineer wanting to use
an oscillator needs a thorough understanding of those
concepts. This will allow him/her to chose the right type
of oscillator and gives him/her the tools to engineer its
properties.

Definitions In order to support our mathematical dis-
cussion of oscillators we start with its definition.

Definition 1 An oscillator is a autonomous dynami-
cal system, i.e. a system of differential equations with
at least one limit cycle attractor. In other words the
solution of the system (after a transient time) is a
closed cycle, which is asymptotically stable, i.e. if the
system gets perturbed out of the limit cycle it returns
back to it.

We see that the limit cycle attractor is the defining prop-
erty of an oscillator, hence the name limit cycle (LC)
system is used as synonym for oscillator.

This means the system has a self-sustained oscillatory
behavior to which it returns after a transient perturba-
tion. Oscillators possess thus an intrinsic period (and
hence frequency) with which the system repeats the pat-
tern of activity. Thus, a linear 2nd (or higher) order sys-
tem can not be an oscillator in that sense. It can only
exhibit sustained oscillations with an oscillatory input
in case the system is damped. If it is not damped, the
system is just on the border between stability and in-
stability and oscillations are not structurally stable (i.e.
after a transient perturbation possibly another pattern
is assumed). On the other side of the stability border the
oscillations will increase to infinite amplitude.

Let us detail this definition a bit more, for this we
need some nomenclature which we list in Table 1.

With the help of those variables we can put above
definition in more concise terms:

Definition 2 (equivalent to Def. 1) If the dynamical
system

q̇ = F(q) (1)

has a stationary solution which is a closed curve and
the solution is structurally stable, (1) is an oscillator.

F(q, ρ) System of equations describing the dynamics of
the system, F(q) = [f1, . . . , fD]T

q State vector q = [q1, . . . , qD]T

ρ Vector of parameters
p(t) Vector of perturbations
D Dimension of the system
φ Phase of the oscillator
ω Intrinsic frequency of the oscillator
r Radius of the oscillator r = [r1, . . . , rD−1]

T

T Period of the oscillator
Ωi Instantaneous frequency
eφ,er Unit vectors in direction of phase and radius
T Transformation from q to [φ, r]
q∞ The set of points describing the limit cycle
PRCS Phase-radius coordinate system
QCS The q-coordinate system
LC Limit cycle
PS Phase sensitivity
PRC Phase response curve

Table 1 Nomenclature, conventions and common abvreva-
tions used to discuss oscillators in this article.

The limit cycle The set on which q evolves is called the
limit cycle, which we denote with q∞. It is an attractor
of dimension 1 (i.e. a curve) which is closed in itself, so it
needs to be embedded in a space of dimension D ≥ 2 (cf.
Fig. 1). The fact that the attractor forms a closed curve
implies that the time shift invariance holds: if q(t) is a
solution then q(t) = q(t+nT ), T is the time of repetition,
i.e. the period of the system and is inversely proportional
to the intrinsic frequency ω of the system T = 2π

ω
(cf.

Fig. 1b).
The fact of having a closed curve implies also a special

stability property of the attractor. The flow described by
the set of equations lets all solutions within the basin of
attraction converge to the limit cycle. Perpendicular to
the limit cycle the system is thus asymptotically stable.
But the phase point moves along the limit cycle. In other
words in every point on the limit cycle the flow is sta-
ble/contracting in to D-1 directions, but drives the state
in the one direction perpendicular to the other direc-
tions. This is the very essence of a limit cycle system,
these stability properties are the only ones that allow for
a closed 1-dimensional attractor. And they are the key to
understand the properties of oscillators their particular
behavior and phenomena such as synchronization.

We can thus distinguish two characteristic stability
directions on the limit cycle by introducing a coordinate
system of which one basis vector is tangential to the limit
cycle limit cycle, eφ, and D− 1 vectors perpendicular to
the limit cycle, which we do denote representatively by
er (cf. Fig. 1a).

As we will see in the next section the marginally sta-
ble direction tangential to the limit cycle is of central
importance to discuss oscillators.

The phase In every oscillator we can identify a variable
(which does not necessarily correspond to a state variable
but is a function of those) which grows uniformly in time
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Fig. 1 a) The schematic illustration of a limit cycle. It is a closed curve in phase space. The stability directions eφ,er

are illustrated as well as the projections pr and pφ of a perturbation p,which has a direction in the phase space, onto
those stability directions. b) The time series of an hypothetical oscillator. There is a characteristic period T after which the
activity of the oscillator and with this the time series repeat. c) The limit cycle is a 1-dimensional manifold embedded in a
D-dimensional space (D ≥ 2), we can transform the system into a coordinate system in which the manifold shows particularly
simple form and of which the stability directions constitute the base vectors.

and is interpreted mod 2π (or any other convention).
This variable is called the phase of the oscillator.

The phase of the oscillator is a measure where the
oscillator is in the cycle. We remember that the frequency
of the oscillator is ω = 2π

T
. We define the phase in the

following way

Definition 3 For the unperturbed system F, the vari-
able φ for which

φ̇ = ω(= const) (2)

is called phase of the oscillator F.

By help of the phase also the frequency can be cast
into a definition

Definition 4 The rate of change ω of φ in the un-
perturbed oscillator is the intrinsic frequency of the
oscillator.

The reason why we define the frequency by help of the
phase will become clear later when we will discuss the
oscillator under perturbations. It is important to note
that ω is not always an explicit parameter. However, it
is always a function of the parameters, ω = f(ρ).

Now, every oscillator can be transformed into a phase
(φ) – radius (r) coordinate system (Pikovsky et al., 2001):

φ̇ = ω (3)

ṙ = Fr(r) (4)

where Fr is the dynamical system describing the evolu-
tion of r (refer to Fig. 1c) and has a stable fixed point.

The vectors eφ and er that we introduced above based
on stability considerations form the basis vectors of the
phase radius coordinate system. In Eq. 3 the fact that

the phase is a marginally stable variable (dφ̇
dφ

= 0) is

immediately evident. This coordinate system is the nat-
ural one to discuss influences on the oscillator since the
stability directions are decoupled.

At this stage it is also worth noting, that in a unper-
turbed oscillator the phase completely describes the state
of the system in the stationary regime (cf. phase oscilla-
tors in Section 3.1). This means we can write r∞ = f(φ).

It is important to realize, that the phase is not neces-
sarily proportional with time. This is only the case when
the oscillator is unperturbed, where indeed φ is propor-
tional to t mod 2π - but more importantly and this is
the key to the entrainment effects as we will see later, in
case of perturbations the phase and time “get decoupled”
i.e. the phase can be shifted forward or backwards. The
oscillations can be accelerated or de-accelerated. Design-
ing entrainment and other aspects of the oscillator is all
about designing these acceleration and de-acceleration
effects. We will discuss this in more detail when we look
at LCs under perturbations in Section 2.2. But first we
need to complete our understanding of the phase-radius
coordinate system.

The geometry of the limit cycle Normally the oscillator
is not readily represented in the ideal phase-radius coor-
dinate system (as in Eqs. 3–4). We need to discuss the
relationship between the oscillators representation in q
and in [φ, r]. As we will see that is the key to understand
the behavior of the oscillator under perturbations.

If we transform the coordinate system and the met-
rics we could possibly gain a simpler oscillator but the
complexity gets transfered into the coupling of the oscil-
lator the input. We will give an example when we discuss
phase oscillators in Section 3.1.

But then how is the coordinate system usually deter-
mined? Let us reflect on the role of the state variables.
Usually the state variables are defined by a physical in-
terpretation or they have a concrete conceptual meaning
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such as a voltage or a chemical concentration, for in-
stance, and that is the way the coordinate system gets
defined. This coordinate system is the natural one to
formulate the physical laws and interaction between the
different physical entities (while, as we have seen, phase
radius is the natural one to discuss perturbation because
of the separation of variables according to stability prop-
erties). And in modeling it is usually the case that the
input and outputs of an oscillator are formulated in the
physical coordinate system.

But, for engineering, if we want to exploit some of the
abstract properties of the oscillator we are not bound to
an interpretation of the variables. Thus it can be useful
to formulate the inputs and outputs in the phase radius
coordinate system or any other suitable coordinate sys-
tem.

We name thus two coordinate systems, the phase ra-
dius coordinate system: PRCS and the coordinate sys-
tem of q: QCS. The transformation from QCS to PRCS
is given by T.

[φ, r]T = T(q) (5)

Let us look in more detail at this transformation and
some of its properties. The transformation can be split
up in to components, namely the transformation from
q to φ: φ = Tφ(q) and the transformation from q to r
r = Tr(q), thus

T =

[

Tφ

Tr

]

Since we are not only interested in the transformation
of the state variables but also in the transformation of
the dynamics under this transform let us investigate the
derivatives of the transformed coordinates, we do this
exemplary on φ since it works the same way for all state
variables.

φ = Tφ(q) (6)

⇒ φ̇ =
dTφ(q)

dt
=

∂Tφ(q)

∂q
q̇

=
∂Tφ(q)

∂q
F(q) (7)

We see that Tφ is intrinsically defined (by the fact
that Eq. 7 has to be equivalent to ω, being a constant)
but there is some freedom in the choice of Tr. To remove
this ambiguity we define the behavior of an oscillator in
the canonical PRCS as

φ̇ = ω (8)

ṙ = 1 − r (9)

This is somewhat arbitrary but the choice will be-
come clear later in the discussion of the relationship of
PRCS and QCS. At this place its choice is already par-
tially motivated by Eq. 9 representing the simplest dy-
namical system with stable, non-zero fixed point behav-
ior where the fixed point is r = 1.

The inverse of T, T
−1, transforms the system from

the PRCS into the QCS. This means by designing T
−1

the PRCS can be mapped into any type of oscillator.
Example: Consider the transform of r into r′, given

by r′ = (r − 1)g + r0. This transforms the canonical
oscillator (Eqs 8 – 9) into

[φ̇, ṙ′]T = [ω,−g(r′ − r0)]
T (10)

We can now transform this system further by apply-
ing the well known transformation from a Polar coordi-
nate system into the Cartesian coordinate system: q1 =
r′ cos φ, q2 = r′ sin φ. By this transform we yield the fol-
lowing system

[

q̇1

q̇2

]

=









g

(

r0√
q2

1
+q2

2

− 1

)

q1 − q2ω

g

(

r0√
q2

1
+q2

2

− 1

)

q2 + q1ω









(11)

We have thus transformed the canonical oscillator into
a phase oscillator in a Cartesian coordinate system. The
radius and convergence rate of the oscillator can be con-
trolled by r0 and g respectively.

While here we can express the transform T
−1 and its

inverse by rather simple mathematical expressions this
is usually not possible. Even more, the transform might
often not be expressible in a closed analytical form.

2.1 Graphical assessment of T

We will now discuss a graphical way of assessing relation-
ship of PRCS and QCS, i.e. T for a given oscillator. For
this the notion of time becomes important, i.e. at what
velocity the phase point moves through the phase space.
What specifies the equivalence of a point in QCS and a
point in PRCS? If for time t0 q(t0) = T

−1([φ(t0), r(t0)),
then for all time q(t) = T

−1([φ(t), r(t)). This means if
we could find a way of comparing the development of
the two points in both coordinate systems at regular in-
tervals and repeat this for different initial conditions we
would get an idea of T.

The activity of the oscillator can be plotted in the
QCS (phase portrait) in which the limit cycle will show
up as a closed curve. But, the information about the
phase velocity is lost. So even that we know that for
example the limit cycle in the QCS corresponds to the
limit cycle in the PRCS, we do not know which point on
the limit cycle in one coordinate system corresponds to
which point in the other one. While in PRCS the phase
moves along the limit cycle with constant velocity ω, in
general, for an arbitrary oscillator F in the QCS, the
phase point will not move along the limit cycle in the
phase space with a constant velocity. Thus, the phase
does not correspond to the simple “position” on this
curve (i.e. an infinitesimal part of the curve does not
correspond to the same infinitesimal of φ, dq 6= dφ). In
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order to investigate on this relationship, we could plot
points with always equal ∆φ.

However, the phase is only uniquely defined on the
limit cycle, but we would like to get a global idea of the
transformation. We can generalize the notion of a phase
outside the limit cycle by the concept of isochrones. We
follow the definition of (Pikovsky et al., 2001) and gen-
eralize the phase by help of the cycle time T , i.e. the
mapping q(t) → q(t + T ).

Definition 5 Isochrones – The set of points being
invariant under the mapping q(t) → q(t + T ) and
crossing the limit cycle at q⋆ (i.e. q⋆ is a fixed point
of the mapping) is called an isochrone through q⋆.

In other words, all points of the phase space which con-
verge to having the same phase on the limit cycle form
an isochrone.

If we plot isochrones for every ∆φ = const they show
the relationship of the phase with the geometry of the
system in the QCS (cf. Fig 2). Where they are tightly
spaced the phase point moves slowly, thus values of dif-
ferent phase are tighter spaced. If they are equally spaced
on the limit cycle, the lengths of an arc of the limit cycle
is proportional to a ∆φ (dφ = 1

S
2πds, where s is the ar-

clength and S the total length of the limit cycle). If the
isochrones are straight (as in Fig. 2b) this means that
the DE for φ and r are decoupled, and the transforma-
tion T corresponds to a transformation from Cartesian
to Polar coordinates.

Now, the isochrones give us an idea how φ is embed-
ded into QCS. But in order to complete our picture of
the transformation T we need to get an idea of how r is
embedded into this coordinate system.

For this we define the Radius-Isochrones, which will
give us an idea on how r evolves over time.

Definition 6 Radius-Isochrones – The set of points
q(t) satisfying dist(q(t + ∆t),q∞) = ǫ, are called a
Radius-Isochrone with ∆t.

Function dist denotes the distance between the point
q and the limit cycle. Intuitively this means all points
which converge to the limit cycle in the same time form a
radius-isochrone. We see that the definition of the radius-
isochrones implies a distance measure from the limit cy-
cle. This distance can be defined in different ways. We
use the perpendicular direction to the limit cycle and
consider as converged to the limit cycle when it enters
the “tube” of radius ǫ ≪ 1 around the limit cycle.

We can use the isochrones and the radius-isochrones
to get an idea how the abstract phase-radius oscillator is
embedded into the coordinate system for q. The time to
get from one isochrone to the next is constant, the time
from one radius-isochrones to the next is also constant.
The radius-isochrones gives information about the rate
of convergence, tightly space radius-isochrones mean a
slow convergence to the limit cycle, widely spaced mean
fast convergence (see Fig. 2 and its description).

If we plot isochrones equally spaced in φ and radius-
isochrones for equally spaced ∆t for the oscillator in the
canonical PRCS (Eqs. 8–9) we get a rectangular grid as
seen in Fig. 2a with equally spaced vertical lines and
exponentially spaced horizontal lines. This means when-
ever we see those characteristics in an oscillator we know
it behaves like the canonical oscillator (i.e. exponential
convergence towards the limit cycle and isochrone be-
havior).

2.2 Limit cycles under perturbations

Considering the fact that we can transform every oscil-
lator into a PRCS, it gets clear that we can consider all
unperturbed oscillators are equivalent up to a transforma-
tion T. They only differ in the way how a (physical) input
to the system affects its dynamics, i.e. how the input out-
put space is related to PRCS. So far we considered the
autonomous, i.e. unperturbed, oscillator. However, the
advantage of the use of oscillators (e.g. vs. function based
approaches) becomes only effective when using them to
be coupled to perturbations. This can mean the oscil-
lator is coupled to some external in- and output or to
other oscillators.

If the input and outputs are formulated in a QCS
then, in respect to their influence on the limit cycle,
they undergo the same transformation T. We thus have
to investigate limit cycle systems under perturbations.
Therefore, we have to consider the single oscillator as
non-autonomous system,

q̇ = F(q,p(t)) (12)

It is important to stress, that the perturbation can
theoretically have any arbitrary functional form, and the
perturbation is also not limited on acting on the first
state variable only. However, a discussion of the different
types of perturbations is out of the scope of this article.
We will focus on an often used form of perturbation, the
additive perturbation

q̇ = F(q) + p(t) (13)

We will however realize that the additive form in a QCS
transforms into a more complicated functional form in
the PRCS. The oscillator in the PRCS becomes

φ̇ = ω + pφ (14)

ṙ = Fr(r, φ) + pr (15)

pφ is the component of the perturbation acting on the
phase and pr is the component of the perturbation acting
in direction of the radius.

Expressed by help of the transformation T we yield
for the additive case (i.e. Eq. 13)

⇒ φ̇ =
∂Tφ(q)

∂q
F(q) +

∂Tφ(q)

∂q
p (16)
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Fig. 2 Illustrating the transformation T, by help of the isochrones and the radius-isochrones. For each oscillator 16 equally
spaced isochrones are used and a varying number of radius-isochrones with a given ∆t are plotted in the phase portrait
(upper panels) and below the time series are shown. The fine vertical lines indicate the isochrones (only indicating the
temporal position on the time series.) We see while they are always equally-spaced in the time series plot, in the phase
plot this is not necessarily the case. a) The phase plot of the canonical oscillator in the phase-radius coordinate system
PRCS (Eqs. 3–4). The isochrones form straight and equidistant vertical lines. The radius-isochrones (∆t = [5, 6, 7]s) form
exponentially spaced straight horizontal lines. b) The Hopf oscillator (Eqs.30–31). The isochrones form straight rays at equal
angles, which reflects the polar interpretation of φ in the transformation. The radius-isochrones (∆t = [0.7, 1.4, 2.1]s outside
of the LC and ∆t = [0.7, 1.4, 2.1, 3.5]s inside) reflect the 3th order convergence behavior of the radius. In the time-series
we see the harmonic nature of the limit cycle reflected. c) The Energy oscillator (Eqs. 22–23). Due to the appearance of
the nonlinear energy term only in the first ODE the system looses its circular symmetry. The isochrones and the radius-
isochrones (∆t = [2, 2.4, 2.8, 3.2]s outside of the LC and ∆t = [2, 2.4, ..., 5.2]s inside) get a characteristic deformation. d) van
der Pol Oscillator (Eqs.42–43). This is a strongly nonlinear oscillator. This fact is reflected in the strong deformation of the
isochrones. The strong deformation of the radius-isochrones ∆t = [0.3, 0.6, 0.9]s away from the limit cycle in the upper left
and lower right corner of the figure indicates the rapid convergence of the system in that region. It is immediately visible
that the transformation from this QCS to the PRCS is a very complicated one.

On the limit cycle eφ = T(q), thus the relationship be-
tween the PRCS and the QCS coordinate system is the
determinant for the effect of the perturbations to the
oscillator.

Let us give a geometric intuition, which lets us eas-
ily derive pφ, without relying on the transformation T.
But, this derivation is only valid on the limit cycle, while
above transforms are more general.

To arrive at this, it is important to realize that every
perturbation has a direction in the phase space. Consider
a pulse like additive input, i.e. a infinitely short input at
time tp The perturbation will bring the phase point away
from the limit cycle. The stability properties will bring it
back to the limit cycle, but on another position, relative
to the unperturbed system. Thus the phase of the system
φ(tp+) is not the same as before the perturbation φ(tp−),
the phase is reset hence the term “phase resetting” (cf.
Fig. 3).

Thus, for small perturbations the effect that remains
in the system is the effect of the perturbation in direction
of the phase eφ, this is the direction tangential to the
limit cycle or equivalently the direction q̇:

eφ =
q̇

|q̇| (17)

Therefore, the effective perturbation on the phase is

pφ = p · eφ (18)

The derivative of the phase becomes

φ̇ = ω0 + p · eφ (19)

So we found the sensitivity of the phase on perturbations:

Sp(p)
.
=

pφ

|p| =
p

|p| · eφ =
p

|p| ·
q̇

|q̇| (20)

This means that depending on the state of the oscilla-
tor, the same perturbation can have a different influence,
at one stage it can speed the oscillator slightly up at the
other state slow it down. If the sum of this acceleration
or de-acceleration is non-zero this leads to entrainment
effects.

The sensitivity of the phase to perturbations is sum-
marized in the phase-reset curve (PRC) and its general-
ization the phase sensitivity (PS). The PRC is a function
which describes the effect of a unitary pulse like pertur-
bation as a function of the phase of the oscillator it ar-
rives at. In other words it tells how much the phase is
shifted by that perturbation.

The phase sensitivity generalizes this idea as it does
not restrict to a single pulse like perturbation per cycle,
but it is an “instantaneous” description of the effect of
perturbations. Due to its importance in the discussion



Preprint 21.11, 2006 

To appear in Biological Cybernetics, Vol 95 No 6, 2006

(c) 2006 Springer

8

p(t)

∆
φ

Fig. 3 Effect of a small pulse like perturbation on the limit
cycle. The perturbation p(t) arrives when the phase point is
at the position marked by a the green dot. The phase point is
then pushed back to the limit cycle by the stability properties
of the system, i.e. it approaches asymptotically the limit cy-
cle. It however retains a phase difference (∆φ) in comparison
with the unperturbed reference system. The phase difference
can be of different amplitude and sign depending on the di-
rection of the perturbation and the state the system currently
is in when the perturbation arrives. Understanding this fact
is key to understanding synchronization phenomena.

about influence of perturbation on oscillators a lot of re-
search has been done mainly on PRC but also on PS, see
(Pikovsky et al., 2001) and references therein. For an ex-
ample of the derivation phase locking with the presented
tools see (Buchli & Ijspeert, 2004a).

It can be difficult or impossible to get analytical form
of the PRC or PS. However, with the directional idea
introduced in Eq. 20 it can be estimated from numerical
integration. It can also be measured to a certain extent
in real-world systems. We will come back to the role of
the PRC/PS when discussing the design of entrainment
effects in Section 5.

Since the frequency of the oscillator corresponds to
the rate of change of the phase we see that in a perturbed
oscillator the observed frequency is not necessarily the
same anymore:

Definition 7 The instantaneous frequency Ωi is de-
fined as the momentary rate of change of the phase

Ωi = φ̇ (21)

While for the autonomous oscillator the instantaneous
frequency is equal the intrinsic frequency and constant
(Ωi = ω = const), in the perturbed oscillator the instan-
taneous frequency is not equal the intrinsic frequency
(Ωi 6= ω) and is also a function of time (Ωi = f(t)).
Ωi is the frequency which will be observed or measured
at any given time (e.g. by methods like windowed FFT,
spectrograms or wavelets). ω is the parameter, while Ωi

is a variable which can be decoupled from ω by a per-
turbation.

Remembering the relation Ωi = φ̇, this also means
that the observed frequency is not the same as the in-
trinsic frequency : if we have phase locking (i.e. when
the difference between the phase of the oscillator and

the phase of the perturbation remains bounded) the ob-
served frequency will be the frequency of the perturba-
tion. Consider as an example two mutually connected
oscillators with intrinsic frequencies ω1,2 which are dif-
ferent but close enough to have mutual entrainment. The
observed frequency Ωi will be the same for both oscilla-
tors, but different from the two intrinsic frequencies, i.e.
Ωi 6= ω1,2 (it will be in between the two).

Thus, it can be said that the oscillator gets entrained
by the perturbation it could be said that it adapts, but
this change is only temporary, i.e. reactive. If the input
is switched off the system immediately returns to its in-
trinsic dynamics, there is no memory of the input, no
lasting change to the dynamics.

Further, there can be a influence on the radius by
the perturbation which can also be exploited. The sta-
bility directions here are however less special so this usu-
ally reduces to quite standard treatment of ODEs with
fixed points under perturbation. Note that however the
behavior of the radius under perturbation can still be
difficult, especially when there is a strong deformation
of the radius-isochrones in the QCS (e.g. as for the van
der Pol, cf. Fig. 2). Such a deformation means that the
convergence behavior is very non-uniform and a pertur-
bation has a completely different effect on r depending
where it arrives.

Thus, summarizing the findings of this section, it
must be realized that for the design it is important to
know the stability properties and the effect of perturba-
tions in the coordinate systems of the stability directions.
Simply said, if we want to change radius only, then we
need to act perpendicular the limit cycle, i.e. move the
point on the same isochrone, if we want to affect the
phase only we need to move the phase point tangential
to the limit cycle, to move on the radius isochrones.

3 The design space

We realize that the oscillator can be completely reduced
to the phase radius coordinate system and the inputs
can be formulated in that system. We can then possi-
bly use the transformation T

−1 into a given interpreta-
tion coordinate system to talk about the oscillator in a
physically or conceptually more meaningful coordinate
system. So all design choices will deal in one way or the
other with investigating what the effects of perturbation
in the phase radius coordinate system (PRCS) are (and
then possibly backwards via T, what the this means for
the behavior in the QCS).

We are now at a stage where we can discuss what can
be designed in an oscillator. There are three basic ways
how an oscillator and its in and output can be defined:

1. Chose an ODE system F(q, ρ) and functional form
of in and output, i.e. F(q, ρ) → F(q, ρ,p).
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Then we need to work out the relation of F to [φ̇, ṙ],
i.e. we have to work out T (or parts of it), the trans-
formation is implicitly specified.
Here we need to able to convince ourselves either an-
alytically or at least numerically that F(q, ρ) repre-
sents indeed a structurally stable oscillator. Then we
are sure about the existence of the phase radius coor-
dinate system and the stability properties that have
been discussed.
Example:

q̇1 = −α
q2
1 + q2

2 − E

E
q1 − q2 + px(t) (22)

q̇2 = q1 (23)

This oscillator’s steady state solution is
q∞ = [

√
E cos(t+ t0),

√
E sin(t+ t0)]. Structural sta-

bility is most easily shown by transforming into po-
lar coordinates and showing that the ODE for the
radius has a stable fixed point. We can then show
with rather straightforward analysis that in station-
ary regime:

φ̇ = ω + sin(φ)px(t) (24)

2. Use an ideal phase or phase radius oscillator and
given input and output directly in this coordinate sys-
tem, the transformation is thus implicitly specified by
this choice.
Note that the transformation does not necessarily
have to be fully specified, e.g. if only a scalar output
is needed it suffices to define a part of the transfor-
mation.
Example: Thus, we choose a phase oscillator and add
a nonlinearity in the input φ̇ = ω + sin(φ)p(t) will
synchronize on p(t) if frequencies are close. The out-
put is chosen to be o = sin(φ).

3. Specify input in QCS and specify T
−1 explicitly.

Example: Choose q = [q1, q2], a Cartesian coordinate
system, and T as the transformation into a polar co-
ordinate system, i.e. Tφ = arctan q1

q2

(arctan denotes

the four-quadrant arcus-tangent), Tr =
√

q2
1 + q2

2 .
The input acts on the first state variable only: p =
[p1, 0]. We can split up the relevant term from Eq. 16
in the following way

∂Tφ(q)

∂q
= [T∂q1

, T∂q2
]T (25)

Since p = [pq1
, 0]T , we can write

pφ = [T∂q1
, T∂q2

]T · [pq1
, 0]T = T∂q1

pq1
(26)

Using φ = arctan q1

q2

T∂q1
=

d

dq1
arctan

q1

q2
=

1

1 + ( q2

q1

)2
−q2

q1
2

= −r sin φ

r
= sin φ

⇒ pφ = − sin φpq1

As one can see, the three examples are equivalent in
their phase behavior. We also see that it is often not
needed to have a full knowledge of the theoretical trans-
formation T.

In large parts of the literature we see method 1 em-
ployed. Often with some complicated F out of the model-
ing literature. Immediately we realize that for engineer-
ing this is often not the best choice.

By help of the introduction of the stability direc-
tions and the geometrical aspects of interpretation of the
phase-radius coordinate system (i.e. T), we can identify
two somewhat orthogonal design axes: (1) Timing: De-
sign that influences the phase of the oscillator, here we
have (a) influence on (relative) phase, (b) instantaneous
frequency, and (c) average frequency. (2) Design that in-
fluences the geometry of the oscillator. To name here are
(a) influences on r directly and (b) the design of T

−1, i.e.
output filter. This is a very interesting and important re-
sult, since orthogonal design axis are extremely helpful
for engineering tasks. It means we can decouple the in-
fluence of parameters on the outcome. In other words,
by choosing a more suitable coordinate system, those in-
fluences get decoupled while in the original coordinate
system they are not.

To detail this more, in the following we address some
common design goals and how they translate into prop-
erties which the system has to exhibit (summary in Ta-
ble 2).

1. Specification: Unperturbed average frequency: Ωi =
ω. Average observed frequency should be equal to the
intrinsic frequency ω.

Required Property:
∫ 2π

0
pφ = 0

We need the effect on the phase to have in average
zero effect.

2. Specification: Frequency locking with an external sig-
nal of frequency ωF i.e. Ωi = ωF

Required Property: 1
2π

∫ 2π

0
pφ = ωF −ω(= ωd) if Ωi =

ωF , in differential terms: show that φd = φ − φF is

bounded
∫ 2π

0
φ̇d =

∫ 2π

0
pφ + ωd = 0 the perturba-

tion in the phase needs in average to make up for the
differences between the intrinsic frequency and the
frequency of the perturbation.

3. Specification: Phase locking with arbitrary phase lag:
φd = Φr.
Required Property: φ̇d(Φr) = pφ(Φr) + ωd = 0 and
d

dφ
φ̇d|Φr

< 0. The DE for φd needs a stable fixed point

at Φr. This is achieved when the perturbation at ev-
ery instant cancels for the differences between the
intrinsic frequency and the frequency of the pertur-
bation. Note, phase locking implies frequency locking.

4. Specification: Arbitrary instantaneous frequency: φ̇(t) =
Ωr(t).
Required Property: pφ = Ωr(t) − ω.
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Specification Required Property

1) Unperturbed avg. frequency: Ωi = ω
R 2π

0
pφ = 0

2) Frequency locking: Ωi = ωF
1
2π

R 2π

0
pφ = ωF − ω(= −ωd) if Ωi = ωF , in differential

terms: show that φd = φ − φF is bounded
R 2π

0
φ̇d =

R 2π

0
pφ + ωd = 0

3) Phase locking: φd = Φr φ̇d(Φr) = pφ(Φr) + ωd = 0 and d
dφ

φ̇d(Φr) < 0 (phase

locking implies frequency locking).

4) Spec. instantaneous frequency: φ̇(t) = Ωr(t) pφ = Ωr(t) − ω
5) Arbitrary output signal shape: x(φ) = xr(φ) or x(q) =

xr(q)
Appropriate function, i.e. filter

6) Arbitrary form of LC in QCS: q∞ = qref (t) stability directions i.e.
F(qref )

|F(qref |
=

D(qref )

|D(qref )|
and

∂n(qref )

∂n
< 1

Table 2 Common design goals and the required properties of the oscillator.

5. Specification: Arbitrary T -periodic output signal shape.
Required Property: An appropriate output function or
dynamical system has to be found, i.e. this leads to
filter design, or the design of T

−1.
6. Specification: Arbitrary form of limit cycle in QCS,

i.e. q = r(t) – one or several state variables should
follow a reference trajectory. This means we want a
general form of the limit cycle: We have a closed curve
in QCS which should be the limit cycle. Required
Property: We need thus to design the stability di-
rections to be tangent, i.e. on the curve the flow has
to have the direction of the tangent. Normal to the
curve the flow has to be stable. If D(.) denotes the
tangential and n(.) the normal direction to a curve,
we require (i) flow tangential to reference trajectory
F(r(t))
|F(r(t)| = D(r(t))

|D(r(t))| and (ii) contracting perpendicular

to the limit-cycle ∂n(r(t))
∂n

< 1.

Remember that if we decide to work with a QCS,
the the perturbation on the phase is pφ = f(T), thus the
properties to be satisfied to meet above design goals con-
tain the relationship between a chosen coordinate system
(QCS) and the PRCS.

The properties listed above will not necessarily allow
a directed design without further assumptions and sim-
plifications as they can lead to very difficult expressions.
In the second part of the article we will address how some
of the above properties have been designed in previous
work.

3.1 Classes of Limit Cycles

Here we list a few important classes of oscillators, with
properties in terms of the above discussed topics. They
are loosely ordered from “simple” to more “complicated”
(in the sense of T). As we have seen above, the classifi-
cation only makes sense for a given coordinate system.
We present them in the coordinate system in which they
are usually used and additive input is used.

Phase oscillator – The probably simplest type of
oscillator, where the radius is completely neglected,
only the phase is retained. The phase oscillator is a
linear system defined on the circle S

1 instead of the
Euclidean space R

1 which implies a closeness of the
solution, and with that the system fulfills our defini-
tion of an oscillator.
Properties The phase oscillator is essentially a first
order linear differential equation, the nonlinearity lies
in the interpretation of the phase modulo 2π and in-
put/output relation. It is the most abstract oscillator.
An important assumption for applicability of phase
oscillator is that the limit cycle is strongly damped,
i.e. that the phase point is always on the limit cycle
(or very close).
The output signal shape can not change based on
input (other than direct functional coupling).
References: The phase oscillator were and are the
“work-horse” to work on synchronization effects, e.g.
the Kuramoto oscillators (Kuramoto, 1984; Strogatz,
2000).
Equations

φ̇ = ω + p(F (t), φ) (27)

Illustration
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Isochronous oscillator
Properties The isochronous oscillators has straight
isochrones, i.e. they are perpendicular to the limit
cycle.
Equations
In the simplest case, the isochronous oscillator is a
linear differential equation system. However not de-
fined on the Euclidean R

D space but on S
1 × R

D−1

φ̇ = ω mod 2π (28)

ṙ = f(r0, r, φ) (29)
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Where f(r0, r) is DE with stable fixed point r0. The
interpretation of φ modulo 2π, e.g. in Cartesian coor-
dinates makes it an oscillator, e.g. the Hopf oscillator

ẋ = (µ − r2)x + ωy (30)

ẏ = (µ − r2)y − ωx (31)

Illustration
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References The oscillator in (Buchli & Ijspeert, 2004a)
is isochronous.

Amplitude controlled phase oscillators (ACPO)
The ACPO is the extension of the phase oscillator
with a radius. The radius is controlled by a differen-
tial equation with a fixed point attractor.
Properties The ACPO simple in the sense that the
phase shows up as an explicit state variable. This of-
ten allows for analytical treatment (Buchli & Ijspeert,
2004a). However, in order to achieve higher order
locking the input needs to be generating to oppor-
tunities for these locking regimes, in the sense that
it needs to generate higher order harmonics or sub-
harmonics of the input. In contrast to the isochronous
oscillator, the differential equation for the radius de-
pends on the phase.
Equations

φ̇ = ω (32)

ṙ = F(r, φ) (33)

f is a nonlinear function with stable fixed point.
Illustration
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Harmonic oscillators – An oscillator with a har-
monic limit cycle: i.e. stationary solution q∞(t) =
[r cos(t), r sin(t)]. Note that this term conflicts with
the common use to describe a linear second order sys-
tem. Such a system is however not an oscillator after
our definition as discussed above.
Properties Due to its harmonic limit cycle some ana-
lytical results on the PS/PRC are possible and thus
closed form solutions for phase relationships and lock-
ing behavior can be derived.
Typical for harmonic oscillators is a possible descrip-
tion in Cartesian coordinates where the linear second
order oscillatory system shows up with an addition of
nonlinear terms stabilizing the radius.

Equations

q̇1 = ωq2 + f1(q) (34)

q̇2 = −ωq1 + f2(q) (35)

See Eqs. 22– 23 for a concrete example.
Illustration See illustrations for the isochronous oscil-
lator and ACPO which are both harmonic oscillators.
References The Hopf oscillator (Hopf, 1942) and the
oscillators in (Ijspeert, Crespi, & Cabelguen, 2005;
Buchli & Ijspeert, 2004a) are harmonic oscillators.

Piecewise Linear Systems – A system constructed
of a set of linear systems of the same order, of which
always one is active depending on conditions on the
state variables.
Properties Rather straight forward to design and ana-
lyze (piece wise solution), can be problematic to sim-
ulate. Physical interpretation of switching effect is
some fast effect.
Equations Consider the oscillator from (Taga, 1994)

q̇1 = −q1 − w max(q3, 0) − βq2 + 1 (36)

q̇2 = −q2 + max(q1, 0) (37)

q̇3 = −q3 − w max(q1, 0) − βq4 + 1 (38)

q̇4 = −q4 + max(q3, 0) (39)

The system is switched whenever one of the state
variables q1,3 crosses 0, so the above form is a short
form to describe four different systems and oscillates
for certain parameter values (e.g. w = 2.5, β = 2)
Illustration
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References The well known Matsuoka oscillators (Mat-
suoka, 1985), applications of the Matsuoka oscilla-
tor in (Taga, 1994; 22, 2003). Such systems are also
known as switched linear system or hybrid systems.

Linear systems with reset – A linear, often second
order system, which is reset if a variable passes a cer-
tain threshold. Those system are an approximation of
the relaxation oscillators where we can consider the
fast effect to be infinitely fast.
Properties In between resets they behave like a linear
system which implies that they are analyzable under
this condition, i.e. a partial tractability. Can be prob-
lematic for certain solver schemes due to the discon-
tinuity in the ODEs introduced by the reset. Due to
the fact that by the reset the whole semi-plane q2 > 1
is reduced to a point (q = [0, 1]), the isochrones and
radius-isochrones are identical except for the point
on the limit cycle. Therefore, the transformation T is
mathematically problematic.
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Equations From (Izhikevich, 2001)

q̇1 = bq1 − ωq2 + I (40)

q̇2 = ωq1 + bq2 If q2 > 1, [q1, q2] = [0, 1] (41)

where b < 0 and I are constants.
Illustration
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References The resonant and fire neurons in (Izhike-
vich, 2001).

Relaxation oscillators – Properties
In general no closed form solution, characteristic phase
space with sharp corners, a fast/slow system i.e. two
involved time scales which can often been related to
physical mechanisms. Relaxation oscillators allow for
fast phase locking due to their bent isochrones. Fur-
thermore, they allow naturally higher order locking.
Equations The van der Pol Oscillator

q̇1 = q2 + p(t) (42)

q̇2 = µ(p2 − q2
1)q2 − ν2q1 (43)

Illustration
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References The well known Hodgkin-Huxley (HH)
model of the giant squid axon (Hodgkin & Huxley,
1952) can exhibit relaxation type oscillatory activ-
ity, by a simplification of HH the Fitzhugh-Nagumo
(FHN) Oscillator (FitzHugh, 1961) have been de-
rived. The FHN is very closely related to the van
der Pol Oscillator.

It is important to realize that a given oscillator can
belong the several of the here presented classes (i.e.
isochronous, harmonic, ACPO are not mutually exclu-
sive).

4 Design approaches

Thus so far we have seen what can be designed. In this
section we address the issue how the design goals can be
achieved. Thus, as we have seen we need to find structure
and parameterization of either F or T. Those can be
found in different ways, with off-line and online methods.

Off-line – Here the structure and parameters are found
by some process before the systems is deployed. Once

the system is working they remain fixed. There are
different ways to find a suitable structure and param-
eterization of the ODEs:
(1) System can be designed by hand, by help of suit-
able mathematical tools. (2) By search/optimization
(i.e. an algorithm outside of the dynamical system)
(3) Dynamically shaped (i.e. the tuning is part of the
dynamical system), but once deployed this process is
frozen.

On-line adaptation
We could also imagine having some of the parameters
changing over time as the system is deployed. This
basically means that the parameters are not constant
any more. They are turned in a certain sense into
state variables as well. Again different approaches can
be used: (1) By an algorithm which is outside of the
dynamical system. Usually this includes the assess-
ment/measurement of the some predefined quality of
the system and an algorithm which tunes the param-
eters to achieve a better quality. (2) Dynamically –
Here the relevant parameters are turned into state
variables and a dynamic law in form of ODEs has to
be found that will tune the system into the required
dynamics. This is very recent research with oscillators
(early work (Ermentrout, 1991; Nishii, 1998, 1999),
more recent (Buchli & Ijspeert, 2004b; Righetti et al.,
2006)). We only call such systems adaptive, since they
combine the to be exploited dynamics and the adap-
tation process into a single dynamical system. This
is also in line with the use of the term adaptive in
the framework of adaptive control but is in contrast
to the use of the term in many applications of oscil-
lators.

We can thus change the properties as discussed before
in Section 3: (1a,b,c,2a,b) and use the here described de-
sign approaches. In table 3 we list some of the literature
in which oscillators are used either in modeling which
had influence on robotic applications, are related to or
are directly robotic applications. In the next section we
will discuss some aspects of Table 3 in more detail.

5 Design results: From reactive to adaptive
oscillators

Thus, we have come a long way in describing the ba-
sic characteristic of oscillators, how they lead to design
specification and properties. Finally, we would like to dis-
cuss some aspects of the resulting system. The resulting
systems can have different properties in terms how they
react to the perturbation, how long information about
the perturbation is retained. The oscillator can be purely
reactive, i.e. the perturbation has only a short term, tran-
sient effect. Or the system can be adaptive. The system
has a memory and the effect of the information stays
possibly for infinite time. We note this classification in
Table 3 in the first column by R/A.



Preprint 21.11, 2006 

To appear in Biological Cybernetics, Vol 95 No 6, 2006

(c) 2006 Springer

13

5.1 Reactive: Temporary entrainment and shape
changes

The basic property of structurally stable dynamical sys-
tems can be exploited. In other words, the fact that
their behavior is a combination of their intrinsic dynam-
ics and external input. This means external inputs can
partially modify or even “override” the autonomous be-
havior of the system (annihilate attractors/induce bifur-
cations). This can possibly be exploited for applications.
The changes to the system are reactive in the sense that
there is no lasting change in the system. If the input sig-
nal is switched off the system will immediately behave
according to its original autonomous dynamics. In other
words the parameter, i.e. intrinsic dynamics, stays con-
stant. Memory effects can only be realized by the state
of phase point and are transient and shortlived. In this
category we can count all the exploitation of synchro-
nization, phase resetting etc. (such as in (Ermentrout
& Kopell, 1994; Williamson, 1998; Ijspeert et al., 2005;
Matsuoka, 1985, 1987; Schöner et al., 1990; Schöner &
Kelso, 1988; Taga, 1994, 1995b, 1995a; Buchli & Ijspeert,
2004a; 22, 2003; Schöner & Santos, 2001; Santos, 2003,
2004; Collins & Richmond, 1994; Endo et al., 2005)).
As an example, in case of phase locking the oscillator
is matching its frequency to the frequency of the input.
This is reactive since the frequency does not stay in the
system. The system has no memory of the frequency.
The very moment the input is switched off it rotates
with the intrinsic frequency. The only remaining pertur-
bation is a possible shifted phase compared to the hy-
pothetically same but unperturbed oscillator. Thus the
system is more reactive than adaptive (despite the use
of the word in many contributions). One can argue that
the above made distinction a reactive and an adaptive
system is somewhat arbitrary, but often we can argue by
separation of time scales. The “parameters” will usually
evolve on time scales slower than the “state variables”.
This separation of time-scales is an important concept
in physics and engineering to decide which variables are
considered static and which dynamic (Crawford, 1991;
Haken, 1983).

Entrainment, synchronization & phase locking As we
have seen in the previous section, the limit cycle has very
characteristic stability properties: It is marginally stable
in the direction of rotation. This implies that a pertur-
bation in this direction is not “forgotten” by the system,
while the perturbation perpendicular, i.e. asymptotically
stable direction, to the limit cycle are damped out.

We can exploit the synchronization properties of a
limit cycle system to sightly modify the oscillators timing
so that it works “in step” with some outside process.
A meanwhile very common application in robotics is to
exploit synchronization for legs to work in step with some
sensorial input (e.g. touch sensors on the foot, cf. (22,
2003; Taga, 1994; Morimoto et al., 2006)).

An important aspect in the design of oscillator es-
pecially if they are coupled with others into networks is
often the question how to design the phase relationship,
i.e. with which phase lag the activity of the oscillator is
synchronized with the perturbation. An interesting ap-
proach to desing specific phase lags is the to use contrac-
tion theory (Wang & Slotine, 2005).

As we have seen important concepts for the design-
ing are the phase response curve (PRC) (Pikovsky et al.,
2001) or the more general concept of Phase sensitivity
(PS) (Ermentrout & Kleinfeld, 2001; Kramer, Herschel,
& Calo, 1984; Buchli & Ijspeert, 2004a). PRC/PS can be
derived in an analytic fashion only for some types of os-
cillators (i.e. harmonic oscillators, phase oscillators; thus
they might be the oscillator of choice for this reason).
Basically having a closed form of PRC/PS is equivalent
in knowing the closed form of the limit cycle. However
for other, non-tractable oscillators, we can measure the
PRC/PS by numerical integration. The PRC and PS typ-
ically have zeros which means that a perturbation arriv-
ing when the oscillator is at this phase does not affect
the phase. The phase of the oscillator will thus be shifted
by a perturbation until it reaches this point and remain
there (given it is a stable point). This means to design a
certain phase relationship, we have to design either the
PRC/PS of the system, i.e. its zeros or need a filter to
the input that the desired phase relationship is attained
(e.g. rotation of signal as in (Buchli & Ijspeert, 2004a)).

In (Buchli & Ijspeert, 2004a) a discussion about the
choice of oscillators can be found an it is shown that the
simpler oscillators allow for a good design of some of the
properties of network of oscillators used as CPG.

A key requirement for synchronization is that the fre-
quency of the oscillator needs to be close to the frequency
of the input. If the differences between the frequencies is
large the oscillator does not fully synchronize, it will only
show a tendency to synchronization, an effect which is
called phase slips (Pikovsky et al., 2001). In average the
signals of the oscillators will drift relative to each other.
A way around this problem is to make the frequency
adaptive which will be discussed in the next subsection.

Another way of designing phase relationship in net-
works of coupled oscillators is by help of the theory
of symmetry, where the phase pattern can be achieved
without the single oscillator satisfying necessarily the
correct properties in the PRC/PS (Golubitsky & Stew-
art, 2006; Schöner et al., 1990; Righetti & Ijspeert,
2006a). However, even along with this method the con-
sideration of the properties of the single oscillator helps
to design non-frustrated systems, i.e. systems where the
individual behavior is in accordance with the global pat-
tern, which settle down faster and are more stable. The
synchronization properties can also be exploited to se-
quence and time actions as outlined in (Schöner & San-
tos, 2001; Santos, 2003, 2004).
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Inter cycle timing Another desired property could be
that the input signal should influence the instantaneous
frequency without changing the average observed fre-
quency. The key to such behavior is the property 1) in
Table 2 and discussed before. While we are not aware
of a contribution directly exploiting this characteristic
it would be straight forward to impose an additional
constraint on the oscillator used in (Righetti & Ijspeert,
2006a) to satisfy this property.

Reactive shape changes Changes of radius are less fre-
quently exploited than the entrainment effects. But of
course due to the stability properties we can very well
imagine an input which deflects the limit cycle by chang-
ing temporarily the fixed point for the radius. This trans-
lates in the outputs to have temporarily a larger or
smaller amplitude. An example can be found in (Righetti
& Ijspeert, 2006b).

Shaping the dynamical system Another way of designing
an oscillator with given output is to use a system which
is a universal approximator and approximate the oscil-
lator with this dynamical system. In (Ruiz et al., 1998;
Galicki et al., 1999; Leistritz et al., 2002) the authors
use recurrent neural networks to achieve arbitrary limit
cycles. The disadvantage of this method is that it usu-
ally leads to a very high dimensional system of which the
influence of the parameters can not easily be grasped.

An alternative way to changing the intrinsic dynam-
ics of the oscillator is to shape its output into to some
given form with filters. One possibility is to design the
filter purely functional or to design a dynamical dynam-
ical system which transforms the output (cf. linear fil-
ter). In (Ijspeert et al., 2002) the authors use Gaussian
filters shaped by locally weighted learning. In (Zegers
& Sundareshan, 2003) the authors use Neural Networks
as filters. The use of filters has the disadvantage that a
discontinuous change in the parameters of the filter can
lead to a discontinuous change in the output (i.e. one of
the advantages of using dynamical systems is negated).
In (Okada et al., 2003) shaping of arbitrary limit cycles
is discussed by a direct design of the flow. In (Righetti
& Ijspeert, 2006b) the authors shape the limit cycle by
help of a network of adaptive frequency oscillators.

5.2 Adaptation: Lasting changes to the dynamics

In this section we address lasting changes to the intrinsic
dynamics, i.e adaptation. Such lasting changes could also
be called called learning and in some communities this
is the preferred term. We do use the terms as equivalent
here.

As we have seen the limit cycle system is parame-
terized by a set of parameters ρ, which are usually kept
constant. Adaptation means now that we find a law to

change some or all of the parameters so that an adap-
tation goal is achieved. There are two conceptually dif-
ferent ways of achieving that, either the parameters are
changed by an external process or algorithm, or the dy-
namical system itself gets enhanced with additional state
variables and ODEs that represent the parameters and
their evolution respectively. This means we have to find
suitable differential equations ρ̇ = Fρ(q, ρ, t). This im-
plies that the set of parameters reflects the state of the
adaptation process, especially also after the system is
halted. We can thus possibly also read out certain infor-
mation about the system. This adaptation process con-
stitutes a longer-term memory, in contrast to the reactive
changes in the previous section which are forgotten and
do not get remembered in the state of the parameters.

The first, algorithmic method, is from the method-
ological point of view simpler since standard optimiza-
tion, learn and search techniques can be employed. In
(Marbach & Ijspeert, 2005) Powell’s method is used to
optimize the parameters of an oscillator network. Many
other optimization methods could be used for similar
tasks. The second, dynamic method, is more appealing
from the conceptual point of view and leads to more ef-
ficient and robust solutions (cf. (Buchli et al., 2006)).

Dynamic adaptation of limit cycle systems is a more
recent development and young field of research. There
are some investigations on adaptation of parameters (fre-
quency, others), e.g. in (Nishii, 1999; Large, 1994; Buchli
& Ijspeert, 2004b; Righetti et al., 2006).

An example is introduced in (Buchli & Ijspeert,
2004b) and analyzed in detail in (Righetti et al., 2006)
where a Hopf oscillator (Eqs. 30–31) is enhanced with a
evolution law for the frequency ω in the following way

ω̇ = −k
y

√

x2 + y2
p(t) (44)

where k is a coupling constant and p(t) an additive per-
turbation to Eq. 30. This law allows the oscillator to
adapt to the frequency of the perturbation p(t). Such
an additional law for the parameter ω endows the sys-
tem with many very nice properties and can be exploited
for different tasks such as adaptation to body dynamics
(Buchli & Ijspeert, 2004b; Buchli et al., 2005, 2006) or
programmable CPGs (Righetti & Ijspeert, 2006b).

As can be seen in Table 3, the column with the adap-
tion is only sparsely populated. A lot of questions have
to be answered and methodologies have to be found.

Adaptation can also be used in the design phase and
then the adaptation process is frozen for the deployment
phase (i.e. online vs off-line adaptation). This means
the dynamics is adapted, then remains fixed for the ap-
plication (learning/exploitation phase is distinguished)
whereas in the first case the adaptation works conti-
nously.
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6 Conclusion & Discussion

Discussion of design choice Oscillators have been used
widely in robotics over the last few years with a lot of
success, however a lack of abstraction often leads to sub-
optimal solutions for the given goal. These suboptimal
choices arise due to a lack of abstraction of the concepts
and/or a fixation on traditionally used oscillators.

For engineering of an application with oscillators we
first of all have to get clear what feature of an oscilla-
tor is the important one for the task. In other words, we
have to decide if its a generic feature of oscillators, of a
class of oscillators, or if its unique to a certain oscilla-
tor/input/output.

We have to think about readouts, what information
needs to be available, e.g. an oscillatory output signal
with certain properties (e.g. harmonic), or does the phase
of the oscillator have to be available as output? We can
then think if one of the well known oscillator/coupling
schemes which is suitable for the task at hand. Of course
sometimes it can be helpful to take an existing oscillator
and modify it to fit (cf. e.g. (Kay, Kelso, Saltzman, &
G., 1987; Righetti & Ijspeert, 2006a))

Most of the time oscillators are used for their syn-
chronization properties. Thus, we are interested in how
the phase φ behaves over time. In addition influence on
the radius can be exploited, but this is far less common.
This means that for many applications the phase oscil-
lator will a good and completely sufficient choice.

While it is often very convenient to use a phase os-
cillator we have to be careful with coupling which ex-
plicitely use the phase of the input signal (i.e. as it is of-
ten done in work on coupled phase oscillators). Because
couplings that worked out this way do usually not gen-
eralize so easily to a general periodic signal of which the
phase is not directly accessible. A way to bridge the gap
and to investigate arbitrary periodic signals are Fourier
series.

As always in engineering it is not possible to give rules
that are valid for all cases, but important questions to
guide the choice of oscillator and design strategy are:

– First and foremost: get clear about the design goals,
i.e. what property of an oscillator do you want to
exploit and why?

– Is direct access to the phase or the frequency re-
quired? In other words, should they be presented as
explicit variable and parameter?

– Is there a restriction in the number of state variables
and complexity of integrating the system (e.g. for em-
bedded computing)?

– Should it be possible to prove or predict analytically
properties of the system (convergence, phase relation-
ship)?

– How many elements should the system contain, i.e.
is a network of oscillators needed (e.g. half-center,
interneurons) or might a single oscillator be enough?

– Is there an advantage to use a strongly nonlinear os-
cillator or is a harmonic/phase oscillator enough, e.g.
is a “neural” oscillator really the right one to achieve
my goal? In modeling, does my model really concern
the neural level so that the use of a neural oscillator
is justified?

– Try to make the design space as orthogonal as possi-
ble (e.g. in the Matsuoka oscillator there is a strong
influence on the shape if the oscillator gets coupled
to others).

– Should the complexity and nonlinearity be placed
into the oscillator or into the coupling (e.g. for higher
order locking: either, phase oscillator and coupling
which generates the higher order frequency compo-
nents, or complex oscillator and simple couplings.)?

An often made assumption to treat limit cycle sys-
tems is the assumption that influence on phase and ra-
dius can be completely separated, this assumption di-
rectly follows out of the stability directions as discussed.
However, a perturbation perpendicular to the limit cycle
can in general very well have an influence on the phase
and vice versa (e.g. in the van der Pol) the separation of
the directions is a very useful approximation but is lim-
ited to a region “close” to the limit cycle. If we want to
have a complete separation the oscillator has to be cho-
sen accordingly, i.e. a harmonic isochronous oscillator.

Sometimes it is desired to synchronize the signal in
another ratio than 1:1, in general oscillators can phase
lock in any ratio n/p n, p ∈ N. However, harmonic os-
cillators are not sufficient to achieve this task unless the
input contains higher harmonics (ideally pulse like). Re-
laxation oscillators can phase lock with other ratios to a
harmonic signal.

Finally, it is important to stress that there are many
design aspects which in this article could not be dis-
cussed. As an example consider transient time for lock-
ing. It turns out that relaxation oscillators are well suited
for rapid phase locking (Somers & Kopell, 1993), this is
due to the bent isochrones, i.e. even a small perturbation
can drive oscillator over many isochrones and thus ad-
vance it rapidly in towards a stable phase. We see that
also for such discussions the basics are the topics dis-
cussed in the paper.

We do not address another way of distinguishing two
dynamical systems namely by their bifurcation behav-
ior. In dynamical systems it is a typical phenomenon
that if some parameters are changed beyond a critical
value the qualitative behavior of the system can com-
pletely change, e.g. an oscillator can bifurcate to fixed
point behavior. If two systems differ in their bifurcation
behavior it is usually not possible to transform one into
the other by only a change of coordinate systems. Dif-
ferent oscillators can have different bifurcation behavior.
It is important to realize, that we do only discuss the
oscillators in their oscillatory regime, far away from the
bifurcation points and the above made statements are
only valid in this parameter range.
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Furthermore, we have simplified the discussion by the
fact that we do only concentrate on the limit cycle at-
tractor of the system, while it can possibly have other
attractors. Thus our discussion is limited to the basin of
attraction of the limit cycle attractor (e.g. every limit
cycle encloses a unstable fixed point from which the so-
lutions would not converge to the limit cycle).

Outlook and future research It is an immense task to
classify the design of oscillators and many details could
not be discussed in this article.

We are convinced that taking an engineering perspec-
tive on oscillators is needed in order to make full use of
them in robotics applications. This paper is only a first
step in that direction.

It is possible that an engineered system might lack
some of the self-organization properties and flexibility
of natural oscillatory networks, but this is a fundamen-
tal problem when trying to exploit systems capable of
self-organization to engineering. On the other hand we
gain methodology, guarantees, but clearly such questions
are open for research, see (Buchli & Santini, 2005) for a
deeper discussion.

There are many substrates other than digital com-
puters which allow for structurally stable oscillators, i.e.
chemical oscillators, (analog) electronic, biological (see
also (Buchli & Santini, 2005)). Choosing such a substrate
however narrows down the degrees of freedom in the de-
sign, but still the key to understanding and engineering
those systems is presented in this article. It would of
course be interesting to exploit such substrates for engi-
neering applications.
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offline online
contribution R/A “by

hand”
algo-
rithmic

dynamic algo-
rithmic

dynamic

(Ermentrout & Kopell, 1994) R 1a
(Williamson, 1998) R 1a
(Ijspeert et al., 2005) R 1a
(Matsuoka, 1985, 1987) R 1a
(Schöner, Jiang, & Kelso, 1990) R 1a
(Schöner & Kelso, 1988) R 1a
(Endo et al., 2005) R 1a
(Morimoto et al., 2006) R 1a
(Righetti & Ijspeert, 2006a) R 1b
(Taga, 1994, 1995b, 1995a) R 1a
(Buchli & Ijspeert, 2004a) R 1a
(22, 2003) R 1a
(Schöner & Santos, 2001; Santos, 2003, 2004) R 1a
(Collins & Richmond, 1994) R 1a
(Ijspeert, 2001) R 1a/2
(Zegers & Sundareshan, 2003) R 2b
(Okada, Tatani, & Nakamura, 2002; Okada, Nakamura, &
Nakamura, 2003)

R 2a

(Ijspeert, Nakanishi, & Schaal, 2002) R 2b
(Ruiz, Owens, & Townley, 1998) R 2
(Galicki, Leistritz, & Witte, 1999; Leistritz, Galicki, Witte, &
Kochs, 2002)

R 2

(Righetti & Ijspeert, 2006b) R 1a/2b
(Marbach & Ijspeert, 2005) A 1a
(Nishii, 1999) A 1c/1a
(Ermentrout, 1991) A 1c
(Large, 1994, 1996) A 1a 1c
(Buchli & Ijspeert, 2004b; Righetti, Buchli, & Ijspeert, 2006;
Buchli, Righetti, & Ijspeert, 2005; Buchli et al., 2006)

A 1c

Table 3 Table classifying some of the contribution of the field oscillators applied to robotics and related modeling. The
contributions are classified according the the design method as discussed in Section 4. The labels in each case correspond the
design goals identified in Section 3: (1) Timing: Design that influence the phase of the oscillator: (a) influence on (relative)
phase, (b) instantaneous frequency, and (c) average frequency. (2) Design that influences the geometry of the oscillator: (a)
influences on r, (b) the design of T

−1/ output filter. The column “R/A” indicates whether the resulting system is reactive
or adaptive. This table has sparsely populated columns which point to open research question.


