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Retrieval Algorithm for Quasi-Optical
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Abstract—In this paper, we present a detailed analysis of the
iterative phase retrieval approach (IPRA) for determining the
phase profile of the output microwave beam of a gyrotron from
known intensity patterns emphasizing the field propagation tech-
niques which are used to propagate the RF field of the microwave
beam between known intensity planes. The propagation method,
based on first Rayleigh–Sommerfeld diffraction integral (RSDI),
is solved using fast Fourier transform (FFT) technique and zero
padding. It is observed that the use of FFT and, therefore, the
discretization of the RSDI propagation kernel introduce aber-
rations in the propagated field due to the superposition of the
original field with its replicated versions. This problem is solved
by approximations leading to the Huygens–Fresnel propagation
method which further imposes the restrictions on the distances of
propagation depending on the size of the transverse plane used
to discretize the intensity pattern. This constraint of the distance
of propagation causes problem in the iterative phase retrieval
approach (IPRA) when more than two intensity planes are used.
A method based on interpolation is proposed to overcome this
restriction. IPRA is then further discussed to optimize several
parameters, such as plane separation, plane dimension, mesh size,
and measurement accuracies, which become more of an issue
during the measurements of infrared intensity thermograms of the
output microwave beam.

Index Terms—Fourier transform, gyrotron, infrared intensity
thermogram, millimeter wave, phase retrieval, zero padding.

I. INTRODUCTION

MAGNETICALLY confined fusion devices currently op-
erating require high millimeter-wave power for electron

cyclotron resonance heating in their plasma fusion experiments.
Gyrotrons are the sources of this RF power. Microwaves gen-
erated from a gyrotron in high-order waveguide modes must
be transformed into a low-order symmetrical mode for efficient
transmission. The output microwave beam transformed in the
form of fundamental Gaussian beam of proper waist size is
then injected into a corrugated waveguide to maximize the
coupling to an HE11 mode. However, small deviations from
the optimized Gaussian beam profile can significantly increase
the coupling to unwanted higher order modes. Therefore, it
is required to have knowledge of the RF field properties in
terms of determining the amplitude and phase profiles. Since
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the phase measurements are not available in such high-power
applications, one has to rely on intensity measurements to
calculate the phase profile [1]–[7]. The intensity measurements
can be performed using an infrared thermography technique
by irradiating a target material with the high-power microwave
beam and measuring the spatial temperature elevation (which is
proportional to the spatial RF power profile of the microwave
beam) on the material using an infrared camera.

Although a number of methods [2], [7]–[9] have been studied
for phase reconstruction, the error reduction approach seems to
be most accurate in general and in particular for high-power
gyrotrons. Other methods, such as the transport of intensity
equation (TIE) [9], solve the real part of the wave equation,
considering it as an elliptic partial differential equation. The
main difficulty with this equation is its boundary behavior be-
cause the value of phase at the boundary is difficult to measure.
Moreover, a proper phase solution must satisfy the other part of
the wave equation. Furthermore, in TIE, an accurate estimate of
the intensity derivative along the direction of propagation needs
closely spaced intensity measurements (no specific criterion for
the separation between the planes is defined, and at millimeter
wavelength, there is no significant difference between very
closely spaced planes). The moment irradiance approach [7]
works well only if the beam pattern contains a minimal fraction
of higher order modes.

The motivation of this paper is the development of an appro-
priate methodology to calculate the accurate phase profile of
a microwave beam from measured intensity thermograms. For
this purpose, IPRA is studied in more detail using theoretical
beam profiles of the 170-GHz/2-MW coaxial cavity gyrotron
[10]–[12], emphasizing more on an accurate field-propagation
scheme and on some basic parameters, such as scan separation,
plane dimension, number of planes used in IPRA, measurement
accuracies (target material and its thickness), etc.

This paper is organized as follows. Section II describes,
briefly, the IPRA. Section III discusses, in detail, the wave prop-
agation schemes by calculating the full Rayleigh–Sommerfeld
diffraction integral (RSDI) and analyzing the Huygens–Fresnel
propagation picture. Section IV provides a thorough discussion
on optimized parameters and results. The conclusions are pre-
sented in Section V.

II. IPRA

The IPRA for phase reconstruction, as proposed by Katsene-
lenbaum and Semenov [1], is outlined briefly, as follows. The
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Fig. 1. Iterative method for phase reconstruction is shown. Field is propagated
from zi to zj , and then, it is back propagated to the initial plane. Φi is the
initial phase.

field of an electromagnetic wave at any ith plane, with position
zi, transverses to the direction of propagation of the wave and
can be written as

fi(x, y) = ai(x, y) exp[iφi(x, y)] (1)

where ai(x, y) and ϕi(x, y) are the wave amplitude and phase
at the ith plane, respectively. The field fj(x′, y′) at a later
distance zj can be written as

fj(x′, y′) =
∫ ∫

Ω

fi(x, y)P (x′ − x, y′ − y)dx dy (2)

where (x, y) represents the input plane coordinates and (x′, y′)
represents the output plane coordinates at zi and zj , respec-
tively. P (x − x′, y − y′) is the propagator used to propagate
the field from the plane at zi to zj . One can define P either
as a Huygens–Fresnel propagator, which is a quadratic phase
function, or a Fraunhofer propagator in the far field or a Green
function as defined in the Rayleigh–Sommerfeld diffraction
theory [15]. The integral is performed over the size Ω (domain
in the real space) of the transverse plane. The measured field
intensity, with an initial guess of phase at zi, is propagated to the
next plane at zj , where the propagated intensity is replaced by
the measured intensity and then back propagated to the previous
plane location. This iteration method is shown in Fig. 1, where
the superscripts m and p denote the measured and propagated
field amplitudes in two planes zi and zj , respectively.

The criterion to terminate the iterative process is expressed as

Ei,n =
∫ ∫

Ωi

∣∣∣a(m)
i − a

(p)
i,n

∣∣∣2 dΩi < εi (3)

where Ei,n means the error value after the nth iteration and
εj is a set of given small values. One can show that Ei,n is
monotonically decreasing with n [1], [5]. The approach can be
easily extended to any number of cross sections. The criterion
to stop the iteration is discussed, in more detail, in Section IV.

III. FIELD-PROPAGATION METHODS

The success of the aforementioned iterative algorithm de-
pends on the field-propagation scheme used. Therefore, it is

more appropriate to solve the full RSDI which is the most
accurate and complete description of the propagation in scalar
diffraction theory. We solve the first RSDI using a Fourier trans-
form convolution method. After that, the effect of discretization
on the propagated field is studied in detail when the RSDI
propagation kernel is sampled during the Fourier transform
approach. The discussion is further extended in detail, leading
to the Huygens–Fresnel propagation approach in the paraxial
regime where a spherical wave is replaced by a parabolic wave
[14], [15]. This discussion is then applied to the IPRA in the
next section.

A. RSDI Calculation

To find the field at any point in the observation plane, one
approaches the scalar diffraction theory and solves the full
RSDI given by [14], [15]

fj(x′, y′) =
1
2π

∫ ∫
Ω

fi(x, y)
∂

∂z

(
exp(ikr)

r

)
dx dy (4)

where

r =
[
(x′ − x)2 + (y′ − y)2 + (Δz)2

] 1
2

and k is the wavenumber given in terms of wavelength λ
by k = 2π/λ and Δz = (zj − zi). The integration is over the
region Ω in the input plane zi, where fi(x, y) is nonzero. The
area outside the region does not contribute to the integral,
according to the boundary condition imposed on the problem.
The diffraction integral in (4) can be understood in the form of
a linear convolution as

fj(x′, y′) =
∫ ∫

Ω

fi(x, y)gi→j(x′ − x, y′ − y)dx dy (5)

where

gi→j(x′ − x, y′ − y) =
1
2π

∂

∂z

(
exp(ikr)

r

)
(6)

or, equivalently

gi→j(x′ − x, y′ − y) =
2Δz

r

(
ik − 1

r

)
exp(ikr)

4πr
. (7)

If the aforementioned equation is discretized on a grid of size
P × Q, then, for any point (x′, y′) in the observation plane zj ,
one can write

fj(x′, y′) =
P∑

p=1

Q∑
q=1

fi(xp, yq)gi→j(x′ − xp, y
′ − yq)ΔxΔy.

(8)

This corresponds to a discrete linear convolution of f and g.
Since the Fourier transform operator is linear, we can write

fj(x′, y′)=F−1{F {fj(x′, y′)}}
=F−1{F {fi(x, y)}×F {gi→j(x′−xp, y

′−yq)}} .

(9)
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Therefore, one can use fast Fourier transform (FFT) to calculate
this convolution. Although this convolution form is numerically
easy for the calculation of the diffraction integral as compared
with a direct integral approach, on the other hand, this method
also provides some constraints in terms of distance of propa-
gation, plane size, and the number of sampling points use to
discretize a given scalar field. This is discussed in the following.

B. Discretization Analysis of RSDI and Huygens–Fresnel
Propagation Picture

Based on a well-established plane wave decomposition tech-
nique, the RSDI propagation picture (solved in the previous
section) can always be represented as a linear shift invariant
system. Since the propagation of the wave field to any further
plane involves a Fourier transform system, we therefore need to
analytically study the discretization process of the field and its
propagation in the form of a band-limited signal because one
can easily verify that the Fourier transform of a discretized im-
age is, within a scale factor, a periodic replication of the Fourier
transform of the input image on a sampling grid. Following the
usual procedure of sampling [15], [16], [18] for a band-limited
function fj(x′, y′) and its recovery from its sampled version,
we sample fj(x′, y′) by a 2-D array of Dirac delta functions
situated on a rectangular grid with spacing Δx′ and Δy′ as

fjs(x′, y′)=
M∑

m=−M

N∑
n=−N

fj(mΔx′, nΔy′)δ(x′−mΔx′, y′−nΔy′)

(10)

where the subscript “s” represents the sampled version of the
field fj(x′, y′) and (M,N) represents the number of subdivi-
sions in the x- and y-directions, respectively. Passing through a
Fourier transform system, one can write

fjs(x′, y′)
= F−1 {F {fjs(x′, y′)}}

= F−1

{
(νx′sνy′s)

M∑
m=−M

N∑
n=−N

Fj(νx′−mνx′s, νy′−nνy′s)

}

(11)

where the sampling frequencies νx′s and νy′s are, respectively,
the grid spacing in the x- and y-directions given by νx′s =
1/Δx′ and νy′s = 1/Δy′ and Fj is the Fourier transform of
fj(x′, y′), which is given by

Fj(νx′ , νy′) = Fi(νx, νy) × Gi→j(νx′−x, νy′−y). (12)

Here, Fi is the Fourier transform of fi(x, y), and
Gi→j(νx′−x, νy′−y) is the Fourier transform of the RSDI
propagation kernel given by the transfer function of the free
space [15], using (6), as

F{gi→j(x′−x, y′−y)}=exp

(
2πiΔz

(
1
λ2

− ν2
x − ν2

y

)1/2
)

.

(13)

Therefore, using (12) and (13) and for the same grid spacing in
both input and output planes, i.e., Δx′ = Δx and Δy′ = Δy,
one can write the sampled version of the propagated field in the
output plane at zj as

fjs(x′, y′)

=F−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(νxsνys)
M∑

m=−M

N∑
n=−N

Fi(νx − mνxs, νy − nνys)

×exp

(
2πiΔz

(
1
λ2 −(νx−mνxs)2−(νy−nνys)2

)1
2

)
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ .

(14)

As we know that, if the Nyquist sampling theorem is fulfilled,
one can always recover the continuous image from the sampled
images [16] using a low-pass filter with a frequency response
given by 1/(νxsνys). Therefore, from this point onwards, we
can remove the multiple factor of (νxsνys) and write the field as
continuous, instead of the sampled field. The back-propagated
field can be written in a similar way by convolving the field
in the output plane with the back-propagation kernel which is
equal to the complex conjugate of the forward RSDI propaga-
tion kernel. The back-propagated field is therefore written as

fi(x, y) =
∫ ∫

Ω

fj(x′, y′)gj→i(x − x′, y − y′)dx′dy′

=F−1 {F {fj(x′, y′)} × F {gj→i(x − x′, y − y′)}}
(15)

where gj→i = g∗i→j . Therefore, using (14) and (15), one can
write the back-propagated field as

fi(x, y) =F−1

{
M∑

m=−M

N∑
n=−N

Fi(νx − mνxs, νy − nνys)

× exp(2πiΔzψ(νx − mνxs, νy − nνys))

× exp(−2πiΔzψ(νx, νy))

}
(16)

where

ψ(νx − mνxs, νy − nνys) =
(
1/λ2 − (νx − mνxs)2

− (νy − nνys)2
)1/2

(17a)

ψ(νx, νy) =
(
1/λ2 − ν2

x − ν2
y

)1/2
. (17b)

Equations (16), (17a), and (17b) indicate that the back-
propagated field fi(x, y) is a modified version of the origi-
nal field modulated by the functions ψ(νx, νy) and ψ(νx −
mνxs, νy − nνys). Equation (16) can further be simplified in
a more compact form using the Taylor series expansion for the
RHS of (17a) as

ψ(νx − mνxs, νy − nνys)

= ψ(νx, νy)

[
1 − 1

2
b +

∞∑
r=2

(−1)r(2r)!
(1 − 2r)(r!)24r

(−b)r

]
(18)
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where

b =
1

ψ(νx, νy)
[
(mνxs)2 + (nνys)2 − 2(mνxνxs + nνyνys)

]
.

(19)

Using (18) and (19) in (16), we can write the discretized version
of the back-propagated field when passed through a Fourier
transform system. This can be written as in (20), which is shown
at the bottom of the page, i.e., the back-propagated field is now
a modulated version of the original input field. As one can
see, (20) is difficult to solve accurately because of the higher
order terms which generate aberration like effects; therefore,
we will move to a fairly accurate solution of this equation
by considering a small angle diffraction, which means that
1/λ � νx, νy for all contributing frequencies, and, therefore,
by retaining terms only up to the parabolic terms, which leads
us to the Huygens–Fresnel propagation approach. Nevertheless,
an optimized solution of (20), with higher order terms in
the expansion of the exponential factor, i.e., aberration terms,
could be obtained by optimizing the parameters, e.g., size of
the diffracting plane, number of sampling points, wavelength,
etc. This will be the topic of a future study. In the following
discussion, we will focus on the discretization analysis of the
approximated solution of the earlier discussed RSDI, i.e., the
Huygens–Fresnel propagation method.

To simplify (20), we retain terms up to the parabolic term;
therefore, using (19), along with the Fourier shift theorem,
one can write the back-propagated field in the parabolic
approximation as

fi(x, y) =
M∑

m=−M

N∑
n=−N

fi(x − Δzλmνxs, y − Δzλnνys)

× exp
{
−iπΔzλ

(
m2ν2

xs + n2ν2
ys

)}
. (21)

It is quite clear from (21) that the recovered back-propagated
field in the Fresnel approximation is a modulated and replicated
version of the original field. The process of discretization has
introduced a periodicity in the back-propagated input field
with a period of (zλνxs, zλνys) in the x- and y-directions,
respectively, and modulated it by a factor of

exp
{
−iπΔzλ

(
m2ν2

xs + n2ν2
ys

)}
. (22)

To countercheck the accuracy of (21), one can easily derive a
similar equation following the equivalent discretization process
if one starts the analysis of the Huygens–Fresnel propagation
method, where the convolution kernel is a quadratic phase
function hi→j(x, y) [15], [19] instead of a Green’s function
derivative (6) and is defined as

hi→j(x, y) =
1

iλΔz
exp

{
i2π

Δz

λ

}
exp

{
iπ

x2 + y2

λΔz

}
. (23)

Convolving this quadratic phase function with the input field
and following the steps of (9)–(16), one reaches the equation
similar to (21).

Coming back to (21), which is a modulated version of the
original input field, for a square grid with Δx equal to Δy, if
the grid spacing is chosen such that

(νxs)2 = 2a/λΔz (24)

where a is an integer, then the modulating factor in (22) can
be made equal to one for all (m,n) and the discrete version
of the back-propagated field (21) is therefore dependent on
the parameter a (an integer which represents the replication
process) only for a scalar factor and a possible sign change.
If 2a is made equal to the total number of sampling points M
in both directions, i.e., 2a = M , then (24) gives a condition for
the distance of propagation as

Δz =
M(Δx)2

λ
⇒ M =

L2

λΔz
(25)

where L is the transverse plane dimension. This equation
implies that, if the number of sampling points M is chosen
equal to the Fresnel number, then (21) will give the back-
propagated field without replication and modulation provided
that the transverse plane dimensions are the same at both
positions. Therefore, ideally, one should propagate the field to
a distance given by (25) in order to avoid the effects of aliasing.
Fig. 2 shows a clearer picture of (25) in terms of distance of
propagation, number of subdivisions, and the plane dimension.
It is clear from Fig. 2 that, for larger plane dimensions (to have
a negligible intensity at the boundary), we need a large number
of sampling points to propagate the field to closer distances,
and clearly, this will increase the computational time of the

fi(x, y) = F−1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

M∑
m=−M

N∑
n=−N

Fi(νx − mνxs, νy − nνys)︸ ︷︷ ︸
translation

× exp (−πiΔz × ψ(νx, νy) × b)︸ ︷︷ ︸
parabolic term

× exp

[
2πiΔz × ψ(νx, νy)

∞∑
r=2

(−1)r(2r)!
(1 − 2r)(r!)24r

(−b)r

]
︸ ︷︷ ︸

aberration term

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (20)
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Fig. 2. Distance of propagation given by (25) is plotted w.r.t. the plane
dimension for different numbers of sampling points.

IPRA algorithm when we propagate the field for more than one
time during the minimization of the reconstruction error (3).
Moreover, we want to be in the Rayleigh range for the Fresnel
approximation to be more accurate in the paraxial region.

In our case of the 170-GHz/2-MW gyrotron output beam,
the beam waist of the field calculated from the simulations
[12] is 25.4 mm, which gives the Rayleigh range ZR, equal to
1150 mm calculated by ZR = πw2

0/λ, where w0 is the radius of
the beam at its waist. Therefore, we have to make a compromise
between the chosen number of sampling points and the plane
size for a given distance of propagation, keeping in mind that
we could fulfill the constraint on the intensity (to be zero at
the boundary). We should have a large number of sampling
points if we choose a larger plane size (if one measures the field
profile farther away from its beam waist) in complying with the
propagation distance given by (25) and in order to remain in the
Rayleigh range; this is computationally demanding. Therefore,
it is always preferable to measure the beam field profile close to
the beam waist location.

In the case of the Huygens–Fresnel propagation scheme, if
one wants to propagate a given field to arbitrary distances which
are different from the distances given in (25), then one can
follow two approaches, which can still act in accordance with
the condition of propagation given by (25).

1) The field can be propagated to the distance given by
(25), and then, it can be repeated again until the desired
value of z is reached. However, this approach is time
consuming.

2) For one-time propagation for a desired z value and fixed
plane size L, one can interpolate the field to a grid
size that corresponds to (25). However, this arbitrary z
value can lead to a noninteger M value, and if we take
the closest integer value for M , this difference of M ,
which prevents it from being an integer, is equivalent to
the difference in the given z value. Therefore, we are
violating (25), and this can introduce aliasing in the field
amplitude and phase.

This is further discussed in detail, in view of IPRA, in the
next section.

IV. DISCUSSION ON IPRA

Since IPRA is an error-minimization method, we can opti-
mize several parameters to achieve a good compromise between
the final results and the computational efforts. We discuss
the effects of various parameters, which can either be altered
during the computations or can be optimized during the free-
space infrared measurements of the output microwave beam of
the gyrotron. The main issues which affect the reconstruction
algorithm and the accuracy of the result, which need to be incor-
porated during the measurements, measured data processing,
and phase retrieval algorithm, are:

1) field-propagation method;
2) plane separation;
3) size of the planes and number of sampling points used;
4) position of the beam profile from its waist;
5) number of planes used in the algorithm;
6) initial phase guess during the computations;
7) dynamic range and the alignment of the consecutive beam

profiles.

Few of these parameters can be given attention during the
beam profile measurements; for example, the dynamic range
(by the appropriate choice of the target material), plane sepa-
ration and their size, etc., can be optimized during the recon-
struction algorithm, such as the initial phase guess, number of
planes, etc.

A. Field-Propagation Method and Its Effect on IPRA

1) Huygens–Fresnel Propagation Method: As we have ex-
plained in Section II, the IPRA requires the propagation and
back propagation of the wave field between two or more
number of planes until the algorithm converges to a global min-
imum. Therefore, we discussed the wave propagation methods
in the previous section. Here, we further extend our explanation
of the Huygens–Fresnel propagation method, emphasizing on
IPRA. For this purpose, we take the theoretical beam profile of
the 170-GHz/2-MW coaxial gyrotron at any arbitrary position
(500 mm from the gyrotron window). We propagate this field to
the different positions and back propagate it at the same position
in order to see the effect of (25). Fig. 3 shows the electric field
amplitude and phase at 500 mm from the gyrotron window
for three different cases of distance of propagation and back
propagation. Fig. 3(a) shows the theoretical field amplitude and
phase at 500 mm from a window plane. Fig. 3(b)–(d) shows
the back-propagated field at the same position corresponding
to z = t(MΔx2)/λ, where t = (1.2, 0.9, 1). Here, Δx is the
grid spacing corresponding to a square plane size of 450 mm ×
450 mm, where λ is the wavelength. The contours of constant
field amplitude are at every −3 dB from the peak value. As
shown in the amplitudes and phase patterns in Fig. 3 for the
values of z, which do not follow (25), i.e., when t = 1.2 and
0.9, the field profile is corrupted by the foldover frequencies
which are introduced in the field by the process of modulation
and replication, as we have discussed in the previous section.
As shown in Fig. 3(d), where we follow (25), i.e., t = 1, we
are able to remove the effects of modulation, and hence, we get
exactly the same filed profile as that of the input field.
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Fig. 3. (a) Amplitude and phase of the output Gaussian beam of the 170-GHz/2-MW gyrotron at 500 mm from the window. The plane dimension is 450 mm
× 450 mm. (b) Beam is propagated/back propagated corresponding to z = 1.2(MΔx2)/λ = 537.9 mm, where M = 256 is the number of subdivisions in
both directions, Δx is the grid spacing, and λ is the wavelength. (c) Beam is propagated/back propagated corresponding to z = 0.9(MΔx2)/λ. (d) Beam is
propagated/back propagated corresponding to z = (MΔx2)/λ. Isomagnitude contours of field amplitudes are plotted at every −3 dB increment from the peak
value. The phase is wrapped in a 2π modulo and shown in radians.

For a better representation of the effect of small differences
in the propagation distance z using (25), we take a fundamental
Gaussian beam at an arbitrary position (e.g., corresponding
to the parameters of the 170-GHz/2-MW gyrotron, i.e., beam
waist equal to 25.4 mm at the window plane and frequency
equal to 170 GHz) and propagate this field to a distance slightly
different from the one given by (25). We can see how sensitive
the phase of the propagated/back-propagated field is. Fig. 4
shows the phase profiles of the Gaussian beam field in the case
of the Huygens–Fresnel propagation for three different values
of z corresponding to t = (1.001, 1.00001, 1). Here, the plane
dimension is equal to 300 mm × 300 mm, and the number of
sampling points is chosen equal to 512. Since the plane size
is chosen such that the intensity can be considered as zero at
the boundary, the amplitude modulation is not significant close
to the boundary of the transverse plane; therefore, we only
show the wrapped phase, and it is clear from Fig. 4 that the
overlapping of the foldover frequencies start reducing as we
approach the z value given by (25).

As shown in Fig. 4, the phase is extremely sensitive to z,
and both propagated and back-propagated fields are affected.
Therefore, during the measurements of the beam profile of the
output microwave beam of the gyrotron, either one makes the
measurements at specific z positions and use them in IPRA for
phase retrieval with the Huygens–Fresnel propagation scheme
for a fixed distance condition (25) or makes measurements at
random positions along the beam propagation direction and
then uses Huygens–Fresnel propagation scheme in IPRA with
the propagation done in steps or interpolate the field to a
different grid size M which corresponds to (25) for one-time
propagation to a fixed distance. However, as we have explained
earlier, it is not obvious that the value of M is an integer

[for interpolation to a different grid which complies with (25)]
and this difference of M from being an integer is equivalent to
a small difference in z, which will bring in the aliasing effects
in the propagated/back-propagated field.

Alternatively, in the case of field propagation/back propaga-
tion without following (25), the propagated field can be multi-
plied by an appropriate window function in order to remove the
effect of sidelobes, which occurs due to replication; however,
in this case, we lose some information of the field close to
the boundary. Moreover, it is difficult to determine the exact
spatial position of the start over of foldover frequencies due
to modulation and replication. In this case, the effect of the
window function needs to be studied in advance (depending on
the type of the window function) because the wave field is a
complex function and the engraving function is a real function.
The Huygens–Fresnel propagation method can also be solved
using a zero-padding method by padding equal zeros in both the
x- and y-directions, as explained in [19]. This procedure is used
to remove the effect of foldover frequencies (as shown in Figs. 3
and 4), which gives the overlapping behavior at the boundary
(the amount of overlapping depends on the sizes of the con-
volving kernels). The method of windowing is apparently equal
to the zero padding of the propagated/back-propagated field.

Concluding the aforementioned Huygens–Fresnel propaga-
tion scheme for IPRA, the following can be stated.

1) If we use two planes in IPRA, we can easily use
the Huygens–Fresnel propagation method, following the
condition of propagation.

2) For more than two planes in IPRA or to propagate to any
arbitrary distance, we can propagate in steps by assuming
some intermediate plane. If the distance z is an integer
multiple of values given by (25), then we can propagate in
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Fig. 4. Phase of a fundamental Gaussian beam at some arbitrary posi-
tion. The parameters are w0 = 25.4 mm, plane size = 300 mm × 300 mm,
and frequency = 170 GHz. (a) Theoretical phase at the initial position.
(b), (c), and (d) Propagated and back-propagated fields corresponding
to z = 1.001(MΔx2)/λ, z = 1.00001(MΔx2)/λ, and z = (MΔx2)/λ,
respectively.

steps by using some virtual intermediate plane. However,
if z is not an integer multiple, then we can change the
grid size M to match the condition (25). In this case, if
M is not an exact integer, then this deviation of M from
being an integer is equivalent to a small change in the z
position, and we have shown in Fig. 4 that the phase is

extremely sensitive to a tiny change in z. Propagation in
steps or interpolation at each iteration will also increase
the computational complexity of the algorithm.

Hence, if the beam profile measurements are done at those
values of z, which satisfy (25), then the Huygens–Fresnel prop-
agation scheme can be used in IPRA for an exact propagation
without computational complexity. For more than two planes,
the propagation without any intermediate step or interpolation
is valid (following condition of propagation) only when the
propagation/back propagation is done among the consecutive
planes. For example, when we use three planes in the IPRA,
we should follow the propagation procedure, as 1 → 2 → 3,
and back propagation, as 3 → 2 → 1. If the back propagation
is followed in a way 3 → 1, then one has to interpolate the field
to a new M (which can be a noninteger) at each iteration during
the IPRA in order to follow (25), and this can be more time
consuming.

2) RSDI Method: Coming back to (9), we calculate the
diffraction integral by using a zero-padding method [17]. Since
we know that, when we are given two discrete Fourier trans-
forms (DFTs) of finite length, we cannot just multiply them
together because DFTs are periodic and they have nonzero
values for x ≥ Ω; thus, the multiplication of these two DFTs
will be nonzero for x ≥ Ω. Therefore, (5) gives the circular
convolution of f and g instead of a linear convolution [16],
[17]. One can easily overcome this difficulty by using the
zero-padding technique. If the support of f is P × P and of
g is Q × Q, then the minimum periodicity for both type of
convolutions (circular and linear) to lead the same result is
(P + Q − 1) × (P + Q − 1); therefore, in order to avoid the
wraparound effect due to circular convolution, we add zeros to
the field fi(x, y) to (P + Q − 1) × (P + Q − 1) as[

[fi(x, y)]P×P 0
0 0

]
(P+Q−1)×(P+Q−1)

(26)

and extend the propagation kernel gi→j(x′ − x, y′ − y) to a grid
size of (P + Q − 1) × (P + Q − 1) as

[gi→j(xp+q−1, yp+q−1)](P+Q−1)×(P+Q−1) ,

p = 1, 2, . . . , P and q = 1, 2, . . . , Q. (27)

During the calculations of RSDI, we used the expression of
g given in (7). The propagated or back-propagated field in
the observation plane can be recovered from the convolution
product by retaining the values in the lower right half of
the convolved matrix. Fig. 5 shows the propagated and back-
propagated fields calculated by using the aforementioned zero-
padding technique. The propagated field can be compared
directly to the Huygens–Fresnel propagation method shown
in Fig. 3. The fields in Fig. 5 are propagated to the same
position as in Fig. 3. Fig. 5(b)–(d) can be compared directly
with Fig. 3(b)–(d). The dispersion like effects in Fig. 5(b)–(d)
can be understood from (20) which contains all higher order
terms in the exponential factor. If we compare Fig. 5(d) with
Fig. 3(d) of the Huygens–Fresnel propagation, where we could
remove all the effects of modulation term by following the
condition of propagation (which is also partially valid in case
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Fig. 5. Propagated and back-propagated fields of the 170-GHz/2-MW gyrotron by solving the full RSDI. (a) Amplitude and phase at 500 mm from the window.
(b), (c), and (d) Beam is propagated/back propagated corresponding to z = 537.9, 403.4, and 448.2 mm, respectively. (b)–(d) can be directly compared with
Fig. 3(b)–(d), respectively. Isomagnitude contours of field amplitudes are plotted at every −3 dB increment from the peak value. The phase is wrapped in a
2π modulo and shown in radians.

of RSDI), some aberration effects can still be seen in Fig. 5(d).
Therefore, for an exact propagation scheme, one needs to
solve (20) appropriately. Using the RSDI method in IPRA also
produces some distortions in the reconstructed phase. Hence,
the best possible way for the field-propagation method in IPRA
is either using the Huygens–Fresnel propagation method for
fixed distances or solving the RSDI (20) by optimizing z, L,
and M ; other than that will always introduce some distortions
in the retrieved phase.

In order to check the accuracy of the back-propagated fields
and, hence, the reconstructed fields, we calculate the matching
coefficient for initial and back-propagated fields in the form of
a cross correlation coefficient given by

CCF =
∑
i,j

u1(i, j)u2(i, j). (28)

Here, u1(i, j) is assigned the modulus of the normalized back-
propagated field, and u2(i, j) is the modulus of the normalized
theoretical field. The cross correlation function (CCF ) is nor-
malized so that 0 ≤ CCF ≤ 1. Fig. 6 shows the CCF on a
linear scale for different values of the propagation distance in
terms of a parameter t defined as zi→j = t(MΔx2)/λ. The
CCF is shown for two different values of the plane size
and for the two methods of propagations, namely, RSDI and
Huygens–Fresnel propagation. The field is propagated/back
propagated for different values of the parameter “t.” The
correlation is maximum (equal to one in the case of the
Huygens–Fresnel propagation) for t equal to one. For larger
values of t which corresponds to the larger distance of prop-
agation and back propagation, the field expands, and it is no
longer negligible at the boundary; therefore, the CCF is not
accurate for these values because we lose the information at the

Fig. 6. CCF given by (28) as a function of the parameter “t” for RSDI and
Huygens–Fresnel propagation methods.

boundary. Moreover, we do not know the behavior of the higher
order terms in case of exact RSDI propagation; therefore, for
smaller plane dimensions, the cross correlation coefficient for
RSDI propagation deviates from the other values.

B. Effect of Other Parameters and Error Analysis of the
Reconstructed Field

If one uses the Huygens–Fresnel propagation method as the
field propagation in IPRA, then the relationship between the
plane separations, size of the plane, and number of sampling
points is clear from (25) and has been discussed in the previous
section. One additional condition can be put together with the
condition of propagation, i.e., the field intensity ratio between
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Fig. 7. Reconstruction efficiency in terms of CCF for two different cases of
IPRA. In the first case, IPRA is evaluated using planes at 0.13 ZR, 0.215 ZR,
and 0.3 ZR mm. The plane size, in this case, is 300 mm × 300 mm, and the
number of subdivisions in both directions is 512. In the second case, IPRA is
evaluated using planes at 0.6 ZR, 0.8 ZR, and ZR mm. The plane size, in this
case, is 450 mm × 450 mm, and the number of subdivisions in both directions
is 512. ZR = 1150 mm is the Rayleigh range.

the boundary value and the maximum value should be in excess
of ∼ −50 dB. Evidently, the output beam field pattern would
be broader if one goes far away from the beam waist location;
therefore, one needs a larger plane size to fulfill the condition
of zero intensity at the boundary. As shown in Fig. 2, the
larger plane size requires a large number of sampling points
if one wants closely spaced field patterns (this is obvious from
the point of view of an accurate axial intensity variation and
the efficiency of the reconstruction algorithm). On the other
hand, if we are closer to the beam waist location, the field
pattern would be smaller, and one needs a smaller plane size
to fulfill the condition of zero intensity at the boundary and,
hence, the smaller scan separation which can provide better
axial variation of intensity. This is shown in Fig. 7, where the
reconstruction efficiency is plotted in terms of the CCF for two
different cases of plane size, scan separation, and position of
the beam patterns w.r.t. the beam waist location. The distances
of propagation are shown in terms of the Rayleigh range given
by 1150 mm. The reconstruction algorithm is evaluated using
the Huygens–Fresnel propagation method and following (25).
The field was propagated between the three planes such that
1 → 2 → 3 for the forward propagation and 3 → 1 for the
backward propagation. During back propagation, the field was
interpolated to a different grid to satisfy (25). As one can clearly
see that in the case when the beam patterns are closely spaced
and positioned closer to the beam waist location, the efficiency
is better, compared to the other case, when the separation
between the planes is larger and they are located farther from
the beam waist location. Moreover, we used a bigger plane size
of 450 mm × 450 mm in the latter case compared with the
plane size of 300 mm × 300 mm of the first case. We can
further justify this statement by analyzing the reconstruction
error during IPRA.

We define a function called an error function calculated by
summing the squared difference of the calculated modulus of

Fig. 8. Derivative of error function plotted w.r.t. the number of iterations.
(a) Square plane size = 300 mm; number of sampling points = 512; and dis-
tances from the beam waist location are 0.13 ZR, 0.215 ZR, and 0.3 ZR mm.
(b) Square plane size = 450 mm; number of sampling points = 512; and dis-
tances from the beam waist location are 0.6 ZR, 0.8 ZR, and ZR mm.
ZR = 1150 mm is the Rayleigh range.

the theoretical field Etheory(i, j) and the reconstructed field
Erec(i, j) at every point of the transverse plane as

error =

∑
i,j

(|Etheory(i, j)| − |Erec(i, j)|)2∑
i,j

|Etheory(i, j)|2
. (29)

The derivative of this error function is shown in Fig. 8 for the
aforementioned two cases shown in Fig. 7. One can easily see
that the convergence in the first case is faster and smoother com-
pared with the other case. Moreover, the algorithm converges
to the higher value in the first case. The iteration algorithm
was terminated manually after 200 iterations, irrespective of
the value of the convergence at that point. The value of 200
was chosen arbitrarily from the inspection of the reconstructed
amplitude as a best compromise between the computational
effort and the quality of the result. Ideally, the error function
derivative should reach a saturation level monotonically and
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Fig. 9. Effect of noise on the CCF for different values of the SNR. Field is
propagated/back propagated using the RSDI for a plane size of 600 mm.

should be terminated at its global minima. From a comparison
between the two cases, one can conclude that the closely spaced
planes situated close to the beam waist position (for a fixed
number of sampling points and, therefore, smaller grid step
size) provide more accurate results compared with the situation
when the planes are located farther from each other and from
the beam waist location.

We can also qualitatively discuss the effects of the dynamic
range of the field intensity and initial phase guess on the IPRA.
However, the appropriate discussion of these parameters can
only be explained with the measured beam profiles [13], where
one can truly investigate them in a more realistic way in the
presence of the measurement noise. To give an insight into the
effect of noise on the reconstruction algorithm and propagation
distance using theoretical data, we added Gaussian white noise
to the field for different values of signal-to-noise ratio (SNR)
and calculated the CCF corresponding the case of RSDI for
a plane size of 600 mm, as shown in Fig. 6. This is shown in
Fig. 9, where the CCF is plotted with respect to the distance of
propagation in terms of the parameter “b” for different values
of SNR. It is clearly shown in Fig. 9 that the effect of noise
on the CCF is not symmetric for different distances and that,
regardless of the value of the SNR, the maximum of CCF is
always found at the position (t = 1) which follows from (25).

More dynamics in the measured field intensity can provide
more detailed and accurate reconstruction results. This parame-
ter clearly depends on the target material used for measuring
the beam profile during free-space infrared measurements. The
choice of the material depends on the reflection and absorption
of the microwave field at the frequency used and the tempera-
ture linearity w.r.t. the irradiating power.

The phase used to initially propagate the field for the first
time would mainly affect the convergence of the algorithm.
The resemblance of the initial phase with the true phase would
help in faster and better convergence. The initial approximating
phase can be taken as a flat, random, or quadratic phase. A
better approximation of the initial phase can be made by using
an irradiance of moment method. One can also calculate the
initial phase by optimizing the coefficients of a 2-D quadratic
phase function, which can minimize the propagation error

defined by (29), although this error minimization is virtually the
same as IPRA; however, combining the two similar approaches
can provide more confidence in the reconstructed result.

V. CONCLUSION

This paper discussed various parameters which affect the
retrieval of phase from amplitude measurements using IPRA,
mainly the field-propagation method. We solved the full RSDI
using FFT, and the effect of the discretization is studied in
detail. The Huygens–Fresnel propagation method is also dis-
cussed, and it is observed that using the Huygens–Fresnel
propagation method for a fixed distance of propagation pro-
vides more accurate results and that the modulation effects in
the propagated field can be avoided. A method for arbitrary
distance of propagation using the Huygens–Fresnel propaga-
tion method is suggested; moreover, its implications on the
propagated and back-propagated fields are discussed. Various
parameters which can affect the reconstruction results were
studied, and it is found that, for a correct phase reconstruction,
it is preferred that the beam profile measurements be spaced
based on (25) in the case of HFP. In the case of RSDI, it is
difficult to find the exact condition on the distance of propaga-
tion from (20); however, during the analysis, it was observed
that the minimum distance of propagation was approximately
equal to the distance given by (25). To get more accurate results,
measurements should be carried out within one or two Rayleigh
lengths and, if possible, close to the beam waist location. One
has to make a good compromise among all the parameters
during IPRA — the mesh density, larger plane size (so that
the field amplitude becomes almost zero (∼ −50 dB) at the
boundary), smaller scan separation, number of planes used,
field close to the beam waist, larger dynamic range, initial phase
guess, and properly aligned field profile.
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