

Abstract— In our previous works we had developed a
framework for self-reconfiguration planning based on graph
signature and graph edit-distance. The graph signature is a fast
isomorphism test between different configurations and the
graph edit-distance is a similarity metric. But the algorithm is
not suitable for modules with symmetry. In this paper we
improve the algorithm in order to deal with symmetric
modules. Also, we present a new heuristic function to guide the
search strategy by penalizing the solutions with more number
of actions. The simulation results show the new algorithm not
only deals with symmetric modules successfully but also finds
better solutions in a shorter time.

I. INTRODUCTION
odular robotics is an approach to build robots with
complex structures by connecting individual simple

robots together. Beside ease of mass-producing the simple
modules, self-reconfigurable modular robots have the ability
to reconfigure from a configuration of modules to another
one. These characteristics make modular robots more
adaptive and robust than conventional robots in different
circumstances. For example, such a robot can switch
between snake and spider shapes to move in narrow or
uneven paths. At the other hand, the only thing should be
done to repair a modular robot is to replace an out-of-work
module with a working one.

Modular robots are generally classified as lattice-type or
chain-type. Lattice-type modules use cluster-flow
locomotion and reconfiguration. In order to move, the robot
continuously reconfigures (modules attach and detach over a
lattice of other modules), thereby giving the impression that
the cluster “flows” on the ground and around obstacles.
Crystalline [3], Telecube [4], ATRON [5] and Molecule [6]
modules use this type of reconfiguration.

Chain-type reconfiguration is similar to substrate
reconfiguration except that modules of this type have power
joints which enable them to locomote without the need of
reconfiguration. Reconfiguration is usually used to adapt to a
new environment or task. M-TRAN [8], YaMoR [9],
CONRO [10], Polybot [11] and Molecube [13] are some
implementations of this type. We work on this type of
modular robots.

In this work, we use a framework based on graph
signature and graph edit distance introduced by Asadpour et
al. [2] to tackle the problem of Self-Reconfiguration

M.Asadpour and M.H Zokaei Ashtiani are with Control and Intelligent
Processing Center of Excellence, ECE Dept., University of Tehran, Iran.
Corresponding author: asadpour@ut.ac.ir, +98-21-82084951

A.Sproewitz and A.Ijspeert are with Bioinspired Robotics Group (BIRG)
at Echole Polytechnic Federal de Lausanne (EPFL), Switzerland.

Planning (SRP). We make a big improvement to the
algorithm by introducing a way to deal with symmetric
modules in an efficient way. We also introduce a new
heuristic function for the search strategy that enhances the
algorithm by finding better solutions with less computational
cost.

The next section describes the related works. The third
section explains our new method. The paper is finalized by
the simulation results and conclusions.

II. RELATED WORKS
A configuration is a particular arrangement of

connectivity between independent modules [1]. Self-
reconfigurable modular robots must have the ability to plan a
series of atomic actions to reach some configuration in
configuration space. SRP addresses the design of an
efficient algorithm to find an optimal (or suboptimal)
sequence of predefined actions to reach a final configuration,
starting from an initial one.

Mechanical limitations put some difficulties upon SRP for
chain-type robots. Individual modules must be strong
enough to perform motions while lifting the weight of chains
of other modules, taking care of collisions, and maintaining
the stability of the whole structure [2]. As a consequence,
finding a good solution needs more effort.

Casal and Yim [1] [13] present a divide-and-conquer
strategy to plan reconfiguration for closed-chain robots. The
configuration is first decomposed into a hierarchy of small
sub-structures belonging to a finite set. Sets of substrates
must be topologically non-homeomorphic, and
reconfiguration between them must be simple.
Reconfiguration between the sub-structures in the set are
pre-computed and stored in a lookup table. The entire
reconfiguration then consists of an ordered series of pre-
computed actions happening locally among the sub-
structures.

The authors present two algorithms for closed-chain
reconfiguration: The first algorithm reconfigures the
structure to an intermediate form (e.g. a single chain) and
builds the final configuration from that intermediate
structure. The second algorithm tries to match the initial and
final configurations in a hierarchical manner, i.e. first
matching the number of levels, then matching the number of
sub-structures per level, then size of sub-structures, etc.

Yoshida et al. [14] presents a centralized planning-based
approach to reconfigure a group of M-TRAN modules. The
planner uses macro-actions with a block of modules instead
of one. As a result the planning problem is simplified due to

Graph signature for self-reconfiguration planning of modules with
symmetry

Masoud Asadpour, Mohammad Hassan Zokaei Ashtiani, Alexander Sproewitz, Auke Ijspeert,
Members, IEEE

M

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147955666?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

dealing with smaller number of sub-structures. The planner
consists of an upper layer that plans the overall cluster
motion called flow to realize locomotion along a given
desired trajectory and the lower layer determines locally
cooperative module motions, called motion schemes, based
on a rule database.

Guided search is a natural choice to solve SRP problems.
A heuristic function is used to guide the search toward the
final configuration. This function usually approximates the
number of actions needed to reach the final configuration.

Pamecha et al. [15] introduces some metrics to reflect the
distance between two configurations. The most useful metric
is the optimal assignment metric, which tries to optimally
assign the modules of the initial configuration to the
modules of the final configuration so that, the assignment
cost function is minimized. Optimal assignment problem can
be solved in O(n3× d) time using Hungarian method [16]
where n is the number of modules and d is the cost of
assigning a module to another.

Asadpour et al. [2] propose a graph theoretical approach
to SRP. They use a similarity metric between configurations
as a heuristic function, so that the configuration with more
similarity to the final configuration is visited first. This
enables them to find sub-optimal solutions in shorter time.
They also use a graph isomorphism test to find out whether
two configurations are isomorphic or not. This helps to cut
some repetitive branches in search space and avoid solving a
sub-problem multiple times.

III. PROPOSED METHOD
Our method is mainly based on the framework introduced

by Asadpour et al. [2]. Each configuration in the
configuration space is represented in a graph format, called
configuration graph. In the configuration graph, modules are
represented by vertices and connections between them are
represented by edges (directed edge for male-female
connections and undirected edge for genderless
connections).

Starting from an initial configuration graph, a set of
feasible edit actions (attach, detach) can be performed.
These actions create a set of new configuration graphs.
Among the unexplored configuration graphs, the
configuration that is more likely to guide to a good solution
(according to a heuristic function, discussed later) is selected
to expand. In case of tie, a configuration will be selected
randomly.

The concept of graph signature, which is an isomorphism
invariant property of the configuration graph, is used to find
repetitive configurations and avoid expanding them again.
These repetitions are more frequent particularly when we
deal with symmetric modules.

The transition from a configuration graph to another
configuration graph via an edit action is saved in a transition
graph, where configuration graphs are represented as nodes
and edit actions are represented as edges.

A. Isomorphism Test
Graph isomorphism is one of the key problems in graph

theory. It has not yet been proved whether it is NP-Complete
or not [17], however it can be solved in polynomial time for
special cases e.g. Graphs with bounded degrees [18] and
ordered graphs [19]. In order to find isomorphic graphs, we
try to extract an isomorphism invariant property of the
graphs, called graph signature. The process of isomorphism
test then consists of comparing the graph signatures.

Asadpour et al. [2] compute graph signature of
configuration graphs using the properties of ordered graphs.
The algorithm takes quadratic time in worst-case in term of
the number of the vertices. However, dealing with
symmetric modules and genderless connections makes it
difficult to find isomorphic graphs. The reason is that the
configuration graph cannot be trivially transformed to an
ordered graph anymore. As a consequence, their method
needs exponential time to compute graph signature. Here we
try to tackle this problem by putting some order on the
connections of the symmetric modules.

A labeled module is a module with unique labels on each
of its connectors. Fig. 1 shows a labeled Molecube [6] with 6
connectors. Two module labels are compatible if it is
possible to completely match the two labeled modules only
by some servo movements or rotation of the whole module
in 3D space. For example, there are 23 other ways to label
the Molecube modules with compatible module labels.
Hence we say that the symmetry factor of the module is 24.

Fig. 1. A labeled Molecube

At the other hand, we can assign a label to each
connection (edge in the configuration graph). A connection
label consists of 3 values put together: the label of the
connector of the source module, the label of the connector of
the destination module, and the rotation code. The rotation
code indicates the orientation of the destination module
related to the source module e.g. two connected Molecubes
have 4 possible relative orientations (0o, 90o, 180o, 270o).

Now assume we have a connected configuration graph G.
Starting from a vertex v labeled as 1, we begin a Depth First
Search (DFS) to visit the vertices. When we are in a vertex
with multiple unvisited neighbors, we choose the next vertex
according to the connector’s labels. The neighbor that is
connected to a connector with the lowest label is visited first.
Every time we visit a new vertex (say kth new vertex) we
assign a new vertex label (k) to it. Then we label its
connectors so that the label of its connection with its parent
vertex is minimized. DFS continues till the entire vertices
are visited. We will have the signature of v if the label of the

vertices and the connections we visit in each step are written
down. Fig. 2 and Fig. 3 show an example of this procedure.

Fig. 2. A configuration of Molecube modules. The numbers

are labels of the vertices.

If we start from the module marked 1 in Fig. 2, and use

the module label shown in Fig. 1 for the initial module, the
other modules will be visited in a sequence shown on Fig. 3.
In result, the signature of vertex 1 with will be a sequence of
vertex and edge labels as shown in Fig. 3.

Fig. 3. Steps to compute signature starting from a vertex.

The numbers written on the edges are connector labels. The
signature is: 1[1 0o 1]2[2 0o 1]3[6 0o 1]4[3 0o 1]

Now if we compute all vertex signatures with all

compatible labeling, and then choose the signature with
minimum lexicographical order, we will have a unique
signature of the configuration graph.

The time complexity of a DFS is O(v + e) where v and e
are the number of vertices and edges respectively. As far as
the number of connectors of each module is finite, v ~ e, the
cost is O(v). Since we perform DFS for each initial vertex
and each compatible module labeling, the total cost is O(v2 ×
s) where s is the symmetry factor of the module. This
method has lower worst-case complexity than the old
method [2] that was O(v2 + v × sv) for symmetric modules.

B. Search Method
In our previous work [2] we used greedy heuristic search

to find the solutions. Starting from the initial configuration,
the next configuration is selected from the list of unvisited
neighbors of the visited configuration. Among them, the

configuration with maximum similarity to the final
configuration according to a similarity metric is selected
first. If the selected configuration is isomorphic to a
previously visited configuration (i.e. they have the same
signatures) it’s not expanded anymore.

This approach tends to find solutions with no preference
for the number of edit actions. However, we are interested in
solutions with minimum number of actions (i.e. depth in the
configuration graph). Therefore we try to provide a new
heuristic function which puts some priority over the
configurations with less depth in the configuration graph. A*
search [21] sounds good for this purpose and guarantees
optimality. But the extremely large search space of
configurations does not allow finding a solution in
appropriate time with this approach.

To tackle the problem, we introduce a new heuristic
function. While this heuristic function dramatically improves
the performance of the search, there is no guarantee that the
first encountered solution is optimal. However, we believe
this function is a good balance between time complexity and
quality of solutions; it finds good solutions in appropriate
time.

The new heuristic function consists of two parts. The first
part is the old heuristic function [2] that was a metric based
on the graph edit distance. Graph edit distance, δ, is the
minimum number of graph edit actions (deletion or insertion
of vertices or edges) to transform an initial graph to a final
graph. It has been proved that it has the following relation
with Maximum Common Sub-graph (MCS) of the graphs G
and F [19]:

(,)
(,) 1

max(,)
MCS G F

G F
G F

δ = − (1)

But finding MCS is proved to be NP-Complete [17].
Raymond et al. [20] calculate an upper-bound for MCS. We
have used a simplified version of their method to calculate
an upper-bound for the edit distance of labeled graphs. We
know two vertices can be matched if their edge labels match.
So, if El

G and El
F are the number of edges of the input graphs

that have label l, the upper-bound for the distance is:
max

0
min(,)

(,) 1
max(,)

l l l
G Fl

E E
G F

G F
δ == −∑ (2)

It can be computed in linear time O(max(|G|,|F|)) using a
hash table [2].

The second part of the new heuristic function is the
number of edit actions required to reach the current
configuration starting from the initial configuration, i.e. the
length of the shortest path from the initial configuration to
the current configuration(or a configuration isomorphic to
the current configuration) in the transitions graph. This part
can be calculated in constant time by adding a depth variable
to the configuration graphs and saving the transition history.
The depth variable is updated whenever a shorter path is
found.

In summary, the heuristic function of a configuration G in

terms of its distance d to the initial graph I (i.e. its depth) and
its distance δ from the final configuration F is:

((,), (,))g d G I G Fδ (3)
where g is a suitable monotonically decreasing heuristic

function of d and δ. The function that was empirically
derived for our application is:

1
(,) (,)G F d G Iδ

−
⎡ ⎤
⎣ ⎦ (4)

IV. RESULTS AND ANALYSIS
We have tested our method on a group of simulated M-

TRAN modules. Each module has 6 genderless connectors
and 2 rotational servos. The similarity factor of M-TRAN
module is 4 since it has two symmetry lines. Therefore it is a
good benchmark to test the proposed method.

Three reconfiguration tasks were considered: quadruped
(Fig. 4) to snake (Fig. 5) studied by [2], quadruped to line
(Fig. 6) and 8-module quadruped (Fig. 7) to 8-module snake
(Fig. 8) studied by Kurokawa et al. [22]. Experiments in the
first and the second tasks were repeated 30 times and the last
one was repeated 15 times with different random seeds.

Fig. 4. Quadruped configuration

Fig. 5. Snake configuration

Fig. 6. Line configuration

Fig. 7. 8-module quadruped

Fig. 8. 8-module snake

The results of the method are compared to the previous
work in terms of quality of the found solutions (i.e. number
of attach/detach actions) and computation cost (i.e. number
of encountered graphs).

A. Quadruped to Snake:
The best solution we have found for this task consists of 9

attach/detach actions. This solution was always among the
first 20 solutions encountered. This is a good result
compared to [2] in which the best solution was only found in
some cases. At the other hand, efficient isomorphism test
allowed us to do a full BFS (exploring about 130,000
configurations of which about 44,000 are distinct) and find
out that there is no better solution.

The first found solution had always less than 20 actions.
This is also a much better result than [2] where the first
found solution had always more than 20 actions.

The number of graphs visited before finding the first
solution is depicted in Fig. 9. Compared to results of [2]
(reshown in Fig. 10), we observe that the new heuristic is
quite successful to guide the method toward the final
configuration. Therefore the first found solution is always
among the first 4,000 visited graphs, while the old method
sometimes needed encountering more than 50,000 graphs.

The number of graphs visited to find the best solution
among first 20 solutions (which was always the global
optimum for our experiment) is presented in Fig. 11.
Compared to results of [2], (reshown in Fig. 12)
performance of the new heuristic function is one order of
magnitude better than the old method.

Number of graphs examined before f inding the f irst solution

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1000 2000 3000 4000 5000 More

Number of graphs

Pe
rc

en
ta

ge

Fig. 9. Percentage of simulations vs. Number of graphs

examined before finding the first solution for quadruped-to-
snake task

Fig. 10. Percentage of simulations vs. Number of graphs

examined before finding the first solution among first 20 in
[2] for quadruped-snake task

Number of graphs examined before f inding the best solution

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

2500 5000 7500 More
Number of graphs

Pe
rc

en
ta

ge

Fig. 11. Percentage of simulations vs. Number of graphs

examined before finding the optimal solution for quadruped-
to-snake task

Fig. 12. Percentage of simulations vs. Number of graphs

examined before finding the best solution among first 20 in
[2] for quadruped-to-snake task

Number of graphs examined before f inding the f irst solution

0%

10%

20%

30%

40%

50%

60%

2500 5000 7500 10000 More
Number of graphs

Pe
rc

en
ta

ge

Fig. 13. Percentage of simulations vs. Number of graphs

examined before finding the first solution for quadruped-to-
line task

Number of graphs examined before finding the best solution

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

10000 20000 30000 40000 50000 60000 More

Number of graphs
Pe

rc
en

ta
ge

Fig. 14. Percentage of simulations vs. Number of graphs

examined before finding the best solution for quadruped-to-
line task

Fig. 15. Percentage of simulations vs. Number of graphs
examined before finding the first solution for 8-module

quadruped-to-snake task

Fig. 16. Percentage of simulations vs. Number of graphs
examined before finding the best solution for 8-module

quadruped-to-snake task

B. Quadruped to line:
Our method found a solution with 9 attach/detach actions.

The solution provided by Kurokawa et al. [22] consists of 14
attach/detach actions. The first found solution had always 11
actions. The number of graphs visited to find the first and
the best solutions are depicted in Fig. 13 and Fig. 14. We see
that this problem is somewhat harder than the previous
experiment and more graphs should be visited to find good
solutions.

C. 8-module quadruped to line:
Kurokawa et al. [22] provides a solution to this problem

that includes 12 attach/detach actions (forgetting servo
movements which are not counted here). However, this
problem has been solved manually with the help of a
planner. Our method found a solution with 7 attach/detach
actions. The results of the experiments are depicted in Fig.
15 and Fig. 16. The first solution is usually found within
visiting 7500 graphs and the best solution is encountered
before visiting12500 graphs.

V. CONCLUSION
We tackled the problem of self-reconfiguration planning

for modular robots by enhancing our previous method [2].
We presented, a graph isomorphism test based on the
signature of labeled graphs and showed how it can be used
to generate an isomorphism invariant code for modules with
or without symmetry. This test was used to cut redundant
paths from the initial configuration to the final one. We
showed the graph isomorphism test runs in polynomial time
(i.e. quadratic worst case time) even in case of symmetric
genderless modules.

A heuristic function was used in a guided search to find
feasible solutions based on the graph edit-distance between
the current configuration and the final one and the length of
the shortest path from the initial configuration to the current
configuration. The simulation results showed this heuristic
leads the search algorithm to find better solutions by
examining fewer graphs.

For future we would like to investigate the optimal way of
combining the two parameters we used in the new heuristic
function. Also, optimizing the planning based on other
criteria e.g. the time required to reconfigure instead of the
number of attach/detach actions would be another interesting
issue.

REFERENCES
[1] A. Casal and M. H. Yim, “Self-reconfiguration planning for a class of

modular robots,” in Proc. SPIE, Sensor Fusion and Decentralized
Control in Robotic Systems II, G. T. McKee and P. S. Schenker, Eds.,
vol. 3839, Aug. 1999, pp. 246–257.

[2] M. Asadpour, A. Sproewitz, A. Billard, P. Dillenbourg, A. Ijspeert.
Graph Signature for Self-Reconfiguration Planning, Accepted for
publication, IROS 2008.

[3] D. Rus and M. Vona, “A physical implementation of the self-
reconfiguring crystalline robot.” in Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA), 2000, pp. 1726–1733.

[4] S. Vassilvitskii, J. Kubica, E. Rieffel, J. Suh, and M. Yim, “On the
general reconfiguration problem for expanding cube style modular

robots,” in Proceedings of the 2002 IEEE Int. Conference on Robotics
and Automation, 11-15 May 2002, pp. 801–808.

[5] E. H. Ostergaard and H. H. Lund, “Evolving control for modular
robotic units,” in Proceedings of CIRA’03, IEEE International
Symposium on Computational Intelligence in Robotics and
Automation, Kobe, Japan, 16-20 July 2003, pp. 886–892.

[6] K. Kotay, D. Rus, M. Vona, C. McGray, The self-reconfiguring
Molecule: design and control algorithms. Proc. of the Algorithmic
Foundations of Robotics, Houston, USA.

[7] T. Fukuda and S. Nakagawa, Dynamically Reconfigurable Robotic
Systems. Proc. of IEEE Intl. Conf. on Robotics and Automation, 1988.

[8] H. Kurokawa, K. Tomita, A. Kamimura, S. Murata, Y. Terada, and S.
Kokaji, “Distributed metamorphosis control of a modular robotic
system M-TRAN,” in Distributed Autonomous Robotic Systems
(DARS) 7, Springer, pp. 115–124, 2006.

[9] R. Moeckel, C. Jaquier, K. Drapel, E. Dittrich, A. Upegui, and A.
Ijspeert, “Exploring adaptive locomotion with YaMoR, a novel
autonomous modular robot with Bluetooth interface,” Industrial
Robot, vol. 33, no. 4, pp. 285–290, 2006.

[10] W.-M. Shen, P. Will, A. Galstyan, and C.-M. Chuong, “Hormone-
inspired self-organization and distributed control of robotic swarms,”
Autonomous Robots, vol. 17, no. 1, pp. 93–105, 2004.

[11] D. Duff, M. Yim, and K. Roufas, “Evolution of polybot: A modular
reconfigurable robot,” in Proc. of the Harmonic Drive Intl.
Symposium and Proc. of COE/Super-Mechano-Systems Workshop,
Japan, Nov 2001.

[12] V. Zykov, E. Mytilinaios, B. Adams, and H. Lipson, “Self-
reproducing machines”, Nature, 435, No. 7038, pp. 163-164, 2005.

[13] M. H. Yim, D. Goldberg, and A. Casal, “Connectivity planning for
closed-chain reconfiguration,” in Proc SPIE, Sensor Fusion and
Decentralized Control in Robotic Systems III, G. T. McKee and P. S.
Schenker, Eds., vol. 4196, Oct. 2000, pp. 402–412.

[14] E. Yoshida, S. Murata, A. Kamimura, K. Tomita, H. Kurokawa, and
S. Kokaji, “A self-reconfigurable modular robot : Reconfiguration
planning and experiments,” The International Journal of Robotics
Research, vol. 21, no. 10, pp. 903–916, 2002.

[15] A. Pamecha, I. Ebert-Uphoff, and G. Chirikjian, “Useful metrics for
modular robot motion planning,” IEEE Trans. on Robotics and
Automation, vol. 13, no. 4, pp. 531–545, 1997.

[16] H. W. Kuhn, “The hungarian methods for the assignment problem,”
Naval Research Logistic Quarterly, vol. 2, pp. 83–97, 1955.

[17] M. R. Garey and D. S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness. San Francisco: W. H.
Freeman, 1979.

[18] E. M. Luks, “Isomorphism of graphs of bounded valence can be tested
in polynomial time,” Journal of Computer and System Sciences, vol.
25, p. 4265, 1982.

[19] X. Jiang and H. Bunke, “Optimal quadratic-time isomorphism of
ordered graphs.” Pattern Recognition, vol. 32, no. 7, pp. 1273–1283,
1999.

[20] J. W. Raymond, E. J. Gardiner, and P. Willett, “RASCAL: Calculation
of Graph Similarity using Maximum Common Edge Subgraphs,” The
Computer Journal, vol. 45, no. 6, pp. 631–644, 2002.

[21] S. Russel and P. Norvig, “Artificial Intelligence: A Modern
Approach”, Prentice Hall, Englewood Cliffs, NJ, p. 96, 1995.

[22] http://unit.aist.go.jp/is/dsysd/mtran3/FlashMovie/mtran3/movie.htm

