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Abstract. Generation of a Swing Electron Cyclotron Current Drive (Swing ECCD), i.e. driving

alternated, symmetric, positive or negative local ECCD, during a single discharge and at constant total

input EC power, was performed at the Tokamak à Configuration Variable (TCV). The electron tem-

perature is observed to be modulated inside the deposition radius, implying modulation of the electron

transport properties. The modulation of ECCD is the only actuator for the observed modifications

in the electron transport properties. These exhibit inverted behaviors depending on the deposition

location of the co- and counter-ECCD. At more on-axis depositions, Swing ECCD results in a higher

electron temperature during the co-ECCD phase, whereas at more off-axis depositions, the electron

temperature is higher during the counter-ECCD phase. Transport modeling of these discharges shows

that the local electron tranport behavior depends on the value of the modulated magnetic shear. The

results are transport model independent, confirming the robustness of the magnetic shear modeling,

and indicating that the main contribution is due to the ECCD. Moreover, the results are consistent

with predictions from gyrokinetic simulations, that the local electron confinement is proportional to

the magnetic shear at low shear, and inversely at high shear values, s & 1.

1 Introduction

Understanding the physical connection behind the electron confinement and the plasma current density

profile has become of primary importance for the most successful exploitation of a future fusion

reactor. A precise understanding of transport, based on the experimental study of plasmas and on

their modeling, allows one to identify the key parameters controlling the transport level and to predict

the energy confinement time of future tokamaks, like the International Thermonuclear Experimental

Reactor [1], [2]. The electron confinement and the current density profile were found to be strongly

related by a variety of dedicated experiments [3], [4], [5] and theoretical investigations [6], [7]. The

electron temperature behavior and the transport modeling of plasma discharges have been widely

investigated in the Tokamak à Configuration Variable (TCV) [8], [9]. The current density profile being

a key element which can strongly affect plasma turbulence, it is useful to design dedicated experiments

specifically suitable for transport studies, solely based on the current profile modification. This work

presents the analysis of TCV Swing ECCD discharges, which were designed with the purpose of

realizing a modulation of the magnetic shear, in order to study the consequent effects on the central

electron temperature (and thus of confinement properties). TCV Swing ECCD discharges are L-mode
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experiments, with modulation of ECCD at constant total input power [10], [11]. This allowed us to

decouple the contributions of heating oscillations from those of current density tailoring. Therefore,

any modifications in the transport properties of the plasma is to be ascribed only to the magnetic shear

profile modulation realized by the ECCD swinging. The ECRH-ECCD system at TCV is equipped

with two independently supplied clusters, each composed of 3 X2 gyrotrons, providing up to 3 MW

of total EC power. During a discharge, co- and counter-ECCD are alternatively driven at a constant

frequency inside the plasma, maintaining a symmetric aiming of the EC beams, the same absolute

value of total driven current, Ieccd, and the same EC power deposition profile, PEC(ρ), where ρ is a

radial label describing the square root of the normalized volume: ρ =
√
V/Vtot (indicated as ρV in the

figures). This configuration is shown by the tokamak top view in Fig. 1. The target L-mode plasmas

are characterized by the following range of parameters: plasma current Ip = 120-150kA, plasma

elongation κ ∼ 1.2 − 1.4, total input EC power PEC = 0.5-1MW, line integrated electron density

nel = 1 − 1.5 1019m−3, magnetic field at the axis B0 = 1.42T, modulation frequency fec = 50Hz

(synchronous with the Thomson Scattering diagnostic). The first results [10] have been extended to

study the radial dependence of electron transport in L-modes.

2 Swing ECCD experiments

Fig. 2 shows the time traces of some measured and reconstructed quantities during two Swing ECCD

discharges (#34064 and #34044), realized at two different EC deposition radii, respectively ρdep = 0.3

(Fig. 2, left) and ρdep = 0.55 (Fig. 2, right). The time traces shown are: a) the constant plasma

current Ip and, in arbitrary units, the modulated total EC power of the cluster of gyrotrons driving

co-ECCD (the other cluster having a 180◦ phase-shifted trace); b) the modulated central electron

temperature, Te0; c) the modulated line integrated electron density, nel; d) the modulated internal

inductance, li; e) the modulated plasma elongation, κ. Due to the ECCD swing, Te0, nel, li and κ

are modulated at the same modulation frequency. Fig. 3 shows the electron temperature, Te, and

density, ne, profiles measured by Thomson Scattering, for each deposition. The profiles are obtained

from the coherent time average over the final states of the two phases, the co- and counter-ECCD

phases, for each discharge. For both discharges, the average over the co-ECCD phase includes the

times: tco = [0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9]s, whereas the counter-ECCD phase includes: tcounter =

[0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0]s. While the ne profile stays approximately constant throughout the

whole plasma evolution, the Te profile appears modulated inside ρdep, at the same frequency of the EC

alternate injection. At constant total EC power, this implies modulation of electron transport. The

difference in Te is not very large, but it is systematic. We tried to enhance the effect with increased

EC power, but tearing modes were destabilized and modified too much the local transport properties,

as discussed in Sec. 7. For the ρdep = 0.3 deposition, the injection of co-ECCD results in a central

Te of about 2.05keV, while injecting counter-ECCD decreases the value of central Te to 1.75keV. For

the ρdep = 0.55 deposition, the injection of co-ECCD results in a central Te of about 1.2keV, while
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injecting counter-ECCD increases the value of central Te to 1.55keV. Therefore, the experimental

data show that the Te modulations are opposite for the two depositions: in the more on-axis case, Te0

is larger during the co-ECCD phase, with a 15% decrease from co- to counter-ECCD. On the other

hand, for the off-axis case, Te0 is larger during the counter-ECCD phase, with a 22% decrease from

the counter- to co-ECCD phase.

A shot-to-shot scan in the deposition location has been performed in order to sweep across the radial

region where the transport inversion occurs. In order to account for possible EC power misbalance

and verify the reality of the phenomenon, all the new Swing ECCD discharges presented were realized

in pairs, with the toroidal injection angle, φ, of the two EC clusters inverted. The purpose of this

procedure is to create pairs of Swing ECCD measurements in which the EC clusters driving co-

/counter-ECCD are flipped, while keeping all other actuators constant. In this way, the dominant

phase observed does not depend on which gyrotron is used. Fig. 4 shows the ratio of a central Soft X-ray

signal, averaged over the two separate phases, as a function of the deposition location, for the various

Swing ECCD pairs realized, indicating that the global trend is maintained. Fig. 5 shows the time

traces of three central X-ray measurements, for each of the two discharges discussed before as well as

for their corresponding paired discharges. The pair of discharges reported in Fig. 5a was obtained with

EC poloidal and toroidal injection angles (θ, φ) = (120◦,±17◦), corresponding to on-axis deposition

(ρdep = 0.3), while the pair of discharges reported in Fig. 5b was obtained for (θ, φ) = (106◦,±24◦),

corresponding to off-axis deposition (ρdep = 0.55). The modulation is still observed in both discharges

constituting the pair: for example, for the off-axis pair, the counter-ECCD phase, indicated by the red

dots, is consistently higher than the co-ECCD phase, indicated by the blue dots, and for the on-axis

pair the situation is inverted. The difference in signal intensities for each pair of discharges can be

ascribed to small differences in heating between the two EC cluster gyrotrons and small differences in

density.

3 Modeling of Swing ECCD

In order to link the inversion of transport properties to the magnetic shear, ASTRA modeling of the

current density profile was performed. The numerical modeling allows to completely decouple the ef-

fects of the current profile modification from those of slight plasma heating misbalance or non-constant

plasma elongation, which are key concepts at the basis of Swing ECCD and can be a rather delicate

experimental issue. The ASTRA [12] transport code has been employed in both predictive and inter-

pretative modes. For the predictive simulations, the Rebut-Lallia-Watkins (RLW, [13]) semi-empirical

local transport model was used. In this model, the anomalous contribution of the electron heat diffu-

sion coefficient is proportional to q/s. Two other predictive models, with different dependencies on the

magnetic shear (quadratic and inversely quadratic), were also employed. These models are essentially

a variation of the RLW model, in which the anomalous electron heat conductivity is prescribed by

the RLW model multiplied by the cube or divided by the magnetic shear, respectively (see Appendix
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A). In the following analysis, they will be indicated as RLW·s3 and RLW/s. These modified models

were used to compare the effect on Te with a model having a different dependence of the electron heat

diffusion coefficient on the magnetic shear. In the case of the interpretative analysis, the measured

electron temperature profile, Te(ρ, t), was prescribed as a time-varying input.

The quasi-linear CQL3D [14] Fokker-Planck code was used for the computation of the ECCD sources.

The radial particle diffusion was taken into account (required due to the effect of fast particle transport,

see [15]) as proportional to the electron heat diffusion. The methodology to determine Ieccd requires

a steady state, whereas Swing ECCD discharges are intrinsically in a transient state. An accurate

determination of the value of the total EC current driven may only be obtained by increasing the

period of the EC modulation, so as to reach a steady state during each of the co- and counter phases.

Nevertheless, in order to have an estimate of the jeccd profile, the proportionality coefficient D0

between the electron energy and particle coefficients has been fixed to a typical value used in various

previous calculations of other plasma discharges [11], [8]: D0 = 0.2 has been used for the two analyzed

discharges. The jeccd profiles and corresponding values of Ieccd calculated by CQL3D with D0 = 0.2

are shown in Fig. 6. The value of Ieccd, calculated by CQL3D with D0 = 0.2, oscillates between 7.5kA

and -5.5kA on-axis, and between 5kA and -5kA off-axis.

During a simulation, only few actuators were varied, such as the ECCD profile and the electron

temperature profile (or equivalently the electron heat diffusion coefficient). All other parameters

(κ(t), PEC(ρ, t), ne(ρ, t), Ti(ρ, t), Ip(t)) were kept fixed. The numerical analysis was carried out for

the TCV discharges of Fig. 2. The modulation period of these discharges is 200ms. Therefore, in

the simulations the full co-ECCD and full counter-ECCD phases have been fixed to 95ms each. The

imposed time switch from one phase to the other is 5ms, of the order of the electron energy confinement

time. The transition from one Swing ECCD phase to the other is imposed in such a way that the

profiles of jeccd and Te are varied in time following a linear interpolation between the co- and counter-

ECCD profiles during 5ms; then, the profiles are held constant for 95ms. During this modulation

period (200ms), the plasma does not reach a full steady state, as the simulated parallel electric field

is not yet completely relaxed. It would be interesting to extend the study of Swing ECCD discharges

to steady state, too. However, the differences between the presented transient discharges and steady

state ones are expected to be small. Simulations with much longer modulation times were also carried

out, identifying the modulation period for steady state to be around 600ms (300ms + 300ms).

4 Interpretative simulation results

For the interpretative simulations, the prescribed electron temperature is varied between the two pro-

files, measured by the Thomson Scattering system, shown in Fig. 3. The imposed electron temperature

profile variation acts as a second actuator (along with jeccd). Fig. 7 shows the calculated time traces

of the various plasma current components and the prescribed, time-varying central Te, for the two

analyzed discharges. As a consequence of the imposed modulation on Ieccd and Te, Iohm is also modu-
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lated, whereas the modulation effect on Ibs is essentially negligible. Fig. 8 shows some simulated and

imposed profiles of both discharges: the simulated magnetic shear (solid) and the imposed electron

temperature profiles (dashed), in Fig. 8a and Fig. 8b; the safety factor (solid) and the EC power

density profiles (dashed), in Fig. 8c and Fig. 8d; the simulated parallel electric field generated, in

Fig. 8e and Fig. 8f.

At ρdep = 0.3 (left column), with co-ECCD the value of s is about 0.5, whereas it increases to about

0.75 when counter-ECCD is injected. Therefore the reconstructed magnetic shear profile increases

by 50% at the deposition location, when passing from the higher confinement co-ECCD to the lower

confinement counter-ECCD phase; simultaneously, the central electron temperature is experimentally

observed to drop by 15%. The magnetic shear profiles are nevertheless modulated to the outside of

the deposition region (ρ > 0.4), with a smaller and negative ∆s, whereas they are not modified to the

inside of it (ρ < 0.1). The values of the magnetic shear at the extremes of the deposition width are

s = 0.1 and s = 0.9 (at ρ = 0.1 and ρ = 0.4, respectively).

At ρdep = 0.55 (right column), with co-ECCD, the value of s is about 0.7, whereas it increases to about

1.1 when counter-ECCD is injected. Therefore an increment of 50% in s at the deposition location

is obtained for this off-axis case, when passing from the lower confinement co-ECCD to the higher

confinement counter-ECCD phase. Contrary to the on-axis case, the central electron temperature is

experimentally observed to increase by 25%. The magnetic shear profiles are essentially not modulated,

neither to the inside nor to the outside of the deposition width. The values of the magnetic shear at

the extremes of the deposition width are s = 0.7 and s = 1.7, for ρdep = 0.55 (at ρ = 0.4 and ρ = 0.8

respectively).

These simulations do not take into account a model for the sawtooth crash, as sawteeth are not

experimentally observed in the analyzed discharges. As shown in Fig. 8c and Fig. 8d, the simulated

q = 1 surface, when occurring, is inside ρ = 0.1 therefore if a sawtooth crash did occur, the mixing

radius would be very small and should not affect the other reconstructed profiles in the deposition

regions.

The time evolution of the parallel electric field profile, E‖, is also shown, simulated during the switch

from co- to counter-ECCD phase. The profiles are plotted every 10ms, with the blue and red profiles

being the first and last respectively (color online). A large and rapid variation of the local E‖ is

observed near the location of the deposition radius, the main change occurring during the first 20ms

following the imposed flip in ECCD sign. The initial and final profiles are not completely relaxed

(flat) yet, therefore a steady state is not reached within 100ms. Finally, Fig. 9 shows the measured

and simulated edge loop voltages of the on-axis deposition (the off-axis case being analogous). The

experimental value of Zeff = 3 has been used in the modeling presented, and the agreement of the

measured and reconstructed Vloop is still maintained if the value of Zeff is increased to 3.5. It should

be noted that all simulations described in this work were carried out by fixing the value of the plasma

current Ip, and modifying Vloop according to the other calculated and measured quantities.
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5 Predictive simulation results

In the case of predictive simulations, χe is calculated based on the RLW (or a modified RLW) model,

whose explicit dependence in s is detailed in Appendix A. We start from χe = χeRLW because the

RLW scaling matches well TCV ohmic L-mode discharges [16]. The principal difference with respect

to the interpretative cases is that now an imposed change in the current density profile (due to the

Swing ECCD) will also affect the s-dependent χe profile. This, in turn, will change the conductivity

and bootstrap coefficients, therefore influencing the current density profile. With the difference in

confinement properties observed for the two depositions taken into account, the usual RLW fails to

reproduce the observed electron temperature trend on-axis (i.e. Te
co > Te

counter), because of its 1/s

dependence, therefore corrections to the RLW model were used for the separate discharges analyzed

(see Appendix A).

Fig. 10 shows the calculated time traces of the various plasma current components and the calculated

central Te, obtained with the χe,RLW·s3 (Fig. 10 left) and the χe,RLW/s (Fig. 10 right) models, respec-

tively for the on-axis and off-axis discharges. Different s dependencies were tested in order to correctly

simulate the Te modulations, which are shifted by 180◦ depending on the discharge analyzed. As a

consequence of the imposed modulation on Ieccd and the s-dependent χe, Iohm, Te0 and, to a minor

extent, Ibs are also modulated.

Similar to what was found in the interpretative case, the simulated s profiles are such that scounter > sco

around the deposition location, as shown in Fig. 11a and Fig. 11b. At ρdep = 0.3, the values of the

magnetic shear at the extremes of the deposition width are s = 0.1 and s = 0.9 (at ρ = 0.1 and ρ = 0.4,

respectively). At ρdep = 0.55, the values of the magnetic shear at the extremes of the deposition width

are s = 0.4 and s = 1.1 (at ρ = 0.4 and ρ = 0.8, respectively). Therefore, the location and extent of

the magnetic shear modulation around the deposition region are in agreement with the interpretative

results. For both models, the maximum shear variation is ∆s = 0.3, occurring at the radial location

of the EC deposition. Therefore, the conclusions on the modifications of the q profile by Swing ECCD

and on the time evolution of the magnetic shear are independent of the model. We have also verified

that the effect of the experimental Te profile does not affect the magnetic shear modulation simulated,

as shown in Sec. 4.4.1 of Ref. [11].

The central Te modulations follow the correct trend, since the models employed have an ad-hoc

dependence on s. For the off-axis deposition, a stronger dependence in the magnetic shear, such as

∼ 1/s3, may be required in order to obtain a difference in Te at ρ = 0.4 (just inside the PEC deposition)

of the same order as observed experimentally (Fig. 3b versus Fig. 11b).

The q profiles are also shown in Fig. 11c and Fig. 11d, along with the EC deposition power, which

is constant throughout all simulations. Fig. 11e and Fig. 11f show the time evolution of the parallel

electric field profile, E‖, is also shown, simulated during the switch from co- to counter-ECCD phase.
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6 Agreement with previous simulations

In the previous sections, it was shown that the simulated magnetic shear, around ρdep, is consistently

larger during the counter-ECCD phase. Since the transport behavior is inverted at different ρdep,

an increase of the confinement properties is observed if the magnetic shear decreases, in the radial

region where the value of s ranges from 0.1 to 0.9 (on-axis deposition). Likewise, a decrease of the

confinement properties is observed if the magnetic shear decreases, in the radial region where the

value of s ranges from 0.7 to 1.7 (off-axis deposition). These results of the ASTRA modeling are

in agreement with predictions from gyrokinetic linear simulations by Kinsey et al. [17], performed

using the GYRO gyrokinetic code [18], with kinetic electrons. In these gyrokinetic simulations, the

confinement properties increase if the magnetic shear decreases, in the radial region where s < 1. At

larger values of the magnetic shear (typically s > 1− 1.5), the opposite behavior is instead predicted

(e. g. see Fig. 19 of Ref. [17], which shows the time-averaged ion and electron energy, and ion particle

diffusivities as a function of s).

The interpretative, on-axis, time-varying Te case moreover confirmed a previous modeling based on

electrodynamics calculations, discussed in Ref. [10]. The main results arising from such modeling are

that, around the deposition radius, s passes from 0.2 to 0.7, while switching from the co- to counter-

ECCD phase, and q(ρdep) oscillates between, respectively, 1.2 and 1.4. The jeccd profiles used in the

previous modeling had been determined by the linear TORAY-GA code [19], while for the present

calculations the co- and counter-ECCD profiles were calculated by solving the Fokker-Planck equation,

including radial particle diffusion, as specified in Sec. 3. This results in ECCD profiles slightly broader

than the ones predicted by linear theory. Nevertheless, the two models have shown similar relative

changes in the magnetic shear modulation.

7 MHD activity in Swing ECCD discharges

Other Swing ECCD discharges were realized with larger EC power (i.e. 2+2, or even 3+3 gyrotrons)

and feedback control on the plasma elongation. These were initially carried out with the purpose of

creating a large database, featuring different values of the plasma current, radial deposition location,

and width of the deposited power. Unfortunately, these discharges systematically exhibit MHD activ-

ity, therefore it is not easy to attribute the modulation of Te uniquely to the magnetic shear oscillation.

This obviously complicates the correct interpretation of the measured electron temperature modula-

tion. Nevertheless, one can clearly observe that the mode activity is very intense during all co-ECCD

phases and fades out when switching to counter-ECCD, as shown by the spectrogram of Fig. 12.

This confirms experimentally that the q profile is, indeed, being modified locally, but may also explain

the fact that no significant effect on Te was observed in these discharges. However, the identification of

the toroidal and poloidal mode numbers for these modes allows a validation of the ASTRA modeling

by comparison with the simulated rational q surfaces. For the discharge shown in Fig. 12 (#30675),

the mode was identified as m/n = 3/1, located approximately in the region 0.4 < ρψ . 0.5. Therefore
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an interpretative ASTRA simulation was carried out, in order to model the safety factor profile and

identify the q = 3 surface location. The model has employed ECCD profiles from CQL3D calculations,

with D0 = 0.2, according to which Ieccd = 13kA, during the co-ECCD phase, and Ieccd = −15kA,

during the counter-ECCD phase. Results from this simulation are shown in Fig. 13. The q profile

during the co-ECCD phase crosses q = 3 at ρψ ∼ 0.55 (consistently with the mode location), whereas

the surface is pushed outwards at ρψ ∼ 0.7 during the counter-ECCD phase. The tearing mode is

responsible for the large difference observed in the Te profiles and hence for the differences in the core

q profiles. Further analysis of the modes in these experiments is beyond the scope of the present study,

but these modeled q and s profiles form an excellent basis for tearing mode studies and the effect of

local current density profile perturbations.

8 Conclusions

The study on Swing ECCD has confirmed the link between the electron transport and the magnetic

shear modulation. The ASTRA modeling has shown that the electron tranport behavior depends on

the value of the modulated magnetic shear. The discharges presented are consistent with the inversion

of the confinement properties, depending on the value of the magnetic shear, which is predicted

by gyrokinetic simulations. Namely, the local electron diffusivity χe is proportional to s or s2 for

s ∼ 0− 1, while χe ∼ 1/s or χe ∼ 1/s2 for s & 1. This is experimentally observed even when inverting

the EC clusters toroidal angles, in order to flip systematic different heating effects. The location and

extent of the magnetic shear modulation validate a previous, simpler model, based on electrodynamics

calculations. In all, the numerical results carried out with ASTRA are transport-model-independent,

therefore they confirm the robustness of the magnetic shear modeling and indicate that the main

contribution is due to the ECCD modulation.

A Transport models

The semi-empirical RLW local transport model [13] has been validated to well reproduce TCV dis-

charges [16]. It involves a critical electron temperature gradient: when the electron temperature

gradient exceeds the critical value, a turbulent behavior in the magnetic topology is triggered. The

electron heat transport coefficient consists of two contributions, a neoclassical and an anomalous one,

therefore one can write: χe,RLW = χe,neo + χe,an. The neoclassical contribution is evaluated using

formulas given in [20]. The anomalous contribution is given by:

χe,an =
Ce,an

Bφ

√
ε(1 + Zeff)

R0

Te

Ti

(
∇Te

Te
+ 2
∇ne

ne

)
qρ

s

(
1− ∇TRLW

∇Te

)
H(∇Te −∇TRLW),

where Bφ is the toroidal magnetic field, ε the inverse aspect ratio, Zeff the effective charge, R0 the

tokamak major radius, Ti the ion temperature, H(x) the Heaviside step function, and the critical
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electron temperature gradient is given by the expression:

∇TRLW =
Cgcrt

q

√
η j B3

φ

ne

√
Te

,

η being the neoclassical resistivity and j the current density profile. Note that the critical value of Te is

essentially negligible outside the deposition region in case of ECH heated plasmas. In the RLW model,

an increase on the local magnetic shear, with the safety factor relatively constant, induces a reduction

of transport, χe,an ∼ |q/s|, which is adequate for TCV discharges in case of negative or large positive

magnetic shear. The two free parameters Ce,an and Cgcrt of the transport models were adjusted until

they adequately reproduced the measured Te for a pure ECH discharge, then subsequently held at

those values during the simulations of the Swing ECCD discharges (for instance, Ce,an = 0.6 and

Cgcrt = 1 for the RLW model).

To test different dependencies on s, two modified versions of the RLW local transport model were also

taken into account. Specifically:

χe,RWL·s3 = χe,neo +
Ce,an

Bφ

√
ε(1 + Zeff)

R0

Te

Ti

(
∇Te

Te
+ 2
∇ne

ne

)
qρs2

(
1− ∇TRLW

∇Te

)
H(∇Te −∇TRLW),

χe,RLW/s = χe,neo +
Ce,an

Bφ

√
ε(1 + Zeff)

R0

Te

Ti

(
∇Te

Te
+ 2
∇ne

ne

)
qρ

s2

(
1− ∇TRLW

∇Te

)
H(∇Te −∇TRLW).
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Figure 1: Top and side views of the EC beams injected in a typical Swing ECCD discharge. The

blue and red color coded beams correspond, respectively, to the co- and counter-ECCD. The light gray

section corresponds to 99% absorption. The ray paths are calculated with the TORAY-GA ray-tracing

code [19].
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Figure 2: Time traces of two TCV Swing ECCD discharges (#34064 and #34044), in which the ECCD

modulation is realized, respectively, at ρdep = 0.3 and ρdep = 0.55. a) Constant plasma current and

modulated total input EC power for the cluster of gyrotrons driving co-ECCD. The EC power traces

are in arbitrary units, and the values of the total injected PEC are 450kW for the on-axis discharge

and 900kW for the off-axis discharge. b) Modulated central electron temperature. c) Line integrated

electron density. d) Internal inductance from the LIUQE reconstruction. e) Reconstructed plasma

elongation.
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Figure 3: Radial profiles of the experimental Thomson Scattering Te and ne data, which are av-

eraged over each phase and with bins of ∆ρ = 0.05, showing the modification of transport prop-

erties during the two Swing ECCD phases. For both discharges, the average over the co-ECCD

phase includes tco = [0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9]s, whereas the counter-ECCD phase includes

tcounter = [0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0]s.
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Figure 4: Ratio of the average Soft X-ray signal during the co-ECCD phase and the counter-ECCD

phase for various Swing ECCD discharges, as a function of the deposition location (in ρ).
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Figure 5: Time traces of three central X-ray measurements for two pairs of Swing ECCD discharges,

with on-axis (left), and off-axis ρdep (right).
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Figure 6: jeccd profiles (and corresponding values of Ieccd) calculated by CQL3D, assuming D0 = 0.2.

These profiles were used in all the following ASTRA simulations of Swing ECCD discharges.

15



0.6 0.9 1.2 1.5

0

20

40

60

80

100

120

t [s]

#34064

I
p
 [kA]

I
cd

 [kA]
I
bs

 [kA]
I
ohm

 [kA]
T

e0
*50 [keV]

0.6 0.9 1.2 1.5

0

20

40

60

80

100

120

t [s]

#34044

I
p
 [kA]

I
cd

 [kA]
I
bs

 [kA]
I
ohm

 [kA]
T

e0
*50 [keV]

Figure 7: Simulated or imposed time traces of the various plasma current components and the imposed

central Te, of the on-axis (a) and off-axis (b) deposition. In the ASTRA modeling, Ip, Icd (= Ieccd) and

Te are imposed, whereas Ibs and Iohm are calculated. Interpretative simulation results (color online).
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Figure 8: Simulated magnetic shear and imposed electron temperature profiles for the on-axis (a) and

off-axis (b) deposition; simulated safety factor and deposited EC power density profiles for the on-axis

(c) and off-axis (d) deposition; simulated parallel electric field profile for the on-axis (e) and off-axis

(f) deposition. Interpretative simulation results (color online).
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Figure 10: Simulated or imposed time traces of the various plasma current components and the sim-

ulated central Te, obtained in ASTRA with the modified RLW·s3 (left) and RLW/s (right) models,

respectively for the on-axis and off-axis deposition. In the ASTRA modeling, Ip and Icd (= Ieccd) are

imposed, whereas Ibs, Iohm and Te are calculated. Predictive simulation results (color online).
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Figure 11: Simulated magnetic shear and electron temperature profiles for the on-axis (a) and off-axis

(b) deposition; simulated safety factor and deposited EC power density profiles for the on-axis (c)

and off-axis (d) deposition; simulated parallel electric field profile for the on-axis (e) and off-axis (f)

deposition. Predictive simulation results (color online).
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Figure 12: Spectrogram revealing the presence of MHD activity, with alternated phases of appearance

and absence, for TCV discharge #30675. The modulation frequency is 45Hz, and the EC total power

is indicated in arbitrary units.
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Figure 13: Simulated q and s profiles, and imposed Te and jeccd profiles of the interpretative modeling

of #30675.
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